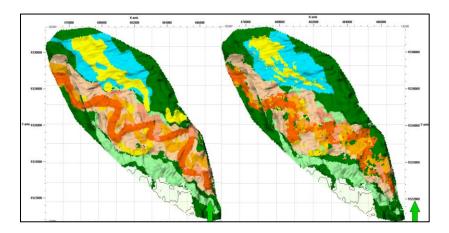


THESIS

POLITECNICO DI TORINO


Offshore Angola oil field: Multiple Point Statistics (MPS) Modelling Approach

Eni Angola S.p.A – Reservoir Department

19 December 2018

Politecnico di Torino

ABSTRACT:

Aim of these work is to implement the Multiple Point Statics "MPS" technology (using the Schlumberger Petrel 2017.1 software) to an Angolan offshore oil field already in production, comparing the results with the one coming from the existing standard modeling technique. This is achieved extending the stochastic simulation approach to the sedimentological model by means of the MPS algorithm.

Considering that the MPS is a modern modelling technique on the geostatistical panorama, the core concept is related with the aim of better representing the subsurface geology of the reservoir, by means of a deep analysis of the sedimentological model and the Environments of Deposition "EoD". This can be achieved by the wide integration of data from the training image and secondary data (probabilistic data).

The Environments of Deposition (EoDs) coming from the sedimentological interpretation are used to build the Training Images (conceptual models) for each zone and the depositional model, instead of being the product of a deterministic interpretation, is the result of a MPS simulation. Moreover, the existing EoD property is converted into a probabilistic trend and used to condition the simulation.

The substitution of the vertical boundaries among the EoDs with more realistic depositional interfaces slightly reduces the global sand content – and the STOIIP accordingly – but it improves the geological imaging of the field and the hydraulic communication among the depositional bodies.

The lithological facies and the petrophysical properties are distributed following the same approach of the current model (standard modelling approach) in order to properly evaluate the impact of the MPS algorithm on the STOIIP.

Therefore, the reduction of the static hydrocarbon volume in place does not necessarily lead to a reduction of the ultimate recovery, due to a possible more efficient horizontal and vertical dynamic efficiency. The dynamic test (in both terms of HM and forecast) represents the most relevant way forward of the work, considering that the field is already in production since almost 2 years.

AUTHOR:			
JERSON PAIVA			
STEFANO LO RUSSO	ILARIO FRANCO	19 December 2018	
	ANDREA TOMASI		
PoliTo Supervisor	eni Supervisors	Date	

TABLE OF CONTENT

ABE	BREV	VIATIONS & ACRONYMS	.7
1	TH	IESIS SUMMARY	. 8
1	.1	Introduction	
	.2	Conclusion and recommendations	
2	FIE	ELD OVERVIEW	10
2	2.1	Geological settings	10
2	.2	Development plan	
2	.3	Current reservoir 3D model	
	2.3	3.1 SiS (Sequential Indicator Simulation) Facies model	14
	2.3	3.2 SGS Petrophysical properties model	21
		3.3 Volumetric	
3	MU	JLTIPLE POINT STATISTICS (MPS)	26
3	.1	MPS Simulation Technology	
3	.2	MPS application to an Angolan offshore field	28
	3.2	2.1 EoD Probability Volumes	29
	3.2		
	3.2	2.3 MPS Geo-body Facies (EoD) model	19
	3.2	2.4 SIS Facies distribution property model	56
	3.2	2.5 SGS Petrophysical properties model	57
	3.2		
	3.2		
4	UN	ICERTAINTY AND OPTIMIZATION ANALYSIS	76
4	.1	Risk analysis (RA) purpose	76
4	.2	Standard model RA workflow	76
4	.3	MPS model Risk Analysis workflow	78
4	.4	Result comparison	31
5	CO	DNCLUSION AND WAY FORWARD	33
REF	ERE	ENCES	37

LIST OF TABLES

0
8
8
8
9
1
5
0
0
1
1
7
8
5
3
5
5
6
7
8
9
1
2

LIST OF FIGURES

Figure 1 – Standard model workflow	8
Figure 2 – Block map	10
Figure 3 – Structure horst schematic and LM22 Top map	11
Figure 4 – LM22 internal architecture (seismic & sedimentology)	12
Figure 5 – LM22 completion scheme	12
Figure 6 – Development wells - log correlation	
Figure 7 – Pressure points analysis	
Figure 8 – Petrel static modelling workflow	
Figure 9 – Cluster analysis result	
Figure 10 – Zones and Pseudozones from 3D model	
Figure 11 – Geo-bodies (EoD) - Zones A, AB, C, CD, D and E	16
Figure 12 – Geo-bodies (EoD) - Zones F and E	
Figure 13 – EoD vertical cross section	17
Figure 14 – Facies modelling window	20
Figure 15 – Facies distribution map view and vertical section	20
Figure 16 – Facies Histogram (Standard model)	21
Figure 17 – NTG property distribution	22
Figure 18 – Porosity distribution settings	22
Figure 19 – Porosity distribution	
Figure 20 – Porosity distribution settings	23
Figure 21 – Water Saturation distribution	24
Figure 22 – Static model work flow	
Figure 23 – Cross section through the reservoir	25

	STON DO
eni	8 8 S

Figure 24 – Training Image concept	
Figure 25 – Multiple Point configurations	26
Figure 26 – Standard Model geo-body conceptual cross section	
Figure 27 – MPS Model geo-body conceptual model	2/
Figure 28 – MPS model channel margins in conceptual cross section	28
Figure 29 – Petrel static MPS modelling workflow	
Figure 30 – Zone A and AB – EoD probability map	
Figure 31 – Zone C and CD - EoD probability map	
Figure 32 – Zone D and E - EoD probability map Figure 33 – Zone F - EoD probability map	
Figure 34 – Channel Axis 3 – EoD probability volume (3D property)	
Figure 35 – Mud filled channel 3 – EoD probability volume (3D property)	
Figure 36 – Rich of Axis – EoD probability volume (3D property)	
Figure 37 – Crevasse – EoD probability volume (3D property)	
Figure 38 – Frontal Splay – EoD probability volume (3D property)	
Figure 39 – Channel4 – EoD probability volume (3D property)	
Figure 40 – Channel D – EoD probability volume (3D property)	
Figure 41 – Channel North – EoD probability volume (3D property)	
Figure 42 – Channel 2 – EoD probability volume (3D property)	
Figure 43 – Channel 1 – EoD probability volume (3D property)	
Figure 44 – smoothness principle applied on the MPS external constraint concept	35
Figure 45 – Training Image work flow	36
Figure 46 – Training Image grid input	
Figure 47 – Training Image facies modelling window	
Figure 48 – Zone A- Channel axis 3 and mud filled channel inputs	
Figure 49 – Zone A Training Image 3D grid	
Figure 50 – Zone AB- Mud filled inputs	
Figure 51 – Zone AB Training Image 3D grid	
Figure 52 – Zone C- Channel 4 and Channel axis 3 inputs	
Figure 53 – Zone C- Rich off Axis and Frontal Splay inputs	
Figure 54 – Zone C Training Image 3D grid	
Figure 55 – Zone CD Rich off Axis inputs	
Figure 56 – Zone CD Training Image 3D grid	
Figure 57 – Zone D Channel D input	
Figure 58 – Zone D Training Image 3D grid	44
Figure 59 – Zone E Channel E North and Rich off axis input	44
Figure 60 – Zone E Training Image 3D grid	45
Figure 61 – Zone F Channel 4 and Channel axis 3 inputs	
Figure 62 – Zone F Channel 2 and Channel 1 input	46
Figure 63 – Zone F Training Image 3D grid	46
Figure 64 – Zone C, facies interpretation – Seismic	47
Figure 65 – Zone C- Channel 4 and Channel axis 3 inputs (second simulation)	47
Figure 66 – Zone C Training Image 3D grid (second simulation)	48
Figure 67 – Zone D- Channel D inputs (second simulation)	
Figure 68 – Zone D Training Image 3D grid (second simulation)	
Figure 69 – MPS Facies modelling concept	
Figure 70 – Pseudozones A and AB – MPS model (simulation 1)	
Figure 71 – Zone C and CD – MPS model (simulation 1)	
Figure 72 – Pseudozones D and E – MPS model (simulation 1)	
Figure 73 – Pseudozone F – MPS model (simulation 1)	
Figure 74 – Pseudozones A and AB – MPS model (simulation 2)	
Figure 75 – Pseudozones C and CD – MPS model (simulation 2)	
Figure 76 – Pseudozones D and E – MPS model (simulation 2)	55
TURGE	

171173	a standard
eni	A BERT

ABBREVIATIONS & ACRONYMS

Term / Acronym / Abbreviation	Explanation / Definition
GOIP or GIIP	Gas Initially in Place
OOIP or OIIP	Oil Initially in Place
OCIP or CIIP	Condensate Initially in Place
FOPR	Field Oil Production Rate
FOPT	Field Oil Production Total
FGPR	Field Gas Production Rate
FGPT	Field Gas Production Total
FWPR	Field Water Production Rate
FWPT	Field Water Production Total
FWCT	Field Water Cut
FGOR	Field Gas Oil Ratio
P10	10 th percentile, there is 10% probability of being equal or lower than the P10 value
P50	50 th percentile or median, there is 50% probability of being equal or lower than the P50 value
P90	90 th percentile, there is 90% probability of being equal or lower than the P90 value
LM22	Lower Miocene 22
FF	Facies Fraction
MSTB	Millions of Stock Tank Barrels
SCF	Standard Cubic Feet
BOPD	Barrels of Oil Per Day
SiSim	Sequential Indicator Simulation
GRFS	Gaussian Random function Simulation
EoD	Environment of Deposition
TI	Training Image
MPS	Multiple Point Statistics
RA	Risk Analysis
СРІ	Computed Petrophysical Interpretation
SneSim	Single normal Equation Simulation
RB/MSCF	Reservoir Barrel /Millions Standard Cubic Feet
RB/STB	Reservoir Barrel / Stock tank Barrel
STOOIP,STOIIP	Stock Tank Oil Originally In Place, Stock Tank Oil Initially In Place

1 THESIS SUMMARY

1.1 Introduction

The scope of this work is extending the stochastic simulation approach to the sedimentological model by means of the recently developed modeling technology called Multiple Point Statistics "MPS". The environments of deposition, coming from the sedimentological interpretation, will be used to build the training images (conceptual models) for each zone and the sedimentological model, instead of being the product of a deterministic interpretation, will be the result of a MPS simulation. The facies and the petrophysical properties will be distributed following the same approach of the standard model (Figure 1). Hundreds of realizations will be run and their average answer, in both terms of STOIIP and geological shapes, will be compared with the current model.

