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Abstract

This study investigates the feasibility of using learning models as alter-
native methods for brain analysis, particularly in evaluating damage
from neurodegenerative diseases. The main objective is to compare
their effectiveness and assess the impact of results on future feature
utilization. A comparative analysis highlights the strengths and weak-
nesses of deep learning versus traditional methods. Additionally, a
practical experiment is conducted using both approaches to test the
software in a real-world setting. This research aims to advance brain
analysis techniques and provide insights for accurate assessment of
neurodegenerative disease-induced damage.
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Chapter 1

Introduction

Dementia is estimated to be very common in the modern world, in 2010,
more than 35 million people worldwide were estimated to be living with
it. It is a progressive global cognitive impairment syndrome. It does
not always evolve in the same manner, in fact while some people with
mild cognitive impairment (MCI) will progress to dementia, some will
recover or remain stable. Finding good predictors of dementia is thus
of great interest.[1]

AD accounts for 60% to 70% of cases of progressive cognitive impairment
in elderly patients. The prevalence of AD doubles every 5 years after
the age of 60 increasing from 1% at the age of 60 to 40% at the age
of 85 or older. The disease is more common in women, with a ratio
of 1.2 to 1.5. The population of patients with AD is growing rapidly,
with the associated growth of direct and indirect costs of patient care
to hospitals and society. [2]

The onset of the symptoms usually appears after significant damage to
the brain tissue developed, and the amount of damage that corresponds
to the onset of the illness varies between individuals. Modern tools
for the analysis of brain medical images can be of great help in the
identification of the signs of a developing dementia. But conventional
methods have a very long processing time. The use of technologies
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Introduction

based on deep learning can tackle this issue by offering alternatives
that drastically reduce processing time, making the process of image
analysis more effective.

This work focuses on testing the standard methods against deep learning
methods to assess the performances of the two methods when dealing
with a clinical problem.

The process to do this starts by assessing the state of the art in the field
with a bibliographic research, the choice of the most promising methods
to then test against an established software for brain image analysis.
Many subjects’ MRI volumes collected by different available datasets
will be processed with both methods and the results will be used to
train a classifier to identify Alzheimer’s disease, to assess whether the
performance of it is impacted by the method used to process images or
not, and if yes in which ways.

The text starts by giving an overview of the anatomy of the brain
and the regions affected by neurodegenerative diseases, it then shortly
describes the technologies used to acquire images and the terminology
and technology involved in their processing for the application described.
After this an overview of the state of the art in the software commonly
used for this task, the description of the recent trends and experimental
tools are given.

In chapter 2 the methods used to perform the bibliography research
and the description of the software that will be used in this work is
then explained. Furthermore, the methods used to analyse the results
and to train the classifier as well as the description of the data used is
given.

Chapter 3 describes the results obtained in the study. Portraying
the comparison of the output data of the established software and
the experimental alternative, as well as the performances obtained by
the classifier in both cases. The results are then commented in the
conclusion.
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1.1 Anatomy
1.1.1 General description
The nervous system is divided into two major sections: the central
nervous system, consisting of the brain and the spinal cord, and the
peripheral nervous system, which includes the nerve tracts connecting
the rest of the body to the central nervous system. The brain itself can
be divided into three main divisions: the cerebrum, the brainstem, and
the cerebellum, all of which are housed within the cranium.

The cerebellum is a structure in the brain that consists of two hemi-
spheres separated by the longitudinal fissure. These hemispheres are
interconnected primarily by the corpus callosum. Each hemisphere of
the cerebellum has three surfaces and three poles. By identifying the
major sulci on the surface of the cerebellum, it becomes possible to
distinguish the cerebral lobes: frontal, parietal, temporal, occipital,
and the insular lobe, which is hidden within the depths of the Sylvian
fissure. The cerebral lobes derive their names from the overlying bones
of the skull.

The frontal lobe of the cerebelum, which corresponds to the frontal
bone, is located beneath its vertical portion on the orbital roof. Above
the tentorium is situated the occipital pole, which is associated with
the occipital bone. In the middle cranial fossa is located the temporal
lobe, and it is related to the posterior wall of the orbit. The left and
right hemispheres are connected by the corpus callosum.

Based on morpho-functional data, the brain can be further categorized
into specific regions:

• Telencephalon: This region includes the cerebral hemispheres, also
known as the cerebrum. The cerebrum is the largest and most
evolutionarily recent part of the brain and contains the cortex,
which plays a crucial role in higher cognitive functions.

• Diencephalon: The diencephalon refers to the area "between" the
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brain. It consists of structures such as the thalamus, metatha-
lamus, and hypothalamus. Together with the telencephalon, the
diencephalon forms the prosencephalon.

• Mesencephalon: The mesencephalon is formed by structures like
the tectal plate, tegmentum, and cerebral peduncles.

• Rhombencephalon: This division includes the metencephalon (pons
and cerebellum) and the myelencephalon (medulla oblongata).

The surface of the brain exhibits a high variability, as several distinct
patterns of the sulci have been described. The variability of the sulci
and gyri can be found not only in different individuals but also in the
same brain, between the two hemispheres, which show some anatomical
and physiological peculiarities. [3]

The brain is covered by meninges. Which are three membrane layers
that cover and protect the brain and the nervous system. They also
provide a support system for blood vessels, nerves, lymphatics and the
cerebrospinal fluid that surrounds the nervous system.

4
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Figure 1.1: Human brain anatomy chart from [3]

1.1.2 Temporal lobe
Some regions are more affected than others by the ageing process and
neurodegenerative diseases such as Alzheimer, specifically, the most
affected are the temporal regions, which are responsible for memory
loss and reduced brain functions. The temporal region is divided as
follows.
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Ventricles

Ventricles are fluid-filled cavities in the brain that contain cerebrospinal
fluid (CSF). There are two lateral ventricles located within the cerebral
hemispheres, and they communicate with the third ventricle through
the interventricular foramen.

The lateral ventricles have a C-shaped structure within the hemispheres,
consisting of a frontal horn, a body, or cell media, an occipital horn,
and a temporal horn that extends into the temporal lobe. The posterior
part of the third ventricle opens into the aqueduct of Sylvius, a single
midline canal located in the mesencephalon (midbrain). Through the
aqueduct, the CSF flows into the fourth ventricle, which is located in
the rhombencephalon (hindbrain).

At the level of the fourth ventricle, the CSF exits the brain and enters
the cisterns of the posterior cranial fossa as well as the spinal cord
through three openings. The production of CSF occurs in the ventricles
by the choroid plexus, which is located within them.

Hippocampus

The belt of the limbic lobe is situated beneath the corpus callosum. The
limbic system is formed by the hippocampal formation and amygdala,
septum pellucidum, hypothalamus, as well as the central olfactory
system. The hippocampus is a large C-shaped structure located in
the medial wall of the temporal lobe. It is a vital component of the
medial temporal lobe memory system, and plays a key role in memory
mechanisms. The parahippocampal gyrus surrounds the hippocampus.

Amygdala

The Amygdala is an almond-shaped structure formed by a group of
different nuclei. It is located in the dorsomedial portion of the temporal
lobe. The cortical and medial nuclei are olfactory centres, and the
basal, lateral, and central nuclei have limbic functions. [4]
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1.2 Clinical context
1.2.1 Dementia
Dementia typically develops over a span of several years, during which
it is believed that individuals may be asymptomatic while pathological
changes are accumulating in the brain. Initially, individuals and their
relatives may notice subtle impairments in recent memory, and as time
progresses, other cognitive domains become affected. Difficulties in
planning and executing complex tasks gradually become more apparent.
It is important to note that the specific trajectory and progression of
dementia can vary between individuals and depend on the underlying
cause of the condition.

The standard assessment of dementia involves multiple components to
ensure a comprehensive evaluation. These typically include:

• History and Clinical Examination: The healthcare professional will
gather information about the individual’s medical history, includ-
ing any symptoms or changes in cognition. A thorough clinical
examination will be conducted to assess neurological function and
overall health.

• Laboratory Tests: Laboratory tests, such as thyroid stimulating
hormone (TSH), serum folic acid, serum vitamin B12, and blood
count, may be performed to identify any underlying medical condi-
tions that could contribute to cognitive impairment.
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• Informant Interview: Speaking with a relative or informant who
knows the individual well can provide valuable insights into changes
in behaviour, cognition, and daily functioning.

• Neuroradiological Evaluation: Neuroimaging techniques such as
magnetic resonance imaging (MRI) or computed tomography (CT)
scans may be used to assess the structure and function of the brain,
ruling out other potential causes of cognitive decline.

Before a dementia diagnosis is made, it is crucial to exclude or address
any other physical or mental disorders that may be contributing to
the cognitive impairment. These could include conditions such as
depression, medication side effects, or metabolic abnormalities.

During the neurological examination, a comprehensive assessment of
major cognitive domains is conducted. This typically includes eval-
uating memory function, executive functions (such as planning and
problem-solving), language abilities, attention, and visuospatial skills.
By assessing these cognitive domains, healthcare professionals can gain
a better understanding of the specific cognitive deficits present and
their impact on daily functioning.

A neuroradiological examination is commonly recommended in recent
consensus guidelines for the assessment of dementia. While many tests
are typically conducted after a cognitive deficit has been identified,
individuals who have abnormalities detected through brain imaging
performed for other reasons may subsequently be evaluated for cognitive
deficits.

It is important to note that currently, there is no known cure for de-
mentia. However, certain treatments can help to slow the cognitive and
functional decline or alleviate associated behavioural and psychiatric
symptoms of dementia. Early diagnosis of dementia carries numer-
ous benefits, including the ability to plan and prepare for the future,
avoiding inappropriate hospitalizations, and making use of emerging
interventions aimed at delaying or preventing the progression of more
severe stages of the disease.
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1.2.2 AD
Alzheimer was first described at the beginning of the 20th century
by Alois Alzheimer, a German psychiatrist who presented the case of
a woman of relatively young age (51 years) who presented a rapidly
deteriorating memory and other psychiatric disturbances. A new patho-
logical finding, the neurofibrillary tangle, made this condition unique.
At this point, it was split into two clinical conditions depending on the
age of onset, and Alzheimer’s disease (AD) was a term reserved for
presenile dementia affecting individuals younger than 65 years of age.
AD is now generally recognized as a single entity with a prevalence that
increases sharply after age 65. [2]

Several risk factors have been identified in epidemiologic studies. The
most potent one identified being the presence of the APOE ϵ4 allele.
The lifetime risk for individuals with the allele is at least three times
higher compared to the ones without. Multiple other risk factors have
been identified such as head injury, low serum levels of folate and of
vitamin B12, elevated plasma and total homocysteine levels, and family
history of AD or dementia, as well as fewer years of formal education
and in general less cognitively stimulant lives. [5]

Available evidence suggests that mild and even severe dementia is
underdiagnosed in clinical practice. An example of a method used for
this end is the Mini-Mental-State examination, which, despite having a
good specify, has a low sensitivity, indicating that the test itself will
leave a substantial portion of the cases of dementia undetected.

AD is assumed to be a slow process and discernible in older people.
The symptoms are not visible for years and are hard to detect. But
detection of AD in the early stages is essential before starting any
clinical procedures. MCI is an initial stage of AD and might convert to
AD. So identification of MCI is of great significance.[6]
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1.2.3 Brain maps
In regard to the human brain, no reference standards currently exist to
quantify individual differences in neuroimaging over time, but several
studies were conducted. One example is a study which analyzed over
100’000 MRI scans, and used centile scores and trajectories to quantify
brain structural changes. The approach used was based on GLAMMS
modelling and exploited the great scale of data available to optimize
model selection and estimate the non-liear trends. Centile scores across
a range of conditions were computed to benchmark each individual
scan in the context of normative age-related trends.

The studies identified previously unknown neurodevelopmental mile-
stones and provides open science resources for standardized assessment
of MRI data. This work demonstrates the feasibility of building brain
charts to benchmark individual differences on a global scale throughout
life.

These discovered highly significant differences in central scores across
large groups of cases diagnosed with multiple disorders, with effect
sizes ranging from medium to large. The greatest overall difference
was found in Alzheimers’s disease, with a maximum difference localized
in the grey matter volume in biologically female patients. Clinical
case-control differences generally followed the same trend in cortical
thickness and surface area. Schizophrenia ranked third behind AD and
MCI [7].

1.2.4 Alzheimer’s modelling
Recently, similar normative models have been developed for specific
diseases such as Alzheimer’s as well. Notable is an attempt to do so
using more than 5000 images processed with the trained deep learning
model AssemblyNet. This longitudinal study uses numerous MRI scans
for multiple Datasets such as C-MIND, NDAR, ABIDE and ADNI.

The implemented process is the following. After collecting the images,
the first step was denoising the images and correcting inhomogeneity.
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Affine registration into the Montreal Neurological Institute (MNI) space
was performed using ANTS. The volumes were then processed using
the 250 U-Nets implemented in AssemblyNet. The quality control
procedure included a before and after visual inspection to determine
if the subject was classified as an outlier and to see if there was a
segmentation failure. In this case, it was deleted.

To compensate for the variability introduced by head size difference
models were estimated on normalized volumes, different models were
tested for the trajectory, and a brain region was considered statistically
different for Alzheimer’s patients if the 95% confidence intervals no
longer overlapped.

This led to the identification of 19 brain structures that significantly
diverged during the lifespan between Alzheimer’s and healthy ageing
models. In the image below there are the regions which show the most
differences between healthy and not healthy subjects [8].

