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Summary

Parameter identification fa riferimento ad un insieme di tecniche utilizzate per risolvere
problemi inversi non lineari in cui la risposta di un sistema dipende da un certo numero
di parametri incogniti. Fra le possibili applicazioni, la parameter identification può essere
utilizzata per individuare le proprietà meccaniche dei materiali, basandosi sul loro compor-
tamento sperimentale. L’idea alla base è di cercare i parametri del modello tali per cui il
comportamento simulato del materiale corrisponda al comportamento reale. La ricerca dei
parametri ottimali è svolta tramite l’utilizzo combinato di diverse tecniche, quali metamod-
eling, design degli esperimenti, metriche di curve matching e algoritmi di ottimizzazione,
implementati nel software commerciale LS-OPT.

I dati sperimentali, necessari per l’ottimizzazione, sono stati ottenuti da test di trazione
eseguiti su provini forniti dall’azienda CarboSix. I provini sono stati ricavati da lastre in
resina epossidica rinforzata con fibre di carbonio e sono stati testati con diversi orientamenti
delle fibre (0°, 45°, 90°) e diversi spessori.

In una prima fase del lavoro, le varie tecniche di metamodeling, sampling, curve match-
ing e ottimizzazione sono state approfondite e uno studio su un problema semplificato è
stato svolto con lo scopo di capire accuratezza e costo computazionale delle varie opzioni
implementate in LS-OPT.

L’ottimizzazione vera e propria dei parametri del materiale è stata eseguita nella seconda
parte del lavoro. Due modelli di materiale, identificati come MAT54 e MAT58, sono stati
considerati. Tutte le simulazioni sono state svolte utilizzando il software agli elementi
finiti LS-DYNA, mentre la procedura di ottimizzazione è stata svolta in LS-OPT. È stato
osservato che il MAT54 riesce a rappresentare bene il comportamento del materiale testato
solamente quando il carico è applicato nella stessa direzione delle fibre. Il MAT58 riesce
invece a riprodurre adeguatamente il comportamento osservato sia per il caso di trazione
a 0° che per quello a 45°. Per entrambi i materiali, la modellazione dei singoli layer di
fibre di carbonio porta a risultati migliori rispetto alla modellazione con un solo layer.
Infine, entrambi i modelli sembrano avere il potenziale per riprodurre il comportamento
del materiale a rottura, anche se degli studi più approfonditi sono necessari per capire quali
parametri relativi alla rottura utilizzare ed ottimizzare.
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Chapter 1

Introduction

Parameter identification problems are particular types of non-linear inverse problems, in
which certain parameters of a system have to be determined based on its response. The
system is not completely unknown, in the sense that its equations are (assumed to be)
known but they depends on unknown parameters, which are the objective of parame-
ter identification. In this thesis, a specific approach for solving parameter identification
problems is presented, which involves many different techniques related to metamodeling,
design of experiments and optimization. This approach has then been used to characterize
mechanical properties of a composite material.

In order to perform parameter identification, two softwares have been used: the ac-
tual optimization procedure was carried out using LS-OPT, while all simulations of the
mechanical system where performed using the finite element solver LS-DYNA.

This thesis focuses on two main objectives:
1. to test the optimization, metamodeling and sampling techniques that are implemented

in LS-OPT, so as to understand which technique is the most appropriate for the
particular parameter identification problem that has been addressed;

2. to characterize the mechanical behaviour of the tested composite material using pa-
rameter identification techniques in LS-OPT.

The entire work has been carried on with the supervision of the company Nova Anal-
ysis and the composite material has been provided by the company CarboSix. Finally,
experimental tests were performed at Politecnico di Torino mechanical laboratories.

The work is organized as follows. In Chapter 2 the basic idea behind parameter identifi-
cation is presented and different approaches to solve the problem in LS-OPT are explained.
Chapters 3 and 4 give the theoretical notions necessary to fully understand all steps in a
parameter identification procedure. In particular, Chapter 3 concerns metamodeling and
sampling techniques, whereas Chapter 4 concerns optimization algorithms and related top-
ics, such as the choice of the objective function and constraints. In Chapter 5 the experi-
mental tests performed on the available specimens are described in detail and experimental
results are shown. The numerical model used for the simulations in LS-DYNA, including
modeling of composite materials, is described in Chapter 6. Finally, in Chapter 7 all the
optimization runs that have been performed are described and optimization results of the
studied material models are presented. Chapter 8 summarizes all the obtained results.
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1 – Introduction

For completeness, additional photos concerning the experimental tests are shown in
Appendix A, while some relevant parts of the LS-DYNA input files used for simulations
are given in Appendix B.
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Chapter 2

Parameter Identification

2.1 Introduction

Complex materials are more often employed in many engineering fields, due to the advance-
ment of material technologies. Such new materials are in many cases composite materials,
i.e. they are created by combining two or more simple materials, but they exhibit none
of the characteristics of the single constituents. Since in most cases the properties of such
complex materials cannot be deduced from the properties of their constituents, mathe-
matical modeling of composites is not an easy task. Even when there is reason to believe
that a constitutive model could be more appropriate than another, there is the problem of
appropriately choosing the many parameters which describe the model. A relatively recent
technique, called parameter identification, has been developed in order to overcome this
problem.

Parameter identification, often called parameter estimation or system identification,
refers to a class of analytical and numerical techniques used to solve non-linear inverse
problems in which the output of the system usually depends on a set of unknown parame-
ters. The general idea can be applied to a variety of problems and fields, such as aerospace
engineering [7], manufacturing process of metal parts [13] and crash analysis [20]. How-
ever, in most cases, parameter identification has been used to identify thermo-mechanical
properties of materials. For example, some parameter estimation studies have been carried
out on concrete, steel, foam and fabric materials [4][6][23]. Also, many studies involved
the identification of plastics, carbon-fiber reinforced polymers and laminated composite
materials [2][3][5][14][22].

Parameter estimation is based on a simple but effective idea: the unknown parame-
ters of the material are optimized so that the output of simulations is as close as possible
to experimental observations on the same material. The optimization process could be
performed on the actual model which describes the material, but this would be computa-
tionally expensive. Instead, a metamodel (i.e. a model of the model) is built based on a
reduced number of simulations and the optimization is then performed on such metamodel
(see Figure 2.1). In this way, optimal parameters can be found with high accuracy and
efficiency.
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2 – Parameter Identification

(a) (b)

Figure 2.1: Comparison between a surface representing the model and the
metamodel built from sampling the design space.

2.2 Parameter identification in LS-OPT

2.2.1 Metamodel-based Optimization
In this study parameter identification has been performed using LS-OPT [9], which is a
software produced by Livermore Software Technology Corporation (LSTC), together with
the finite element solver LS-DYNA and other minor softwares. It has been designed to
solve general optimization problems and its capabilities range from basic optimization to
probabilistic and robustness analyses and topology optimization problems. In particular,
one important application of LS-OPT is parameter identification. In order to understand
how the software solves the problem, it is useful to have a look at its graphical user interface.

Figure 2.2 shows the general approach for solving a parameter estimation problem in
LS-OPT using metamodels. Apart from the Setup and Verification dialogs, the important
steps are the following ones:

1. Sampling (or Design of Experiments, see Section 3.2): in this dialog points that have
to be analysed are chosen from all possible combinations of parameters. These points
will be used to build the metamodel. It is possible to add more Sampling dialogs, but
each one of them must always have at least one Stage dialog;

2. Stage: the Stage dialog allows LS-OPT to communicate with an external solver in
order to perform numerical simulations and gather output data from them. LS-OPT
has a built-in interface for simulating with LS-DYNA, but it is possible to interface
the software with any external solver. More stages can be present in the same project
if the analysis requires to simulate different systems or multiple load cases;

4



2.2 – Parameter identification in LS-OPT

Figure 2.2: Flowchart of a metamodel-based parameter estimation problem
from the LS-OPT graphical user interface.

3. Build Metamodels (see Section 3.1): after all simulations have been performed,
LS-OPT uses their outputs (responses or histories) to build a metamodel on which
the optimization will later be performed;

4. Composites: in most cases it is necessary to combine parameters or responses in
order to define other dependant quantities, called composite expressions or simply
composites. This is always the case in parameter identification problems, because of
the particular form of the function to be minimized (see Section 4.1);

5. Global Sensitivities (see Section 3.3): this dialog is optional and it allows to compute
sensitivities of the parameters based on the metamodel;

6. Optimization: after having defined the objective function and eventual constraints,
the actual optimization can be performed in order to compute the optimal value of
each parameter. Several optimization algorithms are implemented in the software
(see Section 4.3).

Task and strategies

Steps 1 to 6, as described above, establish the basic run of a parameter estimation problem.
However, some automatic procedures have been implemented to increase the accuracy of
the final result. In order to explain this procedures it is convenient to introduce tasks.

As stated above, LS-OPT is capable of solving many different problems. The type
of problems that has to be analysed is chosen by specifying a certain task. Tasks are
divided into two main categories. The first one includes metamodel-based tasks, in which a
metamodel is constructed based on some simulation runs. On such metamodel it is possible
to perform simple design exploration, optimization, robustness analysis, reliability-based

5



2 – Parameter Identification

optimization and Monte Carlo analysis. The second category includes direct simulation
tasks, such as direct optimization and direct Monte Carlo analysis.

Ideally, parameter identification could be solved using direct optimization, but it is
clear that this approach would be too much expensive since it requires to run hundreds of
simulations. For this reason, the obvious choice is a Metamodel-based Optimization Task.
For this particular task, three additional strategies can be selected:

1. Single Iteration: this strategy consists of performing steps 1 to 6 one single time, as
described in the previous section. It is generally used to build a global metamodel in
order to perform design exploration;

2. Sequential: by selecting this strategy, the basic procedure is repeated a certain amount
of times (specified in the Termination Criteria dialog, see Figure 2.2) and at each
iteration the metamodel is rebuilt or updated with new points. This strategy can
be used for design exploration as well as for parameter identification if the user is
interested in finding the optimal value while having some global information on the
system at the same time. It has been observed that Single Iteration and Sequential
strategies lead to the same results (in terms of accuracy and computational time) if
the total number of simulation runs is the same;

3. Sequential with Domain Reduction: this strategy is similar to the previous one, but
after each iteration the domain (design space) is shrank and panned using specific
parameters and algorithms in order to chase the current optimum point, as it is shown
in Figure 2.3. Since in parameter identification problems the objective is to find the
global optimum, this strategy is the most appropriate one of all three available.

Figure 2.3: Example of a linear metamodel at the first five iterations of a
Metamodel-based Optimization task with Sequential Domain Reduction strat-
egy.
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In general, both "Sequential" and "Sequential with domain reduction" strategies have
proven to be very efficient and robust for parameter identification problems [21][22]. The
domain reduction technique is by far the most efficient since it significantly reduces the
total number of iterations, compared to the simple sequential strategy.

One flaw of sequential strategies is that they could lead to local optimal solutions in
some cases. It is the user’s job to verify that the experimental and simulated results are
close enough at the end of the optimization. If this is not the case, then the optimiza-
tion procedure has converged to a local optimum or the model used to describe the real
phenomenon is not the appropriate one.

It is worth noticing that also Reliability-based Optimization (RBDO) tasks could be
used for solving parameter estimation problems. In fact, this task should be preferred
to Metamodel-based Optimization in those problems where there is uncertainty on the
parameters and, as a consequence, on the response.

2.2.2 Direct Optimization
It has already been mentioned that solving parameter identification problems using direct
optimization would lead to too many simulations, thus resulting in a very computation-
ally expensive process. Nonetheless, it is useful to understand how direct optimization is
performed in LS-OPT since this lead to a better understanding of the metamodel-based
optimization.

Figure 2.4: Flowchart of a direct optimization parameter estimation problem
from the LS-OPT graphical user interface.

As it is shown in Figure 2.4, the flowchart of direct optimization is not very dissimilar to
the previous one: sampling, simulations, computation of composites and optimization are
still present. The main difference is the absence of the metamodel, which is not build after
simulations have been performed. Other differences concern the choice of sampling and
optimization algorithm. In fact, LS-OPT automatically performs direct optimization using
Genetic Algorithms, therefore sampling simply consists in randomly generating points in
the design space (according to specific criteria), whereas in the optimization dialog the

7



2 – Parameter Identification

best simulated points are selected and transferred to the next iteration. Details on various
steps of Genetic Algorithm (which applies both to direct optimization and to metamodel
optimization) are given in Section 4.3.2.
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Chapter 3

Metamodeling and Sampling
Techniques

In this chapter, metamodeling and sampling techniques are reviewed from a theoretical
point of view. These two topics are profoundly related to each other. In fact, the purpose
of sampling is the construction of the metamodel and, viceversa, a metamodel could not
be built without sampling the design space in the first place1. For sake of simplicity,
metamodeling techniques are firstly discussed and Design of Experiment theory is then
presented. At the end of the chapter, a brief introduction to metamodel-based sensitivity
analysis is presented and some considerations are made about the choice of sampling and
metamodeling techniques for parameter identification. All theoretical notions presented in
this Chapter are referenced in Chapters 21 and 22 of the LS-OPT User’s Manual [9].

3.1 Metamodels
With the progress of computational power, more and more processes can be simulated. At
the same time, however, more and more complex models have been developed to better
describe real phenomena, so that a single simulation could take days or weeks to run.
It is obvious that a parameter estimation problem cannot be solved by optimizing the
actual model, because this would mean running lots of expensive simulations. By using
metamodels, this cost can be drastically reduced without affecting too much the quality of
results.

Given a physical phenomenon, a model is a set of mathematical laws which describe it.
A metamodel is a model of the model, i.e. it is a model which describes the underlying
model (see Figure 3.1). There are several advantages in using metamodels:

– they have in general a simpler mathematical formulation than the actual model,
which is in fact the set of governing differential and algebraic equations describing
the phenomenon;

1This is the reason why the Sampling and Metamodel dialog of LS-OPT have actually the same
content.

9



3 – Metamodeling and Sampling Techniques

– they can be constructed using a relatively small number of simulations, thus lowering
the total computational cost of the parameter optimization procedure;

– by construction, metamodels are smooth approximations of the underlying model; in
this way local optima in the model caused by noise are avoided.

Simulations
MODEL

PHENOMENON

METAMODEL
Optimization

Experiments

Figure 3.1

Since they are very useful for parameter identification problems, several classes of meta-
models, such as polynomial response surfaces, neural networks, Kriging and support vector
regression, have been studied. More details about the topics presented in the following sec-
tions are given in Chapters 21.1 and 22 of the LS-OPT User’s Manual [9].

3.1.1 Polynomial response surfaces
Suppose that a generic system has to be studied and that it is simply represented by the
function

y = η(x), (3.1)
where x = (x1, ..., xN ) is the vector of inputs (from now on also referred to as variables or
parameters) and y is the output or response of the system. According to Response Surface
Methodology (RSM), the system can be approximated by a function

ŷ = f(x) ≈ η(x), (3.2)

which can be expressed as a weighted sum of some basis functions

f(x; a) =
L∑

l=1
alφl(x) = a · φ(x). (3.3)

Polynomial response surfaces are defined by considering a polynomial basis for f . For
example, a linear response surface is defined by

φ = (1, x1, ..., xN ), (3.4)

10



3.1 – Metamodels

while a fully quadratic one is defined by

φ = (1, x1, ..., xN , x2
1, ..., x2

N , x1x2, ...). (3.5)

Based on the degree of non-linearity of the underlying system, one could take into
consideration polynomials of any order. However, it has been observed that polynomials of
degree strictly greater than 2 are poorly efficient and could lead to over-fitting problems.
In practice, common polynomials are linear, quadratic, elliptic (linear with diagonal terms)
and interaction (linear with off-diagonal terms) ones.

