
Yufei Ma
Enhancing Text and Image Representations for Multimodal Fake News Detection via Knowledge Distillation.
Rel. Luca Cagliero, Lorenzo Vaiani. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering), 2025
![]() |
PDF (Tesi_di_laurea)
- Tesi
Accesso riservato a: Solo utenti staff fino al 11 Aprile 2026 (data di embargo). Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (1MB) |
![]() |
Archive (ZIP) (Documenti_allegati)
- Altro
Accesso riservato a: Solo utenti staff fino al 11 Aprile 2026 (data di embargo). Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (1MB) |
Abstract: |
The widespread use of social media and the low-cost nature of online media have led to a rapid increase in news sources. Consequently, unchecked and unverified information floods the internet like a tsunami. The emergence of trending events often brings a surge of fake news, including but not limited to satire, misleading content, imposter content, false connections, and manipulated content. To address the above phenomena, this thesis further explores methods for fake news detection. We propose a model based on the BERT-ViT multimodal architecture: 1. Incorporating knowledge distillation techniques enhances text and image encoders' sentiment and intent analysis ability to naturally and effectively extract embeddings. 2. Introduce a transformer-based fusion block to help modality fusion. Experiments conducted on two social media fake news classification datasets demonstrate that our approach achieves significantly better results compared to baseline models. |
---|---|
Relatori: | Luca Cagliero, Lorenzo Vaiani |
Anno accademico: | 2024/25 |
Tipo di pubblicazione: | Elettronica |
Numero di pagine: | 70 |
Soggetti: | |
Corso di laurea: | Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering) |
Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-32 - INGEGNERIA INFORMATICA |
Aziende collaboratrici: | NON SPECIFICATO |
URI: | http://webthesis.biblio.polito.it/id/eprint/35235 |
![]() |
Modifica (riservato agli operatori) |