polito.it
Politecnico di Torino (logo)

Development and integration of Machine learning Forecasting algorithms to support business decisions

Valeria Gallo

Development and integration of Machine learning Forecasting algorithms to support business decisions.

Rel. Marco Cantamessa. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Gestionale (Engineering And Management), 2019

Abstract:

The following paper has the objective to develop forecast models, critical aspect in companies. The optimization of the forecast brings, in fact, advantages in the organization and management of the entire supply chain. The use of machine learning can provide a valid substitute or support for traditional forecasting models and a backing for business decisions, bringing process innovations to companies. Machine learning models have been developed on R, statistical software, and subsequently integrated on already existing business planning systems. Two methodologies have been studied and compared: ARIMA, a linear and more traditional model based on regression and Neural Networks, which allow the implementation of non-linear models by gathering relationships between data and predicting by analogy.

Relatori: Marco Cantamessa
Anno accademico: 2019/20
Tipo di pubblicazione: Elettronica
Numero di pagine: 108
Informazioni aggiuntive: Tesi secretata. Fulltext non presente
Soggetti:
Corso di laurea: Corso di laurea magistrale in Ingegneria Gestionale (Engineering And Management)
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-31 - INGEGNERIA GESTIONALE
Aziende collaboratrici: Mediamente Consulting srl
URI: http://webthesis.biblio.polito.it/id/eprint/13473
Modifica (riservato agli operatori) Modifica (riservato agli operatori)