Figure 1.2: Results of the study [8]
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1.2.5 Reserve
The cognitive reserve construct seeks to explain the brain’s ability to
compensate for degeneration caused by age or neuropathology. It has
been proposed to explain the observed discrepancy between the degree
of brain injury or pathology and its clinical manifestation. Individual
differences in cognitive processes or neural networks are assumed to
exist, which allow some people to better compensate for age-related
degeneration or neurological disease

Two models of reserve have been developed to characterize this ability,
the passive and the active models. In the passive model, reserve is
mediated through anatomical substrate characteristics such as brain size
and number of neurons and synapses, This has been proved to not be
directly correlated to symptoms manifestation[5]. Active models imply
that when there is damage to the brain tissue, an active and efficient
effort from the brain to compensate for the injury using pre-existing
compensatory processes is going on. The ability to do this is different
in every individual.
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1.2.6 Reserve models
It follows the definition of two models belonging to the categories of
active and passive models.

1.2.7 Brain reserve
Brain reserve [9] is an example of a passive model, where reserve
derives from brain size or neuronal count. The hypothesis is that larger
brains can sustain more damage before clinical deficit emerges because
sufficient neural substrate remains to support the normal function. This
approach is a threshold model. The model recognizes that there are
individual differences in brain reserve capacity. Once brain reserve
capacity is depleted past some fixed critical threshold, specific clinical
or functional deficits emerge. [10] This measure was found to be not
related with the prediction of the cognitive functions and the onset of
dementia in healthy subjects. [11]

1.2.8 Cognitive reserve
Cognitive reserve is the definition of the brain’s ability to compensate
for the degeneration caused by age or neuropathology. It is defined in
the article by Stern in 2009 [12] as a method to explain the discrepancy
between the degree of brain injury and its clinical manifestation. Cog-
nitive reserve is not fixed throughout all stages of life but continues to
evolve through experience [13]. Studies suggest that this is important
in the development of Alzheimer’s symptoms, as individuals with high
CR manifest them when the damage is already more consistent[14].

There is no standard for assessing it, but there are different methods,
most of them are fairly simple and not reliable enough. The evaluation
has some issues in patients with a high and low CR. For example, if
CR is high, impairment is not detected even if it is present, similar
issues are present for low CR.

A review performed on the methods to measure CR identified some
of the most reliable proposed criteria, they vary between each other
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but have some similarities. The studies were performed in Europe
and Australia. In all the frameworks, variables such as education and
occupation with cognitive stimulant activities were also considered. In
all studies, the participation in each variable is evaluated in each stage
of life but uses different methods. The conclusion is that right now
still no consensus on the measurements of cognitive reserve has been
reached, and some methods, which use different approaches, can be
identified. [15]
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1.2.9 Ageing
Population ageing is rapidly accelerating worldwide, and this has pro-
found implications for the planning and delivery of health and social
care.

The ageing process is by itself a decrease in physiological reserves
which can still support acceptable functioning in the steady state, but
cannot adapt to any additional or physiological stress. Successful ageing
depends on the homeostatic reserve of different physiological systems.
The clinical condition of frailty is the pathologic expression of the
normal ageing process. [16]

Frailty is a state of vulnerability to poor resolution of homoeostasis
after a stressor event. This condition is the consequence of an age
related decline of multiple physiological systems, which results in a
very high sensibility to external stressor events and the vulnerability to
sudden health status changes as a consequence. It is estimated that a
quarter to half of people over 85 years are frail. [17]

The term cognitive frailty was first used in 2006 to indicate a state of
cognitive vulnerability in MCI and other similar entities exposed to
vascular risk, with a subsequently increased progression to dementia.[18]

Frail brain

The effects of ageing can be seen on the structural as well as physiological
characteristics of the brain. The overall loss of the majority of regions
is minimal, but the altered synaptic functions affect disproportionally
neurons with a very high metabolic demand. Microglial cells also
characterize the structural and functional changes in the ageing brains.

There is accumulating evidence from observational studies to support a
temporal association between frailty, cognitive impairment, and demen-
tia. [17]
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Other frail systems

There are other systems affected by the frailty status of course, but
they are of limited interest in this work. Some examples of frail body
characteristics can be seen in the immune system, where the ageing
is characterized by a decline in stem cells, alteration in T-lymphocyte
production, blunting of the B-cell led antibody response and reduced
phagocytic activity of neutrophils, macrophages, and natural killer
cells.

The effects are clear in the skeletal muscle as well, where sarcopenia is
considered a key component of frailty. [17]
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1.2.10 Cognitive scores
MMSE

The Mini-Mental State Examination (MMSE) is the best-known and
the most often used short screening tool for providing an overall measure
of cognitive impairment in clinical, research and community settings.

This is a 30-question cognitive assessment that measures various as-
pects of cognitive functioning, such as attention, orientation, memory,
registration, recall, calculation, language, and the ability to draw a
complex polygon. Originally, it was not designed to detect early-stage
dementia, differentiate between different types of dementia, or predict
long-term dementia development. However, the MMSE offers several
advantages, including its quick administration, availability of transla-
tions in multiple languages, and wide acceptance among healthcare
professionals and researchers as a diagnostic tool. In this test, the
presence of cognitive decline is determined based on the total score.
Typically, a cut-off score of 23/24 is used to identify individuals with
suspected cognitive impairment or dementia.

This threshold is not universally applicable as it has been proved
that sociocultural variables, age, and education, among other factors
can influence individual scores. Therefore, local standards must be
developed for each population. [1]
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Frailty indexes

Frailty is a multidimensional geriatric syndrome characterized by a
decline in physical and cognitive reserve, it has received increased
attention in the last years and multiple indexes have been developed.
In detail, two major approaches are common[19]:

• Frailty phenotype: assesses the individual frailty level based on
the presence of five criteria: an individual is considered frail if they
present at least three of these five and pre-frail if they present at
least one. Robust people do not present any of these characteristics.
[20]

• Frailty index: is also called cumulative deficit model, and it
assumes that the more deficits a person has, the more likely it is
that the person is frail. Defects are comprised of symptoms, signs,
disability disease, and lab experiments, ranging in severity and
carrying equal weights. The index is often expressed as a ratio
between the number of deficits present and the total number of
deficits assessed.[21]

Scores of reserve

After the concept of brain reserve proved to be a non-efficient mean
of discovering how clinical damage results in a clinical manifestation,
cognitive reserve was the focus of many research endeavours. The
development of an efficient index for its evaluation became thus an
investigation topic of interest. Multiple methods have been developed,
specifically the few that can be identified as being viable options. They
vary in length and complexity and in the included variables. Most of
them consider the relationship with external factors as well. There is
no standard, since CR is a relatively new concept in literature. [15]

18



Introduction

1.3 Technical context
1.3.1 MRI
MRI is a medical imaging technique used in radiology to form pictures
of the anatomy and the physiological processes of the body. MRI
scanners use strong magnetic fields. It is a medical application of
nuclear magnetic resonance (MNR) which is also used in other fields,
an example being the NMR spectroscopy.

MRI works by exploiting the magnetization properties of atomic nuclei,
a powerful external magnetic field is employed to align the protons
that are normally randomly oriented and subsequently, it is disturbed
and perturbed, using an external RF signal. The nuclei then return
to their original alignment through various processes, and this emits
an RF signal that can be measured and processed using the Fourier
transform. [22]

The frequency information, contained in the signal from each location
in the image plane, is mapped to corresponding intensity levels, which
are then displayed as shades of gray in a matrix arrangement of pixels.
By varying the sequence of applied and collected RF pulses, different
types of images are created.

There are multiple MRI sequences that can be used, the most common
ones belong to the category of spin echo, which are T1 and T2 weighted
images. Some other categories are: gradient echo, inversion recovery,
diffusion-weighted sequences.[23]

T1

T1-weighted imaging (T1WI) is a basic MRI pulse sequence that reveals
differences in tissue T1 relaxation times. It relies on the longitudinal
relaxation of a tissue’s net magnetization vector. Spins aligned in an
external magnetic field (B0) are shifted to the transverse plane with a
radio frequency (RF) pulse, and they gradually return to equilibrium.
Tissues have varying rates of realignment, indicated by their T1 values.
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Fat quickly realigns, appearing bright on T1WI, while water realigns
slowly, resulting in a low signal and dark appearance.[24]

Other sequences

The T1 sequence images will be the ones used in this work, some other
sequences and technologies are:

• T2 weighted image (T2WI): is one of the basic pulse sequences
on MRI. The sequence weighting highlights differences on the T2
relaxation time of tissues.

• Diffusion-weighted: measures the diffusion of water molecules in
biological tissues.

• Gradient echo: it does not use a 180 degrees RF pulse to make the
spins of particles coherent. Instead, it uses magnetic gradients to
manipulate the spins, allowing the spins to dephase and rephase
when required.

• Inversion recovery: it is an MRI sequence that provides high con-
trast between tissue and lesion.

• Functional MRI (fMRI): measures signal changes in the brain that
are due to changing neural activity.
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1.3.2 Registration
MRI scans from multiple individuals will vary greatly due to differences
in slice orientation and brain features (i.e. brain size and shape varies
across individuals). Therefore, it is generally useful to normalize scans
to a standard template. Normalization is the process of translating,
rotating, scaling, and maybe warping a brain to roughly match a
standard template image. After normalization, it may be informative
to report locations using stereotaxic ("Talairach") coordinates. This
format uses three numbers (X,Y,Z) to describe the distance from the
Anterior Commissure (the ’origin’ of Talairach space). The X,Y,Z
dimensions refer to left-right, posterior-anterior, and ventral-dorsal
respectively. [25]

• Linear registration (Affine registration): Meaning that it
will translate, rotate, zoom and shear one image to match it with
another. Affine transformations have twelve degrees of freedom.
These are also called linear transformations because a transfor-
mation applied in one direction along an axis is accompanied by
a transformation of equal magnitude in the opposite direction.
Sometimes the differences between subjects are such that the linear
transformation is not sufficient to achieve good registration. The
local deformations permitted by a non-linear method may then do
a better job.

• Non-linear registration: They are not subject to the constraints
mentioned above. For example, a nonlinear transformation can
enlarge the image in one direction while shrinking it in the other
direction.[26]

21



Introduction

Talairach coordinates

Figure 1.3: Talairach Atlas
from [27]

Talairach coordinates, also known as Ta-
lairach space, were developed starting
from 1967 by Talairach as a system for
identifying small regions of the brain dur-
ing epilepsy surgery. In the Talairach
coordinate system, brain regions are la-
belled by their Brodmann numbers. [28]

It is a 3-dimensional coordinate system
(known as an ’atlas’) of the human brain,
which is used to map the location of brain
structures independent of individual dif-
ferences in the size and overall shape of
the brain, a sketch can be seen in image 1.3. It is still common to use
Talairach coordinates in functional brain imaging studies and to target
transcranial stimulation of brain regions. [29]

A major caveat of using the Talairach coordinate system is that the
coordinates were based on a single, post-mortem case study rather than
an average of multiple brains. [30]

MNI

The MNI defined a new standard brain by using a large series of
MRI scans on normal controls. The goal was to define a brain that
is more representative of the population. A new template that was
approximately matched to the Talairach brain in a two-stage procedure
was created. First, 250 normal MRI scans were taken, and various
landmarks were manually defined, in order to identify a line very similar
to the AC-PC line and the edges of the brain. Each brain was scaled
to match the landmarks to equivalent positions on the Talairach atlas.
This resulted in the 250 Atlas. Subsequently, an extra 55 images were
then taken and registered to the 250 Atlas using an automatic linear
registration method. The images were manually registered to the 250
Atlas to create the MNI 305 Atlas. The MNI305 was the first MNI
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template. The current standard MNI template is the ICBM152, which
is the average of 152 normal MRI scans that have been matched to
the MNI305 using a 9-parameter affine transform. The International
Consortium for Brain Mapping adopted this as their standard template.
[31]

1.3.3 Segmentation
Image segmentation is one of the most important tasks in medical image
analysis, and is often the first and the most critical step in many clinical
applications. In brain MRI analysis, image segmentation is commonly
used for measuring and visualizing the brain’s anatomical structures,
analysing brain changes, for delineating pathological regions, and for
surgical planning and image-guided interventions. Clinical imaging
studies encompassing large cohorts of patients and control commonly
apply automatic image segmentation tools. It involves the identification
of different brain tissue without giving any information on its functions,
as it can be seen in figure 1.4. [32]

Figure 1.4: Example of the result of a segmentation process
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1.3.4 Atlases
An atlas of the brain defines the shape and location of brain regions in
a common coordinate space. They provide spatial reference systems
for neuroscience that allow navigation, characterization, and analysis
of information based on anatomical location. Some examples are:

• Desikan-Killiany Atlas (Cortical) 1.5: 34 ROIs in each hemisphere,
used by Freesurfer [33]

• ASEG (subcortical): 37 regions, used by FreeSurfer. [34]

Figure 1.5: DKT Atlas regions of interest (Deflated left, Inflated
right)
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1.3.5 Parcellation
The difference between the segmentation and parcellation process is
that the former only recognizes the difference between type of tissues,
assigning to each voxel a class label to identify it[35]. Parcellation
is a more advanced process. To date, several sophisticated software
packages have been developed to achieve this goal. One example is the
Integrated Registration and Segmentation Tool (FIRST) of the FSL
software library, and FreeSurfer, the software used in this work, which
will be described in detail afterwards.

Parcellation means defining distinct partitions in the brain, be they
areas or networks, that comprise multiple discontinuous but closely
interacting regions. The brain is parcellated according to atlases, and
classified according to their function. [36]

The exploration of the complex structures and functional networks
in which the brain is segregated into has been conducted using many
techniques including clustering methods such as Gaussian mixtures
models, meta-analytic connectivity methods and edge detection meth-
ods, among may others. The primary goal of the parcellation process is
to reveal brain organization. But cognitive, developmental and clinical
research have frequently used parcellation as a means to identify differ-
ences in the functional organization of the brain based on condition,
age, and presence of psychopathology. Brain parcellations are used to
extract data from a set of parcels, or brain regions, that comprise the
pre-identified functional network. The widespread adoption of these
parcellations in cognitive neuroscience has allowed extensive exploration
of individual differences in functional brain organization.
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1.4 State of the art
In this chapter the state of the art in brain parcellation will be presented,
starting from well established softwares and moving to research and
experimental methods.

