polito.it
Politecnico di Torino (logo)

Refining AI-Generated Messaging with Prompt Engineering: Human Evaluation, Iterative Improvement, and Adversarial Privacy Testing on Employee and Company Data

Neralb Cika

Refining AI-Generated Messaging with Prompt Engineering: Human Evaluation, Iterative Improvement, and Adversarial Privacy Testing on Employee and Company Data.

Rel. Paolo Garza. Politecnico di Torino, Corso di laurea magistrale in Data Science And Engineering, 2025

[img]
Preview
PDF (Tesi_di_laurea) - Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (3MB) | Preview
Abstract:

This thesis analyzes large language model (LLM) outputs in the automated Linkedin messaging task for commercial purposes. The main goals are to generate meaningful messages using different prompting strategies and test the robustness of the models with respect to the sensitive data in input. We will test different prompting strategies such as normal prompting , double prompting and further refinement using feedback. Additionally we will test the models with respect to the adversarial prompt injection task. We will provide feedback from the generations to further improve and refine the prompts, and in the end we will make human evaluation of generations based on several important metrics.

Relatori: Paolo Garza
Anno accademico: 2024/25
Tipo di pubblicazione: Elettronica
Numero di pagine: 61
Soggetti:
Corso di laurea: Corso di laurea magistrale in Data Science And Engineering
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-32 - INGEGNERIA INFORMATICA
Aziende collaboratrici: VOLCANIC MINDS S.R.L.
URI: http://webthesis.biblio.polito.it/id/eprint/35367
Modifica (riservato agli operatori) Modifica (riservato agli operatori)