The current reservoir model has been subdivided into 8 pseudozones, belonging to the LM22 sequence. Each zone underwent a detailed sedimentological interpretation, which came out with the deterministic definition of different Environments of Deposition (EoD). 6 facies have been defined at well scale by means of a cluster analysis and then distributed into the grid by EoD through a SISim algorithm. The target proportion for each facies has been defined within each EoD and a sand probability volume has been applied as 3D trend for sandy facies. Finally, the petrophysical properties have been simulated by facies through statistical techniques. The above mentioned workflow is summarized in the schematic below, Figure 1.

Figure 1 – Standard model workflow

Multiple point Geo-statistics (MPS) is an innovative technology developed in the last decade by Stanford University. It has been designed to model very complex and curvilinear geological features. It goes over the traditional statistical approach based on the two-point correlation that is expressed by variograms, by using multiple-point configurations that are represented by training images, to infer statistics. They are 2D images or regular 3D grids able to reproduce the depositional environment that is object of the study. The MPS modelling results will be analyzed and compared with the standard model ones. The best case out of the different sensitivities with MPS simulation and the standard base case will undergo a risk analysis, in order to understand the impact on STOOIP of the parameters such as facies distribution and modeled geo-bodies percentages.

1.2 Conclusion and recommendations

The MPS technology is a modern modelling approach extremely indicated for complex and heterogeneous depositional systems. It is capable to reproduce complex geological shapes and spatial relationships, incorporating the geological principles, which leads to a better reservoir characterization and management

The out coming STOIIP from the MPS model is a conservative result in relation to the standard model, since a very detailed geological modelling in terms of both shapes and spatial relationship among the EoDs and geo-bodies is considered.

The detailed results of the work are listed here below:

- the MPS algorithm allows a better definition of the geological shapes and consequently a better simulation of the sedimentological model;
- the details of the TIs by means of the object modelling stochastic algorithm allows capturing and reproducing the stratigraphic and depositional principles (superposition, cross-cutting, intrusive relation);
- by modelling the EoDs in a stochastic manner, it is possible to easily update the sedimentological model once new wells are available;
- the Training Image definition is a time consuming iterative process, many sensitivities are needed to get the right spatial configuration and distribution;
- EoD probability volume (3D external trend property), plays a fundamental role in the EoD model definition. Through the weight factor the effects of the trend on the final simulation can be fine-tuned. This is an iterative process and it is clearly time consuming;
- MPS simulation is a time consuming algorithm in terms of both training image definition and facies simulation. This has to be taken into account especially while planning a Risk Analysis;
- Computational capacity is needed to run this kind of simulation and it is even more critical when performing a complete reservoir Risk Analysis.

To complete the study a reservoir dynamic simulation should be performed (initialization, History Match and forecast) in order to verify if the dynamic behavior of the field is better matched and forecasted by a static model, which reproduces with more details the geological features and their spatial relationships.

The outcome of the MPS model can optimize the pre-development prognosis of the field and lead to a better development campaign of the reservoir.

2 FIELD OVERVIEW

2.1 Geological settings

The structure is located in the North-Eastern part of the block (Figure 2), approximately 100 km from coast. The water depth is 550m and the field extension is about 50 km2. On average, the vertical gross thickness of LM22 level is about 250 m.

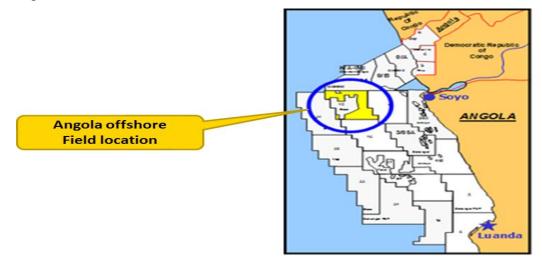


Figure 2 – Block map

The reservoir is characterized by a stack of Miocene turbidity channels, deposited with an East-West trend. The reservoir under analyze is the Lower Miocene 22 sequence, the so called "LM22". Being the field a structural high (horst), the sand bodies, dipping towards West, are closing against the main structural component, represented by the bounding fault on the Eastern side. Reservoir seal is provided by the encasing deep-water shale settings.

The oil bearing reservoir "horst", i.e. the Lower Miocene (LM22) interval, was discovered by the explorative well EXP-1 drilled in February 2010, which found a gas and oil bearing sequence with a Gas Oil Contact at -2818 m TVDSS and an Oil Down To at -3000 m TVDSS (Figure 3).

PVT			
API	36 °		
Flash GOR	1046 scf/stb		
Flash Bo	1.581 rb/stb @pb		
Oil viscosity	0.35 cP		
Sat Pressure (Pb)	4289 psia		
Res. Pressure	4474 psia		
Res. Temperature	120 °C		

Table 1- PVT Properties

Eni Angola – Reservoir Politecnico di Torino Offshore Angola oil field: Multiple Point Statistics Date (MPS) modelling approach 19/12/2018 11 of 8	87
--	----

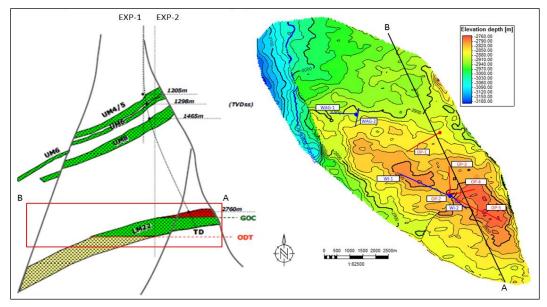
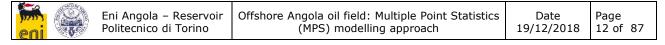



Figure 3 – Structure horst schematic and LM22 Top map

The reservoir is formed by terrigenous sediments, deposited during the Lower Miocene, within a large distal slope turbidity channel complex, which has been classified in the sedimentological study as a Weakly Confined Channel System. LM22 system represents a base of slope depositional setting. The main depositional trend is from SE to NW oriented at 135° degrees. The internal architecture of the sequences is quite complex, showing a lowering in amalgamation from the bottom to the top of the system.

The LM22 reservoir is believed to be an agradational distributary system with amalgamated channels, slightly erosional at its base and with an overall fining upward trend. The system starts with thick sand layers at its base and becomes progressively mud dominated at the top. The channelized sequence, which shows different scales and sand content, presents depositional elements like channel (various infilling), crevasse, off-axis and frontal splay.

Due to the geophysical complexity of the field area, the sedimentological interpretation has been carried out on different volumes, basically Ip and VpVs, coming from 2013 inversion study. In order to recognize the depositional elements (EoDs), both geometries and amplitude values have been considered.

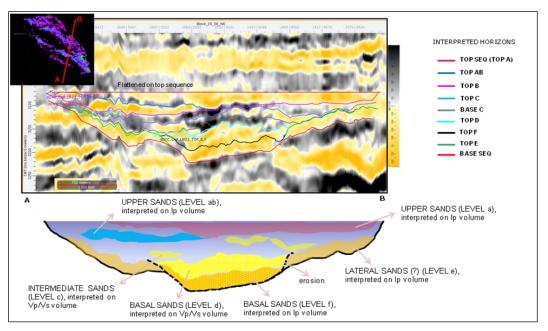


Figure 4 – LM22 internal architecture (seismic & sedimentology)

2.2 Development plan

The initial development plan foresaw ten wells: five oil producers, three WAG injectors and two WI wells. During the development of the field, the zone E was found with a low net pay and facies poorer than prognosis, leading to the revision of the development plan with nine development wells: five oil producers, two WAG injectors and two WI wells.

In accordance with the reference sedimentological setting on Figure 4, the completion scheme was optimized accordingly, giving priority to the basal sand packages (Figure 5).

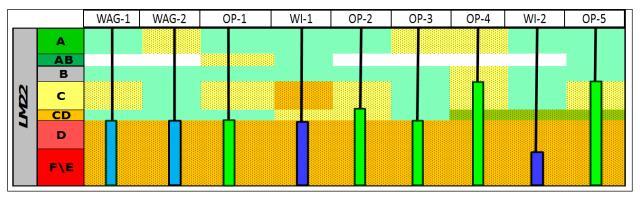


Figure 5 – LM22 completion scheme

The sedimentological model is reflected in the log-correlation of the development wells, where the different facies settings of each zone as well as the facies continuity through the zones can be appreciated.

Looking at the gamma ray log, the sand bodies can be clearly identified as well as the sedimentological behavior of each zone, i.e. the fining upward trend. The basal amalgamated sand bodies represent a stationary phase of the deposition (low aggradation) and are characterized by a high net sand content.

eni	· Contraction and -	Eni Angola – Reservoir Politecnico di Torino	Offshore Angola oil field: Multiple Point Statistics (MPS) modelling approach	Date 19/12/2018	Page 13 of 87
-----	---------------------	---	--	--------------------	------------------

The resistivity log confirms the reservoir fluid content, distinguishing hydrocarbon from water and showing their contact.

The density/neutron log highlights the mineralized sand bodies and their relative porosity and density.

