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Abstract

In rare diseases, randomised controlled trials are not always feasible for ethical rea-

sons or because the required number of patients is too large. In this case, the use of

single arm trials (all patients in the treatment group) is preferred, and the control

group may be taken from historical data (e.g., registries).

Patients from registries are selected so that they respect the same inclusion/exclu-

sion criteria present in the clinical trial. However, in the absence of randomisation,

treatment and control groups may still have differences in baseline characteristics.

It is necessary to take into account these differences in order to avoid, or limit, a

bias in the treatment effect estimation.

There are several statistical methods to achieve this purpose, and we focus here on

propensity score (PS) methods. The PS is a score summarising patients’ baseline

characteristics, and it can be used to select similar patients belonging to treatment

and control arms. We describe the following PS methods: matching, inverse proba-

bility of treatment weighting and stratification.

An application is presented using a fictive, but realistic, example where the re-

sponse variable is a time-to-event endpoint. On this example, the results from the

PS methods are compared to those obtained with a naïve analysis (without any

adjustment for baseline characteristics) and to those obtained with a covariate ad-

justment method, in which baseline covariates are simply included in the survival

analysis.

The naïve approach results in a biased treatment effect estimation, compared to

covariate adjustment and PS methods, with or without "doubly robust" approach

(i.e., relevant covariates are included in the survival analysis), that provide almost



the same, unbiased, results.

However, in general, relying on only one single method of analysis can be too mis-

leading and several approaches should be used as sensitivity analyses to check the

robustness of the results.



Chapter 1

Historical controls in clinical trials

In this chapter we give a short description of clinical trials, with particular attention

to historical control trials. We explain the meaning of historical data - in particular,

registry data, with their main features, challenges and possible improvements. In

the last subsection, two examples of registries related to rare diseases are mentioned.

1.1 Clinical trials

Clinical trials are experiments on human participants done in clinical research to

answer specific questions related to new treatments like, for example, drugs or med-

ical devices. The main endpoints in clinical trials refer to the efficacy and the safety

of a new treatment, generally, with respect to placebo or standard of care. Clin-

ical trials are designed so that results can be reproduced and validated by health

authorities, before drugs or medical devices are commercialised [1]. The effect of a

new treatment for a single patient is given by the difference between what happened

to the patient due to the treatment and what would have happened to him without

the treatment [4]. In order to do this, clinical trials usually have two populations of

patients, a group is treated with the experimental cure (treatment) and the other

one is treated with placebo, standard of care or even nothing (control). The way

treatment and control groups are established lead to different type of clinical trials:

here, we focus on randomized controlled and historical controlled trials.
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CHAPTER 1. HISTORICAL CONTROLS IN CLINICAL TRIALS

1.1.1 Randomized controlled trials

In randomized trials, patients are randomly allocated to the treatment and control

groups. After the allocation, the patients from the two arms are followed in the

same way and the only difference is the treatment they receive.

Randomization is considered to be the gold standard for clinical trials, because it

minimizes the allocation bias, balancing for both measured and unmeasured prog-

nostic factors (the characteristics of a patient, that can be used to estimate the

chance of recovery from a disease). Furthermore, in the case of blinded clinical tri-

als, blinding the identity of treatments from investigators and participants is made

easier by randomization [2].

1.1.2 Historical controlled trials

With the term "historical control" we mean a group of subjects external to the study,

taken from a different population with respect to the one used in the clinical trial.

Historical controls are often used when giving a placebo would be unethical and in

the case of rare diseases. In the latter case, only few patients could be included in the

trial, so generally all the subjects are enrolled in the treatment group (single arm

trial) and the control arm is a historical one. Historical data, the data related to

this external control, are taken from previous trials or natural history studies, like

registries, either retrospectively (i.e., extraction of data from medical records for

further analysis), or - not very common - prospectively (i.e., ad hoc studies to get

the required information). The main advantage in using historical controls is that

more resources can be allocated to the treatment group resulting in a reduction in

costs and in a more accurate point estimation of endpoints [3].

One of the biggest concerns in historical controls is that the external control

group should be chosen in such a way that the trial’s endpoints are comparable, oth-

erwise large selection bias may be introduced in the analysis. Moreover, if treatment

and historical control arms have great differences in covariates, this may inevitably

affect the treatment effect estimation.
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CHAPTER 1. HISTORICAL CONTROLS IN CLINICAL TRIALS

The following are the main guidelines that must be followed to use historical data

as a control arm [5, 6]:

• the course of the analysed disease has to be well documented in both the two

arms, with particular attention to the covariates that influence the outcome

of the illness. The historical data can be observed at an earlier time and/or at

another institution, but the characteristics related to demographics, baseline

status and concomitant therapy have to be available;

• the endpoints have to be objective and there has to be a relevant difference in

the outcome between treatment and control groups;

• the treatment and control populations have to be similar in demographics and

disease characteristics; all the measurements must have been taken in a similar

setting and in a similar manner together with timing and methodology.

The simplest ways to include historical data as a control group are:

– dynamic borrowing with test-then-pool: according to the result of a statisti-

cal test to assess whether the treatment and external control populations are

different, if the two arms are equal enough in baseline characteristics then the

historical data are used for the control group;

– pooled: historical data are pooled together with the data from the treatment

group, without checking for equality between the two populations.

The purpose of this thesis is to describe complex statistical methods to include

historical data as a control arm - even though they may have differences in baseline

covariates with the treatment group - permitting to avoid, or limit, a bias in the

treatment effect estimate.
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CHAPTER 1. HISTORICAL CONTROLS IN CLINICAL TRIALS

1.2 Registries

1.2.1 Definition and differences from clinical trials

A patient registry, by definition, is "an organised system that uses observational

methods to collect uniformed data to evaluate specific outcomes for a population

characterised by a particular disease and that serves a predetermined scientific, clin-

ical or policy purpose" [7]. Given its observational nature, this kind of studies allow

to get real-world data for a specific disease, i.e. its typical clinical features, its

differences in phenotype, its natural history. Registries are helpful because they

increase the knowledge about a certain illness, so that researchers can develop new

treatments based on the trends found among patients in the registry. As in clinical

trials, in registries patients may be treated (standard of care or not) or untreated.

There are different types of registries according to how their populations are defined:

for example, disease registries include patients with the same diagnosis, product reg-

istries gather individuals exposed to the same biopharmaceutical products or medical

devices. Furthermore, it is worthwhile to stress the importance of rare disease reg-

istries in supporting the development of treatment protocols and therapies for those

illnesses whose information is poor. This kind of registries need to be updated sev-

eral times whenever knowledge increases or treatments become available and they

have to monitor follow-up rates to determine whether or not there are medical events.

Registries collect information voluntarily about a certain disease, while clinical

trial data are obtained in a more restrictive and controlled setting whose purpose is

to determine if the treatment satisfies safety and efficacy conditions such that it can

be prescribed to the public [8]. As a result, the main differences between registries

and clinical trials are related to the treatment of patients and inclusion/exclusion

criteria.
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CHAPTER 1. HISTORICAL CONTROLS IN CLINICAL TRIALS

1.2.2 Patient population

In registries, doctors decide whether or not a subject has to be treated, and inclu-

sion/exclusion criteria allow to include a wider population than in clinical trials, in

which the treatment assignment is generally randomized.

Furthermore, in clinical trials, due to the great amount of tests performed on pa-

tients, a higher number of observed parameters is available rather than in registries,

in which only the covariates required for their purpose are present.

A registry is created to better understand the characteristics of a target popula-

tion, but, obviously only a subgroup of it is considered - the accessible population

- because of a series of inclusion/exclusion criteria: these criteria, that are mostly

geographic, demographic, disease-specific and temporal, may cause a lack of repre-

sentativeness in the accessible population.

A further restriction is given by the sampling scheme of the registry, leading to the

so-called intended population. This subgroup comes from the fact that often for

convenience only certain patients are included in the registry: as an example, this is

the case when, for simplicity, only the patients who come to the clinic on a certain

week day are involved in the study.

The actual population contains all the subjects in the intended population that

take part in the registry and that consistently go to follow-up visits.

Finally, the analytic population represents the true population in the registry:

few patients belonging to the actual population are excluded because they may

have particular attributes that are not meaningful for the analysis [9].
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CHAPTER 1. HISTORICAL CONTROLS IN CLINICAL TRIALS

Figure 1.1: All the different populations contained in the target population.

1.2.3 Observed covariates and data completeness

In general, in registries, the following covariates should be provided:

• demographics: gender, age, ethnicity, disease status, past history of signifi-

cant medical conditions, ...;

• treatment: therapeutic treatment (e.g., medication or surgery), behavioral

factors (e.g., diet, smoking habits);

• endpoints: parameters related to safety and effectiveness. Examples are

survival and disease recurrence for effectiveness, adverse events for safety;

• time: date of starting a treatment and follow-up visits.

One recurrent issue related to registries is the missingness of such variables for

certain patients. Missing data include variables that are "non reported" or the

reported value is not understandable, parameters that are unavailable or missing,

covariates with inconsistent values (e.g., at the same time two different values for the

same covariate) or out-of-range values (e.g., year of birth 1800). Several methods
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CHAPTER 1. HISTORICAL CONTROLS IN CLINICAL TRIALS

have been proposed to handle missing data, and their appropriateness/feasibility

depends on the context and the type of missing data [9, 10, 12]. More details are

provided in Appendix A.

1.2.4 Main sources of registries and future improvements

Pharmaceutical companies and other organisations are interested in collecting data

to understand the value of specific treatments or the trend of a certain disease; here

is a list of the main sources of registries [11]:

• national health systems generally use data to improve the quality of care

and the clinical outcomes;

• payers gather information in order to understand the quality and cost of care;

• pharmaceutical andmedical device companies create registries including

patients from previous trials in order to use them for historical controls in the

case of future trials.

Since historical data are an important resource in drug development, especially in

the case of rare diseases, pharmaceutical industries can get access to these real world

data, under the condition that the patients’ privacy and the confidentiality are main-

tained.

A great innovation may be the introduction of a common data model (standardisation)

for registries so that registries related to the same disease can be collected on a plat-

form that allows to look at patients across different sources.

Creating registries require a large amount of resources and time. At hospitals,

registries require manual data entry that inevitably affect the quality and the com-

pleteness of the data. A good improvement can be automating the procedure of data

collection as much as possible, exploiting the support given by patients’ electronic

health records.

The achievement of registry data automation and standardisation will surely

facilitate the collection of essential information to improve clinical care and patient

7



CHAPTER 1. HISTORICAL CONTROLS IN CLINICAL TRIALS

research.

1.2.5 Examples of rare disease registries

Table 2.1 presents two examples of registries related to rare diseases [9].

Table 1.1: Two examples of rare disease registries [9].
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Chapter 2

Statistical methods to use historical

controls

There is currently a large amount of clinical data available, like natural history data

or those coming from previous clinical trials, that can be used in new clinical trials

in order to achieve different purposes: reducing sample sizes, getting better estima-

tions and comparing an experimental treatment to historical control(s) when it is

not feasible to include a control group in clinical trials. This is particularly true in

the case of rare diseases, where only few patients are enrolled in trials. Clearly such

objectives can be reached only if there is sufficient consistency between historical

data and current data.

In this chapter, we will examine several statistical methods that can be used to

implement historical controls in clinical trials. The aim of these methods is assur-

ing comparability between treatment and control arms, in order to get a balanced

dataset, in a way that takes into account the differences in baseline characteristics

between the two groups.

2.1 Why balancing for baseline characteristics?

Randomised trials are conducted in a way that treatment allocation is not con-

founded with either measured or unmeasured baseline characteristics; this is not

9



CHAPTER 2. STATISTICAL METHODS TO USE HISTORICAL
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true when dealing with historical controls.

A confounding factor is a variable that influences two other variables, "questioning

their causal relationship": in our case, a confounder is a baseline covariate that in-

terferes with treatment status (i.e., which treatment patients receive) and treatment

outcome (see Figure 2.1) [13].

Figure 2.1: Model of a confounding factor.

Confounding factors lead to a biased estimation of the treatment effect, so, in order

to get an estimation as close as possible to the truth, particular statistical methods

should be used. The following example gives a clear idea of confounding.

Suppose to test a new drug for a certain disease on a population of 100 patients,

50 men and 50 women. The new drug is given to the women while the men get

the placebo. At the end of the test period, a higher number of women recover from

the illness. In this case, gender is the confounding factor and it is impossible to say

whether the drug was effective regardless the patients’ sex: perhaps, this result is

due to peculiar women’s characteristics.

10
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2.2 Statistical methods

2.2.1 Naïve method

The treatment effect estimation is computed without taking into account the pres-

ence of confounding factors among baseline characteristics. As a result, the estima-

tion can be biased. We will compare its results to those of the methods handling

confounding factors described hereafter.

2.2.2 Logistic regression

A generalised linear model is used when we want to "predict" a response variable

Y according to a linear combination of n observed covariates X = (x1, ..., xn) :

η(X) = βX = β0 + β1x1 + ...+ βnxn.

Suppose that E[Y ] = µ , each generalised model is defined by

• a link function g(µ) = η(X);

• the distribution of Y that belongs to an exponential family with probability

density function f(y ; θ, φ) = exp(y · θ− b(θ)
a(φ)

+ c(y, φ)) , where

- θ = g(µ) is the location parameter

- φ is the scale parameter

- a, b, c are known functions that depend on the model.

ABernoulli model is a generalised model where the response variable Y is Bernoulli-

distributed, Y ∼ Bernoulli(µ), where µ is the parameter of interest. We need to

find θ, φ, a, b and c. Knowing that the probability density function of a Bernoulli is

11
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f(y ; µ) = µy(1−µ)(1−y) (where y ∈ {0, 1}); we can equate f(y ; µ) and f(y ; θ, φ):

exp

(
y · θ − b(θ)

a(φ)
+ c(y, φ)

)
= µy(1− µ)(1−y)

y · θ − b(θ)

a(φ)
+ c(y, φ) = lnµy + ln(1− µ)(1−y)

y · θ
a(φ)

− b(θ)

a(φ)
+ c(y, φ) = y · lnµ + (1− y) · ln(1− µ)

y · θ

a(φ)︸︷︷︸
(1)

− b(θ)

a(φ)
+ c(y, φ) = y · ln

(
µ

1− µ

)
︸ ︷︷ ︸

(2)

+ ln(1− µ)

Looking at (1) and (2), we can put θ = ln
(

µ
1−µ

)
, φ = 1 and a(φ) = 1. As a

consequence, c(y, φ) = 0 and, since µ =
eθ

1 + eθ
, we get b(θ) = ln(1 + eθ).

Finally, we have

θ = ln

(
µ

1− µ

)
= logit(µ) = βX. (2.1)

From (2.1), it is possible to obtain f(y ; µ) as a function of β

f(y ; β) =

(
eβX

1 + eβX

)y (
1

1 + eβX

)1−y

.

An estimation of β, β̂, can be evaluated by maximum likelihood. By defini-

tion, in the case of discrete probability distributions, the likelihood of β given the

value of y is equal to the probability of observing y, given the parameters in β; the

likelihood can be defined as follows:

L(β ; y) = f(y ; β).

Given a set of m independent observations, the likelihood of all the set of observa-

tions is

L(β ; y1, ..., ym) =
m∏
i=1

L(β ; yi) =
m∏
i=1

f(yi ; β).

It is more convenient to use the log-likelihood

lnL(β ; y1, ..., ym) =
m∑
i=1

ln f(yi ; β);

12



CHAPTER 2. STATISTICAL METHODS TO USE HISTORICAL
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then, β̂ is the vector that maximises lnL(β ; y1, ..., ym):

β̂ = argmaxβ lnL(β ; y1, ..., ym).

Explicitly, β̂ is the vector that satisfies the following conditions:

• E
[
∂ lnL(β ; y1, ..., ym)

∂β

]
= 0

• E
[
∂2 lnL(β ; y1, ..., ym)

∂β2

]
> 0 (maximality condition)

2.2.3 Propensity score based methods

In the case of non-randomized trials, patients are usually assigned to treatment and

control groups based on their characteristics. As a result, the probability of be-

ing included in the treatment arm does not depend on a pre-defined randomization

ratio, as in randomized trials, but it depends on underlying factors in the patient

population. In order to reduce the bias in the treatment estimation that can arise,

statistical methods could be used to obtain a balanced dataset with comparable

groups, at least for the observed patients’ variables. One possible method to achieve

this purpose is the propensity score analysis.