1.4.1 FreeSurfer
Introduction and description

FreeSurfer is an open source package for the analysis and visualization
of structural, functional, and diffusion neuroimaging data from cross-
sectional and longitudinal studies. It is developed by the Laboratory
for Computational Neuroimaging at the Athinoula A. Martinos Center
for Biomedical Imaging.

It implements a full processing stream for MR imaging data that in-
volves skull-stripping, bias field correction, registration, and anatomical
segmentation as well as cortical surface reconstruction, registration, and
parcellation. FreeSurfer also includes fMRI and diffusion tractography
toolboxes, a robust visualization interface, utilities for statistical group
analysis. FreeSurfer is the structural MRI analysis software of choice
for the Human Connectome Project.

Over the years many functionalities have been added, recently a lib-
eral open source licence that allows great freedom in the use of the
source code was adopted. Other updates included tools for accurate
cross-modal intra-subject registration, combined volume and surface
cross-subject registration, probabilistic estimation of cytoarchitectonic
boundaries, automated tractography, and longitudinal analysis.

It is widely adopted, and it has been used to improve the understanding
of an array of neurological disorders. It has a great interoperability
with the software FSL, which will be shortly described later. [37]
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Output

The output folder of FreeSurfer is standardized and contains many files
created during the processing phase, it has a dimension in the order of
the hundreds of megabytes for a single subject’s MRI. It contains the
following folders:

• label: this directory stores various label files that represent different
anatomical regions or structures in the brain. These labels can be
used for region of interest (ROI) analysis or to define specific areas
for further processing.

• mri: this directory contains the preprocessed MRI data and in-
termediate results generated during the processing steps. It may
include files such as the original DICOM images, the brain-extracted
volume, skull-stripped volume, and various transformation matri-
ces.

– orig: located inside the "mri" folder, contains the original file
as it was given as input.

• scripts: FreeSurfer generates a "scripts" directory that contains log
files and scripts used during the processing steps. These files can be
helpful for reviewing the processing history and for troubleshooting
any issues.

• stats: this directory contains statistical information and summary
measures derived from the segmentation and parcellation results.
It may include files like cortical thickness measurements, volume
statistics for different brain regions, and other statistical summaries.

• surf : this directory contains the surface-based data, including the
reconstructed cortical surface models (such as lh.pial and rh.pial)
and other surface-related files.

• tmp: the temporary directory stores temporary files generated
during the processing and can be safely deleted once the analysis
is complete.
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Freeview

Each neuroimaging software package has a data-viewer, or an applica-
tion that allows the user to look at the data. AFNI, SPM and FSL all
have data viewers which are very similar between each other and have
the task of loading imaging data and viewing it in three dimensions.

The FreeSurfer viewer is called Freeview and can be easily launched by
terminal, the interface can be seen in the image 1.6, it can read NIFTI
images and FreeSurfer specific formats such as .mgz and .inflated.

In the listing below an example of the bash commands to visualize the
results of a FreeSurfer pipeline on a subject’s MRI it is reported.

Figure 1.6: FreeView Interface
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1 source \$FREESURFER\_HOME/ SetUpFreeSurfer . sh
2

3 #example/mri/ o r i g . mgz \
4 #example/mri/mask . mgz \
5 #example/mri/ aparc . DKTatlas+aseg . deep . mgz
6

7 f r e ev i ew −v \
8 example/mri/T1 . mgz \
9 example/mri/wm. mgz \

10 example/mri/brainmask . mgz \
11 example/mri/ aparc+aseg . mgz : colormap=l u t : opac i ty =0.2 \
12 example/mri/ aseg . mgz : colormap=l u t : opac i ty =0.2 \
13 −f example/ s u r f / lh . white : edgeco l o r=blue \
14 example/ s u r f / lh . p i a l : edgeco l o r=red \
15 example/ s u r f / rh . white : edgeco l o r=blue \
16 example/ s u r f / rh . p i a l : edgeco l o r=red

Listing 1.1: example of bash code to setup freeview
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1.4.2 Other softwares
SPM12

SPM (Statistical Parametric Mapping) is an fMRI analysis software
package that is run in Matlab. In addition to fMRI analysis, SPM
contains toolboxes for performing volume-based morphometry and
effective connectivity.[38]

CAT12

CAT12 is a powerful suite of tools for morphometric analyses with an
intuitive graphical user interface, but also usable as a shell script.[39]

FSL

FSL is a comprehensive library of analysis tools for FMRI, MRI and
DTI brain imaging data. It runs on Apple and PCs (both Linux, and
Windows via a Virtual Machine), and is very easy to install. Most of
the tools can be run both from the command line and as GUIs. [40]

ANTs

ANTs is a software package for normalizing data to a template. Most
of the templates provided on the ANTs website are in MNI space. [41]
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1.4.3 Machine learning
Machine learning is a subset of artificial intelligence, and it is the
process of training a computer to solve a problem given to it. In recent
years, the application of ML in different fields to solve problems faster
than before has gained significant interest due to the current availability
of cheaper computing power and inexpensive memory.

Machine learning differentiates itself from deep learning by the input
that it is given to it. In fact, while machine learning works with features
extracted and chosen beforehand, and constructs an output based on
that processed input, deep learning accepts raw data as input, this
translates to it being more complex and less interpretable, but with a
higher ability to generalize and less dependent on human decisions.

Figure 1.7: Description of machine learning

31



Introduction

Machine learning has many branches that deal with different problems
and types of data, for example it may deal with labelled data or
unlabelled data and the goal may be to solve a classification problem,
to predict a value through a regression, or to find unknown patterns in
data. The main categories of machine learning are:

• Unsupervised: unsupervised learning works with unlabelled data,
which means that one does not know the relationship between data,
machine learning is used to find patterns in them. Some example
of algorithms are k-means, DBSCAN or dimensionality reduction
methods such as PCA.

• Supervised: it is the type used in this study, and it implies having
data of which are know the relationship and the classification
to obtain, this is a necessity and the algorithm will be trained
on them before being applied to unknown data. The problem
that a supervised algorithm deals with may be of classification,
which means each element to a class, or of regression, which means
predicting a value.

• Reinforcement learning: Reinforcement learning differs between
the previous paradigms because in this case the goal is optimizing
a "fitness" function. In the training phase the algorithm does not
know the correct answer but knows if the prediction it made is
good or not.
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In this case machine learning will be used to deal with a classification
problem. Some models that may be used in dealing with these type of
problems are:

• Logistic regression: Despite being a regression, it belongs to
the class of classification because it does not assign a value or a
probability to an element but directly assigns a class to it. It is a
binary classification algorithm because it can only work with two
classes. The name logistic derives from the log operation, on which
the regression is based.

• Decision trees: Decision trees are one of the conceptually simplest
machine learning algorithm. They have many nodes in which a
decision is taken on a feature of the input. The last node in which
a class is assigned is called leaf. The upside of this method are its
interpretability and the fact that it works with little data. Some
downsides are that it overfits very easily and it is very unstable.

• SVM: SVM maps training examples to points in space to maximize
the width of the gap between the two categories. It is one of the most
robust prediction methods. They can perform linear and nonlinear
classification using what is known as “kernel trick”, implicitly
mapping their inputs into high-dimensional feature spaces.

• Neural Networks: Neural networks are the most known method of
machine learning and deep learning. They are based on perceptrons
which theoretically mimic the behaviour of a biological neuron, so
have many inputs and many outputs. Each neuron has a bias
and an activation function, the combination of many in different
architecture can approximate any function.
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An important concept in machine learning is Feature selection, which
is the process by which we can select the most relevant variables for
the model. It differs from another method that can be used to reduce
the number of inputs which is Feature extraction because the former
selects the most informative features while the latter creates new ones
by combining them. So new ones are created, and they are not a subset
of the original.
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1.4.4 Deep learning
Deep learning is a branch of artificial intelligence, and it is a more
advanced approach which enables a computer to automatically extract,
analyse and understand the useful information from the raw data by
imitating how humans think and learn. The automatic learning of fea-
tures makes this set of techniques accurate and of excellent performance.
DL is replacing standard ML algorithms in many fields, medicine being
one of them.[6]

Introduction

Figure 1.8: Definition of deep learning

The difference between machine learning and deep learning is the type
of data they work with, machine learning algorithms use structured
labelled data to make predictions, meaning that specific features are
organized into tables and defined previously [42]. Deep learning elimi-
nates the pre-processing that is typically involved with machine learning.
These algorithms can ingest and process unstructured data, like text
and images, and automatizes feature extraction, removing the depen-
dency on human expertise. Machine learning and deep learning models
are usually characterized by different kinds of learning as well. Deep
learning is based on artificial neural networks, which aim to mimic the
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human brain, the basic block of a Neural Network is the Perceptron.
[43]

Perceptron

The perceptron is a simple algorithm for supervised learning of binary
classifiers. It can be thought as a function that maps its input x (a
real-valued vector) to an output value f(x), to which then a threshold
can be applied.

The basic components of a perceptron are:

• Input Layer: the input layer consists of one or more input neurons,
which receive input signals from the external world or from other
layers of the neural network.

• Weights: each input neuron is associated with a weight, which
represents the strength of the connection between the input neuron
and the output neuron.

• Bias: a bias term is added to the input layer to provide the per-
ceptron with additional flexibility in modeling complex patterns in
the input data.

• Activation Function: The activation function determines the output
of the perceptron based on the weighted sum of the inputs and
the bias term. Common activation functions used in perceptrons
include the step function, sigmoid function, and ReLU function.

• Output: the output of the perceptron can be a single binary value,
either 0 or 1, which indicates the class or category to which the
input data belongs, or in neural networks, the value of the activation
function.

36



Introduction

Figure 1.9: Building block of a neural network

Image processing

Deep Neural networks have found applications in many fields and many
specialized architectures have been created, some examples include
RNNs and CNNs.

CNNs mimic to some degree the way humans classify images. They
recognize specific patterns or features anywhere on the image that
distinguish between particular object classes. Typically, they work
by first identifying low level features on the input image, these are
then combined to form high level features. Eventually, the presence
or absence of these higher level features contributes to the probability
of any given output class. This hierarchy is built using a combination
of specialized hidden layers. In general CNNs include convolutional
layers pooling, activation and full connected layers. The pooling layer
is mainly used to reduce the resolution of feature maps. Activation
layers introduce nonlinear factors and improve expression ability, the
fully connected layer acts as a classifier [44]

Network structure

In a classification network, which is the first type to be developed for
image processing, the input is sent through a convolution filter and
then through a max pooling layer. Repeating this process reduces the
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size of the channels, but increases its number (a new channel for each
convolutional operation). After repeating this operation a number of
times and after each channel is reduced to just a few pixel, the feature
maps are flattened. The pixels are treated as separate units and fed
into one or more fully connected layers before reaching the classification
layer.

There are many tuning parameters to be selected in constructing such
a network, apart from the number, nature, and sizes of each layer.
Dropout learning can be used at each layer, as well as lasso or ridge
regularization.

Figure 1.10: Generic CNN architecture

Convolution layers

A convolution layer is made up of many convolution filters, which rely
on a simple operation called convolution, which basically amounts to
repeatedly multiplying matrix elements and then adding the results.
Each of the layers described uses a number of filters to pick up a variety
of differently oriented edges and shapes on the image.

These filters are not new in image processing. The distinguishing char-
acteristic of convolutional neural networks is that the filters are learned
to perform well on the specific classification task. They operate on
localized patches in the input images, and the weights are constrained.
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Pooling layers

A pooling layer is a way to condense a large image into a smaller
summary image. While there are a number of possible ways to perform
this operation, a very common approach is the max pooling operation,
which summarizes each non-overlapping 2×2 block of pixels in an image
using the maximum value in the block.

Activation layers

The activation function is to introduce nonlinearity into the CNN. In a
practical problem, the data is often not linearly separable and without
activation it is difficult for CNNs to achieve a good effect on linearly
indivisible data. Sigmoid and tanh are two of the earliest proposed
activation functions.

sigmoid(x) = ex − e−x

ex + e−x
(1.1) ReLU(x) =

0, x ≤ 0
x, x > 0

(1.2)

Fully connected layer

The fully connected layer plays the role of a “classifier” in the whole
convolutional neural network. If operations such as convolutions and
pooling map the original data to the hidden feature space, fully con-
nected layers and activation functions map the learned distributed
feature representation to the sample space. In traditional CNN, usu-
ally more than one fully connected layer are used to construct a fully
connected network.

Batch normalization

Deep neural network tuning is very difficult and often causes internal
covariate shift, which is a phenomenon by which when the parameters
change in the network, the data distribution of internal nodes ranges
as well. A solution is to reduce the network convergence using batch
normalization, which normalizes the output signal in an ideal range by
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correcting the parameters only after calculating the average correction
for a batch of images.

Dropout

Overfitting is one of the most encountered problems in deep learning.
To solve it dropout can be used. It consists in randomly setting to
0 some neurons in the hidden layer, effectively ignoring them, which
alleviates overfitting. [45]

Transformers and self attention models

Nowadays, transformers are the de facto standard in NLP and are being
applied successfully to other problems such as computer vision image
processing. What is remarkable about this model is its ability to deal
with sequential data and complex relationships. The key feature is the
attention mechanism. The attention mechanisms allow the model to
focus on different parts of the input sequence when making predictions,
rather than having to process the entire sequence at once. [46]

1.4.5 U-Net for biomedical segmentation
CNNs immediately after their conception outperformed the state of the
art in many visual recognition tasks, specifically in classification tasks.
In biomedical, and many other applications, the desired output should
also include segmentation (a class label is supposed to be assigned to
each pixel). The first approach to solve this problem used a sliding
window setup to predict the class label of each pixel by providing the
region, this solution has many drawbacks and has been replaced in a
short time.

