polito.it
Politecnico di Torino (logo)

Scale-Invariant Neural Networks for Percolation

Luca Camagna

Scale-Invariant Neural Networks for Percolation.

Rel. Alfredo Braunstein, Cyril Furtlehner, Sergio Chibbaro, François Landes. Politecnico di Torino, NON SPECIFICATO, 2025

[img] PDF (Tesi_di_laurea) - Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (1MB)
Abstract:

This thesis explores the integration of Renormalization Group theory with Machine Learning to develop a multiscale classifier for predicting square lattice site percolation. The model processes binary lattices of varying sizes, mimicking the iterative RG flow, and demonstrates improved performance when trained on mixed-size data compared to fixed-size training. Key results show that the classifier achieves high accuracy (90–95%) in phase classification, with the arithmetic averaging first coarse-graining (AFC) method proving most effective. The learned coarse-graining rules resemble sigmoidal functions, consistent with theoretical RG expectations, and provide estimates of the percolation threshold (0.569–0.589) close to the known theoretical value. By bridging RG theory with machine learning, this framework offers a physics-informed method for studying critical phenomena.

Relatori: Alfredo Braunstein, Cyril Furtlehner, Sergio Chibbaro, François Landes
Anno accademico: 2025/26
Tipo di pubblicazione: Elettronica
Numero di pagine: 28
Soggetti:
Corso di laurea: NON SPECIFICATO
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-44 - MODELLISTICA MATEMATICO-FISICA PER L'INGEGNERIA
Aziende collaboratrici: INRIA
URI: http://webthesis.biblio.polito.it/id/eprint/37792
Modifica (riservato agli operatori) Modifica (riservato agli operatori)