The propensity score (PS) is the probability that a patient will receive the treatment

given a set of observed covariates that summarize what is known about the patient

prior to treatment assignment. In randomized trials this probability is equal to the

randomization ratio (e.g., 50%) for each patient, while in non-randomized ones this

probability can be estimated by a logistic regression model (see next section). In

this particular case, the dependent variable is the allocated treatment while the

independent ones are the patient observed characteristics before treatment; in the

end, the logistic regression output will be the probability of being treated, given a

set of observed variables [14, 15].

The choice of the variables that should be included in the model is one major issue

13
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of such analyses. First of all, only covariates that are measured at baseline (e.g.,

demographics, diagnosis date, number of previous treatments) and not post-baseline

should be included in the model because the latter ones can be affected by the treat-

ment received. As a consequence, the disease experts and the statisticians should

decide among four main sets of variables to be included in the logistic regression:

all measured covariates (associated or not to the treatment assignment and/or the

outcome), all the covariates that are associated with treatment assignment, those

variables that affect the outcome (possible confounders), those variables that affect

both the outcome and treatment assignment (true confounders). It was shown that

including possible or true confounders in the PS model results in a more balanced

design and a better treatment estimation but classifying variables as confounders

may be challenging. In any case, most measured variables affect both treatment

assignment and the outcome, so often all observed characteristics can be included

in the logistic regression without concerns [16].

Finally, problems may arise in the case of variables that affect both treatment as-

signment and outcome but they are not baseline characteristics: this is the case

of covariates related to temporal periods; depending on the time when a patient is

enrolled, this may increase his probability to receive a certain (new or old) treat-

ment. For example, in the case of a clinical trial that compares a newer treatment

to an older one, patients enrolled in an earlier period are more likely to get the older

treatment than the newer one.

Once the PS is estimated for each patient, it can be used to create comparable

groups with respect to baseline covariates among treated and untreated subjects;

this is particularly useful in the case of single arm trials when, in order to assess the

treatment effect, the control group comes from historical data.

There are mainly three PS-based methods adequate for this purpose:

• propensity score matching;

• inverse probability of treatment weighting (IPTW) estimation;

14
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• stratification.

2.2.4 How to estimate the PS

In order to estimate the PS for all the patients, a logistic regression is performed.

First of all, we have to specify our parameter of interest, PS, the probability of being

in the treated arm, and then we define its odds

ODDSPS =
PS

1− PS
,

the ratio between the probability of being in the treatment group and the one of

being in the control arm. The logistic regression model is the following:

logit (PS) = ln (ODDSPS) = ln

(
PS

1− PS

)
= β0 + β1x1 + ...+ βnxn,

where x1, ..., xn are the baseline covariates and β0, ..., βn are the parameters of the

model.

β̂0, ..., β̂n, the estimations of the coefficients, are obtained by maximum likelihood;

then, the PS is estimated to be

P̂S =
e β̂0+β̂1x1+...+β̂nxn

1 + e β̂0+β̂1x1+...+β̂nxn
.

For each patient, it is sufficient to substitute the values of his characteristics to

x1, ..., xn to get his PS estimation.

After the estimation of the PS for each patient, there can be two different sce-

narios:

• in the case of great unbalance in the observed baseline covariates between the

two arms, there are extreme PS values; low PSs for controlled patients because

their characteristics are very different from those of the individuals present in

the treatment group, that have high PSs;
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• in the other case, the patients belonging to both groups have values of PS not

far from 0.5.

2.2.5 Propensity score matching

The aim of this method is creating pairs or small sets of patients that have similar

values of PS. After that, the treatment effect is estimated on the dataset made up

of all these small groups, by applying a model stratified per group or a conventional

unmatched analysis [17].

The most common implementation of matching using PS is the one-to-one (1:1)

in which every treated patient is associated to one patient from the control group

with similar propensity score (see Figure 2.2).

Figure 2.2: Example of 1:1 matching, the number next to each individual is his PS.

The criteria to determine whether a PS is close to another are essentially the follow-

ing: nearest neighbour matching and nearest neighbour matching within

16



CHAPTER 2. STATISTICAL METHODS TO USE HISTORICAL
CONTROLS

a caliper distance.

In both cases, similarity in PS is measured in terms of a distance:

d(A,B) = |PSA − PSB|,

where A is a patient belonging to the treated arm, while B is a patient from the con-

trol group; the smaller d(A,B), the more similar A and B. With nearest neighbour

matching, each treated subject is associated to a patient from the control group that

has the closest PS to his, but there is no restriction on the distance between the

two. There can be candidates for the same match that show the same propensity

score, in that case one of them is chosen at random to match the pair.

In the case of matching with caliper, the absolute difference in PS between patients

in the same pair has to be lower than a specific threshold; due to this, there can be

treated or controlled individuals that cannot be matched to any others and they will

be excluded from the balanced dataset. Although there is no method to determine

the best caliper distance, some recommendations could be found in the literature:

0.1, to avoid pairing dissimilar individuals [17], or 0.2 of the standard deviation of

the logit of the propensity score (log( PS
1−PS )) that was demonstrated to reduce bias

[16].

Matching could be performed with or without replacement. There is matching

without replacement whenever a patient from smallest group (either treatment or

control group) that is included in a pair is no longer available to make pairs with

other patients; on the other hand, there is replacement when patients can be part of

multiple matched sets. In the case of matching without replacement, in the end, one

gets a balanced dataset even though some patients can be excluded from the anal-

ysis because there are no longer any other individuals to match. Intuitively, this is

not the best approach to use when the sample size is small because this implies dis-

carding information that may be useful in estimating the treatment effect. However,

the repetition of the same patient from the control group in multiple pairs compli-
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cates the analysis as this should be taken into account in the variance estimation [16].

Another possible aspect to take into account is whether to have a greedy or

an optimal approach for matching. With the first choice, an individual from the

smallest arm is randomly selected and matched to one in the other group that has the

PS closest to his. This step is repeated until all treated individuals are matched with

the untreated ones or there are no patients left in the control group for matching (in

case of matching without replacement). Such an approach is called greedy because,

every time that a patient from the smallest group is selected, the patient from the

other group that has the PS closer to his is chosen even though he/she may have a

propensity score that is more similar to another patient. As opposite to the greedy

matching, there is the optimal matching in which pairs are made so as to limit the

overall difference across pairs. The pairs are the result of an optimisation model, a

minimum cost bipartite matching problem, that can be formulated as a minimum

cost flow problem [18]. Suppose that the patients are the nodes of a bipartite graph

G = (T , C, E), where T and C are the treatment and control arms and E = T × C

represents the arcs between pairs; the optimal 1:1 matching is the solution of the

following linear problem:

min
∑
i∈T

∑
j∈C

cijxij (2.2)

such that
∑
i∈T

xij = 1 , ∀ j ∈ C (2.3)∑
j∈C

xij = 1 , ∀ i ∈ T (2.4)

xij =


1 if i and j are paired

0 otherwise
, ∀ j ∈ C,∀ i ∈ T . (2.5)

The constraints, (2.3), (2.4), (2.5), indicate that each patient in the treatment arm

is matched to exactly one in the control group; the coefficients cij are the differences

betwen patients i’s and j’s PSs, that correspond to the costs of possible matches.
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Finally, there is also the so-called one-to-many (1:M) implementation in which

M patients from the biggest group are associated to an individual in other arm

according to similarities in their PSs (see Figure 2.3, for an example of 1:2 matching);

the value of M can be either fixed or not, but a reduction in bias is noticed when

using a variable number for it. As a consequence, an improvement in the one-to-

many approach is the full one: a treated subject can be matched to one or more

untreated patients; otherwise, each untreated patient is associated to one or more

treated ones [16].

Figure 2.3: Example of 1:2 matching, the number next to each individual is his PS.
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Table 2.1: Summary of the main methods and parameters involved in the propensity
score matching.

2.2.6 Inverse probability of treatment weighting (IPTW) es-

timation

In this method, each patient is assigned a weight (a general weight) such that for

each combination of baseline characteristics, which corresponds to a certain PS value,

the sums of contributions of all treated and control patients are equal, resulting in a

balanced dataset between treatment groups. In particular, a given propensity score

leads to a
1

PS
weight for treated patients and a

1

1− PS
weight for control ones. For

example, suppose to have 50 patients with a propensity score equal to 0.4, that are

divided as follows: 20 (40%) in the treatment group, while the remaining 30 (60%)

in the control one. The IPTW assigns a weight of 2.5
(

1

0.4

)
to the 20 treated

patients and a weight of 1.67
(

1

0.6

)
to the remaining subjects in the control arm.

Now, it is easy to see that the sum of weights within each group is 50 (20 × 2.5

for treated patients and 30× 1.67 for control ones) [14]. So a direct consequence of
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the IPTW implementation is the creation of a pseudo-population in which each

combination of covariates results almost balanced between treatment and control

groups.

IPTW aims at giving more importance (more “weight”) to those patients that have

unexpected PS values. Remembering that PS is the likelihood of receiving the

treatment, given the values of certain covariates; unusual values are:

• treated patients with low PS → given their covariates, they should be part of

the control arm;

• control patients with high PS → given their characteristics, they should have

received the treatment.

In practice, patients with unexpected PS values are counted more than once in

the pseudo-population as it is shown in Figure 2.4, in which it is easy to see how

the distribution of PS between the two arms changes when applying IPTW general

weights.

Figure 2.4: The two histograms show how a random distribution of PS can change
applying IPTW general weights.

In the case of very high or low PSs, generally when sample sizes are small, weights

may be disproportionally high or low (see Figure 2.5) causing an imprecise estimation

of the treatment effect: possible solutions can be restricting the analysis to those

patients that show homogeneous weights or using stabilized weights.

21



CHAPTER 2. STATISTICAL METHODS TO USE HISTORICAL
CONTROLS

Figure 2.5: Example of IPTW general weights (w), the number next to each
individual is his PS.

It is important to note that IPTW with general weights generates a pseudo popula-

tion whose size is always greater than the sample one; the use of stabilized weights

allow to have almost the same size for real and pseudo populations. Let us consider

a simple example with just one binary covariate - but it can be extended to con-

tinuous and multilevel variables [19]: assume we have a sample size of N patients

divided as follows,

Dummy variable Treated subjects Untreated subjects Propensity score
0 n01 n00 PS0

1 n11 n10 PS1

Table 2.2: Example with a dummy variable

then, the size of the pseudo population is

Nw =
N∑
i=1

wi = n01 ·
1

PS0

+ n00 ·
1

1− PS0

+ n11 ·
1

PS1

+ n10 ·
1

1− PS1

. (2.6)

22



CHAPTER 2. STATISTICAL METHODS TO USE HISTORICAL
CONTROLS

With the notations presented in Table 2.2, the two propensity scores can be esti-

mated using treated subjects’ frequencies in each category of the binary variable:

P̂S0 =
n01

n01 + n00

, P̂ S1 =
n11

n11 + n10

.

Substituting in (2.6), one gets:

Nw = n01 + n00 + n01 + n00 + n11 + n10 + n11 + n10 = 2N. (2.7)

Suppose, now, to use stabilized weights; they are defined as

wi =


1−p

1−PSi , if i is a control patient

p
PSi

, if i is a treated patient
, (2.8)

where p is the probability of treatment without any covariate. In this case, the

estimation of p is the following

p̂ =
n01 + n11

N
.

The size of the pseudo population - after substituting and simplifying- becomes

equal to the sample one

Nw = n01 + n11 + n00 + n10 = N.

However, once the weights are estimated, no matter what approach is adopted,

the whole dataset can be used in a weighted statistical analysis to determine the

treatment effect.

2.2.7 Stratification

Stratification is similar to matching but without any exclusions of patients. The total

dataset is divided into mutually exclusive groups (strata), based on the estimated

PS: subjects from both arms are stratified in subsets that are defined by specific
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thresholds in propensity score (see Figure 2.6 for an example). There are two possible

ways to obtain strata [17]:

- PS quantiles, the PS range (minimum to maximum, obtained from the PSs

in the dataset) is divided into quantiles and all the patients that have a PS

that falls within a certain quantile are grouped together;

- equal sized groups, each group has the same number of patients.

PS quantiles lead to groups that can be very different in size; while, with equal sized

groups, strata may include patients that are not very similar according to their

baseline characteristics, because they have very different values of PS.

An important thing to take into account is that strata may be really heterogeneous

in the number of treated and control patients; for example, if there is great unbal-

ance in observed baseline characteristics between the two arms, it is possible that

the stratum with the lowest values of PS includes only patients belonging to the

control group, or vice versa with high values of PS, and in these cases we cannot

conduct the analysis.

A question may arise regarding the number of strata to use for the analysis: five

strata are commonly used but a higher number of strata can improve the balance of

covariates between treatment groups [16]. In any case, the number of strata depends

on the size of the dataset so, as a consequence, small datasets should have fewer

groups than larger ones, otherwise the treatment evaluation will result in a poor

analysis.
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Figure 2.6: Example of three equal sized strata, the number next to each individual
is his PS.

Within each stratum, treated and control patients should share almost the same

characteristics because they have similar propensity scores. Estimations of the treat-

ment effect are obtained between treated and control arms then, they can be pooled

across groups, using meta-analytic approaches to get an overall common estimation.

Usually these estimations are weighted by the number of subjects present in each

stratum, so, if these groups have N individuals each, weights of
1

N
are used when

pooling the stratum-specific treatment estimations [16].

Furthermore, the strata obtained with this method can also be used in a stratified

analysis to get the treatment effect estimation.

2.2.8 Assessing the balance of covariates after PS analysis

As mentioned previously, the purpose of propensity score modeling is balancing the

patient characteristics between treatment and control groups; one possible way to

determine the effective balance of covariates, after PS analysis, is computing the

standardized differences for each observed characteristic [14], using the following
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formulas
|xT − xC |√
s2T + s2C

2

, (2.9)

for continuous variables, while for binary ones

| p̂T − p̂C |√
p̂T (1− p̂T ) + p̂C (1− p̂C)

2

. (2.10)

In the above formulas, xT , sT , xC and sC represent the sample mean and standard

deviation of a given covariate in the treatment and control groups, respectively;

while, p̂T and p̂C are the frequencies of a certain category for a given covariate in

the treatment and control arms, respectively. These definitions can be used for PS

matching and stratification, but for the IPTW estimation they are slightly different

because weights have to be taken into account. First of all, the following quantities

must be defined using the definition of wi in Equation (2.8) (in section 2.2.6) :

xw =

N∑
i=1

wi xi

N∑
i=1

wi

,

the weighted sample mean, where xi is the value of a given covariate for a certain

patient i;

(sw)2 =

N∑
i=1

wi (xi − xw)2∑N
i=1 wi − 1

,

the weighted sample variance with frequency weights (weights are random variables);

p̂w =

N∑
i=1

wi 1xi=certain category

N∑
i=1

wi

,
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the weighted frequency of a certain category for a given variable.

Then (2.9) and (2.10) become, respectively:

|xwT − xwC |√
(swT )2 + (swC)2

2

, (2.11)

and
| p̂wT − p̂wC |√

p̂wT (1− p̂wT ) + p̂wC (1− p̂wC)

2

, (2.12)

where the subscript T or C specifies that these statistics have to be calculated within

the treatment and control arms, respectively.

The computation of such differences can be useful for descriptive purpose: they

are not influenced by sample sizes and a difference is considered negligible if it is

under a reasonable threshold, like 0.1 [16]. However, a more detailed analysis can

be done; since matched patients share (more or less) the same propensity score - so

they have almost the same values for the observed covariates- independently if they

receive the experimental or the control treatment, not only the means or frequencies

of the covariates should be the same between treatment and control arms but also

their distributions. For this purpose, graphical methods like side-by-side boxplots

and density plots can be used in the propensity score matched sample.

In the case of systematic differences between treated and control groups, the ini-

tial propensity score model can be improved, for example, including new variables,

adding nonlinear terms or interactions between covariates, etc. In any case, the se-

lection of variables to include in the logistic regression should be led by the objective

of adding as many variables as required to have an effective model to assess balance

between treatment groups.

In addition to this, sensitivity analyses may be conducted with subsets of covariates

to assess the robustness of the results.
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2.2.9 Covariate adjustment

With covariate adjustment, relevant baseline covariates are included in the model

for the treatment effect estimation, in order to minimize their confounding effect.