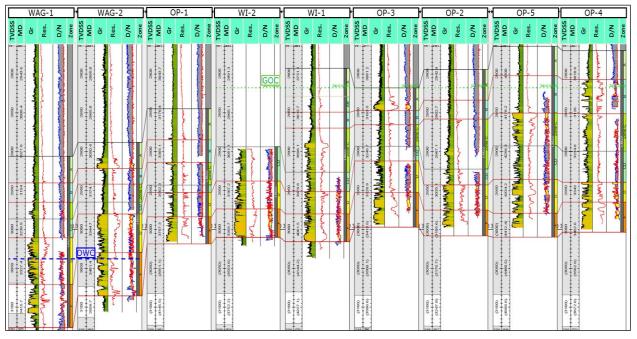


Figure 6 – Development wells - log correlation

The reservoir was subject to pressure point analysis during the drilling campaign, de-risking the regional uncertainties on the connectivity and fluid gradient of the reservoir.

The reservoir fluid gradients and the fluid contacts, Gas Oil Contact (GOC) and Oil Water Contact (OWC), were confirmed by the pressure point analysis as well as the channel connectivity (Figure 7).

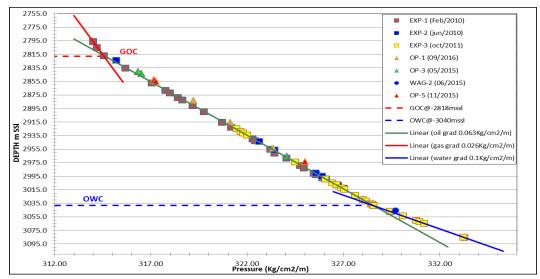


Figure 7 – Pressure points analysis

2.3 Current reservoir 3D model

The standard static model was developed basing on the following main data: well data (logs, well tops and facies) and seismic derived data (structural interpretation, EoDs and seismic inversion).

Well data:

- Memory log data are interpreted in order to get the CPI (computer processed interpretation);
- Basing on the log data and the CPI, a facies log is generated by means of a Cluster Analysis (CA) process;
- Facies and CPI log curves are upscaled in the 3D grid in order to use them for modelling purposes.

Seismic derived data:

- The structural analysis is performed on the seismic volumes in order to generate the structural grids (horizons) and the faults (fault sticks);
- The sedimentological interpretation is carried out on the amplitude extractions, made on the main horizons;
- EoD maps are generated from the sedimentological interpretation and a EoD 3D property is finally derived from these maps in order to be used to drive the facies simulation.

The above described sets of data are implemented in the following way:

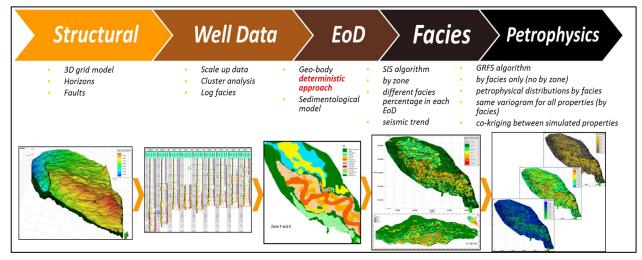


Figure 8 – Petrel static modelling workflow

2.3.1 SiS (Sequential Indicator Simulation) Facies model

The current reservoir model is based on the facies characterization coming from both the explorative wells (EXP-1 and EXP-2) and the development wells.

The cluster analysis was performed to discretize the petrophysical log response in the wells, simplifying the reservoir characterization. It is based on the multivariate statistics analysis, grouping objects according to similarity of the data. It consists of the following main steps:

- preliminary analysis and treatment of well logs and core data;
- statistical processing (unsupervised classification 25/30 classes);
- Log-facies characterization (supervised classification 4/7 classes).

The six facies coming out from the cluster analysis are listed here below:

- Log-facies 1: Very Low Concentration Turbidities (VLCT); shale section with very low sand content;
- Log-facies 2: Mixed Debrite (MXDT); representing a transition from shale to sandy facies, related to VLCT;
- Log-facies 3: Low Concentration Turbidities (LCT); laminated shaley-sands;
- Log-facies 4: High Concentration Turbidities (HCT); massive clean sand bodies;
- Log-facies 5: High Concentration Turbidities_High Porosity (HCT_HP); massive sand bodies with high porosity;
- Log-facies 6: Traction (TRACT); well sorted sand bodies with good porosity and permeability.

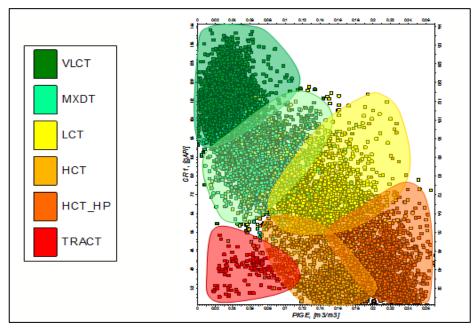


Figure 9 – Cluster analysis result

The facies distribution was carried out by zones and EoD, which means that different EoDs were modelled inside each zone of the model and then they were populated with different types of facies. In particular:

- Zone A was subdivided in two pseudozones: A and AB;
- Zone B was considered as constant VLCT;
- Zone D was subdivided in three pseudozones: D, E and F.

As it can be appreciated in the picture here below (Figure 10), the zones are delimited by horizons (black solid lines), while the pseudozones are defined only as index property (stair-step shape).

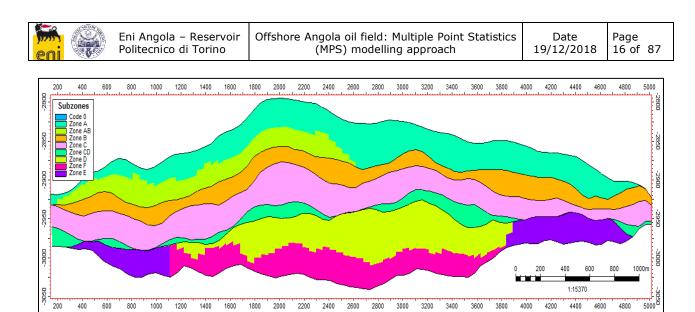


Figure 10 - Zones and Pseudozones from 3D model

Once the vertical zonation of the reservoir was defined, the sedimentological architecture was generated by modeling the interpreted EoDs inside each pseudozone as shown in the figures below.

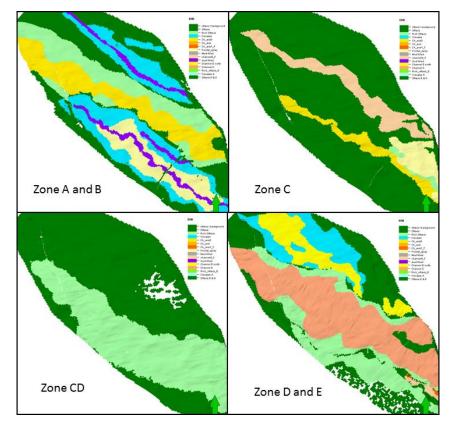


Figure 11 – Geo-bodies (EoD) - Zones A, AB, C, CD, D and E

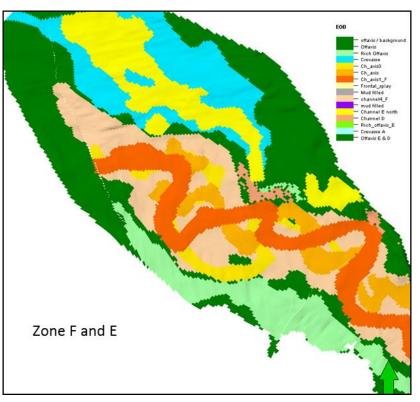


Figure 12 – Geo-bodies (EoD) - Zones F and E

On the standard model the EoD geo-bodies were modelled by pseudozone, simply assigning a value to the 3D property from a map. This means that they show strong and unrealistic vertical boundaries, with low lateral sinuosity. They involve the full thickness of the referred pseudozone, assigning the same EoD type between the top and bottom horizons (Figure 13).



Figure 13 – EoD vertical cross section

Geobodeis Facies MPS		Facies	Fractions
	offaxis	VLCT	100
		VLCT	56.81
	Rich off Axis	MXDT	32.77
		LCT	9.44
		VLCT	83
	Crevasse	LCT	15
Decuder		HCT	3
Pseudoz	Channel axis 3	VLCT	72.72
one A		MXDT	8.03
and AB		LCT	8.63
		HCT	2.17
		HCT_HP	8.45
	Frontal	VLCT	70
	splay	LCT	24
		HCT	6
	Mud filled	VLCT	100

Table 2- Zone A and AB Facies Fraction

Geobode	is Facies MPS	Facies	Fractions
		VLCT	83
	offaxis	MXDT	16
		LCT	1
		VLCT	81
	Rich off Axis	MXDT	11.4
	KICH OTT AXIS	LCT	6.94
		HCT_HP	0.66
		VLCT	70
	Crevasse	LCT	22
		HCT	8
	Channel axis 3	VLCT	49.74
Pseudoz		MXDT	11.06
one C		LCT	33.64
onec		HCT	2.3
		HCT_HP	10.33
		TRCT	2.46
		VLCT	26.27
		MXDT	33.67
	Frontal splay	LCT	13.53
		HCT	13.87
		HCT_HP	12.66
		VLCT	82.5
	Channel 4	MXDT	10.23
	channel 4	LCT	5
		HCT	6.27

Table 3- Zone C Facies Fraction

Geo-body Facies		Facies	Fractions
		VLCT	95
	offaxis		3.35
		LCT	1.59
Pseudoz		VLCT	50.19
one CD		MXDT	32.68
	Rich off Axis	LCT	10.1
		HCT	4.09
		HCT_HP	2.86

Table 4- Zone CD Facies Fraction

Geo-b	ody Facies	Facies	Fractions
	offaxis	VLCT MXDT	91.76 7.42
	Unaxis	LCT	0.82
	Rich off Axis	VLCT	50
	RICH OTT AXIS	MXDT	27
		LCT	23
		VLCT	36.28
	Crevasse	MXDT	39.99
		LCT	22.38
		НСТ	1.36
		VLCT	26.28
		MXDT	17.25
	Channel D	LCT	18.96
		HCT	10.65
		HCT_HP	26.73
		VLCT	27
	Channel axis 3	MXDT	15
		LCT	26
Pseudoz		HCT	10
one D, E		HCT_HP	22
and F		VLCT	18.56
	Channel axis	MXDT	13.92
		LCT	14.11
		нст	28.66
		HCT_HP	23.26
		TRACT	1.48
		VLCT	12.97
		MXDT	16.18
	Channel	LCT	9.71
	axis1_F	нст	39.69
		HCT_HP	14.26
		TRACT	7.19
		VLCT	45
		MXDT	15
	Channel4_F	LCT	25
		НСТ	15
		VLCT	20.3
	Channel E	MXDT	56.39
	North	LCT	23.31
		LUI	25.51

The facies distribution was performed in each zone independently, by EoD, using the Sequential Indicator Simulation (SiS) algorithm. Different facies fractions (FF) were applied on each geo-body as shown in the tables here above.

