polito.it
Politecnico di Torino (logo)

Development of an Electronic Stability Control for Improved Vehicle Handling using Co-Simulation

Won Jo Jung

Development of an Electronic Stability Control for Improved Vehicle Handling using Co-Simulation.

Rel. Mauro Velardocchia. Politecnico di Torino, Corso di laurea magistrale in Automotive Engineering (Ingegneria Dell'Autoveicolo), 2021

[img]
Preview
PDF (Tesi_di_laurea) - Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (6MB) | Preview
Abstract:

The research project focuses on integrating the algorithms of recent automotive Electronic Stability Control (ESC) technologies into a commercial multi-body dynamics (MBD) software for full vehicle simulations. Among various control strategies for ESC, the sliding mode control (SMC) method is proposed to develop these algorithms, as it is proven to be excellent at overcoming the effect of uncertainties and disturbances. The ESC model integrates active front steering (AFS) system and direct yaw moment control (DYC) system, using differential braking system, therefore the type of the ESC model is called as integrated vehicle dynamic control (IVDC) system. The IVDC virtual model will be designed using a specialized control system software, called Simulink. The controller model will be used to perform full vehicle simulations, such as sine with dwell (SwD) and double lane change (DLC) tests on Simulink to observe its functionality in stabilizing vehicles. The virtual nonlinear full vehicle model in CarSim will be equipped with the IVDC virtual model to ensure that the proposed IVDC virtual model passes the regulations that describes the ESC homologation process for North America and European countries, each defined by National Highway Traffic Safety Administration (NHTSA) and United Nations (UN). The proposed research project will enable automotive engineers and researchers to perform full vehicle virtual simulations with ESC capabilities.

Relatori: Mauro Velardocchia
Anno accademico: 2020/21
Tipo di pubblicazione: Elettronica
Numero di pagine: 140
Soggetti:
Corso di laurea: Corso di laurea magistrale in Automotive Engineering (Ingegneria Dell'Autoveicolo)
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-33 - INGEGNERIA MECCANICA
Aziende collaboratrici: FCA ITALY SPA
URI: http://webthesis.biblio.polito.it/id/eprint/17510
Modifica (riservato agli operatori) Modifica (riservato agli operatori)