In particular, this method aims at balancing for baseline characteristics during the

estimation of the treatment effect; while, PS methods try to reduce the effects of

confounding on the dataset before the treatment effect estimation.

Generally, the common rule is having at least ten observations per covariate in-

cluded in the model. When simple sizes are small, for example, in the case of rare

diseases, if the number of available covariates is relatively high compared to the

number of patients, covariate adjustment can result in an overfitted model.

A possible solution to this issue is using PS instead of baseline covariates in the

model: by definition, PS is the outcome of a logistic regression on observed baseline

covariates, so PS summarises all patients’ characteristics into a single variable avoid-

ing overfitting [17]. As a result, the treatment effect is estimated according to each

patient’s likelihood of receiving the treatment, given the values of their observed

characteristics.
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Application

In this chapter, an example of application of the methods discussed in Chapter 2

is presented: after a description of the data and the treatment analysis used, the

results obtained with the different methods are summarised in the different sections.

For confidentiality reasons, we present here a fictive, but realistic, case-study

inspired by a real case. The data are simulated, and the disease and the treatments

are not explicitly named. This application was performed with SAS 9.04 and R

3.5.1.

3.1 Data description

For the application, a dataset with 400 patients was created: 100 patients in the

treatment arm and 300 patients in the control arm. The dataset is made up of 10

variables with the relative baseline values:

• count, a patient id;

• trt, equal to 1 if the patient is in the treatment arm, 0 otherwise;

• sex, 0 for females and 1 for males;

• age (continuous);

• V1, V2 and V5 are continuous baseline variables;
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• V3 and V4 are discrete variables; V3 and V4 have values in {1, 2, 3, 4, 5};

• Event time is the dependent variable and the primary endpoint. It is a time

to event endpoint, expressed in days: i.e., the number of days before recovery

or censoring occurs.

In Tables 3.1 and 3.2, descriptive statistics for those variables are presented, by

treatment group

Table 3.1: Descriptive statistics for the continuous variables in the dataset, by
treatment and control group.
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Table 3.2: Descriptive statistics for the categorical variables in the dataset, by
treatment and control group.

The primary endpoint, the variable Event time, has,
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• for the control group, median equal to 128.5 days (min=1 and max=684);

• for the treatment group, median equal to 102.5 days (min=1 and max=652).

If we look at variable V4, we see that the statistics are quite different between the

two arms, meaning that this variable can be a true confounder if it also influences

the treatment outcome.

3.2 Survival analysis

In order to assess the treatment effect, a survival analysis has been applied on a

time-to-event dataset. In describing this dataset, it is worthwhile to give a descrip-

tion of the survival models used in this application.

Survival analysis can be used to assess the efficacy of a treatment compared to

another. Suppose we have treatment and control arms, like in our case; both groups

are followed-up to check whether patients have recovered/relapsed from the disease

(for simplicity, we consider recovery as the event under examination). We define a

survival time T ∗ij as the time from the enrollment in the trial until recovery occurs

for patient i, with T ∗ij
i.i.d∼ fj(t) for each patient and j = 1, 2, the treatment and

the control, respectively, to specify that the two treatments are supposed to lead to

different probability density functions. For each treatment j, the survival analysis

aims at estimating

Sj(t) = P (T ∗j > t) = 1− Fj(t),

the survival function of T ∗j ∼ fj(t), the probability that a patient recovers after

time t with treatment j. The hazard function, the probability that an individual

recovers at time t, conditional on being observed without a recovery up to that time,

for each treatment, is

λj(t) = lim
h→0+

P (t ≤ T ∗j < t+ h |T ∗j ≥ t)

h
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applying the definition of conditional probability

λj(t) = lim
h→0+

P (t ≤ T ∗j < t+ h)

h · P(T ∗j ≥ t)
= lim

h→0+

Fj (t+ h)− Fj(t)
h · Sj(t)

from the definition of difference quotient, we get the derivative of Fj(t); so the result

is

λj(t) =
fj(t)

Sj(t)
,

where fj(t) is the derivative of Fj(t). As a consequence, the cumulative hazard

function is defined as follows

Λj(t) =

∫ t

0

λj(s) ds.

3.2.1 Kaplan-Maier curve

If we consider a very short period of time h, λj(t) can be thought of being constant

over h, then it is possible to approximate:

Λj(t+ h)− Λj(t) ≈ λj(t) · h = P (t ≤ T ∗j < t+ h |T ∗j ≥ t); (3.1)

In an empirical way, (3.1) can be approximated to

Rj(t+ h) − Rj(t)

Nj(t)
,

where Rj(t + h) and Rj(t) are the number of recoveries measured, respectively, at

the instants t + h and t, while Nj(t) is the number of people that have not had a

recovery yet just before time t.

Under this consideration, if the interval [t; t+h) is small such that there is only one

recovery, it is possible to give the Nelson-Aalen estimator for the cumulative hazard

function:

Λ̂j(t) =
∑
k : tk≤t

Rj(tk)

Nj(tk)
, (3.2)
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where t1, t2, ..., tn are the times at which recoveries are shown [20].

In order to get the estimation of the survival function Sj(t) for treatment j, a

"plug-in" approach can be used [21]. Suppose that the interval [0; t] is divided in

sub intervals, identified by t1, t2, ..., tn that are the time at which recoveries occur:

Sj(t) = P (T ∗j > t |T ∗j > t−1) ·P (T ∗j > t−1) = (1−P (T ∗j ≤ t |T ∗j > t−1)) ·P (T ∗j > t−1) =

= qj(t) · Sj(t− 1). (3.3)

By recursion, (3.3) can be written as:

Sj(t) = qj(t) · qj(t− 1)...qj(0), (3.4)

where qj(0) = 1−P (T ∗j = 0 |T ∗j > −1) = 1−P (T ∗j = 0). In particular, qj(t), with

t ∈ {0, t1, ...} can be rewritten using a generic term in the sum (3.2):

qj(tk) = 1− P (T ∗j ≤ tk |T ∗j > tk−1) = 1− Rj(tk)

Nj(tk)
. (3.5)

Finally, plugging into (3.4) the result in (3.5), the Kaplan-Meier estimation of

the survival function for treatment j is obatined

Ŝj(t) =
∏

k : tk≤t

(
1− Rj(tk)

Nj(tk)

)
. (3.6)

In order to compute the confidence intervals for the estimated Ŝj(t), it is neces-

sary to apply a transformation to Ŝ(t), otherwise values bigger than 1 or lower than

0 may be obtained for lower and upper bounds.

We have decided to use a loglog transformation L(S(t)) = ln(− ln(S(t))) [23],

so that the α-confidence interval for L is [L̂−A; L̂+A]. Starting from this interval,
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we can get the one for S(t) [23]:

ln(− ln(Ŝ(t)))− A ≤ ln(− ln(Ŝ(t))) + A

eln(− ln(Ŝ(t)))−A ≤ eln(− ln(Ŝ(t)))+A

e−A · (− ln(Ŝ(t))) ≤ eA · (− ln(Ŝ(t)))

eA · ln(Ŝ(t)) ≤ e−A · ln(Ŝ(t))

ln(Ŝ(t))e
A ≤ ln(Ŝ(t))e

−A

(Ŝ(t))e
A ≤ (Ŝ(t))e

−A

Furthermore, A = z1−α
2
·S(L(t))√

n
, where z1−α

2
is the 1− α

2
quantile of a standard nor-

mal distribution, S(L(t)) is the sample standard deviation of L(t) and n the sample

size. Knowing from the Greenwood’s formula [23] the survival sample variance

S2(Sj(t)) = [Ŝ(t)j]
2 ·
∑
k : tk≤t

Rj(tk)

(Nj(tk)−Rj(tk))Nj(tk)
,

applying the delta method we get

S2(L(t)) = S2(ln(− ln(S(t)))) =
1

ln2(Ŝ(t))
·
∑
k : tk≤t

Rj(tk)

(Nj(tk)−Rj(tk))Nj(tk)

In the end the (1− α)-confidence interval of S(t) is

[(Ŝ(t))
exp
(
z1−α2

·S(L(t))√
n

)
; (Ŝ(t))

exp
(
−z1−α2 ·

S(L(t))√
n

)
]

An important thing to stress is that some patients may be lost to follow-up during

the study period and they have not experienced a recovery or they recover after the

end of the study period (right censoring), so we need to define a new variable Ci

that is the censoring time for patient i. So, instead of observing just the survival

times, we have the pair (Tij, δi) for each subject i with treatment j:


Tij = min (T ∗ij , Ci)

δi = 1{T ∗ij≤Ci}
,
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where δi describes patient i’s status, 0 if he is censored or 1 if he recovers before

censoring. The results obtained before are the same, with the substitution of T ∗ij

with Tij. The censoring only affects Nj(tk) in (3.6) because if there are censoring

times between tk−1 and tk, they reduce the size of the population that has not had

a recovery just before time tk.

In the case of a weighted analysis, there is also a weighted Kaplan-Meier es-

timator [22], that is simply the estimator (3.6), adjusted with the patients’ weights

wij, related to treatment j . Remembering that for each patient we have (Tij, δi),

(3.6) becomes:

Ŝwj (t) =
∏

k : tk≤t

(
1−

Rw
j (tk)

Nw
j (tk)

)
,

where Rw
j (tk) =

∑
i :Tij=tk

wij δi and Nw
j (tk) =

∑
i :Tij≥tk

wij .

The survival sample variance in this case is S2(Swj (t)) = [Ŝwj (t)]2·
∑
k : tk≤t

1− skj
Mkj · skj

,

where Mkj =

 ∑
i:Tij≥tk

wij


2

∑
i:Tij≥tk

w2
ij

and skj = 1− Rwj (tk)

Nw
j (tk)

.

In an analogous way to what has been done for the unweighted survival func-

tion, it is possible to obtain the (1−α)-confidence interval of the weighted S(t).

3.2.2 Log-rank test

To check whether the covariates in the model are statistically significant, a non-

parametric Log-rank test could be performed [29]. Before defining the log-rank

statistics, we must define the following quantities; let k = 1, 2, .. be the distinct

times at which events occur in both arms, then

• NkT and NkC are the number of patients that have not had an event yet or

been censored at the beginning of period k, respectively, in the treatment and
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control groups (Nk = NkT + NkC);

• OkT and OkC are the number of observed recoveries in the treatment and

control arms, respectively, at time k (Ok = OkT + OkC).

Under the null hypothesis that the two arms have the same hazard functions, Okj is

hypergeometrically distributed with parameters Nk, Nkj and Ok, where j = T,C.

The expected value and variance of this distribution are

Ekj =
Ok

Nk

Nkj and Vk =

Ok
Nkj

Nk

(
1− Nkj

Nk

)
(Nk −Ok)

Nk − 1
.

Choosing j = T (analogously, for j = C), we define the Log-rank statistic:

χ2
stat =

(∑
k

(OkT − EkT )

)2

∑
k

Vk
;

then, its p-value is calculated with respect to a chi-square distribution with one

degree of freedom.

3.2.3 Cox Model

We consider, now, a semiparametric model, the Cox model that allows to evaluate

the effect of covariates on survival times. The Cox model relies on the assumption

of proportional hazards:

λ(t |X) = λ0(t) · g(X),

where X is a vector of observed covariates, g(X) is the parametric component of

the hazard and λ0(t) is the baseline hazard that is never estimated but it has to

be positive [24].

The hazard function in a Cox model is expressed in the following way

λ(t |X) = λ0(t) · eβ
′X = λ0(t) · eβ1x1+β2x2+...+βnxn ,
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where X is n-dimensional. It is easy to see that λ0(t) is the hazard function when X

is the null vector. This way of expressing the hazard function makes easy to calculate

the so-called hazard ratios for each covariate in the model. Suppose to have two

patients with the same characteristics but one of the two is in the treatment group

(x1 = 1) while the other in the control arm (x1 = 0); the hazard ratio of x1 is

HRx1 =
λ0(t) · eβ11+β2x2+...+βnxn
λ0(t) · eβ10+β2x2+...+βnxn

= eβ1 (3.7)

The same concept may be extended to a generic variable xi incremented of one.

From (3.7), we get that the coefficients βxi = lnHRxi . For each xi, it is possible to

have the following results:

• HRxi = 1, an increment in xi does not affect the hazard function;

• HRxi > 1, an increment in xi increases the hazard function, i.e. increases the

risk/chance to have an event;

• HRxi < 1, an increment in xi decreases the hazard function, i.e. decreases

the risk/chance to have an event.

Now, we demonstrate how to estimate β parameters [25]. The probability that a

patient j recovers at time Tj, given a vector of observed covariates Xj is

Lj(β) =
λ(Tj |Xj)∑

k:Tk≥Tj

λ(Tj |Xk)
=

λ0(Tj) · eβ
′Xi∑

k:Tk≥Tj

λ0(Tj) · eβ
′Xk

=
eβ
′Xj∑

k:Tk≥Tj

eβ
′Xk

. (3.8)

This is a partial likelihood and β can be estimated without modeling the change

of the hazard over time. Fixing the instant Tj and considering the subjects as

statistically independent, the joint probability (another partial likelihood) of all the

realised recoveries is

L(β) =
∏
j:δj=1

Lj(β), (3.9)

where δj = 1 if the patient j recovers at time Tj.
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In order to get an estimation of β parameters is sufficient to maximise the natural

logarithm of (3.9):

ln(L(β)) =
∑
j:δi=1

β′Xj − ln
∑

k:Tk≥Tj

eβ
′Xk

 . (3.10)

To get the (1− α)-confidence interval of HRxi

[eL̂xi ; eÛxi ]

is necessary to compute

L̂xi = β̂xi − z1−α2 ·
S(β̂xi)√

n
and Ûxi = β̂xi + z1−α

2
· S(β̂xi)√

n
,

where n is the sample size and S(β̂xi) is the sample standard deviation of βxi that

can be obtained when maximising (3.10) to get the estimation of the coefficients.

In order to estimate the parameters and their relative sample variance in the

case of a weighted Cox model, it is sufficient to use

Lwj (β) =

 eβ
′Xj∑

k:Tk≥Tj

wk · eβ
′Xk


wj

instead of (3.8) and repeat the same steps [26].

The assumption that all the patients share the same baseline hazard λ0(t) may

be too strong; this consideration leads to the stratified Cox model. Given the

study population divided into strata, each stratum shares the same baseline hazard,

so that the hazard function becomes

λh(t |X) = λ0h(t) · eβ′X = λ0h(t) · eβ1x1+β2x2+...+βnxn
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for each stratum h. The estimation of the coefficients in the model is more complex

because the presence of strata has to be taken into account. The partial likelihoods

(3.8) and (3.9) change respectively into:

Ljh(β) =
eβ
′Xjh∑

k:Tk≥Tj

eβ
′Xkh

,

where we consider j-th patient in the h stratum, and

L(β) =
∏
h

∏
j:δj=1

Ljh(β).

After that, the computations are the same as before.

To check whether the covariates in the model are statistically significant, a Wald

Chi-Square statistic can be computed for each variable i:

χ2
i =

(
β̂i
SEi

)2

,

where SEi is the standard error of variable i; then, its p-value is calculated with

respect to a chi-square distribution with one degree of freedom [27].

3.3 Simulated dataset

The survival and censoring times (right censoring) have been simulated from an

exponential distribution (parametric) [28], where its parameter and survival function

are, respectively

λ(trt, V 4) = λ =
1

720
· e0.621·trt+0.468·V 4 and S(t, λ) = e−λt.

Given S(t, λ) = u where u ∼ Uniform(0, 1), survival times are

T (u, λ) = − lnu

λ
.
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As a consequence, V4 is a true confounder because it affects both treatment

assignment and treatment outcome.

There are 24 censored patients (9 in the treatment group and 15 in the control arm)

out of 400; the times are expressed in days and the study period lasts 2 years.

3.4 Naïve method and covariate adjustment

The whole dataset has been used to estimate two Kaplan-Meier curves, one for the

treatment and one for the control (Figure 3.1).

Figure 3.1: Kaplan - Meier curves for control and treatment groups on the whole
dataset.

A Cox model with only the treatment as a variable permits to estimate the hazard

ratio of the treatment

HRtrt =
λ(t | trt = "Treatment")

λ(t | trt = "Control")
= 1.107, p-value = 0.3985
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with [0.874; 1.403] as the 95%-confidence interval of the HRtrt.