The general settings applied on the facies modeling window (Figure 14) are the same for all the zones, with exception of the facies fractions within the different geo-bodies (Table 2, Table 3, Table 4 and Table 5). The distribution begins from the up-scaled facies log.

Eni Angola – Reservoir Offsho	re Angola oil field: Multiple Point Statistics	Date	Page
Politecnico di Torino	(MPS) modelling approach	19/12/2018	20 of 87

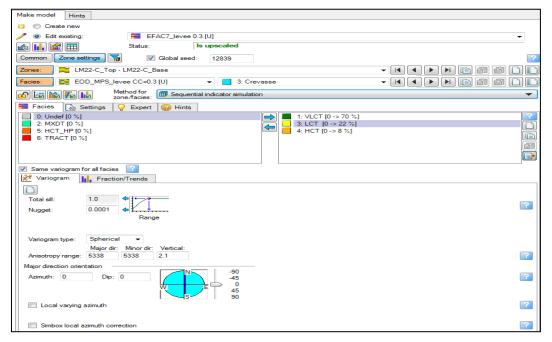


Figure 14 – Facies modelling window

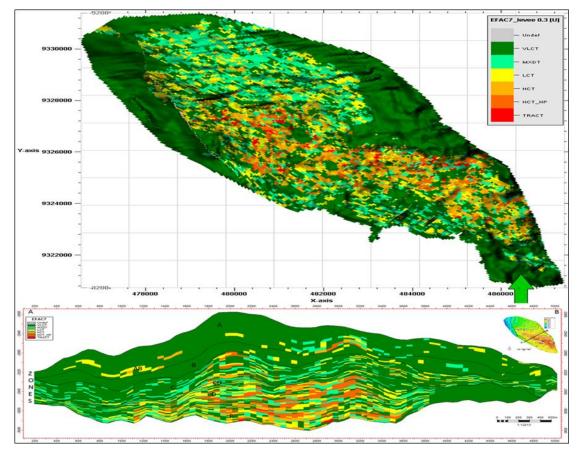


Figure 15 – Facies distribution map view and vertical section

eni		Eni Angola – Reservoir Politecnico di Torino	Offshore Angola oil field: Multiple Point Statistics (MPS) modelling approach		Page 21 of 87
-----	--	---	--	--	------------------

The differences, in terms of global amount, among the well logs, the up-scaled cells and the facies distribution are shown in the histogram here below (Figure 16).

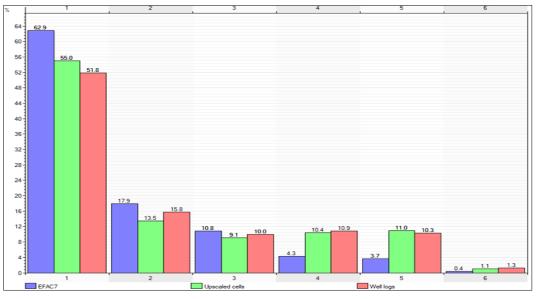


Figure 16 – Facies Histogram (Standard model)

2.3.2 SGS Petrophysical properties model

Basing on the performed facies distribution, the following petrophysical properties were distributed considering the main values referenced in Table 6: NTG, POROSITY and Sw.

Facies	NTG	Porosity	Sw
VLCT	0.05	0.07	0.49
MXDT	0.48	0.09	0.46
LCT	0.83	0.15	0.29
НСТ	1	0.15	0.18
HCT_HP	1	0.2	0.18
TRACT	1	0.07	0.35

Table 6- Petrophysical distributions (mean value) by facies

NTG, Porosity and Water saturation were modelled considering the facies distribution already shown above (Figure 15).

NTG was modeled by means of the Gaussian Random Function Simulation (GRFS) algorithm for VLCT, MXDT and LCT. In the case of HCT, HCT_HP and TRACTION facies, a constant value of one has been assigned.

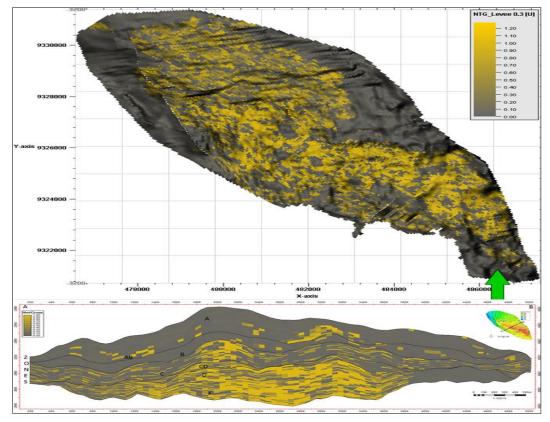


Figure 17 – NTG property distribution

Porosity was distributed by means of the GRFS algorithm, having as collocated co-Kriging property the NTG distribution shown here above (Figure 17).

Method for zone/facies: B Gaussian random function simulation	•	Method for zone/facies: Gaussian random function simulation
😿 Variogram 🔨 Distribution 😹 Co-kriging 💡 Expert 🔞 Hints		🔀 Variogram 🔨 Distribution 🗟 Co-kriging 💡 Expert 🔞 Hints
Total sill: 1.0		Secondary variable
Nugget: 0.0001 👍 1		
Range		Depth options: Based on layer index V I hverse X axis
Variogram type: Spherical Major dir: Minor dir: Vertical: Anisotropy range: 300 150 5	?	Horizontal: ∅ ∅ ☑ Volume: ∰ № NTG_Levee 0.3 [U] Method ∅
Major direction orientation		Local varying mean
Azimuth: -60 Dip: 0 -90 W S = 45 90	?	Collocated co-kriging
Local varying azimuth	?	Secondary variable transformation
		No transform
Simbox local azimuth correction	?	Transform using input distribution
		Normal score transform

Figure 18 – Porosity distribution settings

	Date Page 12/2018 23 of 87
--	-------------------------------

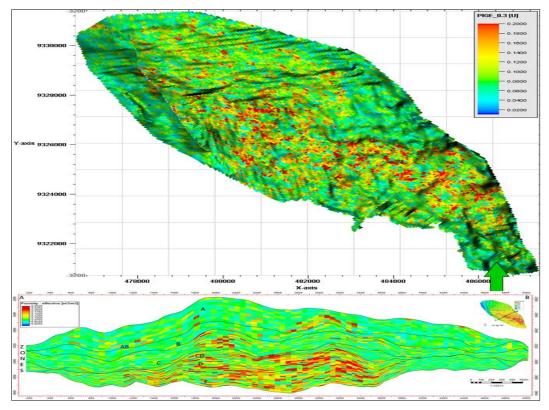


Figure 19 - Porosity distribution

The Water saturation distribution was performed by means of the GRFS algorithm, having as collocated co-Kriging property the Porosity distribution shown here above (Figure 19).

Method for zone/facies: B Gaussian random function simulation	•	Method for zone/facies:
🕅 Variogram 🔨 Distribution 🔯 Co-kriging 💡 Expert 🚱 Hints		😢 Variogram 🔨 Distribution 🗟 Co-kriging 💡 Expert 🔞 Hints
		Secondary variable
	?	Vertical function:
Nugget: 0.0001 (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	_	Depth options: Based on layer index
		V Inverse X axis
Variogram type: Spherical 👻		Horizontal:
Major dir: Minor dir: Vertical:		Volume:
Anisotropy range: 300 150 5	?	Method Cocal varying mean
Major direction orientation	_	Collocated co-kriging
Azimuth: -60 Dip: 0 -45	?	Coefficient: Constant 🗸 -0.8 [-1 to 1] 🛵 Estimate 👔
		-1 0 1
Local varying azimuth	?	Secondary variable transformation
	_	No transform
Simbox local azimuth correction	?	Transform using input distribution
	_	Normal score transform

Figure 20 – Porosity distribution settings

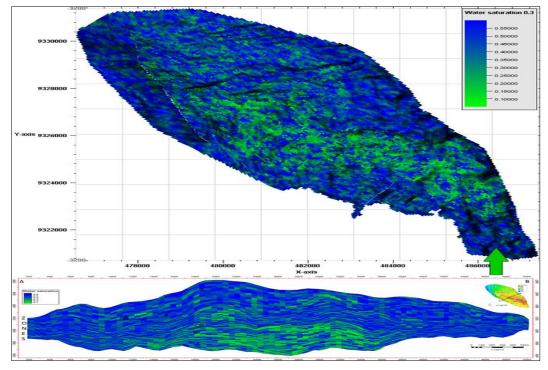


Figure 21 – Water Saturation distribution

2.3.3 Volumetric

Following the standard static modelling workflow, after the facies modelling and petrophysical modelling, the volume calculation was performed considering the reservoir fluids contacts and the formation volume factors for the gas and for the oil.

