Alessandro Princi
Deep learning techniques for micro-launchers branching trajectories optimization.
Rel. Nicole Viola. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Aerospaziale, 2021
|
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (8MB) | Preview |
|
Archive (ZIP) (Documenti_allegati)
- Altro
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (178MB) |
Abstract: |
This thesis was created with the purpose of investigating about the nature of branching trajectories for the class of micro-launchers. The results generated are the outcome of different methods of approach for which both the theoretical concepts and the practical results are reported. The reference model used is Electron produced by RocketLab, however IRATO (Intelligent Rocket Ascent Trajectory Optimizer) is scalable to any class of multi-stage launcher. The proposed goal is to present to the reader a tool that is able to provide robust results based on unconventional optimization techniques and artificial intelligence elements. |
---|---|
Relatori: | Nicole Viola |
Anno accademico: | 2020/21 |
Tipo di pubblicazione: | Elettronica |
Numero di pagine: | 103 |
Soggetti: | |
Corso di laurea: | Corso di laurea magistrale in Ingegneria Aerospaziale |
Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-20 - INGEGNERIA AEROSPAZIALE E ASTRONAUTICA |
Aziende collaboratrici: | ESA-ESTEC |
URI: | http://webthesis.biblio.polito.it/id/eprint/18274 |
Modifica (riservato agli operatori) |