polito.it
Politecnico di Torino (logo)

Development of a machine learning-based tool for the identification of anomalies in the calibration of gas flow meters

Alfredo Enrique Morris Villadiego

Development of a machine learning-based tool for the identification of anomalies in the calibration of gas flow meters.

Rel. Nicola Pedroni. Politecnico di Torino, NON SPECIFICATO, 2025

[img] PDF (Tesi_di_laurea) - Tesi
Accesso riservato a: Solo utenti staff fino al 16 Aprile 2027 (data di embargo).
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (2MB)
[img] Archive (ZIP) (Documenti_allegati) - Altro
Accesso riservato a: Solo utenti staff fino al 16 Aprile 2027 (data di embargo).
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (689kB)
Abstract:

The calibration of gas flow meters at the Italian National Institute of Metrological Research (INRIM) is constrained by a manual and subjective validation workflow, leading to significant operational inefficiencies and potential inconsistencies in ensuring metrological traceability. This thesis addresses this challenge by conducting a comparative study of data-driven anomaly detection models, evaluating robust statistical, unsupervised, and supervised machine learning approaches on historical calibration data from INRIM's BellGas primary standard. Building on this analysis, the research presents the development and integration of the optimal detection model into a software tool within the existing LabView environment, enabling real-time, automated feedback for operators. The evaluation, based on robust metrics like the F1-Score, demonstrates the superiority of supervised models and reveals that feature engineering, specifically temporal differencing, is the most critical factor for achieving high performance. By integrating advanced machine learning into a structure metrological process, this work successfully transforms the validation workflow from a reactive, manual system to a proactive, automated one, enhancing both the efficiency and objectivity of the national standard.

Relatori: Nicola Pedroni
Anno accademico: 2025/26
Tipo di pubblicazione: Elettronica
Numero di pagine: 87
Soggetti:
Corso di laurea: NON SPECIFICATO
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-30 - INGEGNERIA ENERGETICA E NUCLEARE
Aziende collaboratrici: INRIM - ISTITUTO NAZIONALE DI RICERCA METROLOGICA
URI: http://webthesis.biblio.polito.it/id/eprint/37448
Modifica (riservato agli operatori) Modifica (riservato agli operatori)