Giulio Corallo
Evaluating AI-Based Code Generation Models for the Travel Industry.
Rel. Paolo Garza, Rapahel Troncy. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering), 2023
Abstract: |
In this work, we present a code generation model incorporating natural language understanding. Our model uses an auto-regressive language model with NTP as the objective to learn both the natural language description and corresponding code. We post-processed the XL- Cost dataset to enable the use of a functional correctness metric, and our finetuning methods were successful in improving model performance. Additionally, we proposed a novel application of Constrained Beam Search for code generation, which improved the performance of our model on the Multi-Turn Programming Benchmark (MTPB) dataset. We also conducted benchmark evaluations on the throughput and cloud cost of our model. |
---|---|
Relatori: | Paolo Garza, Rapahel Troncy |
Anno accademico: | 2022/23 |
Tipo di pubblicazione: | Elettronica |
Numero di pagine: | 63 |
Informazioni aggiuntive: | Tesi secretata. Fulltext non presente |
Soggetti: | |
Corso di laurea: | Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering) |
Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-32 - INGEGNERIA INFORMATICA |
Ente in cotutela: | INSTITUT EURECOM (FRANCIA) |
Aziende collaboratrici: | SAS AMADEUS |
URI: | http://webthesis.biblio.polito.it/id/eprint/26680 |
Modifica (riservato agli operatori) |