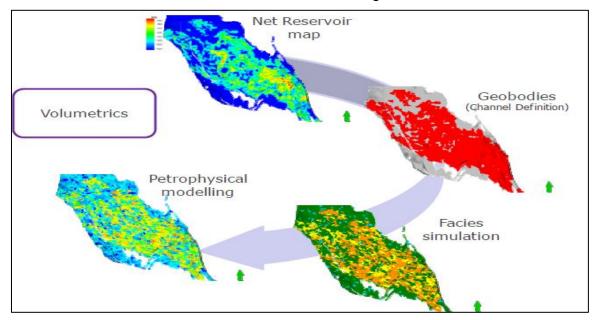


Figure 22 – Static model work flow

Eni Angola – Reservo	r Offshore Angola oil field: Multiple Point Statistics	Page
Politecnico di Torino	(MPS) modelling approach	25 of 87

The Gas Oil Contact (GOC) is at -2818 meters subsea level (mssl), the Oil Water Contact (OWC) is at -3038 mssl and the perched water level on the south-eastern part of the structure is at 2997.5 mssl.

The oil formation volume factor (Bo) is equal to 1.6 RB/STB and the gas formation volume factor (Bg) is equal to 0.8 RB/MSCF.

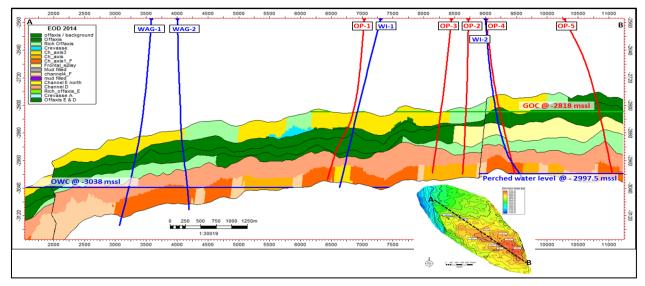


Figure 23 - Cross section through the reservoir

STOIIP[*10^6 STB]					
Pseudozones	Standard				
	simulation				
Zone A	51.03				
Zone AB	32.8				
Zone B	43.53				
Zone C	105.25				
Zone CD	72.57				
Zone D	191.86				
Zone F	116.49				
Zone E	38.57				
Total STOOIP	652.1				

Table 7- STOOIP volumes (Standard model) by zone

Considering all the settings applied for the STOOIP calculation, the results are been reported considering the STOOIP in each pseudozone. Emphasizing that the biggest volumes are in the basal levels D and F which represents 47% of the total STOOIP, level AB and E represent a smaller area fraction of the reservoir total coverage area, reflecting a smaller volume.

3 MULTIPLE POINT STATISTICS (MPS)

3.1 MPS Simulation Technology

The Sequential Gaussian Simulation (SGS) and the Sequential indicator Simulation (SIS) approaches, applied on stochastic reservoir modeling, are unable to deal with complex and heterogeneous spatial structures. Normally these methods cannot convey the connectivity and variability when the considered phenomenon contains definite patterns or structures (Tahmasebi 2018).

The MPS is an innovative stochastic facies modeling technology, developed in the last decades, which reproduces patterns from training images, represented by a discrete 3D property, in parallel honoring both up-scaled well data (hard data) and secondary data (incorporated if available) to constrain the spatial distribution and proportions.

MPS can reproduce a heterogeneous complex channel system, by making use of the training image concept and external constraints, which can be weighted in a fractional way accordingly (probability properties). The multiple point configurations algorithm is pixel based approach, it has the advantage over the object modelling method that it can condition to data more easily. As illustrated here below.

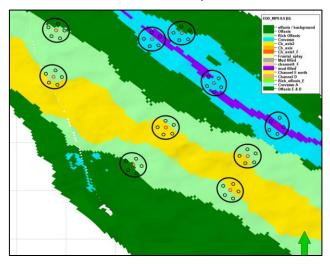


Figure 24 – Training Image concept

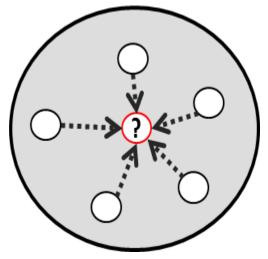
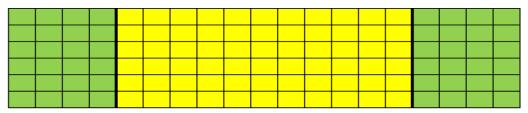


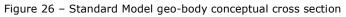
Figure 25 – Multiple Point configurations

In the MPS technology a few algorithms are mostly used (Lyster 2008):

- MPS-GS algorithm: quite recent method, it combines an initial image and the target statistics by making use of conditional distribution;
- SneSim Algorithm: also quite recent method, it is a sequential simulation method that uses conditional probabilities of facies and TI;
- FILTERSIM algorithm: uses filters to group similar patterns of facies reducing the dimension of the statistics.

A common algorithm is the Single Normal Equation Simulation (SNESim) approach, which structurally can be resumed by:


- consider the data jointly as a multiple point event; search training image for the closest replication of the multiple point data event;
- read the distribution of the central value over the these replicates;
- Draw from that distribution; if not enough replicates are found reduces the data event (Zhang 2006).


MPS makes use of a multiple point configuration that conceptually can better describe the geo-body, by increasing the sampling/identification of the geo-body orientation, basing on a Training image "TI" that theoretically honors the sedimentological model and the EoD.

By applying the MPS, the Geo-body obtained as result will consider the edges and roundness of the body, respectively channel shape, levee extension and thickness attenuation, roughness, superposition principle (erosion).

The frontal vertical cross section through a channel, in a schematic way, shows a completely different geometry, comparing with the channel EoD of the standard model Figure 26.

The MPS will generate a different geo-body geometry, which will directly affect the facies fraction within the model.

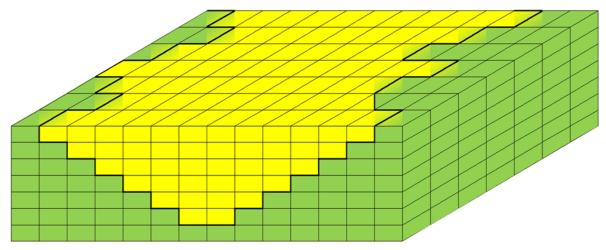


Figure 27 - MPS Model geo-body conceptual model

The fractions of the geo-body margins compared with the standard model ones could be modelled as shown here below Figure 28. It is not a single deterministic model, in fact the algorithm accounts for the different EoDs, channels width, length thickness and the layer number within the considered pseudozone. Finally, a more heterogeneous model, closer to the real sedimentological behavior will be generated.

The standard model made use of the EoD concept in Figure 26 where the facies fractions have a constant value from top to bottom.

On the MPS model, the top view of the channel body is defined on the sedimentological model (EoD), but the vertical evolution of the channel edge is not a constant vertical line, but changes as channel like orientation Figure 27. The EoD fraction on the edges of the channel section, depending on the width/thickness ratio, will most likely increase the shale facies content (green) and decrease the channel like facies content (yellow) Figure 28.

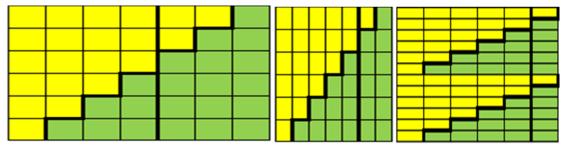


Figure 28 – MPS model channel margins in conceptual cross section

3.2 MPS application to an Angolan offshore field

The used input data set is the same one of the existing model (standard two-point modelling approach). The MPS static model workflow is similar to the one applied on the standard model work flow, considering that the main change is related with the geo-bodies definition, which now is performed in a probabilistic manner. In fact, the EoD are modelled by means of the MPS algorithm, using the training images and the EoD probability volumes as guiding tool during the facies distribution phase. In order to analyze the impact of the MPS facies simulation on the static volume in place, the petrophysical modelling settings have been kept unchanged with respect to the existing standard model as well as the modelling parameters. This approach allowed directly linking the model changes to the multiple point statistics facies simulation.

The workflow starts with the generation of EoD probability property from the existing EoD maps, and the generation of training images from the EoDs and the sedimentological model. The static model workflow (MPS facies modeling) is as follow:

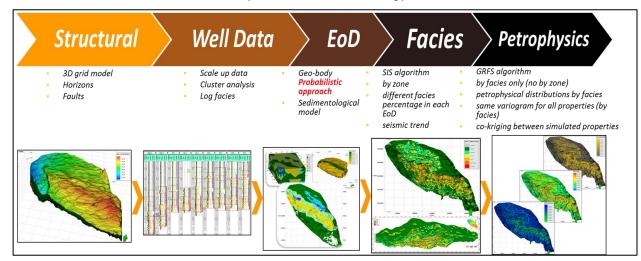


Figure 29 – Petrel static MPS modelling workflow

eni	Contraction of the second seco	Eni Angola – Reservoir Politecnico di Torino	Offshore Angola oil field: Multiple Point Statistics (MPS) modelling approach	Date 19/12/2018	Page 29 of 87
-----	--	---	--	--------------------	------------------

3.2.1 EoD Probability Volumes

From the existing EoD property in the standard model, for each EoD a probability map was generated. Taking into consideration the sedimentological model and analyzing the channel vertical sections, a sensitivity analysis was performed in order to remove the sharp edges of the EoD in the probability map, creating a more smoothed result.