The first paper describing a U-Net (U stands for the shape of the network
in diagrams, which resembles a U, as it can be seen in the image 1.11)
was published in 2015, and it features a FCN (fully convolutional
network) modified in such a way to open the possibility of being trained
with very little images and yield precise segmentation. The main idea
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Figure 1.11: Ronnenberg’s Original U-Net Architecture

is to supplement a usual contractive network with successive layers that
feature upsampling operation, in order to increase the resolution of
the output to the original shape. For generalization, high resolution
features from the contracting path are combined with the upsampled
output, and a successive convolution layer can then learn to assemble a
more precise output based on this information. The study was validated
using very little subjects and extensive data augmentation with elastic
deformations and obtained remarkable results. Since then, most of the
works in biomedical image segmentation are based on this architecture.
[47]
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1.4.6 State of the art in deep learning
Follows a brief description of some models that represent the state
of the art in this field of research, created using the findings of the
bibliographic research described in the following chapter.

QuickNat

This paper achieves fast segmentation results in just 20 seconds and
introduces auxiliary label training to address the limited access to
medical imaging data. This approach improves accuracy and reliability
compared to existing methods, and notably outperforms FreeSurfer
when trained solely on its output. The architecture consists of three
networks operating on different axes, followed by view aggregation for
final segmentation as it can be seen in the image 1.12. Each F-CNN has
an encoder/decoder structure with skip connections, unpooling layers,
and dense connections. The network is optimized using a joint loss
function combining multi-class DICE loss and weighted logistic loss.
The key contributions of this project are the auxiliary label training
strategy and the F-CNN architecture, which have undergone extensive
testing. [48]

Figure 1.12: QuickNAT structure
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AssemblyNet

This system is based on an ensemble method based on numerous CNNs
processing different overlapping brain regions. Inspired by parliamen-
tary decision-making systems, it is made of two “assemblies" of U-Nets,
as can be seen from the image ??. AssemblyNet introduces sharing of
knowledge among neighbouring U-Nets, an “amendment” procedure
made by the second assembly at higher-resolution to refine the decision
taken by the first one, and a final decision obtained by majority voting.
It is inspired by state-of-the art label fusion methods such as SLANT,
and achieves competitive performances.

Each U-Net processes a sub-volume of the global volume, the results
are then aggregated. A defining characteristic is the nearest neighbour
transfer learning strategy proposed. Two chambers also interact with
each other using an expected final decision that represents the prior
knowledge and is passed between the two chambers. According to the
researchers, it is trained on very little data and still is able to obtain
very up to standards results. [49]

Figure 1.13: AssemblyNET structure
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SLANT

This method uses a number of independent 3D fully convolutional neu-
ral networks (FCN) for high resolution whole brain segmentation, the
structure can be seen below 1.14. For the training it takes inspiration
from QuickNAT, using at first unlabelled data and consequently manu-
ally annotated volumes. In this work each network is only dealing with
a particular spatial location as multiple networks are used, the task of
each network is simplified to focus on the patches of similar parts of
the brain with lower variation. The input is registered according to the
MNI305 standard. The decoder is compatible with 33 labels outputs.
3D output channels have been employed in the deconvolutional layers in
each 3d U-Net. Since the entire MNI space is divided into k overlapping
subspaces, a majority voting label fusion method was employed to get
the final segmentation results. [50]

Figure 1.14: SLANT structure
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Whole brain segmentation with full volume neural network

The paper aims to perform whole brain segmentation of numerous
brain structures using a full volume framework and an advanced FCN
architecture capable of accurate segmentation of small neuroanatomical
regions, the structure can be seen in the image below 1.15. Unlike
existing methods, this framework provides holistic predictions for each
full volume, simplifying the process without requiring fusion strategies
or multiple passes. The model is trained using complete ground truth
labels through empirical risk minimization and backpropagation. The
backbone consists of multiple stages and parallel branches, incorpo-
rating bottleneck modules, transitional layers, and fusion layers for
feature integration. Mixed precision training is employed to reduce
resource requirements. This is still an experimental approach due to
the complexity of full volume CNNs. [51]

Figure 1.15: 3D FCN structure
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FAST-AID BRAIN

It is an efficient 2.5D based deep learning method for automatic segmen-
tation of the human brain into 132 cortical and non-cortical regions. It
is a U-Net-like fully convolutional network to the three principal views,
and it fuses them based on the intersection points and the hierarchical
relations in end-to-end fashion. It has a rather new architecture that
can fuse 2D information with spatial context. The class imbalance
is managed with label hierarchies, and supervision is used to learn
from partially labelled data to segment the whole brain and estimate
the inter-cranial volume. A very extensive data augmentation process
was performed and experiments on different atlases as well to evaluate
accuracy and robustness of the trained model. As stated before it is
composed by a fully convolutional encoder-decoder network on three
orthogonal planes, only one backbone is used to keep the complexity of
the network low while incorporating 3D information. The main features
of this model are the hierarchical softmax, the use of only one network
for the tree planes and the CE loss. [52]

Figure 1.16: FAST-AID structure
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UNesT

It is a Transformer based model. This kind of models have recently
demonstrated exceptional representation learning capabilities in com-
puter vision and medical analysis. They reformat the image into
separate patches and realizes global communication via the self at-
tention mechanism. It has some downsides, such as the difficulty of
preserving positional information between patches, which can lead to
suboptimal performance. This paper proposes a solution inspired by
the nested hierarchical structures in vision transformer. which achieves
local communication among spatially adjacent patches sequences by
aggregating them hierarchically. It is tested against SLANT27, and it
is shown to outperform it. [53]

Figure 1.17: UNesT structure
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Chapter 2

Material and Methods

2.1 Bibliographic research
Before the implementation of a model, a review of the state of the art
was performed in the following manner.

2.1.1 Introduction
The research was performed using different databases of research litera-
ture, mainly from Google Scholar and PubMed as well as IEEExplore
and using keywords such as Whole brain segmentation, brain parcel-
lation, Alzheimer’s detection using deep learning and imaging, deep
learning parcellation of brain tissue.

Research was performed as well using the search engine paper with
code which has a repository of papers which are supposed to have the
code linked and available. This was very useful in the research as most
of the papers found through other means did not provide access to the
source code. The research focused on recent articles after 2018 since
deep learning and computational problems in general is a field in rapid
evolution.

Using this method 119 articles were identified, of which, based on the
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abstract, 17 articles proposed a method of interest and are representative
of the state of the art on the subject as it can be seen if the table 2.1, of
these 6 were selected as potential candidates because they implemented
the whole pipeline and made the code available to download for research
purposes or had a linked repository in abstract or article, the process
is shown in a simplified version in the image 2.1.

Figure 2.1: Segmentation model selection

The first objective was understanding the state of the art on the subjects.
Numerous reviews were investigated and the state of the art was assessed,
large studies with already very complex networks are being tested with
very successful results. The networks focus only on the segmentation or
parcellation process, to come close to a similar efficiency to FreeSurfer
only the last years’ publications may be considered. A few base models
have achieved a greater success and are often referenced when talking
about the topic, such as QuickNat. These papers were taken into
account as reference models, only few of them were adequately tested
and could be used for this research.
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Some of the requirements were:

• Open-source code available on GitHub or through request and
trained model provided.

• Atlas on which the network based the segmentation on, giving
priority to networks that were able to output a result similar to
FastSurfer.

• Completeness of the work.

An important parameter that was taken into account is the simplicity
of use and preprocessing and post-processing steps that are required to
be implemented for the correct use of the method. This is a necessary
step since the solution end goal is to be implemented in a pipeline to be
used with many patients and ideally in a clinical or research purpose.
These requirements drastically reduced the number of studies published
that could fit the goal. After filtering redundant studies and studies
excluded for different reasons such as incomplete data or unavailable
code, a few were left.

MONAI

Project MONAI was originally started by NVIDIA and King’s College
London to establish an inclusive community of AI researchers for the
development and exchange of best practices for AI in healthcare imaging
across academia and enterprise researchers. MONAI Core is the flagship
framework created by Project MONAI, and it would not have been
possible to accelerate this development without the development of
existing toolkits such as Nvidia Clara Train, NiftyNet, DLTK, and
DeepNeuro. [54]
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1 QuickNAT: A Fully Convolutional Network for Quick and Accurate
Segmentation of Neuroanatomy

2 HyperDense-Net: A hyper-densely connected CNN for multi-modal
image segmentation

3 A Learning Strategy for Contrast-agnostic MRI Segmentation
4 FAST-AID Brain: Fast and Accurate Segmentation Tool using

Artificial Intelligence Developed for Brain
5 Whole Brain Segmentation with Full Volume Neural Network
6 FastSurfer - A fast and accurate deep learning based neuroimaging

pipeline
7 Concurrent Spatial and Channel Squeeze and Excitation in Fully

Convolutional Networks
8 VoxResNet: Deep Voxelwise Residual Networks for Volumetric Brain

Segmentation
9 Deep Learning Framework for Real-time Fetal Brain Segmentation

in MRI
10 AssemblyNet: A large ensemble of CNNs for 3D whole brain MRI

segmentation
11 Spatially Localized Atlas Network Tiles Enables 3D Whole Brain

Segmentation from Limited Data
12 3D fully convolutional networks for subcortical segmentation in

MRI: A large-scale study
13 3D Whole Brain Segmentation using Spatially Localized Atlas Net-

work Tiles
14 Early diagnosis of Alzheimer’s disease using machine learning: a

multi-diagnostic, generalizable approach
15 RP-Net: A 3D Convolutional Neural Network for Brain Segmenta-

tion From Magnetic Resonance Imaging
16 An Open-Source Tool for Longitudinal Whole-Brain and White

Matter Lesion Segmentation
17 Nested Hierarchical Transformer: Towards Accurate, Data-Efficient

and Interpretable Visual Understanding

Table 2.1: Table of the selected articles
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2.1.2 Implementation process
The process of selecting the model to use for the experiments had some
conditions, the first is that the code needed to be available to the public.
This already filtered out some options. Furthermore, it needed to be
pretrained and needed to have an output codified with a usable Atlas.
The output needed to have clinical validity and to be comparable with a
gold standard, i.e. FreeSurfer. This implied a limited number of options
were available. The first article that was looked into was FAS-AID
BRAIN.

The choice was made because of the following reasons:

• Framework: it is implemented using a popular framework: MONAI
• New: it is published in 2022, this means that most of the features

included are up-to-date
• Many brain regions identified: it uses a very complex atlas with

more than 100 brain regions identified.

Downsides:

• Different atlas compared to FastSurfer.
• Memory intensive.
• No postprocessing.

It proved to be problematic because difficulties in its implementation
slowed down the work more than an acceptable amount of time, the work
was not complete and the workstation kept having memory problems
in running it. Furthermore, the output needed further processing to be
comparable to the one of FreeSurfer, which, as implied before, was the
gold standard for this work.
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This led to the change of the focus of this study. The model that was
thus selected is FastSurfer, which, as the name implies, seeks to be a
substitute for FreeSurfer, thus being optimal for this task. Fastsurfer
was already included in a pipeline that includes both the registration
steps and the preprocessing steps, which include the parcellation of the
brain according to the ASEG and APARC atlases, which will be the
focus of this work. The upsides are:

• Post-processing included: the relevant statistics are extracted auto-
matically by a tool provided, and are comparable to FreeSurfer.

• Same atlas as FastSurfer: Since it was proposed as a substitute of
FreeSurfer it uses the same Atlas, The DKT Atlas, which makes
the comparison between the two methods easy.

• Automatic pipeline implemented in Docker: the implementation
makes it easy to use for large number of data.

The downside is:

• Developed in 2020, so not very recent.
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2.2 FastSurfer
2.2.1 Introduction
The Fastsurfer CNN is implemented in a pipeline inspired by FreeSurfer,
it includes cortical surfaces analysis and thickness analysis using a sur-
face processing pipeline that integrates the neural network architecture
at its core to provide the same volume and surface results. this includes
cortical surfaces, thickness maps and summary statistics in cortical
regions following the DTK protocol atlas.

The pipeline which processes the output of the CNN has a number of
innovations. Traditionally, surfaces are generated through a pipeline
consisting of several time-consuming steps:

1. Meshes are smoothed and mapped to a sphere to localize topological
defects

2. Surface placement along the white matter is fine-tuned and a second
expanded surface is placed at the outer grey matter (GM) boundary,
also providing thickness estimates on every point on the cortex.

3. Surfaces are then carefully mapped to the sphere a second time
(minimizing metric distorsions), registered to a spherical atlas and
segmented into cortical parcellations (DTKatlas).

In the FastSurfer pipeline, the above FreeSurfer pipeline is modified to
yield surface results of FreeSurfer. A significant speed-up compared to
is obtained by omitting several steps that have become obsolete such
as skull stripping and non-linear atlas registration, given that the high
quality segmentation can be achieved easily.

The steps taken are the following:

1. A brainmask is created by closure, dilation, and erosion of the
labels, including the ventricle labels.

2. A quick bias field corrected brain image and linear Talairach regis-
tration are retrospectively contracted, as these results are needed
later for some relevant statistics.
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3. The mesh is created using a marching cube algorithm rather than
the traditional approach aiming at higher mesh quality and reduced
number of vertices.

4. A fast mapping to the sphere is obtained using the Eigenfunctions
of the Laplace operator to perform a spectral embedding of the
original white matter surfaces quickly, solving the Laplace-Beltrame
Eigenvalue problem.