The unknown coefficients a in (3.3) are computed using the classic Least Square solu-
tion, namely

a = (XT X)−1XT ŷ, (3.6)
where X is the dispersion matrix defined by

Xpl = φl(xp), 1 ≤ p ≤ P, 1 ≤ l ≤ L, (3.7)

and
ŷp = f(xp), 1 ≤ p ≤ P, (3.8)

being {xp}1≤p≤P the set of points for which the output ŷp is known.
Polynomial metamodels have the great advantage of being easy and efficient to con-

struct, because they do not require an optimization process (unlike, for example, neural
networks, see Sections 3.1.2 and 3.1.3). However, due to their nature, they are only local
approximations of the underlying model, therefore they have poor prediction capabilities
outside the region of interest and their main application is in conjunction with sequential
optimization strategies (with domain reduction).

3.1.2 Feedforward neural networks
Polynomial metamodels are very robust and efficient, especially if coupled with a sequential
optimization strategy (with domain reduction). However, by definition, they are incapable
of capturing high non-linearities in the behaviour of the response. To overcome this prob-
lem, other metamodeling techniques, such as neural networks, have been explored.

Just like polynomial response surfaces, neural networks try to model the relationship
between inputs and outputs of a system. They do this by using single computational
units, called neurons, which communicate according to specific topologies. In particular,
feedforward neural networks (FNN) are characterized by having an initial layer which takes
input variables, a series of hidden layers and a final layer which returns the output of the
network, as shown in Figure 3.2. The information is passed through the layers only in the
input-output direction.

Typically, input neurons are transparent (i.e. they simply transfer input values to
the next layer), while output neurons perform a weighted sum of values coming from the
previous layer. Differently, hidden neurons perform a weighted sum of input values which
is then fed into an activation function (typically a sigmoid function, see Figure 3.3a); the
output is finally passed to the next layer of neurons. In mathematical form a FNN with,
for example, one hidden layer is defined as

ŷ = f(x; w) = w0 +
H∑

h=1
whs

(
wh0 +

N∑
n=1

whnxn

)
, (3.9)
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Figure 3.2: Example of a feedforward neural network with one 3-node inner
layer. Grey neurons with constant input 1 are inserted in order to account for
biases w0 and wh0.

where s(·) is the activation function, w = (w0, ..., wH , wh0, ..., wHN ) is the vector of weights
and H is the number of neurons in the hidden layer. It is important to notice that FNNs
are a non-linear regression technique, contrarily to polynomial response surfaces.

In order to find the unknown parameters w, the network has to be trained using a set of
inputs {xp} with known outputs {ŷp}. These inputs are actually the design points chosen
during sampling of the design space (see Section 3.2). The training algorithm is based on
the well established backpropagation technique.

The accuracy of a FNN highly depends on the size of the training set. Scarce training
datasets can lead to networks with large fitting error and poor prediction capabilities. The
only solution to this problem is to use a larger dataset to train the network, although this
increases the computational cost.

It is worth noticing that, with different initial weights, the training algorithm usually
ends up in different local minima (in the space of weights), with the same quality. To
counteract this phenomenon, LS-OPT considers a committee of networks with different
initial weights and settings, trains them individually and finally averages them. The size
of the committee significantly affects the time consumed in building the metamodel.

3.1.3 Radial Basis Function networks
Radial Basis Function (RBF) networks are a particular class of neural networks, char-
acterized by having a single hidden layer, whose neurons have a radial basis function as
activation function. Radial basis functions are functions whose value at some point only
depends on the distance of the point from a fixed point called center of the function. Sev-
eral RBF are present in literature (see Table 3.1), however only the Gaussian and Hardy’s
Multiquadratics functions are implemented in LS-OPT.
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Figure 3.3: Sigmoid (a) and Gaussian (b) activation functions.

Name g(r; ε)

Gaussian e−(εr)2

Hardy’s Multiquadratic
√

1 + (εr)2

Inverse Quadratic 1
1 + (εr)2

Inverse Multiquadratic 1√
1 + (εr)2

Table 3.1

The most general form of RBF networks is the following

ŷ = f(x; w) = w0 +
H∑

h=1
whg(rh; εh), (3.10)

with

rh =
(

N∑
n=1

(xn − whn)2
) 1

2

(3.11)

being the Euclidean distance of the point x from the centre (wh1, ..., whN ) of the h-th RB
function.

It is clear from equations (3.10) and (3.11), that many variables are involved in the
definition of the network. A simplified form of RBF networks assumes RBF centres coin-
cident with design points {xp}, thus eliminating the need to compute weights whn. As a
consequence, exactly P radial basis functions are used to interpolate the points.

The value of the shape parameter ε determines the "resolution" of the approximation: a
too high ε could generate a function with poor prediction capability between points, while a

13



3 – Metamodeling and Sampling Techniques

too small ε could cause poor prediction capability far away from design points. A very basic
choice is to have all εh equal to some constant value, but clearly this is not an intelligent
choice, when design points are not uniformly distributed over the design space. In order
to account for this case, shape parameters are chosen such that each RBF overlaps with
S neighbour functions, where S is a constant integer. The optimal value of S is computed
by considering several trial networks with different values of S and then choosing the best
one according to some criterion (prediction error, generalized cross validation, ect...).

Finally, the simplified formulation of RBF networks is

ŷ = f(x; w) = w0 +
P∑

p=1
wpg

(
||x − xp||; S

)
. (3.12)

It is important to notice that this simplified version is actually a linear regression method
with respect to the weights (w0, ..., wP ). Therefore, less computational effort is required
to build RBF networks compared to FNN, especially if FNN with large committees are
considered. Moreover, thanks to internal cross validation, RBF networks have in general
good prediction capabilities.

3.1.4 Kriging
The basic idea behind Kriging is to split the unknown response in two parts as follows:

f(x) = F (x) + Z(x), (3.13)

where F is the deterministic component (or trend) of f , while Z is its stochastic component.
The trend is usually taken as a constant, linear or quadratic polynomial with coefficients
to be determined. Z is characterized by having mean zero and covariance

Cov(Z(xp), Z(xq)) = σ2R(xp, xq), 1 ≤ p, q ≤ P (3.14)

where σ2 = Var(Z(xp)) and R is a correlation function. Two common choices for the
correlation function are Exponential

R(xp, xq) =
N∏

n=1
exp

[
−Θn

⏐⏐⏐(xp)n − (xq)n

⏐⏐⏐] (3.15)

and Gaussian

R(xp, xq) =
N∏

n=1
exp

[
−Θn

(
(xp)n − (xq)n

)2]
(3.16)

In both expressions constants Θn have to be determined. In LS-OPT, the maximum
likelihood estimates for Θn are computed by solving an optimization problem, using Genetic
Algorithms (see Section 4.3.2).

3.1.5 Support Vector Regression
Support Vector Regression (SVR) is a metamodeling technique derived as a generalization
of Support Vector Machine algorithms. The particular method implemented in LS-OPT

14
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Figure 3.4: Representation of a one-dimensional linear SVR metamodel.

is ε-SVR [16], which consists in finding the "flattest" function that interpolates the data
points, such that the deviation of each point from the function is at most ε (see Figure
3.4).

In the simplest case, the approximating function is assumed to be linear:

ŷ = f(x; w, b) = w · x + b. (3.17)

In order to find the weights w and the bias b, the following constrained optimization
problem has to be solved

minimize 1
2 ||w||2 (3.18)

subject to
{

yp − w · xp − b ≤ ε

w · xp + b − yp ≤ ε
, 1 ≤ p ≤ P. (3.19)

The "flatness" of the approximating function f is achieved by minimizing ||w||2.
The problem, as stated above, could not always have a solution. In order to allow for

some errors, slack variables ξp, ξ∗
p and a cost parameter C are introduced:

minimize 1
2 ||w||2 + C

P∑
p=1

(ξp + ξ∗
p) (3.20)

subject to

⎧⎪⎪⎨⎪⎪⎩
yp − w · xp − b ≤ ε

w · xp + b − yp ≤ ε

ξp, ξ∗
p ≥ 0

, 1 ≤ p ≤ P. (3.21)

As described in detail in [16], the optimization problem (3.21) is actually solved in-
troducing Lagrangian multipliers αp and α∗

p. The important theoretical result is that the
unknown weights are actually a linear combination of input data points, i.e.

w =
P∑

p=1
(αp + α∗

p)xp, (3.22)
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3 – Metamodeling and Sampling Techniques

therefore

f(x; w, b) =
P∑

p=1
(αp + α∗

p)xp · x + b. (3.23)

Equation (3.23) suggests a natural generalization to non-linear approximations by sub-
stituting the dot products with a non-linear kernel function k, so that the approximating
function becomes

f(x; w, b) =
P∑

p=1
(αp + α∗

p)k(xp, x) + b. (3.24)

Two common kernels, both implemented in LS-OPT, are polynomial kernels

km(xp, x) = (1 + xp · x)m (3.25)

and Gaussian kernels
kσ(xp, x) = exp

(
−||xp − x||2

2σ2

)
. (3.26)

Both optimization parameters ε, C and kernel parameters m or σ are internally optimized
by LS-OPT using k-fold cross validation. This procedure is quite time consuming but has
the advantage of generating a really good approximating function.

It is worth noticing that the approximating surface f only depends on the number of
data points, not on their dimension. This fact suggests that SVR could be an efficient
metamodeling technique for high dimensional optimization problems.

3.2 Design of Experiments
Design of Experiments (DoE) is the selection procedure for finding points in the design
space that have to be analysed. Originally used for actual experiments, DoE has recently
been applied also to numerical experiments, i.e. computer simulations. DoE theory offers
useful techniques for accurately choosing which and how many experiments to perform in
order to extract as much information as possible from a limited amount of experiments.
Although numerous classes of designs are present in literature, only those implemented in
LS-OPT will be discussed (see Chapter 21.2 of the LS-OPT User’s Manual [9]).

We recall that x = (x1, ..., xN ) is the vector of N parameters/variables and we will
assume that each xn varies within an interval In. The Cartesian product of all In is
the design space D, which, for sake of simplicity, will always be normalized to an N -
dimensional centred hypercube in the following examples. The whole design, i.e. the set
of points {xp}1≤p≤P , can be summarized in a P -by-N matrix, called the sampling matrix
S, whose columns are the chosen design points.

3.2.1 Full factorial designs
In full factorial designs, l uniformly spaced values are considered for each variable xn within
its range In. The total number of designs is lN , therefore the design is called an lN or l-level
full factorial design. Full factorial designs can be expensive for large values of N , since the
number of points increases exponentially. A simple way to overcome this problem is to use
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3.2 – Design of Experiments

the so-called fractional factorial designs, in which only a fraction of the full factorial points
is considered. However, fractional factorial designs are not implemented in LS-OPT.

Usually, 2N and 3N full factorial designs are used for linear and quadratic surfaces
respectively, since they provide a good oversampling percentage over the minimum required
number of designs.

An example of a 32 full factorial design is shown in Figure 3.5 and its sampling matrix
is

S =
[
−1 0 1 0 0 1 −1 0 1
1 1 1 −1 0 0 −1 −1 −1

]T

. (3.27)
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Figure 3.5: Example of a 32 full factorial design.

3.2.2 Koshal designs
Koshal designs are saturated designs that can only be used in conjunction with linear or
quadratic polynomial response surfaces (see Section 3.1.1). Saturated means that the num-
ber of designs is the minimum required to find the unknown coefficients in the polynomial
expansion, i.e. N + 1 for linear polynomials and (N2 + 3N + 2)/2 for quadratic ones.

The sampling matrices of two-dimensional linear and quadratic Koshal designs are re-
spectively

S1 =
[0 −1 0
0 0 −1

]T

and S2 =
[0 1 0 1 −1 0
0 0 1 1 0 −1

]T

. (3.28)

3.2.3 Central composite designs
Central composite designs (CCD) are specially designed for quadratic polynomial response
surfaces. They consist of a 2-level full factorial design, enhanced by axial points and a
central point (see Figure 3.7). The number of design is then 2N + 2N + 1. Two different
types of CCD exist, which differ on the position of the axial points. In the first type,
called Inscribed CCD, axial points are placed on the "faces" of the design space, whereas
in the second type, called Circumscribed CCD, they are chosen so that they have the
same distance from the design space centre as the factorial points. Since Circumscribed
CCD has better properties (such as rotatability) than Inscribed CCD, it is the only central
composite design implemented in LS-OPT.
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Figure 3.6: Example of two-dimensional Koshal designs for linear (a) and
quadratic (b) polynomials.

The sampling matrix for CCD is

S =
[0 1 0 −1 0 α α −α −α
0 0 1 0 −1 α −α α −α

]T

, (3.29)

where α =
√

2/2 for Circumscribed CCD (see Figure 3.7) or α = 1 for Inscribed CCD.Scatter Plot
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Figure 3.7: Example of a two-dimensional Circumscribed Central Composite
Design.

3.2.4 D-optimal designs
D-optimal designs are generated by solving the following optimization problem2

maximize det(XT X) over designs {xp} ⊂ {yq}, (3.30)

where {yq} is a basis set of Q designs, {xp} is the D-optimal set of P designs and X is
the dispersion matrix, defined as in (3.7). D-optimal designs are constructed in a way that

2LS-OPT uses Genetic Algorithm to solve this problem.

18



3.2 – Design of Experiments

maximizes the information present in the set of points, in fact XT X is the information
matrix. Since their construction depends on X, they can be used only with response
surfaces of the form (3.3).

In LS-OPT, the user can specify the basis {yq} from which to generate the D-optimal
design. Common options are full factorial designs, LHS or space filling designs.

Because of the way they are defined, D-optimal designs are very useful when some
constraint is defined on parameters (see Section 4.2.1). In this cases, D-optimal designs
are the best option among all techniques implemented in LS-OPT, when used to build a
polynomial response surface. Scatter Plot
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Figure 3.8: Example of 20 D-optimal designs, generated from a basis of 1000
space filling designs, for a quadratic polynomial surface.

3.2.5 Space filling designs
Space filling designs are a large category of designs, whose purpose is to generate a certain
number of points uniformly distributed across the entire design space. From a programming
point of view this is not an easy task, however a variety of algorithm exists in order to
solve this problem.

The basic approach is to generate purely random points in the design space. This is
referred to as Monte Carlo designs.

Another basic but more effective approach is Latin Hypercube Sampling (LHS). Accord-
ing to this algorithm, each variable interval is divided into P levels (or subintervals) and
points are generated such that there is a design point for each level of each variable. In par-
ticular, this is called Central LHS. A slight variation, called Generalized LHS, introduces
a small offset to each point, but preserves the original LHS structure, thus generating a
partially random and partially structured design. The sampling matrices for both methods
are defined as

Sij = ηij − ζij

P
, (3.31)

where (η1j , ..., ηP j) are uniform random permutations of integers (1, ..., P ); ζij = 0.5 for
Central LHS, whereas it is a uniform random numbers between 0 and 1 for Generalized
LHS. LHS designs have the advantage of representing all levels of all variables still using a
few number of designs.