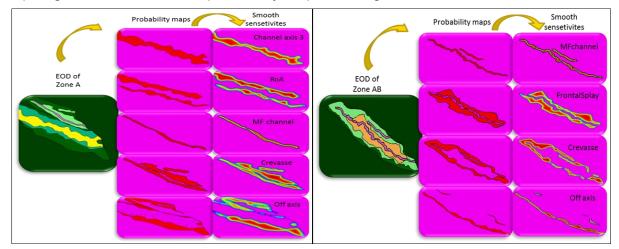


Figure 30 – Zone A and AB – EoD probability map

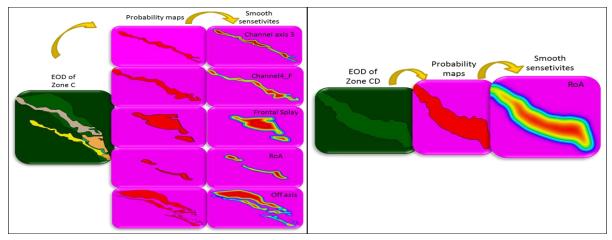


Figure 31 – Zone C and CD - EoD probability map

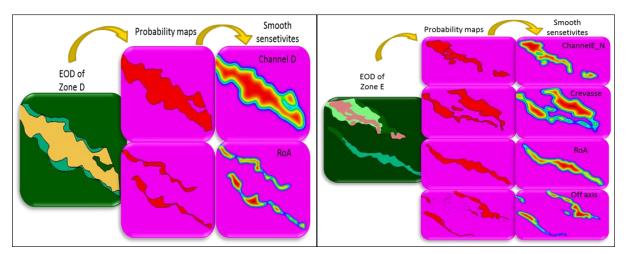


Figure 32 - Zone D and E - EoD probability map

THESIS POLITECNICO DI TORINO MASTER IN PETROLEUM ENGINEERING ALL THE ABOVE INFORMATION SHALL NOT BE SHOWN TO THIRD PARTIES NOR SHALL IT BE USED FOR REASONS DIFFERENT FROM THOSE FOR WHICH IT IS ISSUED

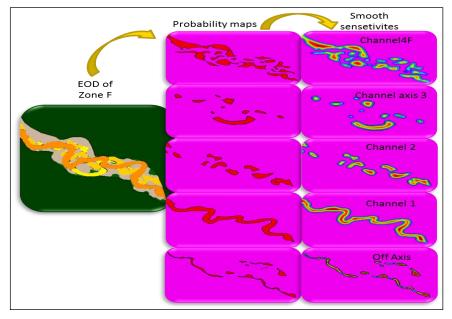


Figure 33 – Zone F - EoD probability map

Starting from the EoD probability maps, which now accounts for the smoothed transition of the heterogeneous and complex sedimentological settings, the same elements of deposition, present in different zones of the model were stacked together and a 3D property was created for each EoD.

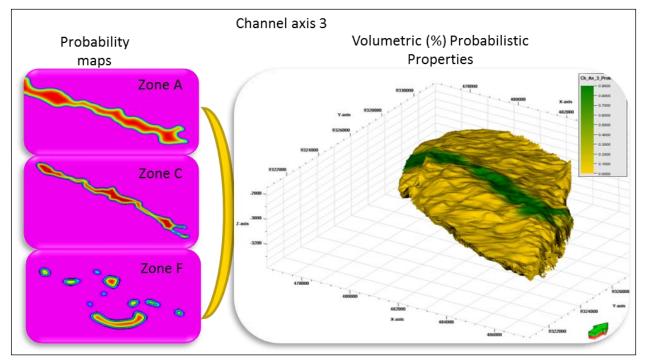


Figure 34 – Channel Axis 3 – EoD probability volume (3D property)

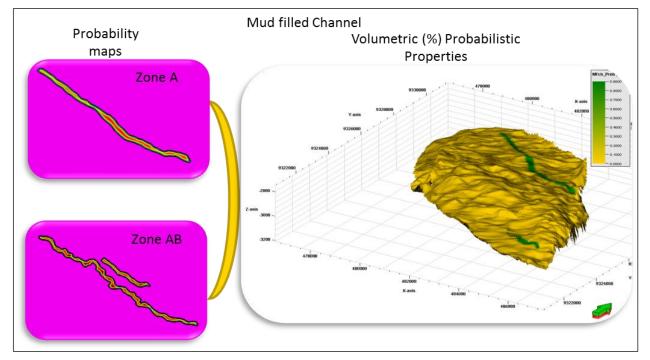


Figure 35 – Mud filled channel 3 – EoD probability volume (3D property)

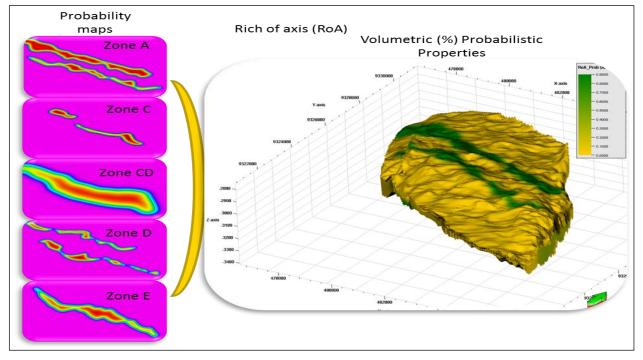


Figure 36 – Rich of Axis – EoD probability volume (3D property)

eni		Eni Angola – Reservoir Politecnico di Torino	Offshore Angola oil field: Multiple Point Statistics (MPS) modelling approach	Date 19/12/2018	Page 32 of 87	
-----	--	---	--	--------------------	------------------	--

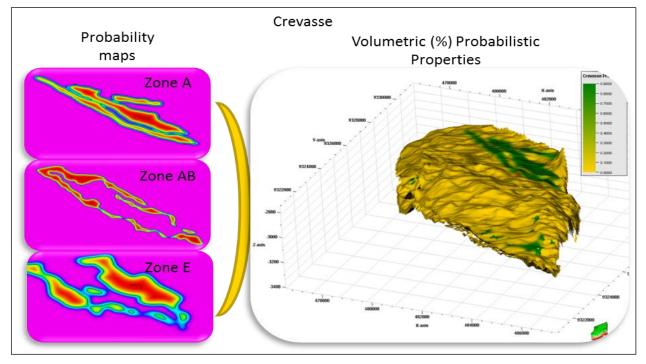


Figure 37 – Crevasse – EoD probability volume (3D property)

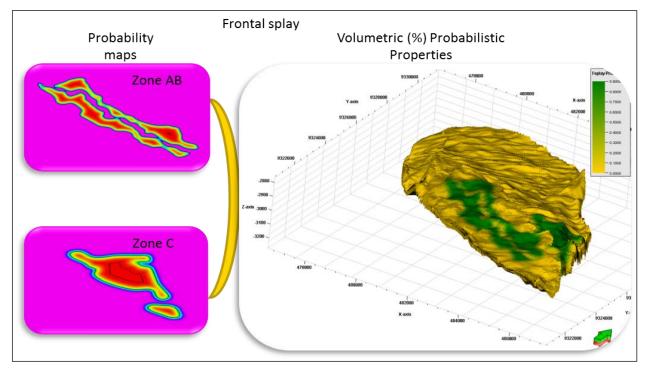


Figure 38 – Frontal Splay – EoD probability volume (3D property)

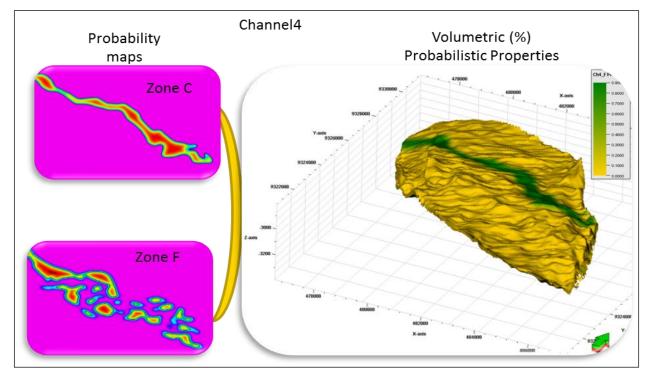


Figure 39 – Channel4 – EoD probability volume (3D property)

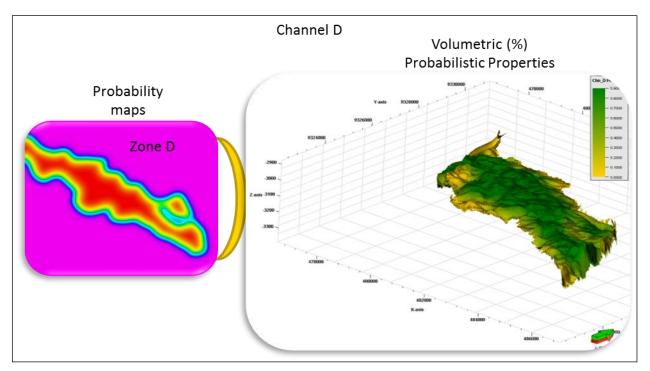


Figure 40 – Channel D – EoD probability volume (3D property)

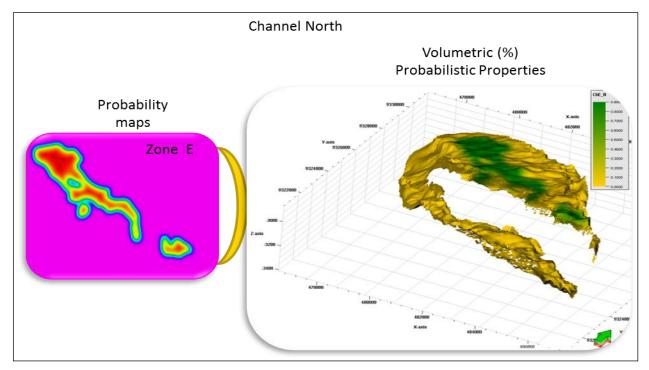


Figure 41 – Channel North – EoD probability volume (3D property)

