polito.it
Politecnico di Torino (logo)

Data fusion of passengers' travel information from different types of sources to infer mobility patterns and most used locations.

Ximena Rocio Garzon Ruiz

Data fusion of passengers' travel information from different types of sources to infer mobility patterns and most used locations.

Rel. Cristina Pronello. Politecnico di Torino, Corso di laurea magistrale in Ict For Smart Societies (Ict Per La Società Del Futuro), 2019

Abstract:

Thanks to the Intelligent transport systems (ITS), new technologies for data collection and processing have been developed. And data fusion techniques have been applied to improve the quality of the resultant model. In this thesis, the main objective is execute a data fusion metholody on different data sources, such as surveys, mobile application data, automatic fare collection(AFC) and router data, to estimate the origin-destination (OD) matrix of the public transport users from two French agglomerations: Agglomération de la région de Compiègne (ARC) and Agglomération Creil Sud Oise (ACSO). This thesis has been carried out within the research work of the Chair MIDT -Mobilité Intelligente et Dynamiques Territoriales – of the Université de Technologie de Compiègne -UTC- in Compiègne, France, in conjunction with other research projects and theses.

Relatori: Cristina Pronello
Anno accademico: 2018/19
Tipo di pubblicazione: Elettronica
Numero di pagine: 126
Informazioni aggiuntive: Tesi secretata. Fulltext non presente
Soggetti:
Corso di laurea: Corso di laurea magistrale in Ict For Smart Societies (Ict Per La Società Del Futuro)
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-27 - INGEGNERIA DELLE TELECOMUNICAZIONI
Ente in cotutela: UNIVERSITÉ DE TECHNOLOGIE DE COMPIÈGNE (FRANCIA)
Aziende collaboratrici: UNIVERSITE' DE TECHNOLOGIE DE COMPIEGNE
URI: http://webthesis.biblio.polito.it/id/eprint/32381
Modifica (riservato agli operatori) Modifica (riservato agli operatori)