Valentino Rizzo
Machine Learning Approaches for Automatic Detection of Web Fingerprinting.
Rel. Marco Mellia. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering), 2018
|
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (5MB) | Preview |
Abstract: |
The web is rich of third-party services which use HTML5 and JavaScript snippets, frequently obfuscated, in order to uniquely identify the user and monitor him when surfing the web. This approach, called fingerprinting, constitutes a thread for users' privacy and companies' security. In the thesis it has been conducted a census of the techniques used by tracking services to fingerprint users, the APIs which constitute a source for the unique identification have been identified and it has been developed an automatic, machine learning based detection system for scripts which perform fingerprinting. |
---|---|
Relatori: | Marco Mellia |
Anno accademico: | 2017/18 |
Tipo di pubblicazione: | Elettronica |
Numero di pagine: | 79 |
Soggetti: | |
Corso di laurea: | Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering) |
Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-32 - INGEGNERIA INFORMATICA |
Aziende collaboratrici: | ERMES CYBER SECURITY S.R.L. |
URI: | http://webthesis.biblio.polito.it/id/eprint/8227 |
Modifica (riservato agli operatori) |