In order to reduce the confounding effect of baseline covariates, a simple approach

is covariate adjustment: in the Cox model, we add also the baseline variables to-

gether with trt (in our case, the only confounder is V4 but we pretend not to know

it). The hazard ratio of the treatment obtained with this method is

HRtrt =
λ(t | trt = "Treatment")

λ(t | trt = "Control")
= 1.857, p-value < 0.0001

with [1.363; 2.530] as the 95%-confidence interval of the HRtrt.

3.5 Propensity score based methods

3.5.1 Propensity score estimation

In order to estimate a propensity score for each patient, a logistic regression has

been fitted using all the baseline variables in the dataset (sex, age, V1, V2, V3, V4,

V5 ). Once the PS has been calculated for each patient, an important thing to do is

comparing its distribution between the two arms. If there is a good overlap between

the two distributions, this means that there is not a great unbalance among the

variables used to estimate the PS (values of PSs close to 0.5); otherwise, at least one

of the covariates included in the PS estimation has values very different between the

two treatment groups (extreme values of PSs).

We expect to be in the latter case because variable V4 has very different values

between the two arms; in fact, looking at Figure 3.2, we see that a high percentage

of controlled patients has low PSs, while most of the treated subjects have high PSs.

In the following subsections, we will show the results obtained by applying the

different PS based methods. Since these methods modify the dataset in several ways

(e.g, reducing its size, adding weights and stratifying it), for every method, we will

estimate two new Kaplan-Meier curves, one for each treatment. After that, we will
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use a Cox model with only treatment as a covariate to get the treatment hazard

ratio (its confidence interval and p-value) and, then, we will adopt a "doubly ro-

bust" approach [17], adding also the variables included in the estimation of the PS

to the Cox model. The "doubly robust" (DR) approach aims at further removing

the confounding effect of covariates.

Figure 3.2: Distribution of the propensity score within each treatment arm.

3.5.2 Matching

Greedy 1:1

Fisrt of all, the PSs for all the patients in the dataset have to be computed. Starting

from the smallest group (the treatment one), a treated patient is picked at random

and he is matched to a subject in the control arm that has the PS closer to his

(if multiple matches are available, one of them is randomly chosen). This step is

repeated until all the patients in the treated arm are matched; since it is a 1:1

matching, each treated patient is matched to exactly one subject in the control
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group. No limit was fixed on how big the difference in PS has to be between patients

belonging to the same pair (very dissimilar patients can be matched, see Figure 3.3)

and the number of pairs is equal to the size of the treatment arm, i.e, 100 pairs,

for a total of 200 patients. There is no replacement, i.e. no reintroduction of the

"already-matched" patients.

Figure 3.3: Distribution of the propensity score within each treatment arm after
the greedy 1:1 matching.
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Figure 3.4 shows the two Kaplan Meier curves.

Figure 3.4: Kaplan - Meier curves for control and treatment groups on the greedy
1:1 matched dataset.

The results for the hazard ratios of the treatment with and without "doubly robust"

approach are:

HRtrt =
λ(t | trt = "Treatment")

λ(t | trt = "Control")
= 0.952, p-value = 0.7385

with [0.716; 1.268] as the 95%-confidence interval of the HRtrt;

HRDR
trt =

λ(t | trt = "Treatment")

λ(t | trt = "Control")
= 1.819, p-value = 0.0009

with [1.279; 2.589] as the 95%-confidence interval of the HRDR
trt .

Greedy 1:1 with caliper

The method applied is the same as the previous one but matching is performed on

a subset of the whole dataset. Because of a caliper set at 0.1, only the patients that

share a distance smaller than or equal to 0.1 can be potential pairs. From Figure
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3.5, we can see that there is a great reduction in the number of possible pairs: the

columns on the left hand side of the red bar represent the percentage of the possible

matches after the application of the caliper.

Figure 3.5: Distribution of the difference of PS among all the possible pairs in the
dataset; the red bar indicates the value at which the caliper has been set.
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After the application of the greedy 1:1 matching with caliper, we obtain 54 pairs

for a total of 108 patients (the PS distribution in the matched dataset is in Figure

3.6).

Figure 3.6: Distribution of the propensity score within each treatment arm after
the greedy 1:1 matching with caliper.
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Figure 3.7 shows the two Kaplan Meier curves.

Figure 3.7: Kaplan - Meier curves for control and treatment groups on the greedy
1:1 with caliper matched dataset.

The results for the hazard ratios of the treatment with and without "doubly robust"

approach are:

HRtrt =
λ(t | trt = "Treatment")

λ(t | trt = "Control")
= 1.629, p-value = 0.0148

with [1.100; 2.412] as the 95%-confidence interval of the HRtrt;

HRDR
trt =

λ(t | trt = "Treatment")

λ(t | trt = "Control")
= 2.152, p-value = 0.0004

with [1.410; 3.284] as the 95%-confidence interval of the HRDR
trt .

Optimal 1:1

All the pairs are determined to minimize the sum of the distances between pairs.

For this purpose, the optimisation problem in Chapter 2 has to be solved: in R, the

"optmatch" package uses the RELAX-IV minimum cost flow solver to solve it.
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The number of pairs is 100 for a total of 200 patients, there is no reintroduction of

the "already-matched" individuals (the PS distribution in the matched dataset is in

Figure 3.8).

Figure 3.8: Distribution of the propensity score within each treatment arm after
the optimal 1:1 matching.

49



CHAPTER 3. APPLICATION

Figure 3.9 shows the two Kaplan Meier curves.

Figure 3.9: Kaplan - Meier curves for control and treatment groups on the optimal
1:1 matched dataset.

The results for the hazard ratios of the treatment with and without "doubly robust"

approach are:

HRtrt =
λ(t | trt = "Treatment")

λ(t | trt = "Control")
= 1.217, p-value = 0.1826

with [0.912; 1.624] as the 95%-confidence interval of the HRtrt;

HRDR
trt =

λ(t | trt = "Treatment")

λ(t | trt = "Control")
= 1.934, p-value = 0.0001

with [1.379; 2.713] as the 95%-confidence interval of the HRDR
trt .

Optimal 1:1/2

The method applied is the same as before but this time each patient in the treatment

arm can be matched to 1 or 2 individuals - according to the result of the optimisation

problem - in the control group. In this way, a higher number of controlled patients is
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included in the treatment effect analysis (the PS distribution in the matched dataset

is in Figure 3.10).

Figure 3.10: Distribution of the propensity score within each treatment arm after
the optimal 1:1/2 matching.
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Figure 3.11 shows the two Kaplan Meier curves.

Figure 3.11: Kaplan - Meier curves for control and treatment groups on the optimal
1:2 matched dataset.

The results for the hazard ratios of the treatment with and without "doubly robust"

approach are:

HRtrt =
λ(t | trt = "Treatment")

λ(t | trt = "Control")
= 1.274, p-value = 0.0880

with [0.965; 1.684] as the 95%-confidence interval of the HRtrt;

HRDR
trt =

λ(t | trt = "Treatment")

λ(t | trt = "Control")
= 2.001, p-value < 0.0001

with [1.432; 2.796] as the 95%-confidence interval of the HRDR
trt .

Description of the PS differences for all approaches

Table 3.3 shows the statistics of the difference in PS between among the different

matched sets in the different matching approaches.
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Table 3.3: Statistics of the difference in PS among matched sets in the different
matching approaches.

3.5.3 Inverse probability of treatment weighting (IPTW)

After the computation of the PS for all the patients, we assign a (general or sta-

bilised) weight to each individual, according to the arm he belongs to. These weights

represent how many times an observation in the true dataset counts in the pseudo-

population: the sum of all the weights gives the size of the pseudo-population.

After that, for each type of weights used, we obtain the weighted Kaplan-Meier

curves for treatment and control arms and the hazard ratio of the treatment by a

weighted Cox model, i.e. the same methods for the treatment effect estimation we

have used so far, applied on the pseudo-population.

General weights

We have obtained a pseudo-population of about 849 individuals (462 in the treat-

ment arm and 387 in the control group). The distribution of the PS between the

two groups changes as showed in Figure 3.12.
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Figure 3.12: Change in the distribution of the PS between the two arms with IPTW
general weights.
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Figure 3.13 shows the two weighted Kaplan Meier curves.

Figure 3.13: Weighted Kaplan - Meier curves for control and treatment groups on
the dataset with general IPTW weights.

The results for the hazard ratios of the treatment with and without "doubly robust"

approach are:

HRtrt =
λ(t | trt = "Treatment")

λ(t | trt = "Control")
= 1.996, p-value < 0.0001

with [1.733; 2.300] as the 95%-confidence interval of the HRtrt;

HRDR
trt =

λ(t | trt = "Treatment")

λ(t | trt = "Control")
= 3.080, p-value < 0.0001

with [2.607; 3.638] as the 95%-confidence interval of the HRDR
trt .

Stabilised weights

We have obtained a pseudo-population of about 406 individuals (116 in the treat-

ment arm and 290 in the control group). The distribution of the PS between the

two groups changes as showed in Figure 3.14.
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Figure 3.14: Change in the distribution of the PS between the two arms with IPTW
stabilised weights.

Figure 3.15 shows the two weighted Kaplan Meier curves.
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Figure 3.15: Weighted Kaplan - Meier curves for control and treatment groups on
the dataset with stabilised IPTW weights.

The results for the hazard ratios of the treatment with and without "doubly robust"

approach are:

HRtrt =
λ(t | trt = "Treatment")

λ(t | trt = "Control")
= 2.094, p-value < 0.0001

with [1.674; 2.620] as the 95%-confidence interval of the HRtrt;

HRDR
trt =

λ(t | trt = "Treatment")

λ(t | trt = "Control")
= 2.630, p-value < 0.0001

with [2.060; 3.358] as the 95%-confidence interval of the HRDR
trt .
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3.5.4 Stratification

After the PS has been computed for each patient, the total dataset is ordered by

PS and divided into mutually exclusive groups (strata) based on the PS. Then, a

stratified analysis is performed to assess the treatment effect: the two Kaplan-Meier

curves, one for each stratum and for both treatments, and a stratified Cox model.

The whole dataset was divided into three strata. Then, we chose between two

types of strata: PS quantiles or equal sized groups. Since the PS distribution is un-

balanced towards extreme values, strata of both types are inevitably heterogeneous

in the number of treated and control patients (see Table 3.4).

Table 3.4: Distribution of the patients belonging to the treatment and the control
arms, according to the different types of stratification.

We decided to use PS quantiles because the three strata seem to be less heteroge-

neous in terms of treated and controlled patients. Figure 3.16 shows the distribution

of the PS within each tertile with a stratification by PS quantiles.
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Figure 3.16: Distribution of the PS within each of the three PS quantiles.

For each tertile the two Kaplan Meier curves have been calculated; in particular,

in the third tertile, there are only 3 controlled patients, so the estimation of the

curve is not accurate (see Figure 3.17)
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Figure 3.17: Kaplan - Meier curves for control and treatment groups on each of
the three PS quantiles.

The results for the hazard ratios of the treatment with and without "doubly robust"
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approach are:

HRtrt =
λ(t | trt = "Treatment")

λ(t | trt = "Control")
= 1.798, p-value = 0.0003

with [1.312; 2.466] as the 95%-confidence interval of the HRtrt;

HRDR
trt =

λ(t | trt = "Treatment")

λ(t | trt = "Control")
= 2.102, p-value = 0.0007

with [1.501; 2.942] as the 95%-confidence interval of the HRDR
trt .

3.5.5 Matching and pair-stratified Cox model

After applying a matching technique to the dataset, a "pair-stratified" Cox model

can be applied. In this case, since each pair (or small matched set) is a stratum,

there is a risk to overfit the model, because the Cox model implies that each stratum

has its own baseline hazard function. The use of strata can relax the constraint that

there is the same baseline hazard function for all the patients; but, if no caliper

is applied in the matching method, this can lead to patients with really different

baseline characteristics in the same pair (stratum) that share the same baseline

hazard function. Furthermore, since strata are very small, there may be the case

where all the patients within a stratum are censored, and so this stratum gives no

contribution to the estimation of the parameters of the Cox model.

Nevertheless, we have applied a "pair-stratified" analysis after each of the matching

technique used in the previous subsection and we have obtained the following results:

• greedy 1:1

HRtrt =
λ(t | trt = "Treatment")

λ(t | trt = "Control")
= 0.902, p-value = 0.6122

with [0.606; 1.344] as the 95%-confidence interval of the HRtrt;

HRDR
trt =

λ(t | trt = "Treatment")

λ(t | trt = "Control")
= 1.917, p-value = 0.0272
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with [1.076; 3.415] as the 95%-confidence interval of the HRDR
trt ;

• greedy 1:1 with caliper

HRtrt =
λ(t | trt = "Treatment")

λ(t | trt = "Control")
= 1.650, p-value = 0.0772

with [0.947; 2.875] as the 95%-confidence interval of the HRtrt;

HRDR
trt =

λ(t | trt = "Treatment")

λ(t | trt = "Control")
= 1.803, p-value = 0.0525

with [0.994; 3.272] as the 95%-confidence interval of the HRDR
trt ;

• optimal 1:1

HRtrt =
λ(t | trt = "Treatment")

λ(t | trt = "Control")
= 1.487, p-value = 0.0553

with [0.991; 2.232] as the 95%-confidence interval of the HRtrt;

HRDR
trt =

λ(t | trt = "Treatment")

λ(t | trt = "Control")
= 2.547, p-value = 0.0032

with [1.369; 4.738] as the 95%-confidence interval of the HRDR
trt ;

• optimal 1:1/2

HRtrt =
λ(t | trt = "Treatment")

λ(t | trt = "Control")
= 1.267, p-value = 0.2273

with [0.863; 1.862] as the 95%-confidence interval of the HRtrt;

HRDR
trt =

λ(t | trt = "Treatment")

λ(t | trt = "Control")
= 1.904, p-value = 0.0198

with [1.108; 3.272] as the 95%-confidence interval of the HRDR
trt .
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Discussion and conclusion

This report has focused on the importance of using particular statistical methods,

PS based methods and covariate adjustmen, when dealing with non-randomised tri-

als, for example, in the case of rare diseases. When historical controls are used, in

order not to have a treatment effect estimation biased by the possible confounding

effect of baseline covariates, these methods have to be implemented.

The results obtained in the previous chapter are summarised in Figures 3.18 and

3.19.

Figure 3.18: Forest plot that summarises the estimations of the hazard ratio of the
treatment, its confidence interval and its p-value obtained by the different statistical
methods considered in this report.

63



CHAPTER 3. APPLICATION

Figure 3.19: Forest plot that summarises the estimations of the hazard ratio of the
treatment, its confidence interval and its p-value, obtained by the different statistical
methods considered in this report with a doubly robust approach.

Looking at Figure 3.18, we see that covariate adjustment performs really well but

this can be due to the parametric model used to simulate the confounding effect of

V4.

Regarding the different matching techniques without caliper, there is not a great

improvement with respect to the naïve method, meaning that confounding is still

present. Our results confirm the importance of a caliper when a matching approach

is applied, in order to get a treatment effect estimation that is closer to the truth.

In the case of the greedy 1:1 matching with caliper, the confidence interval is wider

than in the other matching techniques because the size of the matched dataset is

reduced by the use of the caliper.

Good results are obtained also with IPTW and stratification. Both types of

IPTW weights performed well but the general ones allowed to obtain a smaller

confidence interval because of an inflated pseudo-population. As a consequence,

stabilised weights are preferred because the width of the confidence interval reflects

the size of the actual population.
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Stratification performed well even though tertiles were heterogeneous. An in-

crease in the number of strata may have given better results, but the choice of

tertiles reflected the distribution of PS among patients (see Figure 3.2).

As expected, the "doubly robust" approach further reduced the confounding ef-

fect (see Figure 3.19) so that also the matching techniques without a caliper gave

good results; but there is a worsening in the results obtained with IPTW because

the weights modify the distribution of the PS, and so the one of all the baseline

covariates that are included in the Cox model.

