polito.it
Politecnico di Torino (logo)

Model Predictive Control for Autonomous Driving via Machine Learning Approximation

Patrick Joseph Bonetto

Model Predictive Control for Autonomous Driving via Machine Learning Approximation.

Rel. Massimo Canale, Valentino Razza. Politecnico di Torino, Corso di laurea magistrale in Mechatronic Engineering (Ingegneria Meccatronica), 2022

Abstract:

Autonomous Driving is, nowadays, a topic widely studied by the most renowned automotive companies and universities. This interest is motivated by several advantages, which include fuel consumption optimization, pollution reduction, accidents decrease and comfort enhancement. In this work, the self-driving topic is applied to a vehicle moving in a highway environment. In particular, this thesis focuses on: 1. the design of a single layer predictive control architecture, based on Artificial Potential Fields techniques, that provides the optimal control inputs in terms of steering angle and acceleration; 2. the use of Machine Learning (ML) techniques to obtain a Neural Network (NN) approximation of the control law designed at the previous point. As to the first point, a Nonlinear Model Predictive Controller (NMPC) is designed to compute the needed control action based on the driving scenario data provided by the on-board camera and sensors. However, the NMPC online implementation requires a significant computational e

Relatori: Massimo Canale, Valentino Razza
Anno accademico: 2021/22
Tipo di pubblicazione: Elettronica
Numero di pagine: 107
Informazioni aggiuntive: Tesi secretata. Fulltext non presente
Soggetti:
Corso di laurea: Corso di laurea magistrale in Mechatronic Engineering (Ingegneria Meccatronica)
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-25 - INGEGNERIA DELL'AUTOMAZIONE
Aziende collaboratrici: Politecnico di Torino
URI: http://webthesis.biblio.polito.it/id/eprint/22742
Modifica (riservato agli operatori) Modifica (riservato agli operatori)