More advanced algorithms try to uniformly fill the design space by maximizing the
minimum distance between any pair of points (maximin criterion). Three variants of the
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3 – Metamodeling and Sampling Techniques

same algorithm are implemented in LS-OPT:

1. the first one, called "maximin distance", starts from an arbitrary design and moves
points randomly so as to optimize the maximin criterion;

2. the second one, called "maximin LHD permute", starts from an LHS design, then
columns of the sampling matrix are permuted so as to optimize the maximin criterion;

3. the third, called "maximin LHD subinterval", also starts from an LHS design, then
points are moved within their subinterval so as to optimize the maximin criterion;
this algorithm preserves the original structure of the LHS design.

In all three cases, the optimization is internally performed in LS-OPT using Adaptive
Simulated Annealing (see Section 4.3.3).
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Figure 3.9: Examples of 20 designs points generated with Monte Carlo
sampling (a), Central LHS (b) and Space filling with the "LHD subinterval"
algorithm (c). It is evident how the structure of the design points increases
from left to right.

3.3 Sensitivity analysis
Sensitivity analysis refers to a class of techniques used for determining the influence that
each parameter has on the response. In parameter identification problems, sensitivity
analysis is often used in an early stage for variable screening, i.e. for identifying which
variable actually contribute to the response and which does not.

In LS-OPT, two methods are implemented for computing sensitivities, namely ANOVA
and GSA. ANOVA, i.e. Analysis of Variance, is a regression-based sensitivity measure.
Sensitivities are computed as

bn = ∂flin

∂xn
· |In| 1 ≤ n ≤ N, (3.32)

where flin is a linear approximation of experimental points and |In| is the range of vari-
able xn. Since ANOVA sensitivities are computed using linear approximations, they are
significant only for quasi-linear models.
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In order to accurately compute sensitivities for non-linear responses, Global Sensitivity
Analysis (GSA) is used. GSA is based on Sobol’s indices theory [19] and sensitivities are
found using Monte Carlo integration on the metamodel. This means that GSA sensitivities
are highly influenced by the accuracy and quality of the metamodel. Another important
advantage of GSA over ANOVA is that the influence of each parameters on more that one
response can be visualized at the same time. This is useful for determining the overall
influence of each parameter when dealing with multiple load cases.

3.4 Which method to choose?
Considering the variety of sampling and metamodeling techniques that are implemented
in LS-OPT, some considerations are needed in order to properly choose the right method.

Since the "Sequential with Domain Reduction" strategy will be used, using a polynomial
metamodel is the first choice. In particular, linear metamodels should be preferred rather
than quadratic ones, since they require less sampling points for their construction and
the only side effect is a slightly larger number of iterations. The better accuracy gained
from quadratic metamodels is not worth the time spent to simulate extra design points,
especially for a large number of parameters.

When using polynomial response surfaces, D-optimal designs have two main advantages
over other techniques:

1. they are expressly defined for maximizing the amount of information in the design
based on the specific form of the polynomial surface, and

2. they can be used even when sampling constraints are defined, contrarily to non-
optimized designs such as the full factorial, Koshal and central composite ones.

The choice of the basis from which to extract the D-optimal design does not seem to be
too relevant for the quality of the design, if a large number of basis designs is provided.
The LHS basis represents a good compromise between quality and efficiency for D-optimal
designs.

Other classes of metamodels should not be discarded a priori. For example, neural
networks are good candidates for sequential strategies in general, as it is possible and com-
putationally inexpensive to use designs from previous iterations to update the metamodel.
This is particularly useful when the objective of the study is to find the optimal value
but global informations are needed for other reasons since neural networks can be locally
refined while maintaining their global structure unvaried. Among neural networks, RBF
should be preferred to FNN for two reasons. Firstly, RBF networks can be constructed
much faster than FNN, since they are based on linear regression and they do not require
training. The internal cross-validation may be expensive but, at least, it has the advantage
of generating a metamodel with good prediction capabilities. Secondly, RBF networks are
more robust than FNN when a small number of designs is used to build the metamodel.

Regarding Kriging metamodels, they have the advantage of exactly3 interpolating the

3Actually, the interpolation is almost exact since LS-OPT introduces a small error in order to avoid
ill-conditioning of the correlation matrix.
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3 – Metamodeling and Sampling Techniques

input points. However this leads to a surface highly sensitive to noise and local refinements
could cause global variations of the metamodel [8]. Moreover, the construction of Kriging
metamodels could be time consuming because of the calculation of Θn for each n.

Finally, SVR metamodels are a valid choice for high dimensional problems, since their
construction only depends on the number of input designs. However, it is not evident
which kernel function should be used.

For non-polynomial metamodels, only full factorial, Monte Carlo, LHS and space filling
designs are available. Space filling designs should be preferred to the other ones, regard-
less of the particular algorithm selected. However, when using a small number of points
and/or parameters, full factorial designs are a convenient choice in terms of computational
cost. Monte Carlo and LHS are rarely used for optimization; instead, they are useful for
computing metamodel-based statistics or for Monte Carlo analyses.
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Chapter 4

Optimization

In this chapter, the optimization algorithms that are implemented in LS-OPT are reviewed,
together with important considerations about the choice of the objective function and
constraints specifically for parameter identification problems. Detailed information about
the optimization algorithms can be found in Chapter 23 of the LS-OPT User’s Manual [9].

4.1 The objective function
An essential ingredient of an optimization process is the definition of the objective func-
tion, i.e. the function to be minimized or maximized. The objective function can be simply
defined as an output quantity from simulations. However, in many cases, it is necessary to
manipulate the simulation results in order to properly define the objective of the optimiza-
tion. This is always the case for parameter identification problems, where the objective
function is defined as the "distance" between experimental and simulated results. This con-
cept of distance is vague as it assumes different expressions based on the actual problem
that has to be solved. In the following sections, two common scenarios will be presented
together with suitable approaches for defining the objective function.

4.1.1 Targeted composites
Let us suppose that a certain quantity (e.g. a force) is measured during an experiment at
some fixed times. Then the experimental data are in the form

tj , Fj 1 ≤ j ≤ J, (4.1)

where J is the total number of measurements. The correspondent time history f resulting
from simulations will be evaluated at the same instants1, leading to simulated data

tj , fj = f(tj) 1 ≤ j ≤ J. (4.2)

1If simulation data at times tj are not directly computed, it is possible to extrapolate them using,
for example, a linear approximation.
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In this situation, the distance between experimental and simulated data can be defined
using the Mean Square Error (MSE) expression

MSE =
J∑

j=1
wj

(
fj − Fj

sj

)2
, (4.3)

where wj and sj are some weighting and scaling factors, specified by the user. Similarly,
the same metric can be defined in its square root form as

SqrtMSE =
√

MSE (4.4)

These two types of composites are referred to as targeted composites because they
measure the distance of simulated data fj from target values Fj .

In a more general case, also target values for parameters can be added in the definition
of the MSE as a way of regularizing the objective function. The complete expression of
MSE is then

MSE =
J∑

j=1
wj

(
fj − Fj

sj

)2
+

N∑
n=1

ωn

(
xn − Xn

σn

)2
, (4.5)

where xn is the n-th component of the parameter vector x and Xn is its target value.

4.1.2 Curve matching composites
In order to illustrate curve matching metrics it will be assumed that experimental data
are summarized in a single two-dimensional curve, e.g. a force vs. displacement curve
resulting from a tensile test. The data extracted from simulations will be consistent with
the available experimental data. In this case, the distance between experimental and
simulated curves can be computed in several different ways.

Mean Square Error

The first option is to compute the distance using the MSE formulation, namely:

MSE(x) = 1
J

J∑
j=1

wj

(fj(x) − Fj

sj

)2
(4.6)

where J is the total number of points on the experimental curve2, Fj is the j-th experimen-
tal target value and fj(x) is the metamodel constructed using the j-th points of simulated
curves (see Figure 4.1). By default, wj = 1 and sj = max{|Fk| : 1 ≤ k ≤ J} for each j.

Although this formulation is very similar to the MSE targeted composite, it differs in
some important aspects: firstly, the MSE targeted composite is intended to be used also
for data coming from different curves or simulations, whereas the MSE curve matching

2In LS-OPT, it is actually possible to use equally spaced points for computing the MSE, instead of
experimental ones, which is recommended if the experimental curve has too many points (approximately
greater than 100).
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Figure 4.1: Graphical representation of
how metamodels are constructed from sim-
ulated curves: solid coloured lines are the
histories obtained from simulations, while
dashed black lines are (linear) metamodels
built from points with the same indices on
the simulated curves.
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Figure 4.2: Simulated histories can be ex-
tended over all the design space by con-
structing metamodels fj(x) like in Fig-
ure 4.1. Then, the MSE distance between
experimental and simulated curves can be
computed for each point x in the design
space.

composite is specially defined as a metric for measuring curve distances; secondly, when
the experimental curve consists of many points, the targeted MSE is far less convenient as
the user should insert points one by one.

The graphical meaning of definition (4.6) is shown in Figure 4.2. It is evident that this
formulation cannot be used for curves with non-monotonically increasing abscissa, such as
hysteretic curves. In this cases, other options are required.

It is important to notice that the MSE has not the same form as the chosen metamodel
type for the optimization. For example, if a linear metamodel has been selected, then all
fj(x) will be linear functions while the MSE will be quadratic. Furthermore, in LS-OPT
only linear, quadratic and RBF metamodels can be selected to approximate histories, while
all other metamodels can be used for scalar responses.

Partial Curve Mapping

The second way of computing distance between curves is known as the Partial Curve
Mapping algorithm [24], which consists of the following simple steps:

1. In the first phase, the two (polygonal) curve parameterizations are normalized and
their total polygonal lengths are computed;

2. Then a finite number of offsets is defined in order to slide the shortest curve onto the
other. The minimum offset is zero, while the maximum coincides with the difference
between the two curve lengths;
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3. For each offset, points of the shortest curve are mapped onto the the other ones: the
first point is mapped using the offset value, while the successive ones are mapped in
such a way that the mapped curve maintains its original length;

4. The discrepancy between the curves, as a function of the offset, is found by computing
the area between them, using the map computed in the previous step;

5. Finally, the distance is given as the minimum over all offsets of all discrepancies
computed previously.

A graphical representation of how the algorithm works is shown in Figure 4.3. It is impor-
tant that both curves are free of noise in order to not overestimate their lengths, therefore
filtering is recommended for noisy curves.

This algorithm has been developed on purpose for hysteretic curves, for which the MSE
metric is undefined. However, it presents other advantages over the MSE: firstly it takes
into account for steep parts of the curves to be matched and secondly it can be used even
when the two curves have partially overlapped or even disjoint ranges. The latter case is
particularly frequent in parameter estimation problems since the experimental curve could
be restricted to a certain range due to the measurement procedure.

If map(·, ·) is the function that generates the map between the curves and computes
the area, then the composite expression depends on the parameter vector in the following
way

PCM(x) = map({fj(x)}, {Fj}), (4.7)

where fj(x) are defined as for the MSE curve matching composite. PCM(x) is the actual
surface that will be minimized through the optimization algorithm. Similarly to the pre-
vious case, PCM will not have the same form as the chosen metamodel, but it will be a
non-linear function of it.

𝑥

𝑦

offset
𝑥 = 1

𝑦 = 1

Figure 4.3: Representation of the Partial Curve Mapping algorithm.
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Dynamic Time Warping

A third way of computing distance between curves is the so-called Dynamic Time Warping
(DTW) algorithm. This algorithm has been widely used in many fields such as speech
recognition, signature recognition or general shape comparison. Recently, DTW has been
introduced in parameter identification problem as a powerful way to match simulated and
experimental curves3 [3].

Similarly to Partial Curve Mapping, the idea behind DTW is to consider the discrepancy
of the two curves in the abscissa direction, apart from the ordinate one which is the only
one used in the MSE composite. In particular, in the first stage, the algorithm builds a
map between points from the curves, following a simple specific set of rules. This map
does not need to be bijective, therefore curves could have a different number of points
as it is often the case. After the map has been defined, one way to compute the overall
distance is to sum the distances between each pair of points in the map (in this way the
DTW distance may be considered as an extension of the MSE formulation). An example
of DTW mapping is shown in Figure 4.4 where each pair defined by the map is connected
by dashed lines.

DTW is surely better than the MSE curve matching composite since the shape of
the curves is considered in the mapping, rather than the ordinate distance only. For this
reason, the curves do not need to be aligned in the abscissa direction in order to be correctly
compared. Moreover, DTW does not require filtering or smoothing of the curves, contrarily
to the Partial Curve Mapping algorithm, because the curve lengths are not involved in the
algorithm.

𝑥

𝑦 𝐹

𝑓 (𝒙 )

Figure 4.4: Mapping between curves generated with the Dynamic Time
Warping algorithm. Notice how the map takes into account for the shape of
the curves.

3DTW is not available in the LS-OPT version used in this thesis, but it will be implemented in future
versions. It is still possible to manually implement the algorithm and insert it as a post-processor stage
in LS-OPT.
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4.1.3 Multi-objective optimization
In some optimization problems it is necessary to define more than one objective function.
For example, this is the case when multidisciplinary analyses are performed or multiple load
cases of the same system are considered. Multi-objective optimization (MOO) problems
can be solved in LS-OPT by defining several objectives in the Optimization dialog. However
MOO is a wide topic and will not be used in this work. Since in parameter identification
we are not interested in trade-off analyses or Pareto optimal solutions, it is convenient
to combine different objectives into one single quantity, thus removing the need of multi-
objective optimization. The different objectives are usually weighted and added together.

4.2 Constraints
The presence of constraints either on the objective function or on the parameters is an
important aspect of an optimization process. Constraints usually have the following form

Li ≤ gi(x1, ..., xN , ŷ) ≤ Ui, 1 ≤ i ≤ I, (4.8)
where I is the total number of constraints, Li and Ui are respectively the lower and upper
bounds of the i-th constraint and gi is a generic composite expression, i.e. a mathematical
expression involving the response ŷ and/or the parameters x1, ..., xN . It is important to
notice that LS-OPT gives the possibility to specify the strictness of the constraints as well
as constraints with only one bound.

Bilateral constraints such as
hk(x1, ..., xN , ŷ) = Hk, 1 ≤ k ≤ K, (4.9)

can also be defined by using the equivalent formulation{
hk(x1, ..., xN , ŷ) ≤ Hk

hk(x1, ..., xN , ŷ) ≥ Hk

, 1 ≤ k ≤ K. (4.10)

However, this class of constraints will never be exactly satisfied from a numerical point of
view, so that all constraints actually are as in (4.8).

All constraints are internally normalized by the software so as to avoid numerical prob-
lems due to large differences in the order of magnitude of defined quantities.