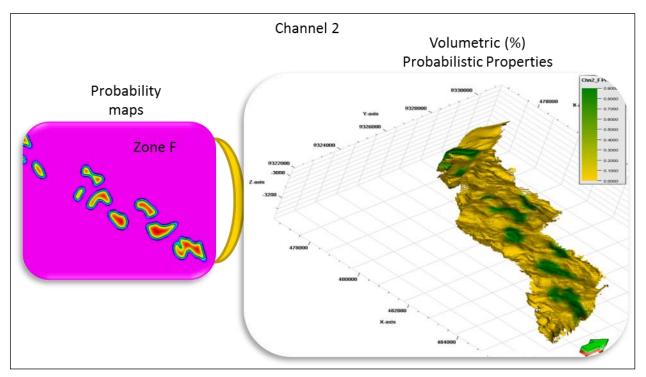


Figure 42 – Channel 2 – EoD probability volume (3D property)

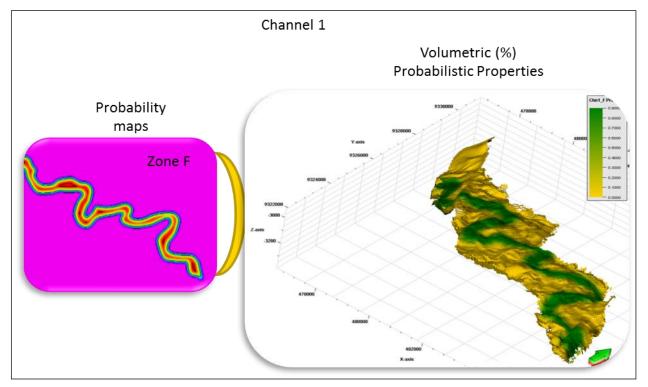


Figure 43 – Channel 1 – EoD probability volume (3D property)

Once defined the 3D probability volumes (3D properties) for each EoD, they will be used as a soft external constraint in MPS facies simulation, performed to simulate the EoD.

The 3D probability volume will work as a geometrical constraint, it will consider in a simplified way the non-stationary features of the data related with the environment of deposition (EoD), represented in the MPS model by the weight factor.

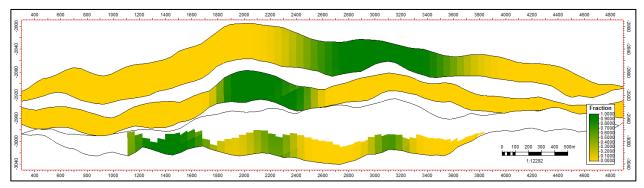


Figure 44 – smoothness principle applied on the MPS external constraint concept

Basically they contain the EoD probabilities in each cell of the simulation grid. An additional parameter, the relative weight of the 3D probabilities (within the range [0, 1]), is used to balance the soft and hard-data derived facies probabilities. The greater the weight, the greater the influence of the soft probability cube compared to the training image derived facies probabilities. The default value is 0.5, which equals the influences. If the weight is 1, the facies probabilities inferred from the training image are ignored. If the weight is 0, the soft facies probabilities have no effect.

3.2.2 Training Image generation

A training image is a 2D image or regular 3D grid conceptual model, generated basing on the main 3D depositional model, which is able to represent heterogeneous and complex depositional features and honor the sedimentological model.

A training image will illustrate the patterns of the geo-bodies basing on their frequency and according with the geological shape. The spatial location of the body in the TI is irrelevant, what it is important is the shape and the frequency it will appear in the TI. They express a fractional relation between the simulated objects, reproducing in the meanwhile the geological and sedimentological models.

The TI generation workflow begins from the sedimentological interpretation: each geobody has to be analyzed and carefully measured in order to be reproduced properly. The following input parameters have to be added to the TI modelling window: channel amplitude, wavelength, thickness, width, orientation, relative shape and fraction (which is basically connected to the frequency of the modelled geo-body in the TI). All these input parameters were derived from the standard model and the well logs. The TI 3D grid represents the sedimentological model for the referred zone and it contains information about the possible spatial configurations of the various geo-object and their spatial relationships (Figure 45).

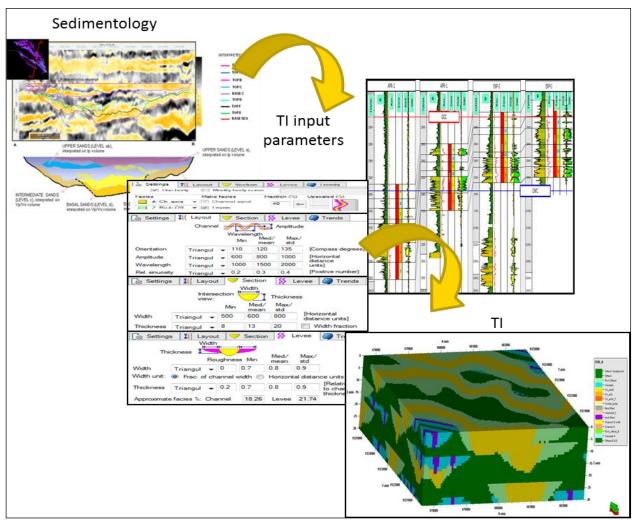


Figure 45 – Training Image work flow

The TI input data coming from the geo-body measurements and interpretation will not always give the desired outcome. In some cases, in order to carefully represent the sedimentological model, the relevant training image has an optimized input data set, due to scaling, heterogeneity and complexity of the geo-bodies setting.

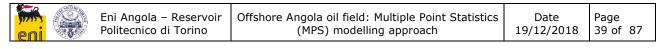
The ratio between the training image grid and the model grid is a scale related issue and there is no a tool for calculating this. Therefore the recommendation is to use a maximum of 30% of the model grid volume, which should work efficiently.

The standard 3D model grid size is: (nl,nJ,nK) 121 x 284 x 96. As shown on the Figure 46, the TI 3D grid used is: (nl,nJ,nK) 100 x 100 x 30.

Make training image grid Make pattern Hints														
Create new: TI grid														
✓														
Training image grid ?														
Cell size (XYZ): 50 50 1														
Image: Make grid Facies modeling														
✓ Apply ✓ OK ➤ Cancel														

Figure 46 – Training Image grid input

Once the TI grid has been created, the geo-bodies modeling begins, creating the geobodies for each zone. By applying the object modeling (stochastic) algorithm, each geobody is defined in terms of geometry, orientation, channel amplitude, channel wavelength, sinuosity, channel thickness, width and roughness.


Eni Angola – Reservoir Politecnico di Torino Offshore Angola oil field: Multiple Point Statistics (MPS) modelling approach	Date 19/12/2018	Page 38 of 87
--	--------------------	------------------

Make model Hints
O Edite sisting: EOD A
Status: No upscaled logs
Common Zone settings g Global seed: 1732
Zones: Surface - Surface -
Facies: No conditioning to facies. The zone is modeled in one single operation.
Method for zone-facies: Object modeling (stochastic)
🗮 Facies bodies 🏠 Background 🔯 Settings 😤 Other output
10: Adaptive channels [10 %]
4: Adaptive channels [40 %]
Settings IN Layout Section S Levee Trends
V Use body Modfy body name:
Facies Make facies Fraction (%) Upscaled (%)
10: mud fill V Channel sand 10
3: Crevass V Levee
Number of channels: 1
Connectivity
Use Body Property from Output tab EOD_A -
Layer tolerance: 0
Apply V OK Cancel

Figure 47 – Training Image facies modelling window

Basing on the input data (EoDs, sedimentological model and well logs), different simulations were run in order to find the best representation of the sedimentological features. For each zone, considering the specific EoDs, the geo-body or the geo-body combination (channel and levee) was analyzed, and a training image 3D grid was generated.

Simulation one: in order to understand the TI impact on the MPS model, different MPS sensitivities for each zone (considering that each zone was modelled independently) were run, considering the changes on the Training Image input parameters and their impact on the final MPS simulation. Once the results of the MPS were in line with the EoDs and the sedimentological model, the TI was considered final and MPS simulations, including all the training images per zone were run. The set of TIs were therefore considered as conclusive.

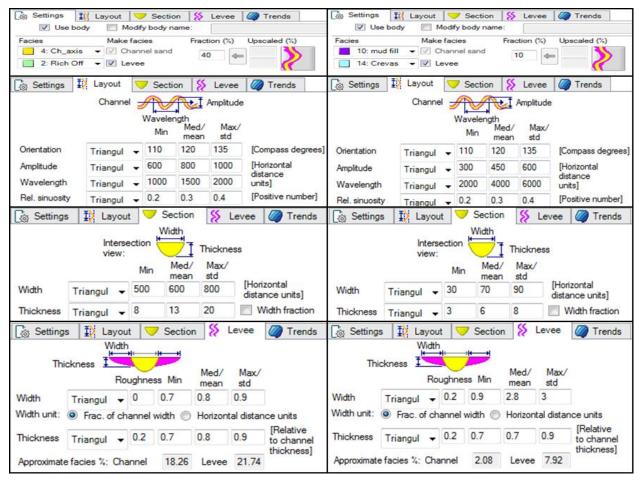
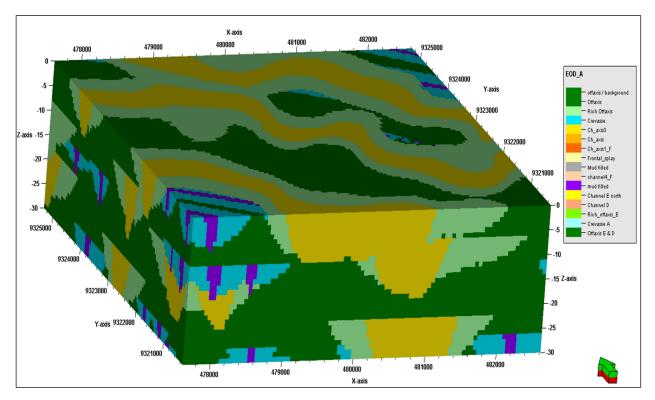
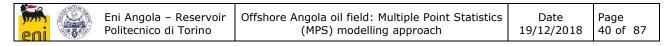




