Edoardo Novara
Machine learning for 3D human models remeshing for animation based on a semantic segmentation approach.
Rel. Federico Manuri, Andrea Sanna. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering), 2024
|
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (3MB) | Preview |
Abstract: |
Polygonal Meshes are the most widespread method of representing 3-dimensional shapes in Computer Graphics, with applications in a plethora of different fields. The need to generate meshes with a clean topology for simulation and animation drives an interest in algorithmic solutions that could automate the work of 3D artists. The goal of the thesis is designing a framework tailor-suited for remeshing realistic human 3D models for animation. To ensure a correct topology a machine learning algorithm is used to extract semantic features from an unstructured triangle human mesh. The semantic features are then converted to feature lines that guide a state-of-the-art remeshing algorithm. The 3D models obtained with the proposed pipeline are compared with the results of the standalone remeshing algorithm to evaluate how the performance improves. |
---|---|
Relatori: | Federico Manuri, Andrea Sanna |
Anno accademico: | 2024/25 |
Tipo di pubblicazione: | Elettronica |
Numero di pagine: | 70 |
Soggetti: | |
Corso di laurea: | Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering) |
Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-32 - INGEGNERIA INFORMATICA |
Aziende collaboratrici: | NON SPECIFICATO |
URI: | http://webthesis.biblio.polito.it/id/eprint/34087 |
Modifica (riservato agli operatori) |