4.2.1 Sampling constraints
In some problems, it could be necessary to define constraints on parameters xn only. Since
it would be inefficient to sample the whole design space and then discard infeasible designs
(i.e. designs that violate the constraints), it is possible in LS-OPT to specify sampling
constraints in the Sampling dialog. The actual definition of the constraint is the same, as
it makes use of composite expressions. However, in this way only feasible designs will be
considered in the sampling process. It must be said that not all sampling techniques are
compatible with this option. For example, it is obvious that non-optimized designs, such
as full factorial, Koshal and central composite ones, do not have the ability of generating
constrained designs. This is not the case for the other available techniques (D-optimal and
space filling), which are capable of sampling from design space with irregular shapes (see
Figure 4.5).
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𝑥

𝑥

𝑥 + 𝑥 − 1 ≤ 04𝑥 − 𝑥 + 3 ≥ 0

Figure 4.5: Example of 30 space filling designs in the domain [−1,1] × [−1,1],
subject to sampling constraints. The space filling algorithms takes into ac-
count constraints and guarantees uniformly distributed points inside the fea-
sible region.

4.3 Optimization algorithms
In a generic parameter identification problem, once the metamodel has been built and
the objective function and constraints have been defined, the actual optimization process
can begin. From a mathematical viewpoint, the only theoretical result for constrained
optimization problems is represented by the Karush-Kuhn-Tucker (KKT) conditions, which
are an extension of the Lagrangian multiplier method to the case of unilateral constraints.
However KKT conditions are not useful for conceiving an optimization algorithm capable
of finding global optima. For this reason, algorithms presented here are based on heuristic
ideas, rather than proved mathematical results.

4.3.1 Leap-Frog Optimization
The Leap-Frog Optimization algorithm (LFOP), conceived by J. A. Snyman [17], is a
gradient-based method that generates a dynamic trajectory towards a local optimum. The
basic algorithm seeks the minimum of the objective function f by considering the associated
dynamic problem of a particle of unit mass moving in a conservative force field, in which
the potential energy of the particle is given by f itself. Although LFOP is based on a
physical idea, the algorithm has been developed introducing modifications on a heuristic
basis, in order to improve its performances.

The constrained version of the algorithm, called LFOPC [18], applies the original un-
constrained algorithm to a penalty function, which involves the objective function f and a
penalty parameter. The algorithm consists of three phases, which will be briefly explained:

– In Phase 0, the objective function is minimized with a moderate value of the penalty
parameter, starting from a random point;

– In Phase 1, in order to satisfy still active constraints, the objective function is mini-
mized with a high value of the penalty parameter, starting from the result of Phase 0;

– Finally, in Phase 2, if the number of active constraints exceeds the number of variables,
another optimization run is performed in order to find a compromised solution.
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Since it is a gradient-based method, the LFOP algorithm can only find local optima.
However, for a sufficiently smooth surface, an effective strategy for seeking global optima
with LFOP, is a multi-start approach, in which several optimization runs are performed
with different starting points and the best optimum is chosen.

4.3.2 Genetic Algorithms
Genetic Algorithms (GA) seek the global optimum of the objective function (also called cost
function) trying to imitate the natural process of evolution. Basically, an initial population
of individuals (i.e. design points) evolves through various generations. In order to explore
the entire design space, mutation and crossover operators are applied to some individuals.
At the end of each generation, individuals with the highest cost function are discarded and
the process is repeated.

In more details, at each generation, the main steps of GA are:

1. Selection: individuals with the lowest cost function are selected and will survive to
the next generation. Selection can be implemented in several ways: common ones are
Tournament selection, Roulette selection and Stochastic Universal Sampling;

2. Crossover: genes from two individuals (parents) are mixed to create one ore two
new individuals (children). The number of crossovers and the amount of similarity
between parents and children can be adjusted selecting the crossover operator (SBX
or BLS) as well as crossover distribution and probability;

3. Mutation: genes of some individuals randomly change, based on mutation distribution
and probability.

4. Elitism: some of the best individuals of each generation are automatically passed
to the next generation without undergoing the selection process. This feature can
significantly increase the performance of the algorithm, by ensuring a monotonic
decrease of the cost function throughout the generations.

It is important to mention that LS-OPT automatically uses Genetic Algorithms for
discrete and mixed-discrete optimization problems, as well as for Direct Optimization.

Genetic Algorithms are mainly suited for Multi-Objective Optimization because they
are very effective in finding Pareto optimal solutions and then computing the Pareto op-
timal frontier. Since they are very expensive compared to other algorithms, they are not
recommended for single-objective optimization problems.

4.3.3 Adaptive Simulated Annealing
Simulated Annealing (SA) is a heuristic global optimization algorithm whose idea is based
on the annealing process used to strengthen metals. In this process the metal is heated
up and then slowly cooled down so as to allow for crystals inside the material to assume
a low energy configuration. In SA, the objective function is interpreted as energy and the
intent is to find the point (also called "state") with smaller energy by slowly decreasing a
temperature parameter. At each temperature step the algorithm explores neighbours of
the current state and moves randomly to one of them according to an acceptance function.
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In this way the algorithm can potentially explore the whole design space, thus having more
probability to end up in the global optimum basin.

The algorithm is essentially defined by three main functions:

1. the candidate distribution function describes what are the neighbours of a given state
in the design space, thus defining the topology of the state space graph;

2. the cooling schedule determines the rate of cooling as well as the initial and final
temperatures;

3. the acceptance function represents the probability of moving to a low energy state
at each step. It depends on the current temperature value and tends to 1 as the
temperature tends towards its final value.

Adaptive Simulated Annealing (ASA), which is the actual algorithm implemented in
LS-OPT, is an improvement of SA in which some temperature parameters are automatically
adjusted during the optimization, thus increasing the overall efficiency of the algorithm.

4.3.4 Differential Evolution
Differential Evolution (DE) is an optimization algorithm similar to Genetic Algorithms
in that it uses a population that evolves over time. However, mutation and crossover
operators are directly specified in the algorithm, so that the user has not to specify any
option. Unfortunately, DE cannot be used for optimization with constraints in LS-OPT,
although a constrained version of the algorithm (which uses a penalty function formulation)
exists in literature.

4.3.5 Hybrid algorithms
Hybrid algorithms have been introduced in order to increase efficiency of GA and ASA.
It has been observed that GA and ASA have the ability of rapidly converging into the
basin of the global optimum, but then it takes several iterations for them to make small
improvements towards the actual optimum. On the other hand, LFOP is very fast at
converging once a point near the global optimum has been chosen as the starting point.
These considerations suggest to use GA or ASA for the first few iterations and then switch
to LFOP in order to quickly and accurately converge to the optimum. The combination
of a local and a global algorithm is referred to as a hybrid optimization algorithm. Both
hybrid algorithms GA/LFOP and ASA/LFOP are implemented in LS-OPT.
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Chapter 5

Experimental tests

5.1 Introduction
Experimental data are a fundamental ingredient for solving a parameter estimation prob-
lem, as they describe the real behaviour of the material which has to be reproduced by
numerical simulations.

In this chapter the experimental tests that were carried out are described in detail.
Among all possible mechanical tests, tensile tests were chosen to be performed because of
their simplicity and effectiveness, although a better characterization of the material would
be possible by performing a more complete set of experiments (such as compression tests
or flexural tests). It is worth noticing that, when dealing with parameter identification, ex-
perimental tests are not performed with the purpose of directly compute physical constants
of the material based on the test data. Instead, experimental data are used to "guide" the
material model towards the real behaviour through the optimization algorithm. There-
fore, all experimental data are valid and usable as long as the tests can be consistently
reproduced by numerical simulations.

5.2 Materials

5.2.1 Composites
Composites are a particular class of materials made of two or more constituents combined
in some way with the purpose of obtaining properties that none of the single constituent
has. Basic composite materials are generally made of two constituents, namely the matrix
and the reinforcement. The matrix has the function of keeping in place the reinforcement
and it cannot support high loads, while the reinforcement has the function of supporting
very high loads in specific directions (depending on the actual type of reinforcement).
Composite materials can be classified based on the type of matrix, such as metal, ceramic
or polymer matrices, or on the type of reinforcement. The latter can be made of metal
particulates or fibers (carbon or glass fibers) with different lengths.

Another class of composites is that of laminated and sandwiched composites. The
former ones are made of single anisotropic layers stratified with different directions, while
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the latter ones are generally made of two thin external layers and one thick internal layer,
which fulfill different mechanical functions.

5.2.2 Tested material

The material tested for this study is a carbon-fiber reinforced epoxy resin manufactured
by the company CarboSix. The material is produced in large planar sheets made of several
layers of carbon-fiber fabric kept in place by the resin. Because of this, the material can
be classified both as a matrix/reinforcement and as a laminated composite.

The number of layers of the sheets can vary depending on their thickness. From the
manufacturer, it is known that the 2mm sheets are made of 4 layers while the 3mm ones are
made of 6 layers. Therefore it can be deduced that each layer has a thickness of 0.5mm.
The layers are made of the same material (carbon-fiber fabric), but with different fiber
densities: the two external layers have a surface density of 200g/m2 while all the internal
ones (2 or 4 depending on the total thickness) have a surface density of 430g/m2. It is
very important to specify that fibers in each layer run in both longitudinal and transverse
direction (0°/90°) and all layers are stratified with the same direction (see Figure 5.1).
This is important since the orientation of fibers highly influences the resulting mechanical
properties of the material in different directions, i.e. its degree of anisotropy.

2m
m

200g/m2

200g/m2

430g/m2

3m
m

200g/m2

200g/m2

430g/m2

Figure 5.1: Spatial arrangement of single carbon-fiber fabric layers inside
sheets with 2mm thickness (left) and 3mm thickness (right), with respective
fiber densities.

Apart from the material previously described, another one was tested too. This material
is again a carbon-fiber reinforced epoxy resin, but with long continuous unidirectional
fibers. CarboSix produces pultruded profiles (such as that in Figure 5.2) with a specific
manufacturing process that allows to embed uninterrupted carbon fibers in the resin. The
resulting product is a profile with fibers running inside the material from one end to the
other, which give the material really high strength for bending and longitudinal traction.
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(a) (b)

Figure 5.2: One of the unidirectional-reinforced pultruded profiles produced
by CarboSix; principal dimensions of the cross section are 45mm and 90mm.

5.3 Tensile tests

5.3.1 Specimens

Specimens for tensile tests were categorized in 6 different groups (A, B, C, D, E, E’) based
on their specifications, as it is shown in Table 5.1. Groups from A to D were obtained by
cutting carbon-fiber reinforced sheets of different thicknesses. For the 2 millimeters thick
one, specimens were cut in 3 different directions with respect to the main orientation of
the fibers. Since each layer of fabric in the sheets consists of bi-directional braided fibers
and all layers are superimposed with the same orientation, specimens cut at 0° and 90°
should exhibit the same behaviour.

Another group of specimens was cut from the flat region of a 45x90 pultruded profile
with unidirectional fibers1 (see Figure 5.2). Since there were discrepancies between the
top and bottom thicknesses of the profile walls, the resulting specimens turned out to have
different thicknesses. Therefore it was decided to subdivide this group into two subgroups
referred to as E and E’.

All specimens were cut using a Type I profile, except for specimens in group C which
were cut using a Type II profile because of their greater thickness. Type I and Type
II profiles, shown in Figure 5.4, were determined in accordance to the standard ASTM
D638 [1]. The exact dimensions of each profile are reported in Table 5.2. Photos of one
specimen of each group (before testing) are shown in Figure 5.3.

1It should be pointed out that fibers might not have constant direction through the material, due
to the manufacturing process. However, only slight (thus negligible) variations from the longitudinal
direction should be expected.
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Group Type Thickness Angle Quantity

A I 2mm 0° 3
B I 2mm 45° 3
C I 2mm 90° 3
D II 3mm 0° 3
E I 2.8mm 0° 3
E’ I 2.4mm 0° 3

Table 5.1: List of all specimens used in tensile tests. See text for details on
the manufacturing of the specimens.

A

B

C

E

D

Figure 5.3: Photos of untested specimens for each test group. Notice that
specimens A, C and D have the same fiber directions and differences in the
photos are due to lighting effects.

5.3.2 Setup

All experiments were performed on a servohydraulic machine (Instron 8801) with force
capacity up to 100kN, which is shown in Figure 5.5. All tests were conducted at room
temperature (about 20°C) and no conditioning procedure was applied to the specimens.
Tests involving thermal variations were not considered in this study although it is known
that many composite materials may have different properties depending on their temper-
ature, due to the viscoplastic behaviour of the resin.

Before running the tests, all specimens were uniquely marked in accordance with their
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G

L

D

LO

R

WWO

Figure 5.4: Type I (top) and Type II (bottom) profiles for tensile tests and
dimensions. Dimension labels for the second profile are analogous to the first
one.

Dimensions Type I Type II

W - Width of narrow section 13 6
L - Length of narrow section 57 57
WO - Width overall 19 19
LO - Length overall 165 183
G - Gage length 50 50
D - Distance between grips 115 135
R - Radius of fillet 76 76

Table 5.2: Dimensions of specimens for tensile tests according to the stan-
dard ASTM D638. All dimensions are expressed in millimeters.

group and equally spaced reference marks were traced in the gage section in order to
estimate the final deformation in case of failure of the acquisition system.

At the beginning of each test, each specimen was placed in the machine and an exten-
someter was applied in order to measure deformation of the specimen over time. Tests
were performed by imposing a constant speed of the moving part of the machine and si-
multaneously measuring the applied load through a load cell. A 2mm/min speed of testing
was used for all tests except for specimens in group C which were tested at 5mm/min2.

2It is known to the author that composite materials often present strain-rate effects, therefore all
tests should have been performed at the same rate. However, by observing the first experimental curve
for group B (Figure 5.8), it can be noticed that there is only a subtle difference between 2mm/min and
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Figure 5.5: Servohidraulic machine Instron 8801 used for all the experimen-
tal tests.

Although seven specimens per group were available, only three per group were tested
since there was not great discrepancy between the acquired data.

5.3.3 Results
The force vs. displacement curves resulting from all tensile tests are shown in Figures 5.6
to 5.16.

Group A

For group A (Figure 5.6) the behaviour of the specimen is almost linear until failure
occurs between 16kN and 18kN, corresponding to a displacement of about 2.2mm. There
is no evident plastic deformation and the failure is brittle. The little sharp decreases in
the curves immediately before failure correspond to the breaking of single layers in the
composite material and they starts after a 14kN load. The Young modulus can be directly

5mm/min testing speed.
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computed from the stress vs. strain curves and it is about 63.73GPa. One of the failed
specimens is shown in Figure 5.7 (see Appendix A for photos of all failed specimens).
Almost all specimens of type A failed at the end of the gage section and were cracked on
both sides, with the cracks being oriented in the 90° direction.

Notice that the vertical offset of curves (both in this and other tests) is due to the fact
that the specimen is inevitably slightly loaded (often in compression) when it is fixed in
position through the grips. The load cell should not be recalibrated after this step since this
could invalidate the experiment. To match the curves it is simply necessary to shift them
horizontally so that the point of zero load corresponds to the point with zero displacement.
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Force vs. Displacement for group A

Figure 5.6: Results of tensile tests for 2mm thick specimens of Type I with
0°/90° fiber angles (group A).

Figure 5.7: Failed specimen of group A.