5. After topology fixing and GM surface creation, the DTK GM seg-
mentations from the image are registered onto the surface and the
surface ROI statistics are computed. These statistics, such as mean
thickness and curvature averages per region, mimick FreeSurfer
surface segmentation.
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2.2.2 Architecture
Description of the architecture

FastSurferCNN is a network architecture that allows to segment the
brain into 95 classes excluding the background in less than 1 minute
on the GPU. It is composed of three FCNNs, similar to the ones
implemented by Roy et al. in QuickNat[48] which consist of a sequence
of 4 dense encoder and decoder blocks separated by a bottleneck layer
as shown in the image 2.2. Fastsurfer has some improvements, which
are competitive dense blocks and spatial information aggregation.

Figure 2.2: FastSurfer architecture
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Competitive dense blocks

Figure 2.3: Competitive dense
block

Competitive dense blocks employ
a distinct concept where the con-
ventional concatenation operation
in dense connections is replaced
with max-out activations, shown
in the image 2.3. This substitu-
tion instigates competition among
feature maps and effectively re-
duces the parameter count com-
pared to traditional dense blocks.
Consequently, a lightweight model
is formed by solely retaining the
maximum value at a particular po-
sition, instead of stacking the out-
put of the previous layer from the
previous model. This approach
keeps the number of input channels and parameters constant in every
convolutional layer. Furthermore, the competition extends to long-range
skip connections, ensuring consistent competitive behaviour throughout
the network.

Spatial information aggregation

3D deep neural networks are not feasible for numerous classes, however
2D networks with single slice inputs lose information on the 3D spatial
dependency between the inputs, which can be crucial for correct seg-
mentation of neuroanatomical structures. For this purpose, a multi-slice
input is passed to the network [55]. The spatial information aggregation
approach involves the processing of a 7-channel image by stacking three
preceding, the current, and three succeeding slices. This technique aims
to segment only the middle slice. Essentially, this approach combines
the benefits of 3D patches, which capture local neighborhood informa-
tion, with 2D slices, which provide a global view. The obtained results
are then compared to those obtained using 2D inputs.
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View Aggregation

The brain is a 3D structure and this needs to be taken into account, since
in this case there are 3 F-CNNs, one for each plane, Their output needs
to be combined to create only one probability map. The three views
(coronal, axial and sagittal) are thus aggregated through a weighted
average, as shown in image 2.4. This boosts accuracy for cortical folds
and subcortical structures. In the sagittal view, since it is not possible
to differentiate left from right hemisphere the lateral labels are merged,
reducing the number of classes from 78 to 50.

Figure 2.4: View Aggregation example from QuickNat [48]

2.2.3 Training process and datasets
For training purposes, a total of 140 representative subjects were selected
from datasets including ABIDE-II, ADI, LA5C, and OASIS. To validate
the model, 20 subjects from the MIRIAD dataset were used. Empty
slices were filtered out, resulting in an average of 145 single view
planes per subject and a total of 20,000 images per network. Data
augmentation techniques were applied to enhance the training set.
Moreover, the training set was balanced based on various parameters
such as age, gender, and others.

58



Material and Methods

2.2.4 Testing documented
Metrics used and statistics

The FastSurfer Pipeline was validated in terms of accuracy, generaliz-
ability, reliability, and sensitivity using DICE, ICC, and group analyses
on volume and thickness of the regions of interest (ROIs) as well as
thickness maps.

• Dice Coefficient and HD: The evaluation of segmentation perfor-
mance for different network architectures involves the use of Dice
Coefficient (DSC) and Hausdorff Distance (HD), with the average
HD serving as the metric for comparison. DSC is utilized in two
ways: firstly, to directly compare the performance of different net-
work architectures against each other, and secondly, to estimate the
similarity between the predictions achieved with FastSurferCNN
and FreeSurfer v6.0 on previously unseen datasets, thus assessing
the generalizability of the models.

• The agreement between cortical thicknesses and subcortical vol-
umes in consecutive scans using the OASIS1 test-retest set were
calculated. After averaging across hemisphere, the ICC as well as
the upper and lower bound with α = 0.5 level of significance are
calculated for each region.

• Identical linear models were fitted to FastSurfer’s and FreeSurfer’s
results, explaining thickness or volume by diagnosis controlling for
age, sex and head size. The p-values of the diagnostic effect are
monotonically connected to the absolute value of the t-statistic
which in turn is a scaled version of Cohen’s d, where the scaling
factor depends on sample size, a direct comparison of p-values is
possible given that both methods operate on the same input.
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Results from Paper

FastSurfer Obtained a High Generalizability and high performance
compared to FreeSurfer:

Comparison to manual reference: The segmentation performance of
the networks was compared to a manual standard. The DSC and average
HD were computed on the Mindboggle101 dataset (78 subjects) with
manually labeled cortical as well as manual subcortical segmentations
on 20 of these subjects.

Figure 2.5: Results of Fastsurfer

Comparison to FreeSurfer: To evaluate segmentation accuracy,
the DSC, and AVG HD was computed with FreeSurfer Labels on
five Datasets (ADNI, OASIS1, HCP, MIRIAD, and THP). It was
benchmarked against SDNet and QuickNAT and a 3D FCN Network.

Reliability: Test-retest reliability is assessed as the agreement between
the evaluations of two scans in a short time frame. The ICC is calculated
on the OASIS1 test-retest dataset with 20 participants. It is shown to
be higher for Fastsurfer than FreeSurfer.

Generalizability: It was tested on machines from different manufac-
turer, as well as different age groups, gender, and diseases. A small
decrease in segmentation DSC can be observed with disease progression.
Event though Fastsurfer was primarly trained with images coming from
Philips machines, good results were observed with any vendor.
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2.3 Datasets
Many public datasets are available that contain MRI volumes. Two
were partially used in this project.

2.3.1 ADNI
ADNI is an association of medical centres and universities located in the
USA and Canada. Its main aim is to provide open-source datasets to
discover biomarkers and to identify and track AD accurately. It devel-
oped to become an ideal source of longitudinal multisite MRI and PET
images of patients with AD, MCI and NC and elderly controls. The
data sets were formed to make the detection system powerful by provid-
ing baseline information regarding brain structure and metabolism and
also through clinical cognitive and biochemical data. This study has
been taking place since 2004 in multiple phases, i.e. ADNI1, ADNI2
and ADNI3. [56]

2.3.2 OASIS
It is an open source data set of MRI images that can be used freely. It
consisted of 416 subjects initially, all being right-handed and aged 18-96
years. Both female and male patients were present. One hundred of
them with an age above 60 were diagnosed with very mild to moderate
AD. For each MRI, three to four weighted scans with high contrast
to noise ration are present. The total volume of the brain and the
estimation of the intracranial volume is used for analysing normal
ageing and Alzheimer’s disease, 20 dementia patients are included as
well. [57]
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2.4 Methods
In this section, the instruments used in this project are described.

2.4.1 Docker gpu
Docker is an open source software platform to create, deploy and
manage virtualized application containers on a common operating
system, with as ecosystem of allied tools. Docker container technology
was created in 2013. The technology is available through the operating
system. A container packages the application service or function with
all the libraries, configuration files, dependencies, and other necessary
parts and parameters to operate. Each container shares the service
of one underlying operating system. Docker images contain all the
dependencies needed to execute the code inside a container, so containers
that move between docker environments with the same OS work with
no changes. Docker uses resource isolation in the OS kernel to run
multiple containers on the same operating system (OS). This is different
from virtual machines, that encapsulate the entire OS with executable
code on top of an abstract layer of physical hardware resources. Docker
was created to work on Linux platforms but was extended to offer
support for non-Linux operating systems including Microsoft Windows
and Apple OS X, AWS and Microsoft Azure. [58]

For our goal Docker was used on Linux to run an image of the trained
network using an additional toolkit to make it compatible with NVIDIA
GPUs which is the The NVIDIA Container Toolkit and provides dif-
ferent options for enumerating GPUs and the capabilities that are
supported for CUDA containers. [59]

2.4.2 Workstation
Managing a large amount of data and processing MRI images require
significant time and resources.

To expedite the process, the study utilized a similar workstation as
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described in the paper. It was reported that the total processing
time for one image was indeed around one hour, which was empirically
confirmed. The network implementation employed Docker with NVIDIA
GPU support and was automated, enabling relatively fast processing
of hundreds of images within a matter of days or weeks.

Furthermore, the workstation housed all the necessary data, including
the data required for processing with FastSurfer and FreeSurfer. Con-
sequently, the memory requirements were substantial, amounting to
several terabytes of memory at disposal.

2.4.3 Database
The used data was stored on the workstation, as well as some other
data from different projects. The access was possible to a subset of
ADNI and OASIS that had already been processed with FreeSurfer and
to the tables with the characteristic of the subjects for both datasets.
The data needed preparation because it was not very well organized,
this meant that some time needed to be spent organizing tables and
finding all the respective images on the computer. Writing code to do
so meant learning how to use pandas, which revealed itself to be a very
important instrument for carrying out this project.

The table that included information about patients such as age and
pathology as well as the patient ID was also used to save the folders
names with the subjects’ information, Its description is in the image
2.2. The table was loaded using pandas and cleaned, keeping only the
age, the pathology and the subject ID. Using an appropriate script, the
location of the file in the computer was found and added to the table.

Regarding ADNI the matter was a little more complex since the data
was stored in two tables that had information with some overlaps. They
needed to be filtered and then matched to the data available on the
workstation which was a little more fragmented as well. Once sorted
out, the dataset to work with was organized as follows:

A better balance was needed between subjects who are healthy and
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n int
ID strig
path string
age int
sex bool
main_condition categorical
mmse_score int
processed bool
processed_path string

Table 2.2: Details of the table with the dataset information

people who are not, so, while for the testing phase and for the developing
of the algorithm for the data preprocessing the OASIS dataset was
used, for the actual testing it was used ADNI, which is more balanced.

2.4.4 Python
Python is an interpreted, object-oriented, high-level programming lan-
guage with dynamic semantics. Its high-level built in data structures,
combined with dynamic typing and dynamic binding, make it very
attractive for Rapid Application Development, as well as for use as
a scripting or glue language to connect existing components together.
Python’s simple, easy to learn syntax emphasizes readability and there-
fore reduces the cost of program maintenance. Python supports modules
and packages, which encourages program modularity and code reuse.
The Python interpreter and the extensive standard library are available
in source or binary form without charge for all major platforms, and
can be freely distributed. [60]

2.4.5 pyCharm
PyCharm is a dedicated Python Integrated Development Environment
(IDE) providing a wide range of essential tools for Python developers,
tightly integrated to create a convenient environment for productive
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Python, web, and data science development. It is available in a com-
munity edition and a professional edition, with more features available.
[61]

2.4.6 Pandas
Pandas is a remarkably popular open-source Python library that is
widely used in the data science field. It has become a go-to tool for
data manipulation and analysis, thanks to its many data structures
and functions that simplify the handling and manipulation of tabular
data. This tabular data can be anything from spreadsheets to SQL
tables. One of the great advantages of pandas is that it offers a variety
of functions for reading data from different file formats. It also offers a
wide range of functions for data cleaning, filtering, aggregation, and
transformation. [62]

2.4.7 Matplotlib
Matplotlib is a comprehensive library for creating static, animated, and
interactive visualizations in Python. It has many functionalities such
as:

• Creating publication quality plots.
• Making interactive figures that can zoom, pan, update.
• Customizing visual style and layout.
• Exporting to many file formats.
• Embedding in JupyterLab and Graphical User Interfaces.
• Using a rich array of third-party packages built on Matplotlib. [63]

2.4.8 Scikit-learn
Scikit-learn (Sklearn) is the most useful and robust library for machine
learning in Python. It provides a selection of efficient tools for machine
learning and statistical modelling including classification, regression,
clustering and dimensionality reduction via a consistence interface in
Python. This library is built upon NumPy, SciPy and Matplotlib. [64]

65



Material and Methods

2.4.9 Other libraries
Many python libraries were used for many tasks such as:

• seaborn - for improved visualization.
• numpy - to deal with matrices and mathematical operations.
• imlearn - for machine learning with imbalanced datasets.
• scipy - for statistics.
• penoguin - for statistical tests.
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2.5 Statistics
2.5.1 Statistical tests
Sometimes a study may just describe the characteristics of a sample,
such as a prevalence study. In this case the statistical analysis involves
only descriptive statistics. Another option is that studies are conducted
to test a hypothesis and derive inferences from the sample results
to the population, this is known as inferential statistics. The goal
of inferential statistics may be to assess difference between groups,
establish an association between two variables, to predict a variable
from another, or to look for agreement between measurements. One
of the most important instruments in inferential statistics are the
statistical tests. [65]

An important definition is the difference between paired and unpaired
observations. Paired observations are made on the same individual but
in different conditions, for example before or after or in different parts
of the body. Comparison between individuals are usually not paired.

The type of data must be assessed, the data may be categorical or
numerical. Normally distributed data can use parametric tests, which
are more statistically powerful.

It is important to define how many measures will be compared. The
choice of tests in fact differs whether two or more than two measurements
are being compared. This includes more than two groups (unmatched
data) or more than two measurement in a group.[66] [67].

