Sara Trombetta
Applicazione di tecniche di Machine Learning per la predizione della risposta ad un trattamento di procreazione medicalmente assistita = Application of Machine Learning techniques for predicting the response to medically assisted procreation treatment.
Rel. Gabriella Balestra, Samanta Rosati, Noemi Giordano. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Biomedica, 2023
PDF (Tesi_di_laurea)
- Tesi
Accesso riservato a: Solo utenti staff fino al 24 Ottobre 2026 (data di embargo). Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (6MB) |
Abstract: |
Il seguente elaborato ha lo scopo di creare, mediante l’uso di tecniche di Machine Learning, un classificatore in grado di predire la risposta ad un trattamento di procreazione medicalmente assistita (PMA). L’infertilità, una patologia che colpisce nel mondo milioni di persone in età riproduttiva, può avere ripercussioni sociali e un impatto economico negativo su chi ne è affetto. Essa può verificarsi a causa di fattori maschili o femminili, di una combinazione di essi oppure può non essere spiegata. Esistono vari tipi di approcci per il trattamento dell’infertilità come i cambiamenti dello stile di vita, la terapia farmacologica, chirurgica ed i trattamenti di procreazione medicalmente assistita, i quali hanno ancora probabilità di successo molto basse. In questo studio è stato effettuato un lavoro di revisione della letteratura per capire quali siano le procedure di costruzione di modelli predittivi più frequentemente utilizzate attualmente dai ricercatori. Successivamente, alcuni di questi metodi sono stati applicati ad un dataset composto da 985 percorsi di PMA, i cui dati sono stati raccolti in più centri dell’Emilia-Romagna. I risultati ottenuti sono stati confrontati con la letteratura in termini di performance dei modelli e di individuazione delle variabili che hanno più impatto sull’esito del trattamento del paziente. |
---|---|
Relatori: | Gabriella Balestra, Samanta Rosati, Noemi Giordano |
Anno accademico: | 2023/24 |
Tipo di pubblicazione: | Elettronica |
Numero di pagine: | 184 |
Soggetti: | |
Corso di laurea: | Corso di laurea magistrale in Ingegneria Biomedica |
Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-21 - INGEGNERIA BIOMEDICA |
Aziende collaboratrici: | NON SPECIFICATO |
URI: | http://webthesis.biblio.polito.it/id/eprint/28925 |
Modifica (riservato agli operatori) |