Group B

In group B (Figure 5.8) there is an evident plastic behaviour after a displacement of about
2mm. The total displacement until failure is much greater then other cases (oscillating
between 10mm and 12mm), but the maximum supported load is much smaller (around
4kN). The small step in the plastic range of the black line is due to a change in the speed
of testing from 2 to 5mm/min. The other two curves were obtained with 5mm/min speed
of testing. Contrarily to the previous case, there is no failure of single fibers but all of
them fail at once along the 45° direction, as it is shown in Figure 5.9. The elastic modulus
computed from the first linear part of the curve is about 17.68GPa.

39



5 – Experimental tests

0 2 4 6 8 10 12

Displacement (mm)

0

0.5

1

1.5

2

2.5

3

3.5

4

F
o

rc
e

 (
k
N

)

Force vs. Displacement for group B

Figure 5.8: Results of tensile tests for 2mm thick specimens of Type I with
−45°/45° fiber angles (group B).

Figure 5.9: Failed specimen of group B.
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Force vs. Displacement for group C

Figure 5.10: Results of tensile tests for 2mm thick specimens of Type I with
0°/90° fiber angles (group C).

Figure 5.11: Failed specimen of group C.
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Group C

Results for group C, shown in Figure 5.10, are identical to those for group A. This fact
confirms that the material has the same behaviour along the 0° and 90° directions as a
result of the manufacturing of the specimens. The Young modulus is equal to 62.65GPa,
which is very similar to that from group A. Also characteristics of failed specimens are the
same as in group A (see Figure 5.11).

Group D

Specimens from group D exhibit the same behaviour of groups A and C, with no plastic
deformation and brittle failure (see Figure 5.12). Due to the different cross section, failure
occurs at around 11kN. The Young modulus, computed from the stress vs. strain curves,
is approximately equal to 86.02GPa, which is greater than that obtained for groups A
and C. This can be explained considering the different fiber densities of the specimens
due two the different manufacturing. One of the failed specimens is shown in Figure 5.13.
The type of failure is very similar to A and C specimens as they all have the same fiber
orientations, however failure occurred in the gage section because of the narrower section
of the specimens. Delamination effects are clearly visible by looking at the side of the
specimen as shown in Figure 5.14.
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Figure 5.12: Results of tensile tests for 3mm thick specimens of Type II
with 0°/90° fiber angles (group D).

Figure 5.13: Failed specimen of group D.
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Figure 5.14: Side view of a failed specimens of group D with evident delam-
ination of the layers.

Group E

Results for group E are shown in Figure 5.15. Since these specimens have unidirectional
fiber reinforcement, they have a much higher modulus of elasticity and strength. Therefore
it was not possible to break the specimens. In the first tests the specimens slipped as the
pressure of the grips was not high enough. By increasing the grip pressure slip problems
were partially solved but the specimens failed in correspondence of the grips (see photos
of tested specimens of group E in Appendix A). For this tests only the first elastic part
of the force vs. displacement curve is valid. The Young modulus can be computed and it
is about 160.3GPa, which is very close to the value claimed by the manufacturers of the
material.
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Figure 5.15: Results of tensile tests for 2.8mm thick specimens of Type I
with 0° fiber angle (group E).

Group E’

Results of group E’ (Figure 5.16) are very similar to the previous ones, since they have very
similar thicknesses. Also in this case there were slip problems of the specimens and only
one specimen, shown in Figure 5.17, failed at around 44kN (black line in the graph). The
Young modulus computed from these tests is 159,61GPa, which is coherent with results of
group E, since the tested material is the same.
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Figure 5.16: Results of tensile tests for 2.4mm thick specimens of Type I
with 0° fiber angle (group E’).

Figure 5.17: Failed specimen of group E’.

Comparison of all groups

In order to compare different behaviours of the specimens, all the experimental curves
obtained are plotted together in Figure 5.18. It can be noticed that groups A, C and D
show the same behaviour apart from the maximum supported load which depends on the
cross section of the specimens. This is reasonable since these specimens have almost the
same characteristics in terms of manufacturing process and fiber direction. The same ma-
terial, but with 45° fiber direction, exhibits a very different behaviour with evident plastic
deformation and smaller maximum load. Specimens from groups E and E’, which were
cut from unidirectional fiber reinforced pultruded profiles, have a much greater modulus of
elasticity. Unfortunately, no information can be gathered from the preformed tests about
the plastic and failure behaviours. However, looking at the one specimen from group E’
which failed, it seems that the behaviour is similar to groups A, C and D, with very small
plastic deformations and brittle failure. The uni-directionality of the reinforcement gives
a more rigid and strong material than bi-directional reinforcement.

Finally, a summary of the moduli of elasticity computed for each test is given in Ta-
ble 5.3.

Group A B C D E E’
E (GPa) 63.73 17.68 62.6 86.025 160.30 159.62

Table 5.3: Summary of Young’s moduli obtained from tensile tests.
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Figure 5.18: Results of all tests for comparison.
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Chapter 6

Numerical model

6.1 Introduction
In this chapter the numerical model used to reproduce experimental tests is described and
information about geometry, mesh, boundary conditions and other features of the model
are given. Detailed informations are given about the material models which will be used
in the next chapter for the optimization.

The simulations were performed using the software LS-DYNA, which is a finite element
solver. It is mainly used for explicit analyses, but it can perform implicit analyses too. In
order to perform a simulation the solver requires an input file in which all features and
characteristics of the model have to be specified. Each feature is inserted using particu-
lar predefined keywords which are listed and explained in the LS-DYNA Keyword User’s
Manuals [10][11]. Details on theoretical notions about the solver can be found in [12].

Since LS-DYNA does not require any specification for the units of measure of the model,
it is important to express all quantities in the same system. The units of measure used in
all the simulations are given in Table 6.1.

Quantity Time Length Force (Stress) (Density)
Unit s mm N (MPa) (ton/mm3)

Table 6.1: Units of measure used in all simulations. Quantities between
brackets are derived from previous ones.

6.2 General settings

6.2.1 Geometry and mesh
The geometry and mesh used for simulations are shown in Figures 6.1 and 6.2. The
geometry of the two models was generated in accordance with the tested specimens, by
following the specifications in the ASTM D638 standard. The mesh of the wide (Type I)
specimen has 927 nodes and 816 elements, while the narrow (Type II) one has 1143 nodes
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and 1008 elements1. All elements are quadrilateral shell elements, therefore the specimens
are modeled as plane shells and the information about the actual thickness is given in
another part of the input file (*SECTION_SHELL or *PART_COMPOSITE).

Figure 6.1: Type I specimen geometry and mesh.

Figure 6.2: Type II specimen geometry and mesh.

6.2.2 Boundary conditions
The boundary conditions were assigned in accordance with the experimental tests. In
particular nodes on the right side of the model were fixed in all directions, while nodes on
the left side were assigned a displacement linearly increasing over time. The final value
of the displacement was chosen based on the maximum displacement observed during the
tensile tests for each group of specimens. In particular, maximum displacements of 3mm
and 12mm were chosen for the 0° and 45° tests, respectively.

6.2.3 Numerical method
All simulations were performed using an implicit solver with adaptive time step. Since rate
effects were not considered and the needed output of the simulations is a crossplot between
displacement and force histories, all simulations were performed using a non-dimensional
time. In particular, the end time was set to 1.

Among all element formulation implemented in LS-DYNA for shells, it was chosen to
use a fully integrated (4 points per integration point) element formulation (ELFORM=16)
because of its accuracy and cost. In a preliminary study of the optimization process, an
under integrated (1 point per integration point) formulation (ELFORM=2) was used in order
to decrease the cost and time of the simulation. Five through-thickness integration points
were used in the single layer model, while one integration point per layer was used in the
multiple layer model.

1Finer meshes were available for both geometries, however they were not used since the coarse ones
already gave good results and led to less computationally expensive simulations.
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6.3 Material models

Apart from the boundary conditions, the physics of the problem is mainly described by
the constitutive law of the material. The choice of the material model obviously depends
on the actual material tested, however in many case it is not clear which model should be
used, especially for composite materials which exhibits very different behaviours based on
their composition.

In LS-DYNA hundreds of different material models are implemented for a variety of
applications. However, only few of them are suitable for modeling composite materials.
Common models used for composites are MAT22 (Composite damage), MAT54/55 (En-
hanced composite damage) and MAT58 (Laminated composite fabric), although other
models are implemented that might be more suitable for specific applications such as mod-
eling of sandwiched composites, laminated glass or composite layups. During a preliminary
study, material models were searched based on two essential requirements:

1. the material had to be anisotropic (or at least orthotropic), and

2. it should exhibit non-linear behaviour induced by some plasticity model or by some
failure model.

Many materials were found to meet these two requirements, however the majority of them
were discarded because of incompatibilities with the type of analysis performed. Eventually,
MAT54 and MAT58 were chosen for parameter identification. Detailed information on
these models are given in sections below.

6.3.1 Material directions

Since composites materials often exhibit anisotropic mechanical properties, it is important
to correctly model the material by specifying its directions of anisotropy. This is done in
LS-DYNA by using the AOPT (Axes Options) parameter, which allows to define material
directions for each element of the mesh. The AOPT value is an integer varying between 0
and 4 and each option requires some input vector. For shells only options 0, 2 and 3 can
be used. In this study, AOPT=2 has been chosen since the directions of orthotropy can be
specified globally (i.e. they are the same for every element) and do not change during the
simulation.

For option AOPT=2 the only input needed is vector A (see material cards in Table 6.2),
which defines the first axis of orthotropy (labeled with a), after being projected onto the
plane of the element. The third direction, c, is obtained from the element normal vector,
while the second direction, b, is computed from directions a and c so as to obtain an
orthogonal system of reference: b = c × a (see Figure 6.3).

An additional control for specifying the material directions of the elements is given by
the parameter BETA (actually called MANGLE in MAT54). If a non-zero value of BETA is
specified, then the (a, b, c) reference system is rotated around the c direction of exactly
BETA degrees.
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𝑨

𝑎 = 𝑨||
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𝑏 = 𝑐 × 𝑎

Figure 6.3: Construction of material directions for a single shell element
using AOPT=2 with input vector A.

6.3.2 Enhanced composite damage (MAT54)
Material 54, called Enhanced composite damage, is an extension of Material 22 (Composite
damage)2. It models an orthotropic linear elastic material with additional parameters for
failure and damage.

The elastic constants of the material are Young’s moduli in the 3 principal directions
(EA, EB, EC), Poisson’s ratios (PRBA, PRCA, PRCB) and shear moduli (GAB, GBC, GCA). The
model is implemented both for solid and shell elements. Since all simulations done in this
study concern shell elements, elastic constants EC, PRCA and PRCB will not be used.

In this model failure criteria are implemented both for fiber tension and compression
and for matrix tension and compression. For material model MAT54 the failure is governed
by the Chang-Chang criteria, in which strengths XC, XT, YC, YT ans SC appear. The exact
formulation of Chang-Chang is expressed in terms of normalized coefficients as follows:

– For fiber tension (σaa > 0):

eft =
(σaa

Xt

)2
+β
(σab

Sc

)2
(6.1)

– For fiber compression (σaa < 0):

efc =
(σbb

Xc

)2
(6.2)

– For matrix tension (σbb > 0):

emt =
(σbb

Yt

)2
+
(σab

Sc

)2
(6.3)

– For matrix compression (σbb < 0):

emc =
( σbb

2Sc

)2
+
[( Yc

2Sc

)2
−1
]

σbb

Yc
+
(σab

Sc

)2
(6.4)

2Material 22 is an orthotropic elastic material with failure criteria for matrix tension/compression
and fiber tension and no damage parameters.
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In all equations above, σ∗∗ are the components of the stress tensor with respect to the
coordinate system (a, b, c) defined by AOPT. If any of the quantities e∗∗ exceeds 1, then the
element fails, otherwise it behaves elastically.

Element deletion can be controlled through DFAILx parameters which represent the
maximum strain the element can undergo in different directions. After an element has
been deleted, it is possible to simulate damage of adjacent elements using other parameters,
namely SOFT, FBRT and YCFAC.

In this study only XT, DFAILT and DFAILC have been considered in order to simulate
the failure of the specimen. In particular DFAILC was included only for numerical reasons,
because the solver needs a non-zero value of DFAILC when DFAILT is not zero. Since
compressive failure was not investigated, DFAILC was chosen to be equal and opposite to
DFAILT.

The general behaviour of the model MAT54 (as used in this study) is shown in Fig-
ure 6.4. These particular results were obtained from a 0° load case on the Type I specimen.
The material is linear elastic until the maximum stress XT is reached. At this point the
behaviour varies based on the value of DFAILT. If DFAILT is approximately equal to XT/EA,
the specimens is not capable of supporting additional stress and fails. For higher values
of DFAILT the stress remains constant until failure occurs. It is worth mentioning that the
actual failure of the specimen depends on DFAILT, as it is shown in Figure 6.5. While the
specimen at the top has failed, the specimen at the bottom has not due to the larger value
of DFAILT. However, a large concentrated deformation is evident at the point were the
specimen would have failed if DFAILT was set to a smaller value. Therefore, even for high
values of DFAILT it is possible to identify where and when the specimen fails by looking at
the strain plot.

MID RO EA EB EC PRBA PRCA PRCB
1 1.6E-9 &E &E &PR

GAB GBC GCA KF AOPT 2WAY
&G &G &G 2
XP YP ZP A1 A2 A3 MANGLE

1.0 0.0 0.0 0.0
V1 V2 V3 D1 D2 D3 DFAILM DFAILS

TFAIL ALPH SOFT FBRT YCFAC DFAILT DFAILC EFS
&DFAILT -&DFAILT

XC XT YC YT SC CRIT BETA
&XT 54

PFL EPSF EPSR TSMD SOFT2
100.0
SLIMT1 SLIMC1 SILMT2 SLIMC2 SLIMS NCYRED SOFTG

Table 6.2: Cards of material 54. Values preceded by & corresponds to pa-
rameterized variables, while empty options are not used in this work.
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Variable name Meaning

MID Material identification number
RO Material density
EA, EB Young’s moduli in a- and b-direction
PRBA Minor Poisson ratio in plane ab

GAB, GBC, GCA Shear moduli
AOPT Material axes option
XP, YP, ZP Point P for axes option
A1, A2, A3 Vector A for axes option
MANGLE Material angle for axes option
V1, V2, V3 Vector V for axes option
D1, D2, D3 Vector D for axes option
DFAILM Maximum strain for matrix tension and compression
DFAILS Maximum shear strain
TFAIL Minimum time-step for element deletion
ALPH Weighting factor for non-linear shear stress component
SOFT Damage parameter
FBRT Damage parameter
YCFAC Damage parameter
DFAILT Maximum strain for fiber tension
DFAILC Maximum strain for fiber compression
XC, XT Longitudinal compressive and tensile strengths
YC, YT Transverse compressive and tensile strengths
SC Shear strength
CRIT Failure criterion
BETA Weighting factor for fiber tensile failure (see Equation 6.1)

Table 6.3: Variables of material card MAT54.

6.3.3 Laminated composite fabric (MAT58)

Material 58 is called Laminated composite fabric. It is an orthotropic linear elastic material
with non-linear effects introduced by the modeling of failure and damage. As for MAT54,
the elastic constants are the Young’s moduli, the Poisson’s ratios and the shear moduli;
however, EC, PRCA and PRCB are unused by the solver since this model is only implemented
for shell elements.