In this case the data is paired since they come from the same subjects but
from different processing methods, the distribution is not parametric,
thus the appropriate test chose according to this table are:

• Wilcoxon Signed-rank test: The Wilcoxon test, also known as
the Wilcoxon signed-rank test, is a non-parametric statistical test
used to compare paired data or dependent samples. It ranks the
absolute differences between paired observations and calculates a
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test statistic based on the sum of the ranks for positive or negative
differences. It is robust against outliers and does not require the
data to follow a specific distribution, making it a suitable alternative
to the paired t-test when assumptions are violated. [68]

• Mann-Whitney U-test: The Mann-Whitney U test, also known
as the Wilcoxon rank-sum test, is a non-parametric statistical test
used to compare two independent groups or samples. It assesses
whether there is a significant difference between the distributions
of the two groups. The test involves ranking all the observations
from both groups together, calculating the sum of ranks for each
group, and comparing the sums of ranks to obtain a U statistic.
The test is robust against non-normality and does not assume equal
variances. It provides a reliable method for analysing data when the
assumptions of parametric tests are not met, allowing researchers
to determine if there is a statistically significant difference between
two independent groups. [69]

2.5.2 Effect size
As described before, significance is the magnitude of the evidence which
the scientific observation produces regarding a postulated hypothesis.
It relies on the hypothesis that the observation is intimately affected
by some degree of randomness, and that it is always possible to figure
out the way the observation would look like when the phenomenon is
completely absent.

The result of hypothesis testing is the probability for which it is likely
to consider the observation was shaped by chance rather than by the
phenomenon. If the result is not significant, there are two possibilities:
the result is actually not significant, or a phenomenon does exist, but
its small effect is overwhelmed by the effect of chance.

The second option poses the question of whether the experimental
setting actually makes it possible to show a phenomenon when there
is really one. In order to achieve it, there is the need to quantify how
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large, or small, the expected effect produced by the phenomenon is in
respect to the observation through which we aim to detect it.

Hypothesis testing assumes that the null hypothesis is always deter-
minable, and usually it is zero. This means that under a practical
standpoint achieving such precision is impossible for large datasets.
The testing procedure would make it too sensible to trivial differences,
making them look like insignificant even when they are not. With re-
spect to the experimental designs, we can assume that each observation
taken on a case of the study of a population corresponds to a single
trial. Therefore, enlarging the sample would increase the probability of
getting a p-value even with a small effect.

This creates the necessity of having a dimensionless measure to estimate
the size of the effect. It needs to be dimensionless, as it should return the
same information regardless of the system used to take the observations
[70]. There are many methods for computing the effect size. For both
the tests that were used the metric chosen is the following:

r = |z|
sqrt(n) (2.1)

2.5.3 ICC
For any instrument and method that needs to be validated, reliability
must be evaluated, it is defined as the extent to which measurements
can be replicated. It not only reflects the degree of correlation but also
the agreement between measurements.

The reliability of a measure is typically quantified using a value between
0 and 1, where values closer to 1 indicate greater reliability. In the past,
the Pearson correlation coefficient, paired t-test, and Bland-Altman
plot have been commonly used as measures for reliability. However, it
is important to note that the paired t-test and Bland-Altman plot are
primarily used to establish agreement rather than reliability, and the
Pearson correlation coefficient only measures the degree of correlation.
Therefore, they are not ideal measures for assessing reliability.
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In contrast, the Intraclass Correlation Coefficient (ICC) captures both
the degree of correlation and the degree of agreement between measures.
ICC was initially introduced by Fisher in 1954 as a modification of the
Pearson correlation coefficient. However, the modern ICC is calculated
using mean squares obtained from the analysis of variance. It is worth
noting that there are various forms of ICC available, and the appropriate
one should be chosen based on the specific application or context in
question.

Based on the Model, Type, and the Definition of the relationship
considered to be important, 10 different forms of ICC coefficient have
been theorized [71].

The selection of the correct ICC form for a reliability study can be
guided by three steps.

Model selection:

1. One way random effect: each subject was selected by a different
set of raters who were randomly chosen from a random population
of different raters.

2. Two way random effect: if raters are randomly selected from a
larger population of raters, this is chosen if we intend to generalize
to any rater who possess the same characteristic of the selected
rater.

3. Two way mixed effect: if the selected raters are the only raters
of interest.

Type selection: depends on how the measurement protocol will be
conducted in actual application.

1. Mean of k raters: if it is planned to use the mean value of k
raters as an assessment basis.

2. Single rater: if it is planned to use the measurement from a single
rater as the basis of the actual measurement.

Definition Selection:
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1. Absolute Agreement: if different raters assign the same score to
the same subject.

2. Consistency: if raters’ scores of the same group of subjects are
correlated in an additive manner.

For this application the appropriate ICC measure is the two way
mixed effect, single rater definition for Consistency.

2.5.4 Bonferroni correction
The Bonferroni correction is a multiple-comparison correction used when
several dependent or independent statistical tests are being performed
simultaneously (while a given α value may be appropriate for each
individual comparison, it is not for the set of all comparisons). In order
to avoid a lot of spurious positives, the α value needs to be lowered
to account for the number of comparisons being performed[72]. The
simplest expression is the following:

p = 1 − α

m
(2.2)

2.5.5 Normalization
All the features were normalized according to the total intracranial
volume for every subject before every subsequent processing. The
column age was also added. The APARC table went through some
processing as well, in fact redundant columns were deleted, and the age
column was added.

2.5.6 Visualization methods
Violin plot

The violin plot synergistically combines the box plot and the density
trace into a single display that reveals structure found within the data.
It still shows the same information as a box plot, which are the centre,
the spread, the symmetry, and outliers. The violin plot includes a
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box plot with some modifications. First a circle replaces the medial
line which facilitates quick comparisons when viewing multiple groups.
Second, outside points which are traditionally classified as mild and
severe outliers are not defined by individual symbols.

The density trace supplements traditional summary statistics by graph-
ically showing the distributional characteristics of batches of data. A
histogram, which is a simple density estimator, shows the distribution
of data values along the real number line. To solve the shortcomings of
the histogram, it can be substituted by the density trace described by
Chambers.

Bland-Altmann plot

It is an important and established method for measuring the agreement
between methods in clinical practice. When a new method is proposed,
the common practice is to assess its value by comparison with another
established technique. It is not certain that either method given an
unequivocally correct measure when the degree of agreement between
them is assessed. The standard method is often referred to as “gold
standard”, but this does not and should not imply that it is measured
without error.

What is important to assess is the agreement between different methods
of measurement. It is of interest to know by how much the new method
is likely to differ from the old, so that if this is not enough to cause
problems in clinical interpretation the old method can be replaced by
the new. A visual approach to this problem is the Bland-Altmann plot.
It represents on the x-axis the mean between the gold standard measure
and tested measure, and on the y-axis the difference between the two.
[73]
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2.6 Testing process
The initial goal of the analysis was to validate the accuracy of FastSurfer
and compare its results with those obtained from FreeSurfer. To
achieve this, considerable effort was put in developing an efficient
data processing framework, which involved constructing an extensive
codebase. A statistical analysis was performed on the processed data.
This allowed to assess the comparability of the processed brain volumes
generated by FastSurfer with the results from FreeSurfer, while also
highlighting any differences. Additionally, a classification task was
implemented, aiming to evaluate the performance of FastSurfer as a
novel software tool in automating Alzheimer’s detection.

2.6.1 Code
The workflow included different sections. It was implemented starting
from 5 main classes, as shown in the picture 2.6 3 of which are a
composition of the base statistics class, as it is shown below.

Figure 2.6: Class diagram
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Filtering the table

The first step imvolved in the process included creating a summary
table that combined information from the original table and data in
the folders. This summary table contained the paths to the original
images, which were obtained using a file search script, as well as other
relevant information from the original table, depending on the datasets.
Manual consultation of this table allowed copying the paths to a text
file, which served as the input for running the network. This manual
action was necessary to maintain control over the processed data and
is the only step that requires manual intervention each time.

Furthermore, a method was implemented to update the table. This
method enables easy tracking of the subjects that have already been
processed by performing a search in the destination folder. Additionally,
it adds the path to the folder where the processing results are stored
to the table. This automated process is highly useful for maintaining
dataset integrity.

Processing

Fastsurfer was run using Docker, which offers several conveniences. To
automate the container creation for each subject, a Bash script was
written for Linux. This script selects the output folder and creates a
separate folder for each subject. It then creates a container and repeats
the process for all the files listed in a selected text file, which contains
the paths copied from a table.

Postprocessing

The next step involved automating the extraction of features and
reorganizing them for post-processing. To achieve this, certain text
files needed to be read and interpreted. It is important to note that the
output files from FastSurfer differed from those generated by FreeSurfer,
so separate scripts were developed for each.

Building upon the previously created table, only the subjects with

74



Material and Methods

processed data were selected. Further filtering conditions could be
applied to create datasets containing only the desired data. Once the
selection and filtering of the relevant data were complete, the statistics
extracted by the neural network were located on the computer and
loaded. Regular expressions were used to interpret the data, extracting
and adding everything to a dictionary. Subsequently, the dictionary
was converted into a dataframe and saved. The resulting dataframe
contained all the extracted features organized by subject, specifically
for the subjects of interest. This simplified the interpretation of the
results and made it much easier to analyse the data.

Data analysis

In this section, a class was created that inherits from the Table class.
This new class includes several methods to facilitate all the necessary
operations and stores all the datasets. By instantiating an object of
this class, users can easily perform comparisons and statistical analyses
between results. The class is designed to handle both the statistics
extracted from FreeSurfer and FastSurfer, and the resulting objects
from either software are interchangeable and compatible with the class.

This approach allows for a seamless integration and analysis of data from
both software tools, providing flexibility and convenience in conducting
comparisons and statistical evaluations.
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Statistical analysis

Once all the data was correctly identified and organized in tables and
folders, some information could be extracted from it. To do this, some
objects that are compositions of the previous ones were created. In
detail, one allowed the comparison between two data classes, the other
between an indefinite number of data classes, even though many data
series plotted at the same time make the result impossible to interpret.

Comparison

It has a number of methods for both visualization and statistical analysis.
All the plots are saved in the images’ folder, which is a subfolder of
the output folder, and a distinctive name that contains the name of
the comparison object, the atlas that was compared and the number
of plots contained in the image. The number of subplots can be set
when the function is called. Furthermore, the columns can be selected
or excluded with two arguments to allow easier data interpretation and
to plot only the data that are of interest.

A single iteration method has been written for both the violin plot
and the bland Altmann, for the latter an additional section does the
matching between the datasets to have paired data.

Violin plot

To visualize the violin plot, the library Seaborn was used, and the series
had to be constructed in the correct way before being able to plot it.
Substantially the only thing that was done was selecting one series at a
time, if it met the conditions, which are that the series is either not in
the argument column to exclude or the argument column to keep. It
was then checked that the series contains numerical values, and then it
was passed to the plotting function.
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Bland-Altmann

Creating a Bland-Altman plot requires additional effort to ensure accu-
rate results. The function takes two series as input, but an additional
step is needed to match the data to check if it is paired. This step makes
sure that every element of each of the two series has a corresponding
one. Not matching elements are deleted. Thereafter, the visualization
function is called. Similarly to before, which columns to keep and which
to discard can be chosen.

Statistical tests and other indexes

Statistical tests are performed calling the function on each column
depending on whether the data is paired or not the statistical test
to perform is chosen: either the Wilcoxon signed-rank test or the
Mann–Whitney U test. In this section, the ICC is computed as well if
dataset is paired. The same function used for the Bland-Altmann plot
is used to make sure the data series are paired if needed. The results
of the statistical tests are then saved in .csv files which contain all the
information of every structure identified.

Other plots

This class accepts an indefinite number of stat class objects, even though
too many make the visualization impossible. It has one main method
and the principle is the same as before: the images are saved in the
same folder and have unique names that are identified by the name of
the object as well as the data represented, the number of subplots can
be also decided before plotting. It can be used to plot a combination
of data with models fitted to it, mostly used with linear regression.
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Linear Regression

To facilitate the visual analysis of the plots generated by the output of
the two software programs, a simple linear regression was performed
on the data. This regression model captures the relationship between
the variables and aids in comparing the software outputs.

All the characteristics of the fitted models, including the R-squared
(R2) values for each region, are saved in an Excel table in the common
output area. This table provides a comprehensive overview of the
performance of the regression models, allowing a further analysis and
comparison between the software outputs.

2.6.2 Output
The application is structured with several classes that perform different
functions, all the output folders are created in a directory specified
when the object of each class is created. Each object creates a subfolder
with parameters passed to it. If every module is run with the same
data folder the result will have the following structure:

Figure 2.7: Example of an output of the folder structure
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2.7 Machine learning
For the machine learning experiments, multiple trials were conducted.
During the development stage, all features were initially used, resulting
in low accuracy results as expected. Below the pipeline of the machine
learning algorithm training process is shown.

Figure 2.8: Pipeline of the machine learning process

2.7.1 Models tested
• Logistic Regression: Logistic regression is a widely used algo-

rithm for binary classification. It models the relationship between
the independent variables and the binary outcome using the logistic
function. It is often interpretable and efficient for large datasets.

• Random Forest: Random forest is an ensemble learning method
that combines multiple decision trees to make predictions. Each
tree is constructed using a random subset of features and aggregated
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to obtain the final prediction. Random forest can handle complex
relationships and is robust against overfitting.

• Support Vector Machine (SVM): SVM is a powerful algo-
rithm for both classification and regression tasks. It aims to find
an optimal hyperplane that maximally separates different classes.
SVM can handle high-dimensional data and is effective in cases
where the data is not linearly separable by transforming it into a
higher-dimensional feature space.

2.7.2 Dataset
The dataset at this point is composed by mostly not healthy subjects
with a number of 175, the healthy subjects were 103. These were the
two classes considered, and the AD subjects are considered in the same
class as MCI. This is expected to result in a lower model performance.

2.7.3 Train and test sets construction
Different strategies to construct the training and test set were used:

• Down-sampling: the first strategy tested was simply creating a
dataset with a balanced number of healthy and pathologic subject
and to use that for training the classifiers. This dataset was used
to construct the balanced training and test set. The advantages of
this technique are that the dataset is balanced by definition and
the elements of it are all original and unique. The disadvantage is
that the numerosity of the dataset is reduced, and before that it
was not very numerous.

