Valentino Rizzo
Machine Learning Approaches for Automatic Detection of Web Fingerprinting.
Rel. Marco Mellia. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering), 2018
             
  | 
          
            
PDF (Tesi_di_laurea)
 - Tesi
   Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (5MB) | Preview  | 
          
| Abstract: | 
         The web is rich of third-party services which use HTML5 and JavaScript snippets, frequently obfuscated, in order to uniquely identify the user and monitor him when surfing the web. This approach, called fingerprinting, constitutes a thread for users' privacy and companies' security. In the thesis it has been conducted a census of the techniques used by tracking services to fingerprint users, the APIs which constitute a source for the unique identification have been identified and it has been developed an automatic, machine learning based detection system for scripts which perform fingerprinting.  | 
    
|---|---|
| Relatori: | Marco Mellia | 
| Anno accademico: | 2017/18 | 
| Tipo di pubblicazione: | Elettronica | 
| Numero di pagine: | 79 | 
| Soggetti: | |
| Corso di laurea: | Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering) | 
| Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-32 - INGEGNERIA INFORMATICA | 
| Aziende collaboratrici: | ERMES CYBER SECURITY S.R.L. | 
| URI: | http://webthesis.biblio.polito.it/id/eprint/8227 | 
![]()  | 
        Modifica (riservato agli operatori) | 
      


Licenza Creative Commons - Attribuzione 3.0 Italia