Three failure model are implemented which can be chosen using the flag parameter FS
(Failure Surface):
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Figure 6.4: Force vs. displacement curves from simulations on MAT54 by
varying the value of DFAILT. The strength XT is set to the constant value of
700MPa, while the longitudinal elastic modulus EA is equal to 62GPa.

DFAILT = 0.5

DFAILT = 1.0

Figure 6.5: Effects of DFAILT on the element deletion. For low values of
DFAILT elements are deleted while for high values of DFAILT elements are not
deleted but they locally deforms in correspondence of the failure point.

– FS=1 corresponds to a smooth failure surface with a quadratic criterion for longitu-
dinal and transverse directions and it is suited for laminated and fabrics;

– FS=0 corresponds to a smooth failure surface in the transverse direction only and it
is mainly suited for composites with unidirectional fiber reinforcement;

– FS=-1 corresponds to a faceted failure surface with optional controls for shear be-
haviour and it is suited for laminates and fabrics as the first one.

Since in this study it has been chosen to model each layer of the composite material with
equal properties in both longitudinal and transverse directions, failure surfaces 1 and -1
have been investigated. In particular, it was observed how the failure surface modifies the
output of the simulation for the 45° load case. The difference, shown in Figure 6.7, is evident
since the selection of FS=-1 introduces two extra parameters (TAU1, GAMMA1) in order to
modify the shear stress vs. shear strain curve. By varying other parameters related to shear
behaviour, it was observed that MAT58 with FS=-1 was able to qualitatively reproduce
the experimental behaviour observed in the 45° load case, therefore this failure option was
used for all optimization runs in the next chapter.
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MID RO EA EB EC PRBA TAU1 GAMMA1
1 1.6E-9 &E &E &PR &TAU &GAMMA

GAB GBC GCA SLIMT1 SLIMC1 SLIMT2 SLIMC2 SLIMS
&G &G &G 0.01 1.0 0.01 1.0 1.0

AOPT TSIZE ERODS SOFT FS EPFS EPSR TSMD
2 0.0 -1
XP YP ZP A1 A2 A3 PRCA PRCB

1.0 0.0 0.0
V1 V2 V3 D1 D2 D3 BETA

0.0
E11C E11T E22C E22T GMS

&EPS &EPS &GMS
XC XT YC YT SC

&XT &XT &SC

Table 6.4: Cards of material 58. Values preceded by & corresponds to pa-
rameterized variables, while empty options are not used in this work.

Similarly to MAT54, strength values (XC, XT, YC, YT, SC) can be defined for MAT58
for both fiber and matrix tensile and compressive modes, as well as for shear stress. In
addition, the strains which corresponds to those strengths can be defined (E11C, E11T,
E22C, E22T, GMS). After the stress reaches the correspondent strength value, its evolution is
governed by the stress limit parameters3, namely SLIMxy. Stress limits are used to model
the fact that layers can support a percentage of stress at failure after they have failed. The
effects of these parameters are shown in Figure 6.6 for the 0° load case and in Figure 6.7 for
the 45° load case. Considering the experimental behaviour of the material, it was chosen
to use a low value4 for SLIMT1 and SLIMT2, while the other stress limits where set to 1.

Finally, in order to avoid actual failure and deletion of elements, ERODS was set to 0.
This was done for speeding up the simulation and avoid numerical problems after failure
of the specimen, similarly to MAT54.

6.3.4 Modeling of laminated composites
In order to use a certain material model in LS-DYNA, it is basically required to define a
part (with the keyword *PART) to which the material model and the element formulation
will be assigned. In this way, the material is modeled as a single layer with thickness
specified in the keyword *SECTION_SHELL. However, composite materials are often made
of multiple layers with possibly distinct properties. In this case, a single layer model
could not be able to correctly reproduce the real behaviour of the material, especially in
conditions when different numbers of layers are considered. The definition of a part with
multiple layers can be done in LS-DYNA in several ways, but the suggested one is to use

3Stress limits were also implemented in MAT54, but they were not used there for numerical stability
problems.

4Ideally 0, but this was not recommendend i the LS-DYNA User’s Manual, therefore both stress
limits for tensile mode were set to 0.01.
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Variable name Meaning

MID Material identification number
RO Material density
EA, EB Young’s moduli in a- and b-direction
PRBA Minor Poisson ratio in plane ab

TAU1 Stress limit of the first slightly non-linear part of the shear stress vs.
shear strain curve

GAMMA1 Strain limit of the first slightly non-linear part of the shear stress vs.
shear strain curve

GAB, GBC, GCA Shear moduli
SLIMT1, SLIMC1 Stress limit factor for fiber tension and compression
SLIMT2, SLIMC2 Stress limit factor for matrix tension and compression
SLIMS Stress limit factor for shear stress
AOPT Material axes option
TSIZE Time step for automatic element deletion
ERODS Maximum effective strain for element layer failure
SOFT Softening factor for strength in crashfront
FS Flag for failure surface type
EPSF Damage initiation transverse shear strain
EPSR Final rupture transverse shear strain
XP, YP, ZP Point P for axes option
A1, A2, A3 Vector A for axes option
V1, V2, V3 Vector V for axes option
D1, D2, D3 Vector D for axes option
BETA Material angle for axes option
E11C, E11T Strain at longitudinal compressive and tensile strengths
E22C, E22T Strain at transverse compressive and tensile strengths
GMS Shear strain at shear strength
XC, XT Longitudinal compressive and tensile strengths
YC, YT Transverse compressive and tensile strengths
SC Shear strength

Table 6.5: Variables of material card MAT58.

the keyword *PART_COMPOSITE, in substitution of both *PART and *SECTION_SHELL.
In *PART_COMPOSITE it is possible to define an arbitrary number of layers with different

material models, thicknesses and material angles. For example, in order to model the
Type I specimen, 4 layers can be defined with a thickness of 0.5mm (so as to sum up to
2mm), as it is shown in Table 6.6. Using the available informations on the manufacturing
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Figure 6.6: Force vs. displacement
curves from simulations on MAT58 (0°
load case) with FS=1, by varying SLIMT1.
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Figure 6.7: Comparison between FS=1
and FS=-1 for the 45° load case, with vari-
ation of SLIMS.

of the specimen, the two external layer and the two internal ones are assigned with two
different material types and all layers have the same principal direction. The advantage
of using the keyword *PART_COMPOSITE will be evident in the nest chapter during the
optimization of material parameters.

One important difference between the single layer and multiple layer definitions of a
material relies in the failure behaviour. In fact, when using multiple layers with different
properties it could happen that one layer fails before another does. In this cases, the
material has partially failed but it is still capable of undergoing additional stress, until
all layers fail. For some material, such as MAT54, it is possible to specify the percentage
of layers that have to fail in order to completely delete the shell element, through the
parameter PFL (see Table 6.2).

PID ELFORM SHRF NLOC MAREA HGID ADOPT ITHELFRM
40 16

MID1 THICK1 B1 TMID1 MID2 THICK2 B2 TMID2
1 0.5 0.0 2 0.5 0.0

MID3 THICK3 B3 TMID3 MID4 THICK4 B4 TMID4
2 0.5 0.0 1 0.5 0.0

Table 6.6: Cards of keyword *PART_COMPOSITE.
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Chapter 7

Parameter optimization

In this chapter all results obtained from LS-OPT optimization runs are presented. A
preliminary study was performed on a simplified problem in order to understand how
different settings in LS-OPT affect the optimal result. Then, some parameters of material
models MAT54 and MAT58 were optimized using different approaches with the objective of
reproducing experimental results previously obtained in Chapter 5. Referring to notation
used in Chapter 5, parameter identification has been performed on specimens from groups
A, B, C and D, while results of group E and E’ were discarded because of their inconsistency
due to problems already described.

7.1 Preliminary study

7.1.1 Setup

The material model used for all simulations in this preliminary study was MAT58, modeled
with 4 layers using the keyword *PART_COMPOSITE (see Section 6.3.4). Since in this stage
the objective is not the optimization of model’s parameter, it was chosen to use only 6
significant parameters, whose baseline values and ranges are given in Table 7.1: E is the
Young’s modulus, XT is the longitudinal tensile strength and EPS (actually named E11T
in the material card, see Table 6.4) is the strain correspondent to the strength value; the
first and second sets of parameters refer to the external and internal layers, respectively.
With these settings the duration of each simulation was about 30 seconds. The complete
material cards used for these simulations are given in Appendix B, where the exact values
of other parameters can be found.

In total, 6 different configurations were tested, labeled with letters from A to F. Since
the objective of parameter identification is to find a unique optimal value of the parameters,
only Metamodel-based Optimzation tasks were considered and the Sequential with Domain
Reduction strategy was chosen, with a maximum of 10 iterations. The detailed settings
used for each configuration are given below.
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Par. Baseline Min Max

E 8E4 2E4 8E4
EPS 0.01 0.01 0.03
XT 600 400 800
E2 8E4 4E4 1E5
EPS2 0.01 0.01 0.03
XT2 1000 800 1500

Table 7.1: Parameters used for optimization runs in the preliminary study.

Configurations A, B and C

In configuration A a linear polynomial metamodel was considered and design points were
generated using the D-optimal criterion. 11 points per iteration were used to build the
metamodel as this is the default number given by the software. Partial Curve Mapping,
with 50 points in total, was used to compare experimental and simulated curves and the
actual metamodel optimization was performed using the hybrid ASA/LFOP algorithm.

Configurations B and C are the same as A, except for the choice of the metamodel and
the sampling technique. In B a quadratic polynomial metamodel was built using 43 D-
optimal points per iteration. In C, Radial Basis Functions with 11 space filling designs were
used. Since in this specific problem only histories were defined as output from simulations,
there were not other choices for th type of metamodel used to approximate histories.

Configuration D

Configuration E is the same as A, but the MSE curve matching composite was used instead
of the Partial Curve Mapping algorithm. This configuration was used to see how the choice
of the curve matching composite affects the optimization run both in terms of cost and
accuracy of the result.

Configuration E

Configuration F is identical to A, but the optimization algorithm was changed to the hybrid
GA/LFOP.

Configuration F

Configuration G is the same as A, but all points from the experimental curve (692) were
used to compute the curve matching composites, instead of a fixed number of 50.

7.1.2 Results
Results of the 6 configurations have been compared both in terms of computational time
and accuracy of the optimized curve.
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Computational times are listed in Table 7.2, as output from LS-OPT. They are divided
into subcategories based on the individual steps of the optimization procedure and they
are discussed in the following:

– Sampling: sampling times varies a lot depending on the number of total designs
generated during all iterations and on the type of sampling technique. It can be seen
that D-optimal designs (in A, D, E and F) take less time than space filling ones (in
C); in particular it is possible to compute that a single D-optimal design costs about
0.3s against 0.7s for one space filling design. Sampling time for configuration B is
obviously much greater than other cases since more points had to be generated.

– Simulation: all simulation times are, as expected, approximately equal to the time of
one simulation multiplied by the total number of simulations (indicated as Funcion
Evaluations in Table 7.2).

– Metamodel: the time spent for building the metamodel is approximately equal for
all configurations and it is a small percentage of the total time. Since there were
not any scalar response, but only histories, defined as output of the simulations, the
metamodel are only used to approximate histories and to compute the curve matching
composite. Therefore, the actual time spent for building the metamodel is included in
the composite computation time (which is automatically included in the Optimization
time, see below);

– Optimization: configurations A, B and C show similar times since the same algorithm
(ASA/LFOP) was used for all of them. Optimization for configuration D took much
less time with the same algorithm. This suggests that computation of composites is
included in the Optimization time, since in configuration D the MSE composite, which
is much less expensive than PCM, was used. This fact is confirmed by configuration
E, in which almost 700 points were used to compute the curve matching composite.
Finally, a comparison between configurations A and F shows how Genetic Algorithms
take more time than ASA, as expected.

In terms of accuracy, all configurations lead to similar results, except for configurations
C and F, as it can be seen by looking an the objective value in Table 7.2. It is important to
notice that in almost all cases, the optimal curve was not obtained after the last iteration,
because of the non-monotonicity of the optimization history. For example, for configuration
A (see Figure 7.1) the optimum was reached at iteration 8 (out of 10). This was an
unexpected aspect of the Sequential with Domain Reduction optimization strategy and it
has to be kept in mind for future optimizations.

The optimized curves for all configurations are shown in Figure 7.2 together with the
experimental curve used as the objective. It is evident that all configurations (except
maybe for C and F) lead to very similar results, although the optimized parameters are
very dissimilar from each other. Optimized parameters, normalized to their initial range,
are shown in Figure 7.3.

Since a large variability was observed in the optimized parameters in different config-
urations, it was decided to perform a Direct Optimization in order to find the actual set
of optimal parameters. The results of this optimization are also displayed in Figure 7.3
and they are labeled as configuration Z. From these results it is clear that there is not
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A B C D E F

Initialization 4.88 2.95 3.04 2.71 2.90 3.21
Sampling 36.60 129.17 86.53 34.69 36.11 38.09
Simulation 3405.8 14089 3454.6 3561.7 3468.4 3505.1
Result extr. 583.32 2081.7 572.72 542.56 565.3 566.47
Metamodel 2.15 3.09 2.20 2.12 2.19 2.11
Optimization 1034.5 974.5 912.18 333.45 2109 8312.8
Total 1h 25m 4h 48m 1h 28m 1h 15m 1h 43m 3h 27m

Objective 2.129E-4 2.315E-4 1.131E-3 2.781E-3 2.124E-4 3.555E-3
Fun. Eval. 111 431 111 111 111 111

Table 7.2: Computational time spent for the optimization in each configu-
ration. The optimal curve matching value (Objective) and the total number
of simulations (Function Evaluations) are also reported.

Figure 7.1: Optimization history of the curve matching composite for con-
figuration A. The optimal value of the objective is not reached after the last
iteration, but at iteration 8 instead.

one single set of optimal parameters, but many of them exist and different one are found
depending on the algorithm and options used for the optimization process (as well as on
the baseline point). However, all optimal points are equally good as long as experimental
and simulated curves match sufficiently well. The presence of many optimal points could
be related to the multiple layer model: since the model is described using more parameters,
possible interactions between them could generate more optimal points.
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Figure 7.2: Optimized curves from all configurations A to G, together with
the experimental curve and the curve resulting from direct optimization (con-
figuration Z).
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Figure 7.3: Optimal parameters (normalized to their initial ranges) obtained
from configurations A to F and Z.

7.1.3 Conclusion

The main conclusion that can be gathered from previous results is that different meta-
modeling and optimization techniques lead to different optimized parameters. However,
for parameter estimation problems, the main objective is to find one set of optimal param-
eters which give good results when compared with experimental data and this is the case
for almost all configurations used.

In the following, comments will be done on single options of the optimization procedure,
based on the obtained results:
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– Metamodel and Sampling: it seems that both polynomial metamodels and RBF net-
works lead to good results when coupled with their default sampling technique, i.e.
D-optimal designs for polynomials and Space Filling designs for neural networks. The
most efficient techniques were the linear polynomial and the radial basis functions,
since the quadratic one needs too much simulations to be built. It is important to
keep in mind that with sequential optimizations the actual optimum might not occur
after the last iteration, as it has been the case for several configurations.

