Niccolo' Palmieri
Application of Physics-Informed Neural Networks to the Inverse Design of Semiconductor Devices.
Rel. Matteo Giovanni Carmelo Alasio, Michele Goano. Politecnico di Torino, Corso di laurea magistrale in Nanotechnologies For Icts (Nanotecnologie Per Le Ict), 2025
| Abstract: |
Physics-informed neural networks (PINNs) can be viewed as an alternative to traditional finite element methods (FEM) for solving partial differential equations in the modeling and design of semiconductor devices. Implementation of physical constraints or laws is achieved by adding a proper loss function term to the total loss function. This modular approach makes straightforward the integration of additional physical models. Using as benchmark a simple semiconductor structure, we addressed direct problems by predicting its electrostatic potential, and inverse problems by reconstructing the dopant concentration profile from the electric field. Although some noticeable errors appear, the overall results are consistent with FEM analysis predictions and show the potential of PINNs as inverse design tools that do not pretend to replace traditional methods but rather complement them. |
|---|---|
| Relatori: | Matteo Giovanni Carmelo Alasio, Michele Goano |
| Anno accademico: | 2025/26 |
| Tipo di pubblicazione: | Elettronica |
| Numero di pagine: | 85 |
| Informazioni aggiuntive: | Tesi secretata. Fulltext non presente |
| Soggetti: | |
| Corso di laurea: | Corso di laurea magistrale in Nanotechnologies For Icts (Nanotecnologie Per Le Ict) |
| Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-29 - INGEGNERIA ELETTRONICA |
| Aziende collaboratrici: | NON SPECIFICATO |
| URI: | http://webthesis.biblio.polito.it/id/eprint/38784 |
![]() |
Modifica (riservato agli operatori) |



Licenza Creative Commons - Attribuzione 3.0 Italia