In conclusion, in order to understand which method is the best one, simulations

on other scenarios should be done and, furthermore, an application on real data

would allow to understand the real performance of these methods in reducing the

effect of observed confounders. In any case, when registry data have to be used as

control arm, we should not focus on only one method to reduce confounding but

other methods should be applied as sensitivity analyses.
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Missing data

There are three categories of missing data:

– missing completely at random (MCAR) → missing data can be seen as

a random sample of the total dataset, that is to say, they are not specific of

a certain category of patients. In this case, missing data do not add bias but

they only reduce the power of the study;

– missing at random (MAR)→ missing data depend on known variables, so

if these variables are considered in the analysis, the presence of missing data

will not bias the analysis. As an example, the availability of the results of

certain tests is related to what is covered by patients’ health insurance, that

is a known characteristic for each subject;

– missing not at random (MNAR) → missing data depend on unobserved

covariates and they can introduce bias in the analysis. For example, suppose

that certain patients affected by type 2 diabetes are hospitalized because of a

high value of glycated hemoglobin, then they could not return for a scheduled

follow-up visit at which glycated hemoglobin has to be measured. These prob-

able missing values of glycated hemoglobin would be different from the other

observed values because of the reason they are missing (hospitalization).

There are several ways to handle missingness but these methods depend on the kind

of missing data we have to deal with, and it is not always easy to understand if they
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belong to MCAR, MAR or MNAR.

The simplest strategy is using complete-case analysis: only the patients with com-

plete data are used in the analysis and patients with missing records are discarded.

This approach is sufficient to get consistent estimates of regression coefficients and

valid inferences when missing data are MCAR or in the case when the missing vari-

ables do not depend on the response variable. The main disadvantages refer to the

loss of valuable information when discarding patients with missing records and the

decrease in efficiency when missingness affects several variables.

A different method is filling values with imputed values (imputation) and then

analyse the complete dataset with traditional statistical methods. The most used

approaches are unconditional mean imputation and conditional-mean impu-

tation. In the first case, the missing values of a certain variable are replaced by

the arithmetic mean of its observed records. As a result, the mean of the variable

does not change, but there is a decrease in its variance and its covariance with other

variables. On the other hand, this approach can bias regression coefficients and it

can lead to invalid inferences.

The second approach aims at substituting the blank spaces left by missing data

with predicted values obtained from a regression model. Each variable with missing

records is regressed on the other covariates, using the complete available data. After

that, the predicted values are used to complete the dataset before the analysis. In

any case, even this strategy has negative aspects: imputed values are less variable

than the real data because of the lack of the residual variation and the uncertainty

of the estimates of the regression coefficients is not taken into account.

When we have to deal with MAR missing data, a suggested impute method is the

so-called "multiple imputation". In order to take into account the uncertainty

related to the missingness of certain values, this approach produces several complete

datasets. In each dataset, the missing values are replaced by different imputed
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values; after that, for each dataset, the parameters of interest and the standard

errors are estimated. Finally, a common estimation of the parameters is got by

averaging the single estimations mentioned before; standard errors are combined

too, considering the variation among the estimates in the imputed datasets.
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Code

B.1 R code

#############################################################

# BASELINE COVARIATES AND TIME-TO-EVENT DATASET SIMULATION #

#############################################################

##control=300 and treatment=100#

# CLEAN WORKING ENVIRONMENT ----------------------------------------------

rm(list=setdiff(ls(), c()))

# WORKING DIRECTORY -------------------------------------------------------

wd <- "C:/Users/635185/Desktop/Poli/Tesi␣magistrale"

setwd(wd)
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# FIX THE SEED (once and for all)

-------------------------------------------------------

set.seed(1234)

library(survival)

### GENERATION OF THE COVARIATES (including the treatment)

# total nb of patients

total=400

# init dataset

dataset=array(dim=c(total, 11))

colnames(dataset) = c("count", "trt", "sex", "age","V1","V2","V3","V4","V5"

, "Event_time", "Censor")

### GENERATION OF THE COVARIATES

for(i in 1:total){

dataset[i,1]=i

# Treatment

if (i<=100) {dataset[i,2]=1}

else {dataset[i,2]=0}

# Sex

dataset[i,3]=rbinom(1, 1, 0.5)

# Age0

dataset[i,4]=rnorm(1, mean=65, sd=9)

# Covariates V1, V2, V3

dataset[i,5]=rnorm(1, mean=8, sd=0.6)

dataset[i,6]=rnorm(1, mean=27.5, sd=1.4)
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dataset[i,7]=round(rnorm(1, mean=3, sd=0.7),digits = 0)

# Covariate V4

dataset[i,8]=round(rnorm(1, mean=2.57*dataset[i,2]+3.51*(1-dataset[i,2]),

sd=0.5*dataset[i,2]+0.5*(1-dataset[i,2])),digits = 0)

# Covariate V5

dataset[i,9]=rnorm(1, mean=150+1500*(1-dataset[i,3])+2400*dataset[i,3],

sd=300)

}

dataset=data.frame(dataset)

### GENERATION OF THE RESPONSE VARIABLE (Time to event, Weibull)

#lambda=1/720 * exp(-0.692*dataset$trt+0.4*dataset$V4)

lambda=1/720 * exp(0.4*dataset$trt+0.4*dataset$V4)

# lambda=1/720 * exp(-0.692*dataset$trt) # just to check, if there are no

confounder, if the Cox model provides correct results

# Survival times

s = rexp(n=total, rate= lambda)

# Maximum follow-up times (for the administrative censor)

accrual = 170 # patients are recruited between 0 and 170 days (~ 0.5 year)

after the start of the study

fup = 720 - 170 # patients are followed-up for a minimum of 550 days (~ 1.5

year ) => end of the study after 2 years

tfup = runif(total) * accrual + fup

# Random uniform censor for 2% of the patients, lost to follow-up

lost_fup = rbinom(total, 1, 0.02)

tfup2 = runif(1)*s * lost_fup + 720 * (1-lost_fup)
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# mean(tfup2!=s) # to check

# Censored survival times

patients.times.sim = pmin(s,tfup, tfup2);

# Censoring indicator

patients.cens.sim =(pmin(tfup, tfup2)>s)

dataset[, 10]=patients.times.sim

dataset[, 11]=patients.cens.sim

#Round days to integer number

dataset[,10]<-ceiling(dataset[,10])

for (i in 400){

if (dataset[i,]$Censor=='FALSE') dataset[i,]$Censor=0

else dataset[i,]$Censor=1

}

#Save dataset as an excel file

write.csv(dataset, "survival.csv")

#########################################

# OPTIMAL MATCHING WITH PROPENSITY SCORE#

#########################################

#clean environment

rm(list=setdiff(ls(),c()))

#working directory

wd<-'C:/Users/635185/Desktop/Poli/Tesi␣magistrale'
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#load dataset

basedata<-read.csv(file="C:/Users/635185/Desktop/Poli/Tesi␣magistrale/

survival.csv",header=TRUE, sep=",")

##PROPENSITY SCORE ESTIMATION##

psm<-glm(factor(trt)~factor(sex)+age+V1+V2+V3+V4+V5, family=binomial, data=

basedata)

#create a matrix with the differences between patients' propensity scores

install.packages("optmatch")

library(optmatch)

diff <- match_on(psm, method="euclidean")

for (i in 1:100){

for (j in 1:300) {

diff[i,j]=abs(psm$fitted.values[i]-psm$fitted.values[100+j])

}

}

##OPTIMAL 1:1 MATCHING##

matched<-pairmatch(diff,data=basedata)

print(matched, grouped=TRUE)

#to make sure observations are in the proper order:

all.equal(names(matched), row.names(basedata))

#give to each patient the number of the pair he belongs to

matched_db<-cbind(basedata, matches=matched)

#remove unmatched patients

matched_db <- na.omit(matched_db)

#export dataset with matchings

write.csv(matched_db, "C:/Users/635185/Desktop/Poli/Tesi␣magistrale/opt_

pairs.csv")
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##OPTIMAL 1:1/2 MATCHING##

matched_2<-fullmatch(diff,min.controls=1,max.controls=2,data=basedata,

remove.unmatchables = FALSE)

print(matched_2, grouped=TRUE)

# to make sure observations are in the proper order:

all.equal(names(matched_2), row.names(basedata))

#give to each patient the number of the pair he belongs to

matched_db_2<-cbind(basedata, matches=matched_2)

#remove unmatched patients

matched_db_2<- na.omit(matched_db_2)

#export dataset with matchings

write.csv(matched_db_2, "C:/Users/635185/Desktop/Poli/Tesi␣magistrale/opt_

pairs_2.csv")

B.2 SAS code

***********************

* GREEDY 1:1 MATCHING *

***********************

*Authors: Yinpu Chen and Margherita Annaratone

/*formats*/

proc format;

value sexid 0 = 'F'

1 = 'M'

;

value trtid 0 = 'Control'

1 = 'Treatment'

;

run;
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******************************************************************;

******************Import dataset(baseline+survival)***************;

PROC IMPORT OUT= WORK.survival

DATAFILE= "/folders/myfolders/tesi/survival.csv"

DBMS=CSV REPLACE;

GETNAMES=YES;

DATAROW=2;

RUN;

data survival;

set survival;

format sex sexid. trt trtid.;

drop var1;

run;

%let total_t=100;

%let total_c=300;

%let total=%sysevalf(&total_t+&total_c);

proc means data=survival;

class trt;

run;

************************************************************;

*Kaplan - Meier without any adjustments;

proc lifetest data=survival atrisk plots=survival(failure cl);
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time event_time*censor(0);

strata trt / test=logrank;

run;

*Cox model with Naive method;

proc phreg data=survival;

class trt(ref='Control');

model event_time*censor(0) = trt;

hazardratio trt /cl=wald diff=ref;

run;

*The HR I set in the simulation;

proc phreg data=survival ;

class trt(ref='Control');

model event_time*censor(0) = trt v4;

hazardratio trt /cl=wald diff=ref;

run;

*Cox model with Covariate adjustment;

proc phreg data=survival;

class trt(ref='Control');

model event_time*censor(0) = trt sex age v1 v2 v3 v4 v5;

hazardratio trt /cl=wald diff=ref;

run;

**************************PS computation**************;
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proc logistic data=survival;

class sex trt;

model trt(event='Treatment') = sex age v1 v2 v3 v4 v5;

output out = ps pred = ps xbeta = logit_ps;

run;

/*Histogram for PS distribution within the two arms*/

data histo;

set ps;

if trt=0 then c=ps;

else t=ps;

run;

%let gpath="C:\Users\635185\Desktop\Poli\Tesi magistrale";

%let dpi=200;

ods html close;

ods listing image_dpi=&dpi;

/*--MirrorHistograms-Vertical--*/

proc template;

define statgraph MirrorHistogramVert;

dynamic _binwidth;

begingraph;

entrytitle 'Distribution of PS';

layout lattice / columndatarange=union rowgutter=0;

columnaxes;

columnaxis / display=(tickvalues) griddisplay=on
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linearopts=(tickvaluesequence=(start=0 end=1

increment=0.1) tickvaluepriority=true);↪→

endcolumnaxes;

layout overlay / walldisplay=none xaxisopts=(griddisplay=on)

xaxisopts=(griddisplay=on)

yaxisopts=(griddisplay=on display=(tickvalues label)

linearopts=(tickvaluesequence=(start=10 end=70

increment=10) tickvaluepriority=true));↪→

histogram c / binstart=0.1 binwidth=_binwidth binaxis=false

fillattrs=graphdata1 datatransparency=0.3;

entry halign=right 'Control (N=300)' / valign=top;

endlayout;

layout overlay / walldisplay=none

yaxisopts=(reverse=true griddisplay=on

display=(tickvalues label)↪→

linearopts=(tickvaluesequence=(start=10 end=70

increment=10) tickvaluepriority=true))↪→

xaxisopts=(griddisplay=on);

histogram t / binstart=0.1 binwidth=_binwidth binaxis=false

fillattrs=graphdata2 datatransparency=0.3;

entry halign=right 'Treatment (N=100)' / valign=bottom;

endlayout;

endlayout;

endgraph;

end;

run;

ods graphics / reset width=5in height=3in imagename='histo_logistic';

proc sgrender data= work.histo template=MirrorHistogramVert;
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dynamic _binwidth=0.08;

run;

*************************************************************************;

*********************************1:1 greedy

matching*********************************;↪→

*the dataset is divided into 2 sets: according to the treatment;

data psc pst;

set ps;

if trt = 0 then output psc;

if trt = 1 then output pst;

run;

proc sort data=psc;

by count;

run;

proc sort data=pst;

by count;

run;

%let seed=3;

*assign a random number to all t patients;

data pst_random;

array isAssigned[1:&total_t] _temporary_(&total_t*0);

set pst;

do while(1);

tid=ceil(&total_t*ranuni(&seed));

if isAssigned[tid] then continue;

isAssigned[tid]=1;
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leave;

end;

run;

*create a table where all t patients are repeated for each c patient

with their difference in ps-everything is ordered by↪→

ps difference;

proc sql;

create table matching_m as

select c.count as csubid, c.ps as cps, t.count as tsubid,

t.ps as tps, t.tid as tid, abs(tps-cps) as diff↪→

from psc c cross join pst_random t

order by csubid, diff

;

*for each csubid I give a descending number (trank) to its tsubid

match: trank=1 is given to the subid that is↪→

closest in terms of ps to the csubid considered (smallest diff);

data ranking;

set matching_m;

by csubid diff;

retain trank;

if first.csubid then do;

trank = 1;

end;

else trank = trank + 1;

run;

81



APPENDIX B. CODE

*reverse order, now everything is ordered by random tid number- I can

have multiple 1s for the same tid;↪→

proc sort data=ranking out=matching_con;

by tid;

run;

*Within each tid subgroup I assign a random number(cid) for all the c

patients;↪→

data matching_con;

array isAssigned[1:&total_c] _temporary_(&total_c*0);

set matching_con;

by tid;

do while(1);

cid=ceil(&total_c*ranuni(&seed));

if isAssigned[cid] then continue;

isAssigned[cid]=1;

if last.tid then do i=1 to dim(isAssigned);

isAssigned[i]=0;

end;

leave;

end;

drop i;

run;

*I order by tid closeness to c patients and I pick the first one- no

ordered rows because I order by cid;↪→

proc sort data=matching_con out=matched1;

by tid trank cid;
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*proc print data=matched1;

*run;

*for each tid I make the match picking at random one of those with

trank=1;↪→

*in the unmatched1 I have all those c patients that have trank=1 but

were not taken because of their cid;↪→

data matched1 unmatched1;

set matched1;

by tid trank cid;

if first.tid and trank=1 then output matched1;

else if trank = 1 then output unmatched1;

run;

proc print data=matched1;

proc print data=unmatched1;

run;

proc sort data=matching_con;

by csubid;

run;

proc sort data=unmatched1;

by csubid;

run;

proc sort data=matched1;

by tsubid;

*I keep the c patients that weren't matched so that I can do another

iteration of the same algorithm;↪→
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data matching2;

merge matching_con unmatched1(keep=csubid in=inum);

by csubid;

if inum;

run;

proc print data=matching2;

run;

proc sort data=matching2;

by tsubid;

*remove the t patients in the dataset that were matched;

data matching2;

merge matching2 matched1 (in=inm1 keep=tsubid);

by tsubid;

if inm1 then delete;;

run;

*order by csubid and diff to restart the algorithm giving rank

according to closeness;↪→

proc sort data=matching2;

by csubid diff;

proc print data=matching2;

run;

*second iteration of the previous algorithm;

data matching2;

set matching2;

by csubid diff;
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retain trank;

if first.csubid then do;

trank = 1;

end;

else trank = trank + 1;

run;

proc sort data=matching2 out=matched2;

by tid trank cid;

data matched2 unmatched2;

set matched2;

by tid trank cid;

if first.tid and trank=1 then output matched2;

else if trank = 1 then output unmatched2;

run;

proc print data=matched2;

proc print data=unmatched2;

run;

proc sort data=unmatched2;

by csubid;

run;

proc sort data=matched2;

by tsubid;

data matching3;

merge matching2 unmatched2(keep=csubid in=inum);

by csubid;
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if inum;

run;

proc sort data=matching3;

by tsubid;

data matching3;

merge matching3 matched2(in=inm1 keep=tsubid);

by tsubid;

if inm1 then delete;;

run;

proc sort data=matching3;

by csubid diff;

run;

/*--The same part of the code is iterated other 47 times--*/

*all pairs together;

data allmatch;

retain pairno 0;

set matched1 matched2 matched3 matched4 matched5 matched6

matched7 matched8 matched9 matched10 matched11 matched12

matched13

↪→

↪→

matched14 matched15 matched16 matched17 matched18 matched19

matched20 matched21 matched22 matched23 matched24

matched25

↪→

↪→

matched26 matched27 matched28 matched29 matched30 matched31

matched32 matched33 matched34 matched35 matched36

matched37 matched38

↪→

↪→
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matched39 matched40 matched41 matched42 matched43 matched44

matched45 matched46 matched47 matched48 matched49;↪→

pairno = pairno+1;

keep tsubid csubid pairno diff;

run;