– Curve matching composite: the Partial Curve Mapping algorithm has produced better
results compared to the Mean Square Error composite, although the latter one is less
computationally expensive. For what concerns the number of points used to compute
the composite, it is evident that too much points lead to more computational effort,
without increasing the accuracy of the result. Therefore a relatively small number of
points should be used.

– Optimization algorithm: both hybrid algorithms ASA/LFOP and GA/LFOP lead to
good results in terms of accuracy, however GA is more time consuming than ASA,
therefore the last one should be used.

It is important to emphasize that results of a parameter identification problems always
depend on the specific problem analysed, on the number of parameters and on their baseline
values and initial ranges. A complete study of optimization strategies and various LS-
OPT settings should involve many problems (for example several load cases), and lots of
different optimization runs are needed in order to deduce general results, independent from
the specific problem that has to be solved.

7.2 Optimization of MAT54
All the following results (including those on MAT58) were obtained by performing a
Metamodel-based Optimization with Sequential with Domain Reduction strategy (10 it-
erations in total). A linear polynomial metamodel was used to approximate histories in
conjunction with D-optimal sampling (with the number of points varying based on the
number of parameters). Partial Cruve Mapping with 25 points was used to compute the
curve matching composite and ASA/LFOP was chosen as the optimization algorithm.

Considering that many experimental curves were available for each load case, it was
decided to consider only one of them (per load case) to compute the curve matching
composite. In particular, the blue curves in Figure 5.6 and Figure 5.8 were used for the 0°
and 90° load case on the Type I specimen, while the black curve in Figure 5.12 was used
for validation in the 0° load case on Type II specimen.

7.2.1 Single layer model
Main load case

In the first stage of the optimization of MAT54, it was chosen to model the specimen
as a single layer with equal properties along the longitudinal and transverse directions.
Therefore, the Young’s moduli in both directions were equal. Also, the shear moduli
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in the three coordinate planes were assumed to be coincident. In summary, only three
independent elastic constants were considered for the optimization, namely E, PR and G. In
order to model the failure, parameters XT and DFAILT were considered for the optimization.
As already described in Section 6.3.2, XT is the longitudinal tensile strength and DFAILT is
the maximum strain that an element can undergo before being deleted from the mesh.

The first optimization run was then performed on parameters listed in Table 7.3. The
analysis was done on the Type I specimen with fibers in the 0°/90° directions. Due to
numerical instability, many of the simulations failed during the optimization process, which
stopped before finishing iteration 8 since there were not enough usable simulations to build
the linear metamodel. The optimal curve of iteration 7, which is shown in Figure 7.4, is
not too far from the experimental curve, but it can certainly be improved.

Instead of re-running the optimization process with more simulations per iteration, it
was decided to remove DFAILT from the variable set to be optimized and to fix it to a high
constant value (DFAILT=10.0). This drastically reduced the number of failed runs and also
decreased the average time of each simulation, thus speeding up the entire optimization
procedure. Due to the behaviour of MAT54 when DFAILT has a high value (see Section
6.3.2), the experimental curve needed to be modified in order to help the curve mapping
algorithm to capture the failure point. In particular, the last experimental point was re-
moved and the second-last force value was repeated constantly up to the final displacement
of 3mm. The modified experimental curve and the optimized simulated curve are shown
in Figure 7.5 together with the Curve Matching value.
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Figure 7.4: Optimized curve using both
XT and DFAILT in the variable set.
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Figure 7.5: Optimized curve using only
XT in the variable set, while fixing DFAILT
to a high constant value.

The optimized parameters for the first and second optimization are shown in Table 7.3.
Recalling that the Young’s modulus computed from experimental curves is around 6.2GPa
for this load case, it can be noticed that the second optimization slightly underestimates
it. This is due to the fact that the material model is perfectly linear until failure, while
the experimental curve presents a small curvature even in the first part.
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7 – Parameter optimization

Par. Baseline Min Max 1st Opt. 2nd Opt.

E 6E4 1E4 1E5 5.18E4 5.07E4
PR 0.100 0.010 0.500 0.318 0.096
G 5E3 5E2 1E4 6.43E3 3.39E3
XT 700 100 2000 792 735
DFAILT 0.008 0.001 1 0.133 -

Table 7.3: Parameters used for the first and second optimization runs on
MAT54.

Validation on other load cases

In order to assess the validity of the optimal parameters of the second optimization, they
were used to run simulations on other load cases, namely the tensile test on Type I specimen
with 45° fibers and the tensile test on Type II specimen with 0° fibers.

Results of the former load case are shown in Figure 7.6. The first linear part of the
experimental curve is perfectly fitted by the simulated curve, thus validating the accuracy of
the elastic constants. However, the model is not capable of capturing the plastic behaviour
of the material. This is actually a limitation of material model MAT54, which is perfectly
linear until failure, at least when using a single layer model.

Results of the second validation load case are shown in Figure 7.7. In this case, the
simulated curve is completely different (even in the elastic part) from the experimental one,
suggesting that the single layer model is not able to reproduce the behaviour of specimens
with different layer compositions, as it is the case for Type I and Type II specimens used
in this study (see Section 5.2.2).
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Figure 7.6: Validation of single layer
MAT54 on the 45° test.
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Figure 7.7: Validation of single layer
MAT54 on the 6-layer (Type II) specimen.

62



7.2 – Optimization of MAT54

7.2.2 Multiple layer model

First load case

In order to obtain a model that works well independently from the layer composition of
the specimens, it seems necessary to model layers separately, which can be done using the
*PART_COMPOSITE keyword as described previously in Section 6.3.4. The Type I speci-
men was modeled as a laminated composite made of 4 distinct layers. By following the
specifications given by the manufacturer on the density of single layers, it was chosen to
model each layer using MAT54 with equal properties along the longitudinal and transverse
directions. Since there are two distinct type of layers (internal and external), two different
material cards were defined in the LS-DYNA input file. Optimization was performed using
8 parameters in totals, which are listed in Table 7.4.

The optimized curve of the third optimization on MAT54, shown in Figure 7.8, is not
very dissimilar from the previous run, although the matching is slightly better in the latter
case: the curve matching composites have the same order of magnitude, but the current
one is half the previous one. Optimal parameters, listed in the last column of Table 7.4, can
not be compared with previous results due to the different modeling approach in this case.
It is interesting to notice that E2>E and XT2>XT, which seems correct since the internal
layers of the specimen have a higher fiber density than the external ones.

Par. Baseline Min Max 3rd Opt.

E 6E4 1E4 1E5 2.95E4
PR 0.100 0.010 0.500 0.215
G 5E3 5E2 1E4 4.65E3
XT 700 100 2000 546
E2 6E4 1E4 1E5 7.15E4
PR2 0.100 0.010 0.500 0.400
G2 5E3 5E2 1E4 2.54E3
XT2 700 100 2000 916

Table 7.4: Parameters used for the third optimization run on MAT54. The
first half characterizes the two external layers, while the second half charac-
terizes the internal ones.

Validation on other load cases

As in the single layer model, also for the multiple layer one two extra simulations were
carried out to validate optimal parameters. The results of the 45° tensile test are shown
in Figure 7.9 and are identical to the single layer case. This confirms that MAT54 is not
capable of approximating the real plastic behaviour of the material even with multiple

63



7 – Parameter optimization

0 0.5 1 1.5 2 2.5 3
Displacement (mm)

0

2

4

6

8

10

12

14

16

18

Fo
rc

e 
(k

N
)

Curve Matching: 0.00011192

Exp A
Sim

Figure 7.8: Optimized curve of multiple
layer MAT54.

layer modeling1.
Results of the tensile test on the Type II specimen are shown in Figure 7.10. In this

case, the layered model is able to reproduce the experimental curve almost perfectly. It
is important to notice that the strength variability observed in the experiments is not
considered in the model, so that other experimental curves might be slightly less accurate
after failure. However, the elastic part of the curve is always perfectly matched, confirming
that the layered model can be used to model sheets with an arbitrary number of layers, as
long as all layers are of the two types considered here.

0 1 2 3 4 5 6 7 8 9 10
Displacement (mm)

0

1

2

3

4

5

6

7

Fo
rc

e 
(k

N
)

Curve Matching: 0.094758

Exp B
Sim

Figure 7.9: Validation of multiple layer
MAT54 on the 45° test.
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Figure 7.10: Validation of multiple layer
MAT54 on the 6-layer (Type II) specimen.

It is important to notice that the specimen does not actually fail in the simulation

1It might be possible to improve the behaviour of MAT54 in the 45° load case by considering addi-
tional failure parameters in order to accurately model the response of each layer and their interaction.
However this should be investigated in depth.
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since DFAILT is set to a high value, as already explained in Section 6.3.2. However it is
possible to see when and where the specimen might have failed by looking at the strain
distribution, which is shown in Figures 7.11 and 7.12 for the two specimens. Interestingly,
the direction and location of the fracture are in accordance with the experimental results,
confirming that the model MAT54 has the potential of correctly modeling not only the
elastic behaviour but also the failure of the material when the load is applied parallel to
one of the fiber directions.

Figure 7.11: Longitudinal strain distribution of the Type I specimen with
failed specimen of group A for comparison.

Figure 7.12: Longitudinal strain distribution of the Type II specimen with
failed specimen of group D for comparison.

7.3 Optimization of MAT58
Considering the results obtained from the optimization of material MAT54, the first simu-
lation on MAT58 was done using the optimized elastic constants E, PR, G and the optimized
strength XT (for both internal and external layers) as in Table 7.4. Other parameters were
fixed to some non-optimized value and a multiple layer model was used. The result of this
simulation (Figure 7.13) confirms once again the accuracy of the elastic constants, but it
is evident that parameters related to failure have to be optimized.
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Figure 7.13: Validation of the optimized
elastic constants of MAT54 on MAT58.

With the information obtained until this point, it was decided to perform optimization
of MAT58 under the following assumptions:

– the material was always modeled using multiple layers;

– elastic constants of single layers were assumed to be equal to those previously ob-
tained. Therefore, they were not included in the variable set for the following opti-
mizations. This significantly reduced the number of parameters to be optimized and
also the cost of the optimization.

The parameters that were chosen for the optimization are all related to failure and can
be divided into to groups:

1. the first group includes EPS, XT, EPS2 and XT2 (4 parameters) which govern failure
when load is applied in the longitudinal (or transverse) direction;

2. the second group includes TAU, GAMMA, GMS, SC, TAU2, GAMMA2, GMS2 and SC2 (8 pa-
rameters) which describe the plastic behaviour and the failure for shear strain and
shear stress.

Details on the meaning of each parameter are given in Section 6.3.3. In total, 12 parameters
have to be optimized and two different approaches can be followed2. In the first one, two
distinct optimization runs are performed for each group of parameters. The advantage of
this approach is that a smaller number of simulation is carried out, but it is valid only as
long as the two set of parameters are completely independent from each other, which is

2Actually, a third approach, involving Multilevel Optimization, is possible. In Multilevel Optimiza-
tion two LS-OPT procedures are created: the first "outer" level optimizes the first set of parameters,
while the second "inner" level optimizes the second one. These two optimizations are performed with
alternating iterations, so that at each iteration one level uses the optimal parameters of the previous
other level. The total cost of the optimization is the same as the two-steps approach, but the results
are more likely to be similar to those obtained with one-step optimization.
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7.3 – Optimization of MAT58

rarely the case. In the second one, all parameters are optimized at the same time in a single
optimization run. This could lead to better results since more simulations are performed
than the first case and interactions between all parameters are considered. Both approaches
have been studied in order to understand which is more effective and they are described
in detail in the following sections.

7.3.1 Two-steps optimization

Main load cases

The first step of the optimization on MAT58 was done using 4 parameters, listed in Ta-
ble 7.5. The 0° load case was considered since the chosen parameters govern the behaviour
of the material in the fiber direction. The optimal curve, shown in Figure 7.14, is quite
close to the experimental one and the material is able to capture the slight non-linearity
in the curve. It is important to notice that the optimal curve was obtained at iteration 5,
after which the computed curve matching value began to increase instead of decreasing.

Optimal parameters obtained in the first step were then set to constants and the second
optimization was carried out on the other 8 parameters, listed in Table 7.6, using the 45°
load case. The optimized curve is shown in Figure 7.15. The material model has been
able to perfectly reproduce the first linear elastic part of the curve as well as the plastic
part. This is mainly due to the presence of GAMMAs and TAUs parameters in the variable
set. The last part of the curve is not fitted well, probably because of the parameters used
in the optimization. It is possible (and should be investigated) that even the failure of the
specimen could be modeled by introducing other parameters of MAT58 in the optimization.

The total number of simulations per iteration performed for the two-step optimization
was 22, since 8 and 14 designs were used respectively for the first and second steps for each
iteration.
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Figure 7.14: First optimized curve of
the two-steps optimization. Notice that
the optimum was reached after iteration 5
(out of 10).
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Figure 7.15: Second optimized curve of
the two-steps optimization.
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7 – Parameter optimization

Par. Baseline Min Max 1st Step Opt.

EPS 0.013 0.001 0.1 0.0511
XT 546 100 2000 973
EPS2 0.013 0.001 0.1 0.0164
XT2 916 100 2000 853

Table 7.5: Parameters used in the first step of the two-steps MAT58 opti-
mization. Optimal values refer to iteration 5.

Par. Baseline Min Max 2nd Step Opt.

GAMMA 0.013 0.001 0.100 0.0248
TAU 100 50 150 52
GMS 0.070 0.010 0.200 0.1639
SC 150 50 300 84
GAMMA2 0.013 0.001 0.100 0.0547
TAU2 100 50 150 53
GMS2 0.070 0.010 0.200 0.1815
SC2 150 50 300 91

Table 7.6: Parameters used in the second step of the two-steps MAT58
optimization.

Validation on other load cases

Since the variable set used in the first and second steps are not completely independent,
it is important to see how the second optimization has modified the optimal curve for the
0°/90° load case. The modified simulated curve, shown in Figure 7.16, is slightly worse
than the previously optimized one, suggesting that the one-step optimization might lead
to better results.

Another validation run was performed on the Type II specimen and the result is shown
in Figure 7.17. Also in this case, the fit is not as good as for MAT54, since the experimental
curve is perfectly linear while the simulated curve slightly bends before failure.

The differences observed between MAT54 and MAT58 in these two validation runs are
not really bad, considering the natural variability of the strength of the specimens observed
in the experiments.

7.3.2 One-step optimization
Main load cases

In the one-step optimization all 12 parameters were optimized in the same process. In
order to compare results of the two approaches, the same baseline values and initial ranges
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Figure 7.16: Validation of optimal pa-
rameters obtained from the second step on
the first load case.
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Figure 7.17: Validation of optimal pa-
rameters on the Type II specimen.

were considered for all parameters. The number of simulations per iteration was 40, which
is much greater than the two-step optimization one. The results are shown in Figures 7.18
and 7.19 and should be compared with respective cases in Figures 7.16 and 7.15 which
are already superimposed in current graphs for simplicity. It is evident that the one-step
procedure is able to optimize all parameters better than the two-steps procedure, especially
for the 0° load case. The 45° load case does not show big differences from the previous
case in terms of accuracy of the simulated curve.
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Figure 7.18: Optimized curve of the one-
step optimization for the 0° load case.
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Figure 7.19: Optimized curve of the one-
step optimization for the 45° load case.

