Edoardo Filippi
Development and evaluation of a deep learning approach for the assessment of healthy ageing and neurodegenerative-induced brain structural changes.
Rel. Filippo Molinari. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Biomedica, 2023
|
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (8MB) | Preview |
|
Archive (ZIP) (Documenti_allegati)
- Altro
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (84MB) |
Abstract: |
This study investigates the feasibility of using learning models as alternative methods for brain analysis, particularly in evaluating damage from neurodegenerative diseases. The main objective is to compare their effectiveness and assess the impact of results on future feature utilization. A comparative analysis highlights the strengths and weaknesses of deep learning versus traditional methods. Additionally, a practical experiment is conducted using both approaches to test the software in a real-world setting. This research aims to advance brain analysis techniques and provide insights for accurate assessment of neurodegenerative disease-induced damage. |
---|---|
Relatori: | Filippo Molinari |
Anno accademico: | 2022/23 |
Tipo di pubblicazione: | Elettronica |
Numero di pagine: | 137 |
Soggetti: | |
Corso di laurea: | Corso di laurea magistrale in Ingegneria Biomedica |
Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-21 - INGEGNERIA BIOMEDICA |
Ente in cotutela: | University of Lisbon (PORTOGALLO) |
Aziende collaboratrici: | FACULDADE DE CIÊNCIAS DA UNIVERSIDADE DE LISBOA |
URI: | http://webthesis.biblio.polito.it/id/eprint/27900 |
Modifica (riservato agli operatori) |