*pairs statistics;

proc means data=allmatch min mean median max stddev;

var diff;

run;

proc sgplot data=allmatch;

histogram diff;

run;

*Pick up the matched pairs so that for each patient I have the number

of the pair he belongs to;↪→

proc sql;

create table mbase as

select b.*, m.pairno

from survival b, allmatch m

where count = m.tsubid or count = m.csubid

;

proc sql;

create table after as

select m.*, p.ps

from mbase m, ps p

where p.count = m.count

;
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*PS distribution after greedy matching;

data histo;

set after;

if trt=0 then c=ps;

else t=ps;

run;

%let gpath="C:\Users\635185\Desktop\Poli\Tesi magistrale";

%let dpi=200;

ods html close;

ods listing image_dpi=&dpi;

/*--MirrorHistograms-Vertical--*/

proc template;

define statgraph MirrorHistogramVert;

dynamic _binwidth;

begingraph;

entrytitle 'Distribution of PS after greedy 1:1 matching';

layout lattice / columndatarange=union rowgutter=0;

columnaxes;

columnaxis / display=(tickvalues) griddisplay=on

linearopts=(tickvaluesequence=(start=0 end=1

increment=0.1) tickvaluepriority=true);↪→

endcolumnaxes;

layout overlay / walldisplay=none

xaxisopts=(griddisplay=on)↪→

xaxisopts=(griddisplay=on)
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yaxisopts=(griddisplay=on

display=(tickvalues label)↪→

linearopts=(tickvaluesequence=(start=10

end=60 increment=10)

tickvaluepriority=true));

↪→

↪→

histogram c / binstart=0.1 binwidth=_binwidth

binaxis=false↪→

fillattrs=graphdata1 datatransparency=0.3;

entry halign=right 'Control (N=100)' /

valign=top;↪→

endlayout;

layout overlay / walldisplay=none

yaxisopts=(reverse=true griddisplay=on

display=(tickvalues label)↪→

linearopts=(tickvaluesequence=(start=10

end=60 increment=10)

tickvaluepriority=true))

↪→

↪→

xaxisopts=(griddisplay=on);

histogram t / binstart=0.1 binwidth=_binwidth

binaxis=false↪→

fillattrs=graphdata2 datatransparency=0.3;

entry halign=right 'Treatment (N=100)' /

valign=bottom;↪→

endlayout;

endlayout;

endgraph;

end;

run;
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ods graphics / reset width=5in height=3in imagename='histo_logistic';

proc sgrender data= work.histo template=MirrorHistogramVert;

dynamic _binwidth=0.08;

run;

*Kaplan - Meier after matching;

proc lifetest data=mbase atrisk plots=survival(failure cl);

time event_time*censor(0);

strata trt / test=logrank;

run;

*Cox model with 1:1 greedy matching with just trt;

proc phreg data=mbase;

class trt(ref='Control');

model event_time*censor(0) = trt;

hazardratio trt /cl=wald diff=ref;

run;

*Cox model with 1:1 greedy matching with trt and covariates in PS

(doubly robust);↪→

proc phreg data=mbase;

class sex trt(ref='Control');

model event_time*censor(0) = trt sex age v1 v2 v3 v4 v5;

hazardratio trt /cl=wald diff=ref;

run;

*Cox model with 1:1 greedy matching with trt with pairs strata;
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proc phreg data=mbase;

class trt(ref='Control') pairno;

model event_time*censor(0) = trt;

strata pairno;

hazardratio trt /cl=wald diff=ref;

run;

*Cox model with 1:1 greedy matching with trt and covariates in PS

(doubly robust) with pairs strata;↪→

proc phreg data=mbase;

class sex trt(ref='Control') pairno;

model event_time*censor(0) = trt sex age v1 v2 v3 v4 v5;

strata pairno;

hazardratio trt /cl=wald diff=ref;

run;

************************************

* GREEDY 1:1 MATCHING WITH CALIPER *

************************************

/*formats*/

proc format;

value sexid 0 = 'F'

1 = 'M'

;

value trtid 0 = 'Control'

1 = 'Treatment'

;

run;
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******************************************************************;

******************Import dataset(baseline+survival)***************;

PROC IMPORT OUT= WORK.survival

DATAFILE= "/folders/myfolders/tesi/survival.csv"

DBMS=CSV REPLACE;

GETNAMES=YES;

DATAROW=2;

RUN;

data survival;

set survival;

format sex sexid. trt trtid.;

drop var1;

run;

******************************************************************;

****************************************PS**************************;

proc logistic data=survival;

class sex trt;

model trt(event='Treatment') = sex age v1 v2 v3 v4 v5;

output out = ps pred = ps xbeta = logit_ps;

run;

*caliper;

%let caliper=0.1;

%let total_t=100;

%let total_c=300;
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%let total=%sysevalf(&total_t+&total_c);

*the dataset is divided into 2 sets: according to the treatment;

data psc pst;

set ps;

if trt = 0 then output psc;

if trt = 1 then output pst;

run;

proc sort data=psc;

by count;

run;

proc sort data=pst;

by count;

run;

%let seed=3;

*assign a random number to all k patients;

data pst_random;

array isAssigned[1:&total_t] _temporary_(&total_t*0);

set pst;

do while(1);

tid=ceil(&total_t*ranuni(&seed));

if isAssigned[tid] then continue;

isAssigned[tid]=1;

leave;

end;

run;
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*create a table where all k patients are repeated for each p patient

with their difference in ps-everything is ordered by↪→

ps difference;

proc sql;

create table matching_m as

select c.count as csubid, c.ps as cps, t.count as tsubid,

t.ps as tps, t.tid as tid, abs(tps-cps) as diff↪→

from psc c cross join pst_random t

order by csubid, diff

;

title 'Distribution of the difference of propensity score';

*ods pdf file="C:/Users/635185/Desktop/Poli/Tesi

magistrale/output/histo_diff_cal.pdf";↪→

proc sgplot data=matching_m;

histogram diff;

refline &caliper / axis = x label lineattrs=(color=CXFF0000

thickness= 0.08cm);↪→

run;

title;

*ods pdf close;

*remove pairs with a difference in PS higher than the caliper;

data matching_m;
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set matching_m;

where diff<= &caliper;

run;

proc freq data=matching_m;

tables csubid;

run;

*for each csubid I give a descending number (trank) to its tsubid

match: trank=1 is given to the subid that is↪→

closest in terms of ps to the csubid considered (smallest diff);

data ranking;

set matching_m;

by csubid diff;

retain trank;

if first.csubid then do;

trank = 1;

end;

else trank = trank + 1;

run;

*reverse order, now everything is ordered by random tid number- I can

have multiple 1s for the same tid;↪→

proc sort data=ranking out=matching_con;

by tid;

run;

*Within each tid subgroup I assign a random number(cid) for all the c

patients;↪→

data matching_con;
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array isAssigned[1:&total_c] _temporary_(&total_c*0);

set matching_con;

by tid;

do while(1);

cid=ceil(&total_c*ranuni(&seed));

if isAssigned[cid] then continue;

isAssigned[cid]=1;

if last.tid then do i=1 to dim(isAssigned);

isAssigned[i]=0;

end;

leave;

end;

drop i;

run;

*I order by tid closeness to c patients and I pick the first one- no

ordered rows because I order by cid;↪→

proc sort data=matching_con out=matched1;

by tid trank cid;

*proc print data=matched1;

*run;

*for each tid I make the match picking at random one of those with

trank=1;↪→

*in the unmatched1 I have all those c patients that have trank=1 but

were not taken because of their cid;↪→

data matched1 unmatched1;

set matched1;
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by tid trank cid;

if first.tid and trank=1 then output matched1;

else if trank = 1 then output unmatched1;

run;

proc print data=matched1;

proc print data=unmatched1;

run;

proc sort data=matching_con;

by csubid;

run;

proc sort data=unmatched1;

by csubid;

run;

proc sort data=matched1;

by tsubid;

*I keep the c patients that weren't matched so that I can do another

iteration of the same algorithm;↪→

data matching2;

merge matching_con unmatched1(keep=csubid in=inum);

by csubid;

if inum;

run;

proc print data=matching2;

run;

proc sort data=matching2;
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by tsubid;

*remove the t patients in the dataset that were matched;

data matching2;

merge matching2 matched1 (in=inm1 keep=tsubid);

by tsubid;

if inm1 then delete;;

run;

*order by csubid and diff to restart the algorithm giving rank

according to closeness;↪→

proc sort data=matching2;

by csubid diff;

proc print data=matching2;

run;

*second iteration of the previous algorithm;

data matching2;

set matching2;

by csubid diff;

retain trank;

if first.csubid then do;

trank = 1;

end;

else trank = trank + 1;

run;

proc sort data=matching2 out=matched2;

by tid trank cid;
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data matched2 unmatched2;

set matched2;

by tid trank cid;

if first.tid and trank=1 then output matched2;

else if trank = 1 then output unmatched2;

run;

proc print data=matched2;

proc print data=unmatched2;

run;

proc sort data=unmatched2;

by csubid;

run;

proc sort data=matched2;

by tsubid;

data matching3;

merge matching2 unmatched2(keep=csubid in=inum);

by csubid;

if inum;

run;

proc sort data=matching3;

by tsubid;

data matching3;

merge matching3 matched2(in=inm1 keep=tsubid);

by tsubid;

99



APPENDIX B. CODE

if inm1 then delete;;

run;

proc sort data=matching3;

by csubid diff;

*third iteration of the same algorithm;

data matching3;

set matching3;

by csubid diff;

retain trank;

if first.csubid then do;

trank = 1;

end;

else trank = trank + 1;

run;

proc sort data=matching3 out=matched3;

by tid trank cid;

data matched3 unmatched3;

set matched3;

by tid trank cid;

if first.tid and trank=1 then output matched3;

else if trank = 1 then output unmatched3;

run;

proc print data=matched3;

proc print data=unmatched3;

run;
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proc sort data=unmatched3;

by csubid;

run;

proc sort data=matched3;

by tsubid;

data matching4;

merge matching3 unmatched3(keep=csubid in=inum);

by csubid;

if inum;

run;

proc sort data=matching4;

by tsubid;

data matching4;

merge matching4 matched3(in=inm1 keep=tsubid);

by tsubid;

if inm1 then delete;;

run;

proc sort data=matching4;

by csubid diff;

*all pairs together;

data allmatch;

retain pairno 0;

set matched1 matched2 matched3;

pairno = pairno+1;
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keep tsubid csubid pairno diff;

run;

proc means data=allmatch min mean median max stddev;

var diff;

run;

proc sgplot data=allmatch;

histogram diff;

run;

*Pick up the matched pairs so that for each patient I have the number

of the pair he belongs to;↪→

proc sql;

create table mbase as

select b.*, m.pairno

from survival b, allmatch m

where count = m.tsubid or count = m.csubid

;

proc print data=mbase;

run;

proc sort data=mbase;

by count;

run;

proc sql;

create table after as
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select m.*, p.ps

from mbase m, ps p

where p.count = m.count

;

proc sql;

select count(*)

from after

where trt=0;

run;

quit;

*PS distribution after greedy matching with caliper;

data histo;

set after;

if trt=0 then c=ps;

else t=ps;

run;

%let gpath="C:\Users\635185\Desktop\Poli\Tesi magistrale";

%let dpi=200;

ods html close;

ods listing image_dpi=&dpi;

/*--MirrorHistograms-Vertical--*/

proc template;
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define statgraph MirrorHistogramVert;

dynamic _binwidth;

begingraph;

entrytitle 'Distribution of PS after greedy 1:1 matching with

caliper';↪→

layout lattice / columndatarange=union rowgutter=0;

columnaxes;

columnaxis / display=(tickvalues) griddisplay=on

linearopts=(tickvaluesequence=(start=0 end=1

increment=0.1) tickvaluepriority=true);↪→

endcolumnaxes;

layout overlay / walldisplay=none

xaxisopts=(griddisplay=on)↪→

xaxisopts=(griddisplay=on)

yaxisopts=(griddisplay=on

display=(tickvalues label)↪→

linearopts=(tickvaluesequence=(start=10

end=60 increment=10)

tickvaluepriority=true));

↪→

↪→

histogram c / binstart=0.1 binwidth=_binwidth

binaxis=false↪→

fillattrs=graphdata1 datatransparency=0.3;

entry halign=right 'Control (N=54)' /

valign=top;↪→

endlayout;

layout overlay / walldisplay=none

yaxisopts=(reverse=true griddisplay=on

display=(tickvalues label)↪→
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linearopts=(tickvaluesequence=(start=10

end=60 increment=10)

tickvaluepriority=true))

↪→

↪→

xaxisopts=(griddisplay=on);

histogram t / binstart=0.1 binwidth=_binwidth

binaxis=false↪→

fillattrs=graphdata2 datatransparency=0.3;

entry halign=right 'Treatment (N=54)' /

valign=bottom;↪→

endlayout;

endlayout;

endgraph;

end;

run;

ods graphics / reset width=5in height=3in imagename='histo_logistic';

proc sgrender data= work.histo template=MirrorHistogramVert;

dynamic _binwidth=0.08;

run;

*Kaplan - Meier;

proc lifetest data=mbase atrisk plots=survival(failure cl);

time event_time*censor(0);

strata trt / test=logrank;

run;

*Cox model with 1:1 greedy matching with caliper with just trt;

proc phreg data=mbase;

105



APPENDIX B. CODE

class trt(ref='Control');

model event_time*censor(0) = trt;

hazardratio trt /cl=wald diff=ref;

run;

*Cox model with 1:1 greedy matching with caliper with trt and

covariates in PS (doubly robust);↪→

proc phreg data=mbase;

class trt(ref='Control') sex;

model event_time*censor(0) = trt sex age v1 v2 v3 v4 v5;

hazardratio trt/cl=wald diff=ref;

run;

*Cox model with 1:1 greedy matching with caliper with trt and pairs

strata;↪→

proc phreg data=mbase;

class trt(ref='Control') pairno;

model event_time*censor(0) = trt;

strata pairno;

hazardratio trt/cl=wald diff=ref;

run;

*Cox model with 1:1 greedy matching with caliper with trt and

covariates in PS (doubly robust) with pairs strata;↪→

proc phreg data=mbase;

class trt(ref='Control') sex pairno;

model event_time*censor(0) = trt sex age v1 v2 v3 v4 v5;

strata pairno;

hazardratio trt/cl=wald diff=ref;
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run;

***********************************

* OPTIMAL 1:1 AND 1:1/2 MATCHING *

***********************************

/*formats*/

proc format;

value sexid 0 = 'F'

1 = 'M'

;

value trtid 0 = 'Control'

1 = 'Treatment'

;

run;

******************************************************************;

******************Import dataset(baseline+survival)***************;

PROC IMPORT OUT= WORK.survival

DATAFILE= "/folders/myfolders/tesi/survival.csv"

DBMS=CSV REPLACE;

GETNAMES=YES;

DATAROW=2;

RUN;

data survival;

set survival;

format sex sexid. trt trtid.;
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drop var1;

run;

%let total_t=100;

%let total_c=300;

%let total=%sysevalf(&total_t+&total_c);

proc logistic data=survival;

class sex trt;

model trt(event='Treatment') = sex age v1 v2 v3 v4 v5;

output out = ps pred = ps xbeta = logit_ps;

run;

******************optimal matching 1:1*******************;

PROC IMPORT OUT= WORK.opt_pairs

DATAFILE= "/folders/myfolders/tesi/opt_pairs.csv"

DBMS=CSV REPLACE;

GETNAMES=YES;

DATAROW=2;

RUN;

*import optimal pairs;

data opt_pairs;

set opt_pairs;

drop var1;
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format sex sexid. trt trtid.;

run;

data ps;

merge ps opt_pairs (in=inm1 keep=count matches);

by count;

if inm1;

run;

data psc pst;

set ps;

if trt = 0 then output psc;

if trt = 1 then output pst;

run;