The optimal parameters of the one-step optimization are reported in Table 7.7. Optimal
parameters of the two-steps optimization are also listed for comparison. It is evident that
the two approaches led to different optimal parameters, since many of them varied more
than 10% with respect to their initial ranges (see Figure 7.22).
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Figure 7.20: Validation of the one-step
optimization on MAT58 for the Type II
specimen.
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Figure 7.21: Simulated curve for the 45°
load case on the Type II specimen (exper-
imental curve not available).

Par. 2-step Opt. 1-step Opt.

EPS 0.0511 0.0631
XT 973 922
EPS2 0.0164 0.0211
XT2 853 1153
GAMMA 0.0248 0.0477
TAU 52 56
GMS 0.1639 0.1729
SC 84 57
GAMMA2 0.0547 0.0595
TAU2 53 60
GMS2 0.1815 0.1846
SC2 91 119

Table 7.7: Comparison between optimal parameters resulting from the one-
step and the two step-optimizations.

Validation on other load cases

As in the previous cases, a final simulation was performed on the 6-layer specimen in order
to validate the computed optimal parameters. The result of this simulation, shown in
Figure 7.20, does not have a good match with the experimental curve, similarly to the
same validation for the two-step optimization (Figure 7.17).

Finally, another simulation was performed for the 45° load case on the 6-layer specimen
(Type II). The result of this simulation is shown in Figure 7.21, however it is not possible
to asses the quality of the result since no experimental curve was available for this specific

70



7.3 – Optimization of MAT58

0 0,2 0,4 0,6 0,8 1

SC2

GMS2

TAU2

GAMMA2

SC

GMS

TAU

GAMMA

XT2

EPS2

XT

EPS

1-step Opt. 2-step Opt.

Figure 7.22: Graphical comparison of optimal parameters listed in Table 7.7,
normalized to their initial ranges.

load case.

Figure 7.23: Longitudinal strain distribution of the Type I specimen for the
0° load case, with failed specimen of group A for comparison.

Similarly to the case of MAT54, the specimen modeled with MAT58 does not fail during
the simulation (since ERODS=0). However it is useful to look at the strain plots to see where
it would have failed. The 0° load case, shown in Figure 7.23, is very similar to the previous
case (MAT54), with failure occurring at the ends of the gage section of the specimen.
Contrarily, for the 45° load case in Figure 7.24, the plastic behaviour is noticeable with
evident necking of the specimen at the center of the gage section, where the failure would
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7 – Parameter optimization

Figure 7.24: Longitudinal (with respect to the global system of reference)
strain distribution of the Type I specimen for the 45° load case, with failed
specimen of group B for comparison.

have occurred. However, there is no evidence in the simulated specimen of the fracture
occurring along the fiber directions.
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Chapter 8

Conclusion

In this thesis parameter estimation has been performed on a carbon-fiber reinforced epoxy
resin using metamodel-based optimization techniques implemented in the software LS-OPT.

In a preliminary study, different LS-OPT settings have been used on the same problem
in order to find the best option configuration. It has been found that the optimized
parameters are very sensitive to the specific settings used, although most of the tested
configurations produced really good results in terms of matching between experimental and
simulated curves. Considering the obtained results, it was decided to perform successive
optimization runs using a Metamodel-based Optimization with Sequential with Domain
Reduction strategy. In particular, a linear polynomial metamodel with D-optimal sampling
was used. The Partial Curve Mapping algorithm with a reduced number of points was used
to match simulated and experimental curve and the hybrid algorithm ASA/LFOP was used
to optimize the metamodel.

Parameter identification has been performed using two different material models, namely
MAT54 and MAT58. From various optimization runs on MAT54, it has been deduced that
this material model is appropriate for modeling the tested material only when the load is
applied in the same direction as the carbon fibers. Both single layer model and a multiple
layer one have been simulated. It was observed that both models can be optimized on
longitudinal load cases, however the second one can be applied to layups with a generic
number and disposition of layers.

The material model MAT58 was then considered because of its capability of reproduc-
ing the experimental behaviour of the material when the load is applied both in the 0°
and in the 45° directions. In order to find optimal parameters for MAT58, two different
approaches were studied, namely the one-step optimization and the two-steps optimiza-
tion. It was found that the 45° load case is well optimized with both approaches, but
the second one produces better results for the 0° load case, because more simulations are
performed and interactions between all parameters are considered. In conclusion, MAT58
was capable of reproducing the behaviour of the tested material for both 0° and 45° load
cases, although the matching for the 0° load case with different layers is slightly worse than
the correspondent one for MAT54.

By comparing the deformed mesh and the failed specimen, it was observed that there
are similarities in the position and type of failure between the experimental and simulated
specimens. This suggests that both material models are capable of capturing the failure
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behaviour of the material.
In conclusion, material models MAT54 and MAT58 are capable of reproducing the

observed experimental behaviour of the material and the elastic properties of single layers
of the material have been successfully determined thanks to the optimization procedure.
Parameters related to failure have also been optimized, however they should be investigated
more in depth.

Future works on the subject might concern further validation of the optimized param-
eters of MAT54 and MAT58 on different load cases, involving different loads (for example
bending or compression loads) or complex geometries. Moreover, the failure and dam-
age behaviour of the material could be investigated in order to accurately model it, using
parameters and criteria already implemented in MAT54 and MAT58 or using other ma-
terial models. Parameter identification could also be performed on tested specimen with
uni-directional fibers, for which there were not sufficient valid experimental results.
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Appendix A

Failed specimens

In this Appendix photos of all specimens are displayed after they have been tested. For
those who have failed, a close view of the fracture is shown.

Figure A.1: Failed specimens of group A.

Figure A.2: Close view of fracture for specimens of groups A.
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A – Failed specimens

Figure A.3: Failed specimens of group B.

Figure A.4: Close view of fracture for specimens of groups B.

Figure A.5: Failed specimens of group C.
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Figure A.6: Close view of fracture for specimens of groups C.

Figure A.7: Failed specimens of group D.

Figure A.8: Close view of fracture for specimens of groups D.

77



A – Failed specimens

Figure A.9: Specimens of group E after testing. None of the specimens has
failed in the gage section.

Figure A.10: Specimens of group E’. Only the first specimen has failed in
the gage section.

Figure A.11: Close view of fracture for specimens of groups E’.
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Appendix B

LS-DYNA input files

In this Appendix, some relevant parts of the LS-DYNA input files are reported. It was not
possible to include the entire files because of they excessive length.

The first three pieces of code that are presented were used to model the single layer and
the multiple layer materials.

• Single layer model

*PART
$# pid secid mid eosid hgid grav adpopt tmid

40 40 1 0 0 0 0 0
*SECTION_SHELL
$# secid elform shrf nip propt qr/irid icomp setyp

40 16 1.0 5 1.0 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset

2.0 2.0 2.0 2.0 0.0 0.0 0.0 0

• Multiple layer model (4 layers)

*PART_COMPOSITE
$# pid elform shrf nloc marea hgid adpopt ithelfrm

40 16 0.0 0.0 0.0 0 0 0
$# mid1 thick1 b1 tmid1 mid2 thick2 b2 tmid2

1 0.50 0.0 0 2 0.50 0.0 0
2 0.50 0.0 0 1 0.50 0.0 0

• Multiple layer model (6 layers)

*PART_COMPOSITE
$# pid elform shrf nloc marea hgid adpopt ithelfrm

40 16 0.0 0.0 0.0 0 0 0
$# mid1 thick1 b1 tmid1 mid2 thick2 b2 tmid2

1 0.50 0.0 0 2 0.50 0.0 0
2 0.50 0.0 0 2 0.50 0.0 0
2 0.50 0.0 0 1 0.50 0.0 0
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The following pieces of code concern the definition of the material model and were used
for most of the simulations in Chapters 6 and 7. In order to model the 0° load case it
suffices to define a1=1, a2=a3=0, while the 45° load case is defined by specifying a1=a2=1
and a3=0.

• Material model MAT54

*MAT_ENHANCED_COMPOSITE_DAMAGE
$# mid ro ea eb (ec) prba (prca) (prcb)

11.60000E-9 &E &E 0.0 &PR 0.0 0.0
$# gab gbc gca (kf) aopt 2way

&G &G &G 0.0 2.0 0.0
$# xp yp zp a1 a2 a3 mangle

0.0 0.0 0.0 1.0 0.0 0.0 0.0
$# v1 v2 v3 d1 d2 d3 dfailm dfails

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
$# tfail alph soft fbrt ycfac dfailt dfailc efs

0.0 0.0 0.0 0.0 0.0 10 -10 0.0
$# xc xt yc yt sc crit beta

&XT 54.0 0.0
$# pel epsf epsr tsmd soft2

100.0 0.0 0.0 0.0 0.0
$# slimt1 slimc1 slimt2 slimc2 slims ncyred softg

• Material model MAT58

*MAT_LAMINATED_COMPOSITE_FABRIC
$# mid ro ea eb (ec) prba tau1 gamma1

11.60000E-9 &E &E 0.0 &PR &TAU &GAMMA
$# gab gbc gca slimt1 slimc1 slimt2 slimc2 slims

&G &G &G 0.01 0.01 1.0
$# aopt tsize erods soft fs epsf epsr tsmd

2.0 0.0 -1.0
$# xp yp zp a1 a2 a3 prca prcb

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
$# v1 v2 v3 d1 d2 d3 beta

0.0 0.0 0.0 0.0 0.0 0.0 0.0
$# e11c e11t e22c e22t gms

&EPS &EPS &EPS &EPS &GMS
$# xc xt yc yt sc

&XT &XT &XT &XT &SC

For completeness, also control, database and boundary condition cards are reported
below, since they were the same for all simulations (except for the nodes identification
numbers).

• Control cards

*CONTROL_IMPLICIT_AUTO
$# iauto iteopt itewin dtmin dtmax dtexp kfail kcycle
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1 200 0 0.0 0.05 0.0 0 0
*CONTROL_IMPLICIT_GENERAL
$# imflag dt0 imform nsbs igs cnstn form zero_v

1 0.01 2 0 2 0 0 0
*CONTROL_IMPLICIT_SOLUTION
$# nsolvr ilimit maxref dctol ectol rctol lstol abstol

12 0 0 0.0 0.0 0.0 0.01.0000E-10
$# dnorm diverg istif nlprint nlnorm d3itctl cpchk

2 1 0 0 2 0 0
$# arcctl arcdir arclen arcmth arcdmp arcpsi arcalf arctim

0 0 0.0 1 2 0 0 0
$# lsmtd lsdir irad srad awgt sred

4 2 0.0 0.0 0.0 0.0
*CONTROL_IMPLICIT_SOLVER
$# lsolvr lprint negev order drcm drcprm autospc autotol

4 0 2 0 4 0.0 1 0.0
$# lcpack mtxdmp

2 0
*CONTROL_SHELL
$# wrpang esort irnxx istupd theory bwc miter proj

0.0 0 0 0 2 2 1 0
$# rotascl intgrd lamsht cstyp6 thshel

1.0 0 0 1 0
$# psstupd sidt4tu cntco itsflg irquad w-mode stretch icrq

0 0 0 0 2 0.0 0.0 0
$# nfail1 nfail4 psnfail keepcs delfr drcpsid drcprm intperr

0 0 0 0 0 0 1.0 0
*CONTROL_TERMINATION
$# endtim endcyc dtmin endeng endmas nosol

1.0 0 0.0 0.01.000000E8 0

• Database cards

*DATABASE_BNDOUT
$# dt binary lcur ioopt

1.00000E-4 2 0 1
*DATABASE_ELOUT
$# dt binary lcur ioopt option1 option2 option3 option4
1.00000E-4 2 0 1 0 0 0 0
*DATABASE_GLSTAT
$# dt binary lcur ioopt
1.00000E-4 2 0 1
*DATABASE_NODFOR
$# dt binary lcur ioopt
1.00000E-4 2 0 1
*DATABASE_NODOUT
$# dt binary lcur ioopt option1 option2
1.00000E-4 2 0 1 0.0 0
*DATABASE_SECFORC
$# dt binary lcur ioopt
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1.00000E-4 2 0 1
*DATABASE_SPCFORC
$# dt binary lcur ioopt
1.00000E-4 2 0 1
*DATABASE_BINARY_D3PLOT
$# dt lcdt beam npltc psetid

0.01 0 0 0 0
*DATABASE_EXTENT_BINARY
$# neiph neips maxint strflg sigflg epsflg rltflg engflg

0 0 3 1 1 1 1 1
$# cmpflg ieverp beamip dcomp shge stssz n3thdt ialemat

0 0 0 1 1 1 2 1
*DATABASE_CROSS_SECTION_PLANE_ID
$# csid title

1
$# psid xct yct zct xch ych zch radius

0 0.0 -6.5 1.0 8.25 -6.5 1.0 0.0
$# xhev yhev zhev lenl lenm id itype

0.0 0.0 0.0 0.0 0.0 0 0
*DATABASE_HISTORY_NODE
$# id1 id2 id3 id4 id5 id6 id7 id8

929 1514 314 0 0 0 0 0

• Boundary conditions, curves and node sets

*BOUNDARY_PRESCRIBED_MOTION_SET_ID
$# id heading

2
$# nsid dof vad lcid sf vid death birth

2 1 2 1 1.0 01.00000E28 0.0
*BOUNDARY_SPC_SET_ID
$# id heading

1
$# nsid cid dofx dofy dofz dofrx dofry dofrz

1 0 1 1 1 1 1 1
*SET_NODE_LIST_TITLE
Fixed
$# sid da1 da2 da3 da4 solver

1 0.0 0.0 0.0 0.0MECH/CESE/
$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

620 621 622 623 624 625 626 683
909 0 0 0 0 0 0 0

*BOUNDARY_SPC_SET
$# nsid cid dofx dofy dofz dofrx dofry dofrz

8 0 0 1 1 1 1 1
*SET_NODE_LIST_TITLE
NODESET(SPC) 8
$# sid da1 da2 da3 da4 solver

8 0.0 0.0 0.0 0.0MECH
$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8
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311 312 313 314 315 316 317 490
680 0 0 0 0 0 0 0

*DEFINE_CURVE_TITLE
Displacement_curve
$# lcid sidr sfa sfo offa offo dattyp lcint

1 0 1.0 1.0 0.0 0.0 0 0
$# a1 o1

0.0 0.0
1.001 3.0

*SET_NODE_LIST_TITLE
Motion
$# sid da1 da2 da3 da4 solver

2 0.0 0.0 0.0 0.0MECH/CESE/
$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

311 312 313 314 315 316 317 490
680 0 0 0 0 0 0 0

*SET_NODE_LIST_TITLE
Displacement_Set
$# sid da1 da2 da3 da4 solver

6 0.0 0.0 0.0 0.0MECH/CESE/
$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

929 1514 0 0 0 0 0 0
*SET_NODE_LIST_TITLE
Cross_Section_Nodes
$# sid da1 da2 da3 da4 solver

7 0.0 0.0 0.0 0.0MECH/CESE/
$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

565 573 581 589 597 605 613 755
770 0 0 0 0 0 0 0

*SET_SHELL_LIST_TITLE
Cross_Section_Shell
$# sid da1 da2 da3 da4

8 0.0 0.0 0.0 0.0
$# eid1 eid2 eid3 eid4 eid5 eid6 eid7 eid8

549 558 567 576 585 594 603 612
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