polito.it
Politecnico di Torino (logo)

Automated Recognition of Annotations from Electrical Circuit Drawings

Carmen Rosa Moncada Quintero

Automated Recognition of Annotations from Electrical Circuit Drawings.

Rel. Stefano Grivet Talocia. Politecnico di Torino, Corso di laurea magistrale in Communications And Computer Networks Engineering (Ingegneria Telematica E Delle Comunicazioni), 2025

[img] PDF (Tesi_di_laurea) - Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (13MB)
Abstract:

Image recognition constitutes a key component of machine learning that enables intelligent systems to interpret visual information. Conventional optical character recognition (OCR) tools often encounter challenges with variations in font style, text orientation, language, and the presence of technical symbols. To address these challenges, a convolutional neural network (CNN) was implemented to identify characters individually within annotated labels of electrical circuit images. A post-processing function was integrated to reconstruct the detected characters, ensuring semantic coherence and compliance with standard circuit notation. The proposed method was then compared with a conventional OCR tool to evaluate accuracy and flexibility. Experimental results demonstrate that this approach enhances technical consistency and streamlines the automation of circuit label annotation in intelligent systems.

Relatori: Stefano Grivet Talocia
Anno accademico: 2025/26
Tipo di pubblicazione: Elettronica
Numero di pagine: 122
Soggetti:
Corso di laurea: Corso di laurea magistrale in Communications And Computer Networks Engineering (Ingegneria Telematica E Delle Comunicazioni)
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-27 - INGEGNERIA DELLE TELECOMUNICAZIONI
Aziende collaboratrici: Politecnico di Torino
URI: http://webthesis.biblio.polito.it/id/eprint/37737
Modifica (riservato agli operatori) Modifica (riservato agli operatori)