• Up-sampling: this method uses the opposite approach compared to
the one discussed above, in this case what it is done is balancing
the classes by upsampling the less numerous one, there will then be
duplicates, this solves the numerosity problem, but the elements
are not unique and this could introduce a bias depending on the
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construction of the training and test set.

• Training balanced: this last method uses a balanced dataset for
training and all the other subjects are used for testing, this has the
advantage of having many elements in the test set without wasting
the data available, the test set is highly unbalanced and metrics
for balanced datasets are not reliable, the training set is still not of
the optimal dimension.

• SMOTE: the balancing was done using the SMOTE method imple-
mented by the imbalanced-learn library. Which is a method that
creates synthetic samples for the minority classes by performing
a k-nearest neighbour interpolation to find elements close to each
other in the feature space. [74]

2.7.4 Feature selection
It is the process of selecting which variables to use to train the classifier,
it was done in two ways.

Automatic: at first, the feature selection method based the F-test
for classification algorithm implemented with sklearn, that assigns a
correlation score of the variable with the output.

From literature: features were selected manually from the combination
of the information coming from papers and the statistical information
we had available in the data, from the analysis done beforehand.

2.7.5 Normalization
Normalization is needed for this dataset since all the features have
different ranges. Not doing any normalization procedure would return
biased results.

Min-Max scaling: the Min-Max scaling strategy is the first that was
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tested, and it is one of the most simple and used methods.

Normalized Value = Original Value − Min Value
Max Value − Min Value

2.7.6 Model selection
Grid search

To find the most suitable algorithm, the taken approach is often grid
search. Grid search is a tuning technique commonly implemented in
libraries such as sklearn. It aims to determine the optimal values of hy-
perparameters through an exhaustive search. This search is performed
on specific parameter values of a model, also known as an estimator. In
sklearn, this functionality is provided by the GridSearchCV function.

Repeated k-fold

During the training process, the models were trained using the k-fold
technique, which involves splitting the data into k subsets or folds. The
training is then performed k times, where each time a different fold is
used as the validation set and the remaining folds are used for training,
as seen in the image 2.9. This helps to average the results and ensures
that the model’s performance is not biased towards a specific subset of
the data.

In order to improve the reliability of the results, this process is repeated
multiple times. By repeating the k-fold technique for a number of times,
we can obtain a more robust characterization of the model’s performance.
This approach helps to account for any potential variations in the data
or randomness in the training process, providing a more accurate
assessment of the model’s capabilities.

2.7.7 Used metrics
The process began with an unbalanced dataset, which was then balanced
using various techniques. Multiple metrics were employed to evaluate
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Figure 2.9: k-fold process example

model performance, and the Matthews Correlation Coefficient (MCC)
was selected as the criterion for choosing the best model through grid
search. This approach aimed to ensure a reliable classification model
by addressing dataset imbalance and optimizing performance using the
MCC.

Matthews correlation coefficient (MCC)

The best model was selected according to the maximization of this
coefficient, the metric is not natively present as an option for the
sklearn library, but it can be easily made available. It is a more reliable
statistical rate which produces a high score only if the prediction
obtained good results in all of the four confusion matrix categories
(true positives, false negatives, true negatives, and false positives),
proportionally both to the size of positive elements and the size of
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negative elements in the dataset.

2.7.8 Validation
Once the best model has been selected, the next step is to validate
the chosen model. During this validation process, multiple metrics
are computed for each selected model. Since this is a classic binary
classification problem, the metrics commonly used in such cases are
derived from the confusion matrix.

Confusion matrix

The confusion matrix is a specific table layout that allows visualization
of the performance of an algorithm, typically a supervised learning one.
It provides a tabulation of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN). From this matrix, various
metrics can be derived.

Receiver operating characteristic (ROC) - Area under the
curve (AUC)

A receiver operating characteristic (ROC), or simply ROC curve, is a
graphical plot which illustrates the performance of a binary classifier
system as its discrimination threshold is varied. It is created by plotting
the fraction of true positives out of the positives (TPR = true positive
rate) vs. the fraction of false positives out of the negatives (FPR =
false positive rate), at various threshold settings. TPR is the sensitivity,
and FPR is one minus the specificity or true negative rate.

Other metrics computed

• Precision (P): The proportion of correctly identified positive
instances out of the total instances predicted as positive.

Formula: P = TP
TP+FP
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• Recall (R): The proportion of correctly identified positive in-
stances out of the total actual positive instances.

Formula: R = TP
TP+FN

• Negative Predictive Value (NPV): The proportion of correctly
identified negative instances out of the total instances predicted as
negative.

Formula: NPV = TN
TN+FN

• Positive Predictive Value (PPV): The proportion of correctly
identified positive instances out of the total instances predicted as
positive.

Formula: PPV = TP
TP+FP

Repetition

The process was repeated 100 times to be able to perform a statistical
analysis. The mean and standard deviation of the accuracy were
computed to demonstrate the reliability of the process. The mean
represents the average accuracy, while the standard deviation indicates
the variability of the accuracy values. This analysis helps assess the
consistency and stability of the model’s performance.

2.7.9 Analysis of results
The results were checked for normality with the Tukey test [75] and
then either the independent t-test or the Mann Whitney U-Test was
performed on the MCC and ROC-AUC values of the test. This was
done to check whether the results are statistically different using the
features extracted by FastSurfer and FreeSurfer.
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Results

3.1 Introduction
For a more accurate comparison and measurement of the features of
the regions the parcellated areas from the ASEG Atlas were normalized
according to the total intracranial volume, which can be more informa-
tive since it is relative to the subjects. The APARC features were not
normalized.

3.2 OASIS
The OASIS dataset, despite being the one used for the building of the
software was not used since the majority of the subjects are healthy.
For our goal it was a necessity to have a balance between the healthy
subjects and the not healthy subjects that were considered. Despite this,
All the subjects present in the part of the OASIS dataset present on
the workstation were processed and were used to prove that FastSurfer
is actually empirically viable as a solution for brain segmentation. The
decision to switch to ADNI was made in a relatively advanced phase of
the project because it is more balanced.
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3.3 Literature review
The normative model which was built using the deep learning model
AssemblyNet gave some guidelines on how to model accurately the
progression of Alzheimer. Using the model the progression of Alzheimer
was characterized. The regions that indicate the presence of an illness
in the most evident way were identified as being the following. [8]

Figure 3.1: Regions identified
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3.4 ADNI
Following is the age distribution and the pathology information about
the dataset. MCI and AD were considered as one class.

Class n
NC 103
MCI 130
AD 45
Total 278

Figure 3.2: Age distri-
bution table

Figure 3.3: Box-plot of age distribution
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3.4.1 Relationship with MMSE
In a plot that was implemented with the use of a MMSE colour coding,
it can be seen how some regions show a trend, like the hippocampus,
which as expected shows atrophy in correlation with a lower MMSE
score. The MMSE score is not directly correlated to the pathology, and
there is no threshold set to classify a subject as healthy based on this
score as seen in the image below.

(a) Fastsurfer Pathologic (b) FastSurfer Healthy

Figure 3.4: MMSE score, pathology and volume
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3.4.2 Comparisons between conditions
ASEG

In the ASEG atlas, certain brain volumes show significant differences
between healthy and unhealthy subjects. These differences are consis-
tent across both the traditional FreeSurfer method and the FastSurfer
method.

In addition to the amygdala and hippocampus, the accumbens also tends
to be larger in healthy subjects. In addition, certain regions exhibit
more pronounced differences in unhealthy subjects. These include
increased cerebrospinal fluid (CSF) volume and wider ventricles.

These informative features, the size differences in the amygdala, hip-
pocampus, and accumbens, along with the increased CSF volume and
wider ventricles, can be utilized to accurately estimate the health status
of a patient.

It is worth noting that some regions, such as the hypointensities and the
5th ventricle, were not computed in this analysis. It is not surprising
since these areas indicate defects in the image where it is not possible
to see a brightness level, but the image is saturated. Usually they can
be present for many reasons which include lesions, but not in every
subject in a general population.

(a) FastSurfer (b) FreeSurfer

Figure 3.5: Comparison between conditions 3rd Ventricle ASEG
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APARC

The analysis reveals that the thickness measurements, in general, do not
provide significant information for distinguishing between healthy and
unhealthy subjects. However, there are noticeable differences observed
in the mean thickness of the entorhinal region and the mean area of
the inferiotemporal region between these two groups.

It is important to mention that certain features, specifically the inferior-
parietal mean area and thickness, were not computed for the unhealthy
subjects in FastSurfer, but only by FreeSurfer.

Regarding the remaining brain areas, no significant differences were
observed among the pathological subjects, and there were no anomalies
in the behaviour of the software that are worth highlighting.

The statistical analysis supports the visual observations, confirming
that the differences noticed are indeed significant.

(a) FastSurfer (b) FreeSurfer

Figure 3.6: APARCL enthorinal mean thickness estimation
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3.4.3 Comparisons between methods
This section gives an overview of the macroscopic differences between
the patients with a healthy brain compared to the pathologic patients.

ASEG

When comparing the two methods, it is observed that FastSurfer es-
timates higher volumes for the Caudate and Amygdala, particularly
on the right side. Discrepancies are also noted in the Right Caudate
Volume, Right Accumbens area volume, and Right Ventral DC volume.

Significant differences are found in the estimates of the Choroid Plexus
volume, CSF volume, and Mask volume, all of which are overestimated
in FastSurfer. The CC Anterior volume exhibits similar behaviour, as
does the Right Choroid Plexus (indicating a symmetric issue), and
the Left Ventral DC volume. Only FreeSurfer identified the Optic
Chiasm and 5th Ventricle, while neither method detected the Left
Vessel. The Left Accumbens area is overestimated in FastSurfer. The
most significant difference is observed in the CC Central volume.

The opposite trend is found in the normalized mask, which also shows
a little variance and a noticeable difference.

APARC

Considering the APARC atlas regions features, comparing FastSurfer
and FreeSurfer a number of differences can be noticed, starting from
healthy subjects. A number of regions are consistently overestimated
by FastSurfer, such as the paracentral mean area, caudalmiddlefrontal
mean area, transversetemporal mean area, isthmuscingulate mean area
and fusiform mean area. Some regions were underestimated such as
the cortex volume and the inferiortemporal mean thickness, enthorinal
mean area. Of these, some more than others, for example the isth-
mucingulate mean area, and some less, such as the inferiortempoeral
mean thickness. In general, a statistical difference can be noticed in
many of the structures.
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Some other areas, were found to be overestimated by FreeSurfer com-
pared to FastSurfer. This is evident from the statistical tests performed.
The areas that were overestimated by FreeSurfer include the parahip-
pocampal mean area, superior frontal mean thickness, supramarginal
mean area, lateral orbitofrontal mean thickness, pars opercularis, rostral
middle frontal mean thickness, posterior triangularis mean thickness,
and fusiform mean thickness as well as others. Some regions show a
bigger difference than others on average, and in general there is no
pattern of over or underestimation in the comparison between the two
tools. It is important to note that for a specific goal it is not necessary
that the performance on every region, but some of them may be more
important than the rest in a specific application. In general, APARC
atlas features are more alike between the two tools than the region
volumes estimated.
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Notable differences

The results show that there are some regions which are computed only
by one of the two methods, in general these are computed by FreeSurfer
and not FastSurfer.

• Hypointensities - only FreeSurfer
• 5th Ventricle - not any
• vessel Volume - only FreeSurfer
• Optic Chiasm - only FreeSurfer

(a) Hypointensities Healthy (b) 5th Ventricle Healthy

Figure 3.7: Hypointensities and vessel volume example
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Figure 3.8: Comparison of the
FastSurfer and FreeSurfer Output
for the mask volume

Some regions that show a very pro-
nounced difference and constant,
as for example the whole brain
mask. It can be noted by the plot
of the mask value. 3.8

Some regions show a difference
which is less consistent between
the processing with FastSurfer
and FreeSurfer. It is reported
the p-value again for the regions
showed below as an example of
what visually the result corre-
sponds to.

(a) Left Accumbens Healthy (b) CC Central Volume Healthy

Figure 3.9: Comparison between methods for the left Accumbens and
the CC central volume
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3.4.4 Bland-Altmann
plot
The Bland-Altmann plots were plotted for every region, shows the
agreement between measures. It is used to visually assess the reliability
of a method usually compared to a gold standard, it can be used
between methods to show the agreement of their measures. In this
case it was computed only for the paired tests, so to compare the two
methods and not to compare the two pathologies. Follow two examples
of plots, of two regions with different ICC values shown in the table
3.1. The plot have the same scale of the y-axis proportionally to the
mean values of the x-axis.

Region Healthy Pathologic
APARCR_entorhinal_mean_thickness_mm 0,856 0,943
Right-Lateral-Ventricle_volume_mm3 0,998 0,998

Table 3.1: ICC of the regions displayed in the plots

3.4.5 Violin plots
A violin plot depicts distributions of numeric data for one or more
groups using density curves. The width of each curve corresponds with
the approximate frequency of data points in each region. It was plotted
for every region to compare both FastSurfer and FreeSurfer and the
pathologic and healthy subjects.
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Figure 3.10: Bland-Altmann for enthorinal mean thickness, APARCR,
Healthy

Figure 3.11: Bland-Altmann for Right-Lateral-ventricle volume,
ASEG, Pathologic

3.5 Statistical analysis
Follow the results of the statistical analysis performed.
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Figure 3.12: Example of Violin Plot for subjects processed with
FreeSurfer

Figure 3.13: Example of Violin Plot for subjects processed with
FastSurfer
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Figure 3.14: Example of Violin Plot for Healthy Subjects.