*pairs statistics;

proc sql;

create table difference as

select c.count as csubid, c.ps as cps, t.count as tsubid,

t.ps as tps, abs(tps-cps) as diff↪→

from psc c, pst t

where c.matches=t.matches

;

run;

quit;

proc means data=difference min mean median max stddev;

var diff;

run;
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proc sgplot data=difference;

histogram diff;

run;

*PS distribution after matching;

data histo;

set ps;

if trt=0 then c=ps;

else t=ps;

run;

%let gpath="C:\Users\635185\Desktop\Poli\Tesi magistrale";

%let dpi=200;

ods html close;

ods listing image_dpi=&dpi;

/*--MirrorHistograms-Vertical--*/

proc template;

define statgraph MirrorHistogramVert;

dynamic _binwidth;

begingraph;

entrytitle 'Distribution of PS after optimal 1:1 matching';

layout lattice / columndatarange=union rowgutter=0;

columnaxes;

columnaxis / display=(tickvalues) griddisplay=on

linearopts=(tickvaluesequence=(start=0 end=1

increment=0.1) tickvaluepriority=true);↪→
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endcolumnaxes;

layout overlay / walldisplay=none

xaxisopts=(griddisplay=on)↪→

xaxisopts=(griddisplay=on)

yaxisopts=(griddisplay=on

display=(tickvalues label)↪→

linearopts=(tickvaluesequence=(start=10

end=80 increment=10)

tickvaluepriority=true));

↪→

↪→

histogram c / binstart=0.1 binwidth=_binwidth

binaxis=false↪→

fillattrs=graphdata1 datatransparency=0.3;

entry halign=right 'Control (N=100)' /

valign=top;↪→

endlayout;

layout overlay / walldisplay=none

yaxisopts=(reverse=true griddisplay=on

display=(tickvalues label)↪→

linearopts=(tickvaluesequence=(start=10

end=80 increment=10)

tickvaluepriority=true))

↪→

↪→

xaxisopts=(griddisplay=on);

histogram t / binstart=0.1 binwidth=_binwidth

binaxis=false↪→

fillattrs=graphdata2 datatransparency=0.3;

entry halign=right 'Treatment (N=100)' /

valign=bottom;↪→

endlayout;

endlayout;

endgraph;
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end;

run;

ods graphics / reset width=5in height=3in imagename='histo_logistic';

proc sgrender data= work.histo template=MirrorHistogramVert;

dynamic _binwidth=0.08;

run;

*Kaplan - Meier without any ajustments;

proc lifetest data=opt_pairs atrisk plots=survival(failure cl);

time event_time*censor(0);

strata trt / test=logrank;

run;

*Cox model with 1:1 optimal matching with just trt;

proc phreg data=opt_pairs;

class trt(ref='Control');

model event_time*censor(0) = trt;

hazardratio trt /cl=wald diff=ref;

run;

*Cox model with 1:1 optimal matching with trt and covariates in PS

(doubly robust);↪→

proc phreg data=opt_pairs;

class trt(ref='Control') sex;

model event_time*censor(0) = trt sex age v1 v2 v3 v4 v5;
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hazardratio trt /cl=wald diff=ref;

run;

*Pair stratified Cox model with 1:1 optimal matching with trt;

proc phreg data=opt_pairs;

class trt(ref='Control') matches;

model event_time*censor(0) = trt;

strata matches;

hazardratio trt /cl=wald diff=ref;

run;

*Pair tratified Cox model with 1:1 optimal matching with trt and

covariates in PS (doubly robust);↪→

proc phreg data=opt_pairs;

class trt(ref='Control') sex matches;

model event_time*censor(0) = trt sex age v1 v2 v3 v4 v5;

strata matches;

hazardratio trt /cl=wald diff=ref;

run;

******************optimal matching 1:1/2 *******************;

PROC IMPORT OUT= WORK.opt_pairs

DATAFILE= "/folders/myfolders/tesi/opt_pairs_2.csv"

DBMS=CSV REPLACE;

GETNAMES=YES;

DATAROW=2;

RUN;
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data opt_pairs;

set opt_pairs;

drop x;

format sex sexid. trt trtid.;

run;

data ps;

merge ps opt_pairs (in=inm1 keep=count matches);

by count;

if inm1;

run;

data psc pst;

set ps;

if trt = 0 then output psc;

if trt = 1 then output pst;

run;

*pairs statistics;

proc sql;

create table difference as

select c.matches as pair, c.count as csubid, c.ps as cps,

t.count as tsubid, t.ps as tps, abs(tps-cps) as diff↪→

from psc c, pst t

where c.matches=t.matches

order by c.matches

;
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run;

quit;

proc means data=difference min mean median max stddev;

var diff;

run;

proc sgplot data=difference;

histogram diff;

run;

*PS distribution after matching;

data histo;

set ps;

if trt=0 then c=ps;

else t=ps;

run;

%let gpath="C:\Users\635185\Desktop\Poli\Tesi magistrale";

%let dpi=200;

ods html close;

ods listing image_dpi=&dpi;

/*--MirrorHistograms-Vertical--*/

proc template;

define statgraph MirrorHistogramVert;

dynamic _binwidth;
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begingraph;

entrytitle 'Distribution of PS after optimal 1:1/2 matching';

layout lattice / columndatarange=union rowgutter=0;

columnaxes;

columnaxis / display=(tickvalues) griddisplay=on

linearopts=(tickvaluesequence=(start=0 end=1

increment=0.1) tickvaluepriority=true);↪→

endcolumnaxes;

layout overlay / walldisplay=none

xaxisopts=(griddisplay=on)↪→

xaxisopts=(griddisplay=on)

yaxisopts=(griddisplay=on

display=(tickvalues label)↪→

linearopts=(tickvaluesequence=(start=10

end=70 increment=10)

tickvaluepriority=true));

↪→

↪→

histogram c / binstart=0.1 binwidth=_binwidth

binaxis=false↪→

fillattrs=graphdata1 datatransparency=0.3;

entry halign=right 'Control (N=119)' /

valign=top;↪→

endlayout;

layout overlay / walldisplay=none

yaxisopts=(reverse=true griddisplay=on

display=(tickvalues label)↪→

linearopts=(tickvaluesequence=(start=10

end=70 increment=10)

tickvaluepriority=true))

↪→

↪→

xaxisopts=(griddisplay=on);
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histogram t / binstart=0.1 binwidth=_binwidth

binaxis=false↪→

fillattrs=graphdata2 datatransparency=0.3;

entry halign=right 'Treatment (N=100)' /

valign=bottom;↪→

endlayout;

endlayout;

endgraph;

end;

run;

ods graphics / reset width=5in height=3in imagename='histo_logistic';

proc sgrender data= work.histo template=MirrorHistogramVert;

dynamic _binwidth=0.08;

run;

*Kaplan - Meier without any ajustments;

proc lifetest data=opt_pairs atrisk plots=survival(failure cl);

time event_time*censor(0);

strata trt / test=logrank;

run;

*Cox model with 1:1/2 optimal matching with caliper with just trt;

proc phreg data=opt_pairs;

class trt(ref='Control');

model event_time*censor(0) = trt;
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hazardratio trt /cl=wald diff=ref;

run;

*Cox model with 1:1/2 optimal matching with caliper with trt and

covariates in PS (doubly robust);↪→

proc phreg data=opt_pairs;

class trt(ref='Control') sex;

model event_time*censor(0) = trt sex age v1 v2 v3 v4 v5;

hazardratio trt /cl=wald diff=ref;

run;

*Pair stratified Cox model with 1:1/2 optimal matching with trt and

covariates in PS (doubly robust;↪→

proc phreg data=opt_pairs;

class trt(ref='Control') sex matches;

model event_time*censor(0) = trt sex age v1 v2 v3 v4 v5;

strata matches;

hazardratio trt /cl=wald diff=ref;

run;

*Pair stratified Cox model with 1:1/2 optimal matching with caliper

with trt;↪→

proc phreg data=opt_pairs;

class trt(ref='Control') matches;

model event_time*censor(0) = trt;

strata matches;

hazardratio trt /cl=wald diff=ref;

run;
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********

* IPTW *

********

/*formats*/

proc format;

value sexid 0 = 'F'

1 = 'M'

;

value trtid 0 = 'Control'

1 = 'Treatment'

;

run;

******************************************************************;

******************Import dataset(baseline+survival)***************;

PROC IMPORT OUT= WORK.survival

DATAFILE= "/folders/myfolders/tesi/survival.csv"

DBMS=CSV REPLACE;

GETNAMES=YES;

DATAROW=2;

RUN;

data survival;

set survival;

format sex sexid. trt trtid.;

drop var1;

run;
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************************************************************;

****************************************PS**************************;

proc logistic data=survival;

class sex trt;

model trt(event='Treatment') = sex age v1 v2 v3 v4 v5;

output out = ps pred = ps xbeta = logit_ps;

run;

*IPTW method;

*general weights;

data iptw_db;

set ps;

if trt=1 then iptw=1/ps;

else iptw=1/(1-ps);

run;

*size of the pseudo population;

proc sql;

select sum(iptw) as Pseudo

from iptw_db;

quit;

*stabilized weights;

proc sql;

select count(*) into :total

from ps;

quit;
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%put &total;

%let t_patients=;

proc sql;

select count(*) into :t_patients

from ps

where trt=1;

quit;

%put &t_patients;

data iptw_db;

set iptw_db;

if trt=1 then iptws=iptw*(&t_patients/&total);

else iptws=iptw*(1-&t_patients/&total);

run;

*size of the pseudo population with stabilized weights;

proc sql;

select sum(iptws) as Pseudo_s

from iptw_db;

quit;

*number of treated patients in the pseudo-population;

proc sql;

select sum(iptw)

from iptw_db

where trt=1;

quit;

run;

*PS distribution with the different weights;
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data frequencies;

set iptw_db;

f=iptws*100;

run;

data histo;

set iptw_db;

if trt=1 then t=ps;

else c=ps;

run;

%let gpath="/export/home/ma898685/Report";

%let dpi=200;

ods html close;

ods listing gpath=&gpath image_dpi=&dpi;

/*--MirrorHistograms-Vertical--*/

proc template;

define statgraph MirrorHistogramVert;

dynamic _binwidth;

begingraph;

entrytitle 'Distribution of PS';

layout lattice / columndatarange=union rowgutter=0;

columnaxes;

columnaxis / display=(tickvalues) griddisplay=on

linearopts=(tickvaluesequence=(start=0 end=1

increment=0.1) tickvaluepriority=true);↪→

endcolumnaxes;

layout overlay / walldisplay=none

xaxisopts=(griddisplay=on)↪→
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xaxisopts=(griddisplay=on)

yaxisopts=(griddisplay=on

display=(tickvalues label)↪→

linearopts=(tickvaluesequence=(start=10

end=70 increment=10)

tickvaluepriority=true));

↪→

↪→

histogram c / freq=iptw binstart=0.1

binwidth=_binwidth binaxis=false↪→

fillattrs=graphdata1 datatransparency=0.3;

entry halign=right 'Control (N=387)' /

valign=top;↪→

endlayout;

layout overlay / walldisplay=none

yaxisopts=(reverse=true griddisplay=on

display=(tickvalues label)↪→

linearopts=(tickvaluesequence=(start=10

end=70 increment=10)

tickvaluepriority=true))

↪→

↪→

xaxisopts=(griddisplay=on);

histogram t / freq=iptw binstart=0.1

binwidth=_binwidth binaxis=false↪→

fillattrs=graphdata2 datatransparency=0.3;

entry halign=right 'Treatment (N=462)' /

valign=bottom;↪→

endlayout;

endlayout;

endgraph;

end;

run;
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ods graphics / reset width=5in height=3in imagename='histo_iptws';

proc sgrender data= work.histo template=MirrorHistogramVert;

dynamic _binwidth=0.08;

run;

****************************************iptws**************************;

data histo;

set frequencies;

if trt=1 then t=ps;

else c=ps;

run;

%let gpath="/export/home/ma898685/Report";

%let dpi=200;

ods html close;

ods listing gpath=&gpath image_dpi=&dpi;

/*--MirrorHistograms-Vertical--*/

proc template;

define statgraph MirrorHistogramVert;

dynamic _binwidth;

begingraph;

entrytitle 'Distribution of PS';

layout lattice / columndatarange=union rowgutter=0;

columnaxes;

columnaxis / display=(tickvalues) griddisplay=on

linearopts=(tickvaluesequence=(start=0 end=1

increment=0.1) tickvaluepriority=true);↪→

endcolumnaxes;
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layout overlay / walldisplay=none

xaxisopts=(griddisplay=on)↪→

xaxisopts=(griddisplay=on)

yaxisopts=(griddisplay=on

display=(tickvalues label)↪→

linearopts=(tickvaluesequence=(start=10

end=70 increment=10)

tickvaluepriority=true));

↪→

↪→

histogram c / freq=f binstart=0.1 binwidth=_binwidth

binaxis=false↪→

fillattrs=graphdata1 datatransparency=0.3;

entry halign=right 'Control (N=290)' /

valign=top;↪→

endlayout;

layout overlay / walldisplay=none

yaxisopts=(reverse=true griddisplay=on

display=(tickvalues label)↪→

linearopts=(tickvaluesequence=(start=10

end=70 increment=10)

tickvaluepriority=true))

↪→

↪→

xaxisopts=(griddisplay=on);

histogram t / freq=f binstart=0.1 binwidth=_binwidth

binaxis=false↪→

fillattrs=graphdata2 datatransparency=0.3;

entry halign=right 'Treatment (N=116)' /

valign=bottom;↪→

endlayout;

endlayout;

endgraph;

end;
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run;

ods graphics / reset width=5in height=3in imagename='histo_iptws';

proc sgrender data= work.histo template=MirrorHistogramVert;

dynamic _binwidth=0.08;

run;

*********************IPTW;

*Kaplan - Meier;

ods graphics on;

ods pdf file="/folders/myfolders/tesi/iptw_KM.pdf";

proc lifetest data=iptw_db atrisk plots=survival(failure cl);

strata trt;

weight iptw;

time event_time*censor(0);

run;

ods pdf close;

ods graphics off;

*Cox model with general IPTW and trt;

proc phreg data=iptw_db;

class trt(ref='Control');

weight iptw;

model event_time*censor(0) = trt;

hazardratio trt /cl=wald diff=ref;

run;

*Cox model with general IPTW with doubly robust approach;
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proc phreg data=iptw_db; *plots(overlay)=survival;

class trt(ref='Control') sex;

weight iptw;

model event_time*censor(0) = trt sex age v1 v2 v3 v4 v5;

hazardratio trt /cl=wald diff=ref;

run;

***************************************stabilized weights;

*Kaplan - Meier;

ods graphics on;

ods pdf file="/folders/myfolders/tesi/iptws_KM.pdf";

proc lifetest data=iptw_db atrisk plots=survival(failure cl);

strata trt;

weight iptws;

time event_time*censor(0);

run;

ods pdf close;

ods graphics off;

*Cox model with stabilized IPTW and trt;

proc phreg data=iptw_db plots=survival;

class trt(ref='Control');

weight iptws;

model event_time*censor(0) = trt;

hazardratio trt /cl=wald diff=ref;

run;

*Cox model with stabilized IPTW with doubly robust approach;

proc phreg data=iptw_db; *plots(overlay)=survival;
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class trt(ref='Control') sex;

weight iptws;

model event_time*censor(0) = trt sex age v1 v2 v3 v4 v5 ;

hazardratio trt /cl=wald diff=ref;

run;

******************

* STRATIFICATION *

******************

/*formats*/

proc format;

value sexid 0 = 'F'

1 = 'M'

;

value trtid 0 = 'Control'

1 = 'Treatment'

;

value ttl 1 = 'First Tertile'

2 = 'Second Tertile'

3 = 'Third Tertile'

;

run;

******************************************************************;

******************Import dataset(baseline+survival)***************;

PROC IMPORT OUT= WORK.survival

DATAFILE= "/folders/myfolders/tesi/survival.csv"

DBMS=CSV REPLACE;

GETNAMES=YES;
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DATAROW=2;

RUN;

data base;

set survival;

format sex sexid. trt trtid.;

drop var1;

run;

%let total=400;

************************************************************;

proc logistic data=base;

class sex trt;

model trt(event='Treatment') = sex age v1 v2 v3 v4 v5;

output out = ps pred = ps xbeta = logit_ps;

run;

************************************************************************choose

tertiles;↪→

proc sort data=ps;

by ps;

run;

