polito.it
Politecnico di Torino (logo)

Matrix Acceleration on Processor Using State-of-the-Art Technology Corners

Salvatore Mascolo

Matrix Acceleration on Processor Using State-of-the-Art Technology Corners.

Rel. Mario Roberto Casu. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Elettronica (Electronic Engineering), 2024

Abstract:

The rapid advancement in machine learning has sparked a need for application specific hardware to handle diverse workloads, from server-grade training to edge-device inference. This work focuses on designing a Precision-Scalable Multiply-Accumulate unit for matrix multiplication accelerators, which is optimized for a state-of-the-art technology node. The analysis evaluates the impact of temperature robustness on Performance-Power-Area metrics, highlighting the trade-offs in design choices for the Modified Booth Encoding, the Carry Save Adder accumulation and the Parallel Prefix addition. The results show that optimizing for a specific temperature corner can reduce dynamic power by 3-4% while keeping the remaining metrics constant.

Relatori: Mario Roberto Casu
Anno accademico: 2024/25
Tipo di pubblicazione: Elettronica
Numero di pagine: 108
Informazioni aggiuntive: Tesi secretata. Fulltext non presente
Soggetti:
Corso di laurea: Corso di laurea magistrale in Ingegneria Elettronica (Electronic Engineering)
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-29 - INGEGNERIA ELETTRONICA
Aziende collaboratrici: ARM France SAS
URI: http://webthesis.biblio.polito.it/id/eprint/33066
Modifica (riservato agli operatori) Modifica (riservato agli operatori)