polito.it
Politecnico di Torino (logo)

Power-aware carrier aggregation for XR traffic using optimization and machine learning techniques

Francesco Brozzu

Power-aware carrier aggregation for XR traffic using optimization and machine learning techniques.

Rel. Andrea Bianco, Cristina Emma Margherita Rottondi. Politecnico di Torino, Corso di laurea magistrale in Communications And Computer Networks Engineering (Ingegneria Telematica E Delle Comunicazioni), 2022

Abstract:

Carrier Aggregation is a technique widely used by operators to increase performance in their network, since it allows the use of multiple parts of the radio frequency spectrum to increase the total available bandwidth. However, aggregating multiple frequencies comes at a cost in terms of power consumption for UEs due to the larger bandwidth to be monitored. Therefore, when traffic is (quasi)periodic, as in the case of XR services, activating multiple carriers for a subset of users may be beneficial since it reduces average UE power consumption. This thesis will use different approaches coming from the domains of optimization and machine learning to solve the allocation problem. To test the solution, and verify whether it meets the required KPIs for XR, a 5G system-level simulator is used.

Relatori: Andrea Bianco, Cristina Emma Margherita Rottondi
Anno accademico: 2021/22
Tipo di pubblicazione: Elettronica
Numero di pagine: 38
Informazioni aggiuntive: Tesi secretata. Fulltext non presente
Soggetti:
Corso di laurea: Corso di laurea magistrale in Communications And Computer Networks Engineering (Ingegneria Telematica E Delle Comunicazioni)
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-27 - INGEGNERIA DELLE TELECOMUNICAZIONI
Ente in cotutela: INSTITUT EURECOM (FRANCIA)
Aziende collaboratrici: Nokia Bell Labs France
URI: http://webthesis.biblio.polito.it/id/eprint/22728
Modifica (riservato agli operatori) Modifica (riservato agli operatori)