*strata with equal sizes;

data tert;

set ps;

ttl = 1 + (_n_/&total > 1/3) + (_n_/&total > 2/3);
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format ttl ttl.;

label ttl = 'tertiles';

run;

*propensity score divided in 3 quantiles ----> 3 groups with

different size;↪→

*select min and max of ps;

proc sql;

select min(ps) into :min_ps

from ps;

quit;

%put &min_ps;

proc sql;

select max(ps) into :max_ps

from ps;

quit;

%put &max_ps;

data tert;

set tert;

ttl_bis = 1 + (ps > &min_ps+(&max_ps-&min_ps)/3) + (ps >

&min_ps+2*(&max_ps-&min_ps)/3);↪→

format ttl_bis ttl.;

label ttl_bis = 'tertiles second type'

;

run;

proc print data=tert;
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run;

data t1 t2 t3;

set tert;

if ttl_bis=1 then output t1;

else if ttl_bis=2 then output t2;

else output t3;

run;

*statistics per each tertile;

proc print data=t3;

run;

proc sql;

select count(*)

from t3

where trt=0;

run;

data histo;

set t3;

if trt=0 then c=ps;

else t=ps;

run;

%let gpath="C:\Users\635185\Desktop\Poli\Tesi magistrale";

%let dpi=200;

ods html close;

ods listing image_dpi=&dpi;

/*--MirrorHistograms-Vertical--*/
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proc template;

define statgraph MirrorHistogramVert;

dynamic _binwidth;

begingraph;

entrytitle 'Distribution of PS - 3rd tertile';

layout lattice / columndatarange=union rowgutter=0;

columnaxes;

columnaxis / display=(tickvalues) griddisplay=on

linearopts=(tickvaluesequence=(start=0.66

end=0.98 increment=0.08)

tickvaluepriority=true);

↪→

↪→

endcolumnaxes;

layout overlay / walldisplay=none

xaxisopts=(griddisplay=on)↪→

xaxisopts=(griddisplay=on)

yaxisopts=(griddisplay=on

display=(tickvalues label)↪→

linearopts=(tickvaluesequence=(start=10

end=60 increment=10)

tickvaluepriority=true));

↪→

↪→

histogram c / binstart=0.66 binwidth=_binwidth

binaxis=false↪→

fillattrs=graphdata1 datatransparency=0.3;

entry halign=right 'Control (N=3)' /

valign=top;↪→

endlayout;

layout overlay / walldisplay=none

yaxisopts=(reverse=true griddisplay=on

display=(tickvalues label)↪→
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linearopts=(tickvaluesequence=(start=10

end=60 increment=10)

tickvaluepriority=true))

↪→

↪→

xaxisopts=(griddisplay=on);

histogram t / binstart=0.66 binwidth=_binwidth

binaxis=false↪→

fillattrs=graphdata2 datatransparency=0.3;

entry halign=right 'Treatment (N=49)' /

valign=bottom;↪→

endlayout;

endlayout;

endgraph;

end;

run;

ods graphics / reset width=5in height=3in imagename='histo_logistic';

proc sgrender data= work.histo template=MirrorHistogramVert;

dynamic _binwidth=0.08;

run;

proc sort data=tert;

by count;

run;

ODS TRACE ON;

*Kaplan - Meier without any ajustments per each tertile;

proc lifetest data=t3 atrisk plots=survival(failure cl);
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time event_time*censor(0);

strata trt/ test=logrank;

run;

ODS TRACE OFF;

*Stratified Cox model by quantiles;

proc phreg data=tert;

class trt(ref='Control') ttl_bis;

model event_time*censor(0) = trt;

strata ttl_bis;

hazardratio trt/cl=wald diff=ref;

run;

ods pdf close;

*Stratified Cox model by quantiles with doubly robust approach;

proc phreg data=tert;

class trt(ref='Control') ttl_bis sex;

model event_time*censor(0) = trt sex age v1 v2 v3 v4 v5;

strata ttl_bis;

hazardratio trt/cl=wald diff=ref;

run;

****************

* FOREST PLOTS *

****************

* without doubly robust approach;

data forest;
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input Id Subgroup $3-27 HR Low High P$;

zero=0; one=1;

HR_lbl='HR';

low_lbl='Low';

high_lbl='High';

p_lbl='P-value';

ObsId=_n_;

if count ne . then CountPct=put(count, 4.0) || "(" || put(percent,

3.0) || ")";↪→

datalines;

1 Naive....................1.107 0.874 1.403 0.3985

1 Covariates Adjustment....1.857 1.363 2.530 <0.0001

1 Matching.................. . . .

2 ..Greedy 1:1.............0.952 0.716 1.268 0.7385

2 ..Greedy 1:1 with caliper1.629 1.100 2.412 0.0148

2 ..Optimal 1:1............1.217 0.912 1.624 0.1826

2 ..Optimal 1:1/2..........1.274 0.965 1.684 0.0880

1 IPTW....................... . . .

2 ..General weights........1.996 1.733 2.300 <0.0001

2 ..Stabilized wights......2.094 1.674 2.620 <0.0001

1 Stratification............ . . .

2 ..Tertiles...............1.798 1.312 2.466 0.0003

;

run;

ods listing;

/*--Replace '.' in subgroup with blank--*/

data forest2;

set forest;

subgroup=translate(subgroup, ' ', '.');
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val=mod(_N_-1, 6);

if val eq 1 or val eq 2 or val eq 3 then ref=obsid;

/*--Separate Subgroup headers and obs into separate columns--*/

if id=1 then do;

heading=subgroup;

subgroup='';

end;

run;

/*--Create font with smaller fonts for axis label, value and data--*/

proc template;

define style listingSF;

parent = Styles.Listing;

style GraphFonts from GraphFonts

"Fonts used in graph styles" /

'GraphDataFont' = ("<sans-serif>, <MTsans-serif>",7pt)

'GraphValueFont' = ("<sans-serif>, <MTsans-serif>",7pt)

'GraphLabelFont' = ("<sans-serif>, <MTsans-serif>",7pt,

bold);↪→

;

end;

run;

%let dpi=150;

ods listing style=listingSF gpath=&gpath image_dpi=&dpi;

/*--Define templage for Forest Plot--*/

/*--Template uses a Layout Lattice of 5 columns--*/

proc template;
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define statgraph Forest;

dynamic _bandcolor _headercolor _subgroupcolor;

begingraph;

layout lattice / columns=3 columnweights=(0.23 0.4 0.3);

/*--Column headers--*/

sidebar / align=top;

layout lattice / rows=2 columns=3 columnweights=(0.18

0.35 0.3)↪→

backgroundcolor=_headercolor opaque=true;

entry textattrs=(size=8 weight=bold) halign=left

"Methods";↪→

entry textattrs=(size=8 weight=bold) "Hazard Ratio with

95% CI";↪→

entry halign=center textattrs=(size=8 weight=bold)

"Statistics" ;↪→

entry " ";

entry " ";

entry " ";

entry halign=center textattrs=(size=6) "Confidence

interval";↪→

endlayout;

endsidebar;

/*--First Subgroup column, shows only the Y2 axis

--*/↪→

/*--Use HighLow plot to place the heading and subgroup values

as HighLabels--*/↪→

/*--Indenting is done by making the 2nd highlow bar 1 unit

long --*/↪→
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/*--Highlow bar itself has thickness=0

--*/↪→

layout overlay / walldisplay=none

xaxisopts=(display=none linearopts=(viewmin=0

viewmax=20))↪→

yaxisopts=(reverse=true display=none

tickvalueattrs=(weight=bold));↪→

referenceline y=ref / lineattrs=(thickness=15

color=_bandcolor);↪→

highlowplot y=obsid low=zero high=zero / highlabel=heading

lineattrs=(thickness=0)↪→

labelattrs=(size=7 weight=bold);

highlowplot y=obsid low=zero high=one / highlabel=subgroup

lineattrs=(thickness=0);↪→

endlayout;

/*--Second column showing Count and percent--

layout overlay / xaxisopts=(display=none)

yaxisopts=(reverse=true display=none)

walldisplay=none;↪→

referenceline y=ref / lineattrs=(thickness=15

color=_bandcolor);↪→

scatterplot y=obsid x=zero / markercharacter=countpct

markercharacterattrs=graphvaluetext;

endlayout; */

/*--Third column showing odds ratio graph--*/

layout overlay / xaxisopts=( label=""

linearopts=(tickvaluepriority=true

tickvaluelist=(0.5 1.0 1.5 2.0 2.5 3.0)))
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yaxisopts=(reverse=true display=none)

walldisplay=none;↪→

referenceline y=ref / lineattrs=(thickness=15

color=_bandcolor);↪→

highlowplot y=obsid low=low high=high;

scatterplot y=obsid x=hr /

markerattrs=(symbol=squarefilled);↪→

referenceline x=1.861 /lineattrs=(color=red);

referenceline x=1.00 /lineattrs=(color=black);

endlayout;

/*--Fourth column showing PCIGroup and Group columns--*/

layout overlay / x2axisopts=(display=(tickvalues)

offsetmin=0.15 offsetmax=0.15)↪→

yaxisopts=(reverse=true display=none)

walldisplay=none;↪→

referenceline y=ref / lineattrs=(thickness=15

color=_bandcolor);↪→

scatterplot y=obsid x=hr_lbl / markercharacter=hr xaxis=x2

markercharacterattrs=graphvaluetext;

scatterplot y=obsid x=low_lbl / markercharacter=low

xaxis=x2↪→

markercharacterattrs=graphvaluetext;

scatterplot y=obsid x=high_lbl / markercharacter=high

xaxis=x2↪→

markercharacterattrs=graphvaluetext;

scatterplot y=obsid x=p_lbl / markercharacter=p xaxis=x2

markercharacterattrs=graphvaluetext;

endlayout;
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endlayout;

entryfootnote halign=left textattrs=(size=7)

'The HR=1.861 fixed in the simulation is used as a

comparator for the other methods (red line)';↪→

endgraph;

end;

run;

/*--Render Forest Plot without horizontal bands--*/

ods graphics / reset width=7in height=5in

imagename='Forest_HighLow_93';↪→

proc sgrender data=Forest2 template=Forest;

dynamic _bandcolor='white' _headercolor='white';

run;

***************DOUBLY ROBUST;

data forest;

input Id Subgroup $3-27 HR Low High P$;

zero=0; one=1;

HR_lbl='HR';

low_lbl='Low';

high_lbl='High';

p_lbl='P-value';

ObsId=_n_;

if count ne . then CountPct=put(count, 4.0) || "(" || put(percent,

3.0) || ")";↪→

datalines;

1 Naive....................1.107 0.874 1.403 0.3985

1 Covariates Adjustment....1.857 1.363 2.530 <0.0001

1 Matching (DR)............. . . .
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2 ..Greedy 1:1.............1.819 1.279 2.589 0.0009

2 ..Greedy 1:1 with caliper2.152 1.410 3.284 0.0004

2 ..Optimal 1:1............1.934 1.379 2.713 0.0001

2 ..Optimal 1:1/2..........2.001 1.432 2.796 <0.0001

1 IPTW (DR).................. . . .

2 ..General weights........3.080 2.607 3.638 <0.0001

2 ..Stabilized wights......2.630 2.060 3.358 <0.0001

1 Stratification (DR)....... . . .

2 ..Tertiles...............2.102 1.501 2.942 0.0007

;

run;

ods listing;

/*proc print;run;*/

/*--Replace '.' in subgroup with blank--*/

data forest2;

set forest;

subgroup=translate(subgroup, ' ', '.');

val=mod(_N_-1, 6);

if val eq 1 or val eq 2 or val eq 3 then ref=obsid;

/*--Separate Subgroup headers and obs into separate columns--*/

if id=1 then do;

heading=subgroup;

subgroup='';

end;

run;

/*proc print;run;*/

/*--Create font with smaller fonts for axis label, value and data--*/
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proc template;

define style listingSF;

parent = Styles.Listing;

style GraphFonts from GraphFonts

"Fonts used in graph styles" /

'GraphDataFont' = ("<sans-serif>, <MTsans-serif>",7pt)

'GraphValueFont' = ("<sans-serif>, <MTsans-serif>",7pt)

'GraphLabelFont' = ("<sans-serif>, <MTsans-serif>",7pt,

bold);↪→

;

end;

run;

%let dpi=150;

ods listing style=listingSF gpath=&gpath image_dpi=&dpi;

/*--Define templage for Forest Plot--*/

/*--Template uses a Layout Lattice of 5 columns--*/

proc template;

define statgraph Forest;

dynamic _bandcolor _headercolor _subgroupcolor;

begingraph;

layout lattice / columns=3 columnweights=(0.23 0.4 0.3);

/*--Column headers--*/

sidebar / align=top;

layout lattice / rows=2 columns=3 columnweights=(0.18

0.35 0.3)↪→

backgroundcolor=_headercolor opaque=true;
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entry textattrs=(size=8 weight=bold) halign=left

"Methods";↪→

entry textattrs=(size=8 weight=bold) "Hazard Ratio with

95% CI";↪→

entry halign=center textattrs=(size=8 weight=bold)

"Statistics" ;↪→

entry " ";

entry " ";

entry " ";

entry halign=center textattrs=(size=6) "Confidence

interval";↪→

endlayout;

endsidebar;

/*--First Subgroup column, shows only the Y2 axis

--*/↪→

/*--Use HighLow plot to place the heading and subgroup values

as HighLabels--*/↪→

/*--Indenting is done by making the 2nd highlow bar 1 unit

long --*/↪→

/*--Highlow bar itself has thickness=0

--*/↪→

layout overlay / walldisplay=none

xaxisopts=(display=none linearopts=(viewmin=0

viewmax=20))↪→

yaxisopts=(reverse=true display=none

tickvalueattrs=(weight=bold));↪→

referenceline y=ref / lineattrs=(thickness=15

color=_bandcolor);↪→
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highlowplot y=obsid low=zero high=zero / highlabel=heading

lineattrs=(thickness=0)↪→

labelattrs=(size=7 weight=bold);

highlowplot y=obsid low=zero high=one / highlabel=subgroup

lineattrs=(thickness=0);↪→

endlayout;

/*--Second column showing Count and percent--

layout overlay / xaxisopts=(display=none)

yaxisopts=(reverse=true display=none)

walldisplay=none;↪→

referenceline y=ref / lineattrs=(thickness=15

color=_bandcolor);↪→

scatterplot y=obsid x=zero / markercharacter=countpct

markercharacterattrs=graphvaluetext;

endlayout; */

/*--Third column showing odds ratio graph--*/

layout overlay / xaxisopts=( label=""

linearopts=(tickvaluepriority=true

tickvaluelist=(0.5 1.0 1.5 2.0 2.5 3.0)))

yaxisopts=(reverse=true display=none)

walldisplay=none;↪→

referenceline y=ref / lineattrs=(thickness=15

color=_bandcolor);↪→

highlowplot y=obsid low=low high=high;

scatterplot y=obsid x=hr /

markerattrs=(symbol=squarefilled);↪→

referenceline x=1.861 /lineattrs=(color=red);

referenceline x=1 /lineattrs=(color=black);
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endlayout;

/*--Fourth column showing PCIGroup and Group columns--*/

layout overlay / x2axisopts=(display=(tickvalues)

offsetmin=0.15 offsetmax=0.15)↪→

yaxisopts=(reverse=true display=none)

walldisplay=none;↪→

referenceline y=ref / lineattrs=(thickness=15

color=_bandcolor);↪→

scatterplot y=obsid x=hr_lbl / markercharacter=hr xaxis=x2

markercharacterattrs=graphvaluetext;

scatterplot y=obsid x=low_lbl / markercharacter=low

xaxis=x2↪→

markercharacterattrs=graphvaluetext;

scatterplot y=obsid x=high_lbl / markercharacter=high

xaxis=x2↪→

markercharacterattrs=graphvaluetext;

scatterplot y=obsid x=p_lbl / markercharacter=p xaxis=x2

markercharacterattrs=graphvaluetext;

endlayout;

endlayout;

entryfootnote halign=left textattrs=(size=7)

'The HR=1.861 fixed in the simulation is used as a

comparator for the other methods (red line). DR=

Doubly Robust';

↪→

↪→

endgraph;

end;

run;

/*--Render Forest Plot without horizontal bands--*/
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ods graphics / reset width=7in height=5in

imagename='Forest_HighLow_93';↪→

proc sgrender data=Forest2 template=Forest;

dynamic _bandcolor='white' _headercolor='white';

run;
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