polito.it
Politecnico di Torino (logo)

Variational Auto-Encoder for Generalization in Visual Perception for Abstract Reasoning

Beatrice Alessandra Motetti

Variational Auto-Encoder for Generalization in Visual Perception for Abstract Reasoning.

Rel. Daniele Jahier Pagliari, Abbas Rahimi. Politecnico di Torino, Corso di laurea magistrale in Data Science And Engineering, 2022

Abstract:

Visual abstract reasoning problems are a difficult challenge for neural networks to tackle, due to the involvement of different levels of knowledge abstraction to be learnt. Visual properties must be correctly extracted and linked to high-level concepts, on top of which further elaboration is required to solve the problems. This thesis uses Variational Auto-Encoders, and explores their different variants to obtain meaningful and disentangled latent representations to address these problems. Experimental results on a public dataset show that this approach can adapt to data distribution shifts over time by consolidating the previously learnt knowledge, showing improvements in terms of generalization on Out-of-Distribution data.

Relatori: Daniele Jahier Pagliari, Abbas Rahimi
Anno accademico: 2022/23
Tipo di pubblicazione: Elettronica
Numero di pagine: 72
Informazioni aggiuntive: Tesi secretata. Fulltext non presente
Soggetti:
Corso di laurea: Corso di laurea magistrale in Data Science And Engineering
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-32 - INGEGNERIA INFORMATICA
Ente in cotutela: IBM Research (SVIZZERA)
Aziende collaboratrici: IBM Research-Zurich
URI: http://webthesis.biblio.polito.it/id/eprint/25545
Modifica (riservato agli operatori) Modifica (riservato agli operatori)