Figure 3.15: Example of Violin Plot for not Healthy Subjects
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3.5.1 Statistical tests results
What can be observed from the results of the statistical tests is that both
FastSurfer and FreeSurfer exhibit a significant difference in numerous
regions. Moreover, the differences between the software packages are
generally greater than the discrepancies between pathologies for subjects
processed using the same software. These findings are based on the
utilization of specific statistical tests, with the Wilcoxon test employed
for paired comparisons of the software packages and the Mann-Whitney
test used for unpaired comparisons between healthy and non-healthy
subjects. Notably, the lowest p-value observed in the comparison
between pathologies is e-11, whereas multiple negligible p-values ranging
as low as e-30 are obtained when comparing the software tools. This
may be accepted since what is more interesting in this analysis is the
reliability between methods which is assessed by the ICC values, not
always a low p-value relates to a low reliability of the measure.

According to the statistical tests results the regions which are the
most informative when trying to discriminate between pathologic and
healthy subjects are the same between the processing results of the two
methods, the results for amygdala and the hippocampus, which are
both in the literature and in the results shown to be the most indicative
of a pathology are listed below in table 3.2. Other regions that showed
little correlation are the inf-lat-vent volume and the enthorinal mean
thickness, as well as the superiortemporal mean thickness.
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Region FreeSurfer FastSurfer
Left-Amygdala_volume_mm3 5.92E-09 5.96E-11
Left-Hippocampus_volume_mm3 6.59E-10 1.22E-10
Right-Amygdala_volume_mm3 1.68E-08 2.39E-10
Right-Hippocampus_volume_mm3 9.25E-10 4.96E-10

Table 3.2: Results for Amygdala and Hippocampus

Below, the plots of the values of two areas chosen from the table above
can be seen. It can be observed what those statistical differences mean
visually below in image 3.16b and 3.17b.

(a) FastSurfer (b) FreeSurfer

Figure 3.16: Comparison between methods for Hippocampus

In general, it is important to note that a low p-value does not necessarily
imply poor estimation of a specific area. In this context, the ICC holds
greater relevance. Some areas have a poor p-value and a high ICC. The
opposite is also true. For example, despite having a decent ICC, regions
like the Accumbens may exhibit a very low p-value. Interestingly, this
trend persists regardless of whether the average estimation is higher or
lower. The table 3.3 shows the relationship between the lowest p-values
and the corresponding ICC.

101



Results

(a) FastSurfer (b) FreeSurfer

Figure 3.17: Comparison between methods for Amygdala

Region Healthy stat
test p value

Healthy ICC
value

aparcR cleaned ros-
tralmiddlefrontal mean
thickness mm

1.26E-18 0.883

aparcL cleaned superior-
frontal mean thickness
mm

1.26E-18 0.917

aparcL cleaned Cor-
tex,MeanThickness 1.27E-18 0.952

aparcR cleaned later-
alorbitofrontal mean
thickness mm

1.30E-18 0.845

aparcL cleaned ros-
tralmiddlefrontal mean
thickness mm

1.30E-18 0.862

Table 3.3: Comparison between p-values and ICC
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3.5.2 ICC
As stated before, the ICC was only computed for the agreement between
methods. It can be noticed that in general the ICC values are not low,
in fact Fastsurfer has a high reliability if the gold standard is considered
to be Freesurfer. Some observations can be made. Firstly, the ICC is
generally lower in pathologic subjects, which could be expected since
the higher variability of brains in pathologies. In this case a significant
disparity cannot be noticed, but it is still evident. There are some
outliers that show a very low ICC. The lowest is in the CC central
volume and it is 0,4. This region was already described before to show
significant differences between the two methods in its estimation and
this is a confirmation of that claim. For more than 100 out of 197
regions considered, the ICC is higher than 0,9 for healthy subjects,
which indicates a good reliability. The lowest is in the CC Central
volume, with a value of less than 0,5 in ICC.

Figure 3.18: ICC values distribution
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3.5.3 Effect size
The effect size was utilized to assess the magnitude of differences
between the processed areas based on each method. Notably, the trend
observed for effect sizes is opposite to that of p-values, which is expected
and desirable as shown in figure 3.19. When comparing the areas plotted
in order of p-values for FreeSurfer and FastSurfer, it becomes apparent
that the p-values exhibit an inverse trend. In contrast, the effect sizes
exhibit a pattern that aligns with the expectations.

(a) FastSurfer (b) FreeSurfer

Figure 3.19: Trend of variation for effect size and p-value

The effect size of the regions considered can then be thought of being
inversely proportional to the p-value mentioned above, so we can expect
it to be very high for these regions, as shown below in table 3.4.
Furthermore it shows the effect direction as well, an insight that cannot
be seen with FastSurfer.

Region FreeSurfer FastSurfer
Left-Amygdala_volume_mm3 -0.418 -0.470
Left-Hippocampus_volume_mm3 -0.443 -0.462
Right-Amygdala_volume_mm3 -0.405 -0.455
Right-Hippocampus_volume_mm3 -0.439 -0.446

Table 3.4: Effect sizes of some of the most informative regions
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3.6 Combination of methods
In this section an example of how the methods mentioned above one
can see the overview of how the information can be extrapolated. Below
it is shown the Bland-Altmann, the violin plot and a scatter plot with
the linear regression trend line.

Region Right-Inf-Lat-Vent_volume_mm3
FreeSurfer_stat_test_p_value 5.55E-09
FreeSurfer_effect_size_value 0.418
FastSurfer_stat_test_p_value 3.76E-09
FastSurfer_effect_size_value 0.423
Healthy_stat_test_p_value 0.0614
Healthy_ICC_value 0.981
Healthy_effect_size_value 0.212
Pathologic_stat_test_p_value 0.0128
Pathologic_ICC_value 0.986
Pathologic_effect_size_value 0.216

Table 3.5: Values for the analyzed region
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Figure 3.20: Violin plot Figure 3.21: Linear regression

Figure 3.22: Bland-Altmann plot

Figure 3.23: Plots related to the analysed feature
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3.7 Machine learning
The initial phase of the machine learning process involved selecting
specific features and using a limited number of models. The metrics
chosen for evaluation were accuracy and balanced accuracy, with the
latter being more suitable for unbalanced datasets. Even though the
dataset was unbalanced, it was later balanced for the training process.

Following the initial testing phase, a grid search was conducted to
evaluate various algorithms. The grid search systematically tested
each algorithm using different parameter combinations. To ensure the
reliability of the process, a k-fold cross-validation with three repetitions
was employed, allowing to assess the performance of the models on
multiple subsets of the data.
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3.7.1 Feature selection
The feature selection process was conducted manually, focusing on
identifying the most informative features. This selection was based
on a careful examination of the data, considering the agreement be-
tween FastSurfer and FreeSurfer results. It was observed that the
regions showing the greatest differences were consistent between the
two methods, further supporting the reliability of the selected features.

• Features used:

– aseg_normalized_Left-Hippocampus_volume_mm3
– aseg_normalized_Right-Hippocampus_volume_mm3
– aseg_normalized_Right-Inf-Lat-Vent_volume_mm3
– aseg_normalized_Left-Amygdala_volume_mm3
– aseg_normalized_Right-Amygdala_volume_mm3
– aparcR_cleaned_entorhinal_mean_thickness_mm
– aseg_normalized_Left-Inf-Lat-Vent_volume_mm3
– aparcR_cleaned_superiortemporal_mean_thickness_mm
– aparcL_cleaned_superiortemporal_mean_thickness_mm

3.7.2 Grid search
The grid search was performed using the GridSearchCV function pro-
vided by Scikit-learn. This function enables training multiple models by
testing all possible combinations of the specified parameters. To conduct
the grid search, dictionaries of parameters were created for each model,
and the function was called for each model separately. The results from
each model were then aggregated into a single dataset. As mentioned
earlier, the grid search was performed using k-fold cross-validation to
ensure reliable and robust model evaluation.
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Model C gamma Kernel
SVM 0.1 0.1 linear

0.1 0.1 poly
0.1 0.1 rbf
0.1 1 linear
0.1 1 poly
0.1 1 rbf
0.1 10 linear
0.1 10 poly
0.1 10 rbf
1 0.1 linear
1 0.1 poly
1 0.1 rbf
1 1 linear
1 1 poly
1 1 rbf
1 10 linear
1 10 poly
1 10 rbf
10 0.1 linear
10 0.1 poly
10 0.1 rbf
10 1 linear
10 1 poly
10 1 rbf
10 10 linear
10 10 poly
10 10 rbf

Table 3.6: Grid Search combinations part 1

109



Results

Model C max_depth n_estimators
logistic 0.1 - -

1 - -
10 - -

RF - - 50
- - 100
- - 200
- None -
- 5 -
- 10 -

Table 3.7: Grid Search combinations part 2

The results of each test, including the standard deviation and average
accuracy, were saved and recorded in an Excel table.

In some cases, the volumes processed with FastSurfer proved to be even
more reliable for the goal of this problem.

3.7.3 Testing of best models
The best models for each category, FreeSurfer and FastSurfer, were
tested using multiple metrics. This allowed a thorough evaluation of
their performance in accurately classifying the data. Repeating the
process numerous times, the reliability of the process could be tested.
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3.7.4 Model selection
To select the model, a grid search was conducted to optimize the
selection of features and parameters. This grid search utilized cross-
validation, specifically a repeated k-fold validation with 5 folds, which
was repeated 3 times. This configuration was chosen as it provides a
good tradeoff between model performance and computational efficiency.

By performing the grid search with cross-validation, the model’s hyper-
parameters and feature selection were evaluated, taking into account
the model’s performance across different subsets of the data. This
approach helps in selecting the most optimal combination of features
and parameters, leading to a robust and reliable model for the given
classification problem.
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3.7.5 Results
The models selected for FreeSurfer and FastSurfer have the following
performances, on average, on the training set, the measures are reported
with the standard deviation across all the tests.

Dataset Model MCC std
FastSurfer RF 0,62 0,01
FreeSurfer RF 0,65 0,01

The metrics computed on the test set, on average, are the following:

score mean std
best_score_training 0.65 0.01
accuracy 0.83 0.02
sensitivity 0.76 0.03
specificity 0.79 0.02
PPV 0.87 0.03
NPV 0.24 0.03
roc_auc 0.83 0.02
MCCscore 0.66 0.05

Table 3.8: FreeSurfer results
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score mean std
best_score_training 0.62 0.01
accuracy 0.78 0.03
sensitivity 0.80 0.06
specificity 0.79 0.5
PPV 0.76 0.02
NPV 0.20 0.06
rocauc 0.78 0.03
MCCscore 0.56 0.05

Table 3.9: FastSurfer results

On the MCC scores on the test set, the statistical test performed showed
the following results:

Metric p-value Null Hypothesis
bestscoretraining 2.56 × 10−34 Rejected

MCCscore 1.96 × 10−27 Rejected
ROC-AUC 1.39 × 10−27 Rejected

Table 3.10: Statistical tests results
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3.8 Discussion
The results of the analysis indicate a slight advantage for FreeSurfer
compared to FastSurfer. One possible explanation for this finding
is that FreeSurfer demonstrates a higher sensitivity to inter-subject
differences. This can be observed by examining the p-values and effect
sizes of the 15 most informative regions generated by both software
packages.

Interestingly, FreeSurfer appears to be particularly sensitive to small
regions. In fact, almost all the regions that were exclusively computed
by one software package were identified by FreeSurfer. This suggests
that FreeSurfer may be more adapt at capturing subtle variations in
brain structures, especially in localized areas.

Despite these differences, both FreeSurfer and FastSurfer demonstrate
a high level of reliability overall. When the outputs of these software
packages are utilized in practical applications, such as the classification
of Alzheimer’s disease patients, the results obtained from both methods
are good. However, the they are still significantly better with FreeSurfer
in this experiment, as shown by the table. 3.10

Both software packages offer valuable insights into the analysis of brain
structures, and their outputs can be used reliably in various applications,
including disease identification.
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3.8.1 Problems and future improvements
Future improvements could dive into what pushes FastSurfer in overlook-
ing some regions compared to FreeSurfer and if it would be important
to work on it. On a more practical note, to improve the results of this
work in the future, some steps that could be taken are:

• Optimizing the code or switching to a faster language than Python.

• Using a bigger dataset to obtain more reliable results.

• The machine learning process could be done more thoroughly, for
example, by performing more experiments with different prepro-
cessing method and implementing a feature selection process.
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Chapter 4

Conclusion

Based on the analysis and research, it was concluded that FastSurfer
represents a highly viable alternative to FreeSurfer in the task of brain
parcellation. FastSurfer possesses numerous advantageous qualities,
most notably its exceptional computational speed, making it a powerful
tool for efficient and accurate brain analysis. Despite this, for the model
analysed the conventional methods still obtained better results in the
classification task and sensibility to small regions.

These results emphasize the significant advances made by deep learning
in the field of brain imaging analysis. It has reached a stage where
it can obtain comparable results to the conventional methods that
are still regarded as the gold standard. Deep learning networks like
FastSurfer can reduce processing times for brain parcellation often by
several hours. This breakthrough would have important implications
for clinical workflows, enabling faster and more efficient diagnosis and
treatment planning.

Furthermore, the successful integration of FastSurfer into a pipeline
similar to that of FreeSurfer, makes it a promising rival for contemporary
software solutions. It is increasingly evident that tools like FreeSurfer
may face limitations and possible obsolescence in various applications,
given that similar results can now be obtained in a much faster manner.
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Conclusion

The rapid advancements in deep learning-based methodologies mean
that probably in the near future they will be powerful alternatives that
will potentially match and surpass the contemporary technology.

In conclusion, this study highlights the efficacy of FastSurfer as an
alternative to FreeSurfer for brain parcellation. It highlights the trans-
formative impact of deep learning in the field of brain imaging analysis.
Moving forward and further exploring the potential of these emerging
technologies will undoubtedly lead to improved diagnostic accuracy,
improved workflows, and enhanced patient care, and the technology
has the potential to match and surpass the conventional softwares.
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