Simone Alessandri'
Convolutional Networks for predicting Antimicrobial Resistance.
Rel. Giovanni Squillero, Alberto Paolo Tonda, Pietro Barbiero, Giulio Ferrero. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Biomedica, 2021
PDF (Tesi_di_laurea)
- Tesi
Accesso riservato a: Solo utenti staff fino al 15 Dicembre 2024 (data di embargo). Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (4MB) |
Abstract: |
Antibiotic resistance is a growing public health concern worldwide. Many diagnostic techniques were developed, but none of them are fast enough to predict the presence of bacteria with a resistant phenotype. This work proposes the use of a convolutional neural network on bacterial DNA sequences to predict resistance. Once the optimal neural network architecture was selected, validation was performed using a k-fold procedure estimating the loss function of both validation and test and evaluating the confusion matrix. Thanks to this technology it would be possible to speed up the choice of a proper therapeutic strategy and to avoid the rise of untreatable infection diseases. |
---|---|
Relatori: | Giovanni Squillero, Alberto Paolo Tonda, Pietro Barbiero, Giulio Ferrero |
Anno accademico: | 2021/22 |
Tipo di pubblicazione: | Elettronica |
Numero di pagine: | 111 |
Soggetti: | |
Corso di laurea: | Corso di laurea magistrale in Ingegneria Biomedica |
Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-21 - INGEGNERIA BIOMEDICA |
Aziende collaboratrici: | NON SPECIFICATO |
URI: | http://webthesis.biblio.polito.it/id/eprint/21676 |
Modifica (riservato agli operatori) |