Figure 48 – Zone A- Channel axis 3 and mud filled channel inputs

Figure 49 – Zone A Training Image 3D grid

THESIS POLITECNICO DI TORINO MASTER IN PETROLEUM ENGINEERING

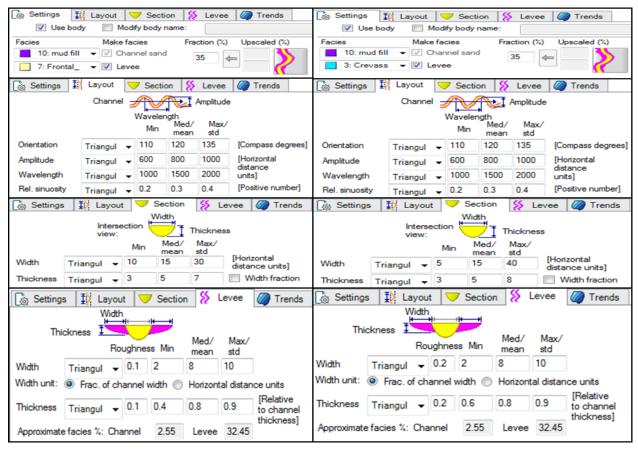


Figure 50 – Zone AB- Mud filled inputs

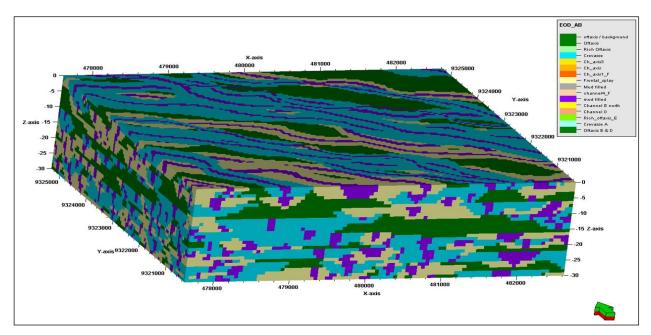


Figure 51 - Zone AB Training Image 3D grid

	eni	· Canada and a second second	Eni Angola – Reservoir Politecnico di Torino	Offshore Angola oil field: Multiple Point Statistics (MPS) modelling approach	Date 19/12/2018	Page 41 of 87
--	-----	------------------------------	---	--	--------------------	------------------

log Settings	12 Layout	🤝 Sec	tion 🥝	🖉 Trends		Settings	I	Layout		/ Sect	ion 🫛 🏹	Trends	
V Use	body 📃 Ma	odify body	name:			Use	bod	y 🕅 M	odif	fy body	name:		
Facies	Maket	facies	Fra	ction (%)	Upscaled (%)	Facies		Make	fac	ies	Fra	ction (%)	Upscaled (%)
9: chan		annel sar vee	nd	8		4: Ch_a			ve	nel sano e	d [5 🔶	
Settings	Layout	🤝 Sec	tion 🏼 🏼	Trends		ig Settings	I	Layout		Secti	on	Trends	
	Channel			Amplitude				Channel	3	<u>N</u>	*	Amplitude	
		Wavel Min	Med						1	Waveler Min	ngth Med/ mean	Max/ std	
Orientation	Triangul	- 110	120	130	[Compass degrees]	Orientation		Triangul	•	110	120	130	[Compass degrees]
Amplitude	Triangul	- 600	800	1000	[Horizontal	Amplitude		Triangul	-	600	800	1000	[Horizontal distance
Wavelength	Triangul	- 1000	1500	2000	distance units]	Wavelength		Triangul	•	1000	1500	2000	units]
Rel. sinuosity	Triangul	- 0.1	0.2	0.3	[Positive number]	Rel. sinuosity		Triangul	-	0.1	0.2	0.3	[Positive number]
Settings	E IN Layout	t 🔽 S	Section	🥥 Tr	ends	Settings		🚺 Layou	t	💛 s	ection	🥢 Tr	ends
	Interse view:	14	<u>+</u>	Thickness	3			Interse view:	ecti	14		Thicknes	s
		Min	Med/ mean	Max/ std						Min	Med/ mean	Max/ std	
Width	Triangul 👻	80	130	200	[Horizontal distance units]	Width	Tri	angul 👻	7	0	90	120	[Horizontal distance units]
Thickness	Triangul 👻	5	8	12	Width fraction	Thickness	Tri	angul 👻	4		7	10	Width fraction

Figure 52 – Zone C- Channel 4 and Channel axis 3 inputs

Setting:	s 🚺 Layo	ut 🚺	🗾 Sec	tion 🕻	🥥 Tren	ds	Settings		ieo	metry	Trer	nds §	Rules
V	se body] Mod	lify body	name:			V U:	se body		Modify	body nar	ne:	
	h Off → ✓	ake fa Cha Lev	nnel sar		action (?	6) Upscaled (%)	Facies:	ontal_ 🗸				Fraction 5	n (%) Upscaled (%)
Settings	Channe	2	Sectio	Am	Trends plitude		Settings		ome		Trends	§ Ru Orien	
		Drift [0-1]	Min	Med/ mean	Max/		Body s	shape:		lalf ellips	se	ation	TIMAIO
Orientation	Triangul 👻	0.2	110	120	135	[Compass degrees]	Radial	profile: 📁	F	Rounded	base	•	↓ width
Amplitude	Triangul +	0.2	600	800	1000	[Horizontal					Med/	Maul	Minor width
Wavelength	Triangul 👻	0.2	1000	1500	2000	distance units]				Min	Med/ mean	Max/ std	
	S If using floor orientation	ow line n will r	is in the lot be us	'Trend tal ed.	b', the		Orientation		1.00	110	120	135	[Compass degrees]
Settings	s 🚺 Layou	t 🔍	/ Section	on 🧭	Trends		Onentation	Triangul	•	110	120	155	[compass degrees]
Ne a tra a	Widt	+					Minor width	Triangul	•	400	700	1200	[Horiz. distance units]
vie		Drift IO-11	Thicknes Min	Med/ mean	Max/		Maj/Min ratio	Triangul	•	0.8	1	1.4	-
Width	Triangul 👻	0.2	20	40	60	[Horizontal distance units]	Thickness	Triangul	•	12	17	20	Fraction of width
Thickness	Triangul 👻	0.2	3	7	10	Width fraction							[Fraction of length]

Figure 53 – Zone C- Rich off Axis and Frontal Splay inputs

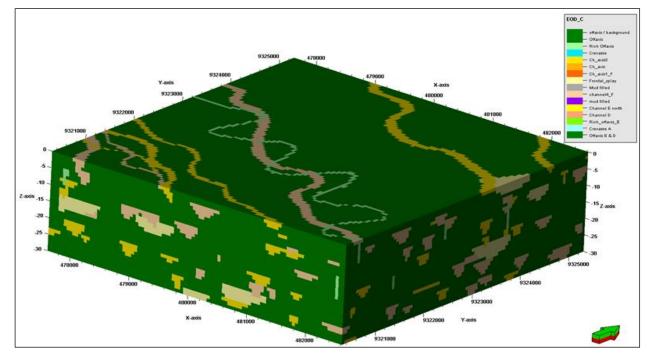


Figure 54 – Zone C Training Image 3D grid

Settings			Section ody name		ends
Facies		e facies		Fraction	(%) Upscaled (%)
2: Ric		Channel Levee	sand	30	
Settings	I Layout		tion	Trends	
	Channel	Wavel	ength		
Orientation	Triangul	- 110	120	130	[Compass degrees]
Amplitude	Triangul	- 1000	1500	2000	[Horizontal distance
Wavelength	Triangul	- 2000	3000	4000	units]
Rel. sinuosity	Triangul	- 0.1	0.2	0.3	[Positive number]
ig Settings	s 🚺 Layou	t 🔽	Section	🥢 Т	rends
	Interse view:	14	Vidth	Thicknes	\$\$
		Min	Med/ mean	Max/ std	
Width	Triangul 👻	600	700	800	[Horizontal distance units]
Thickness	Triangul 👻	0.5	3	5	Width fraction

Figure 55 – Zone CD Rich off Axis inputs

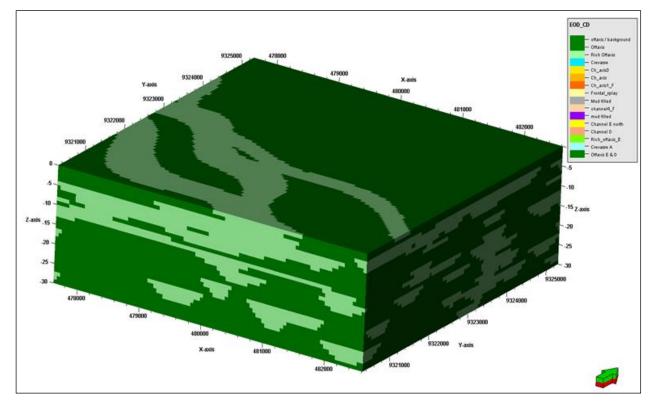


Figure 56 – Zone CD Training Image 3D grid

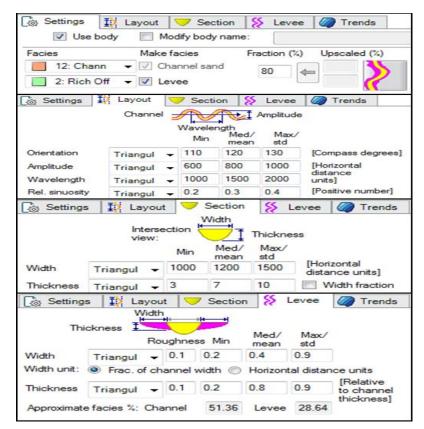


Figure 57 – Zone D Channel D input

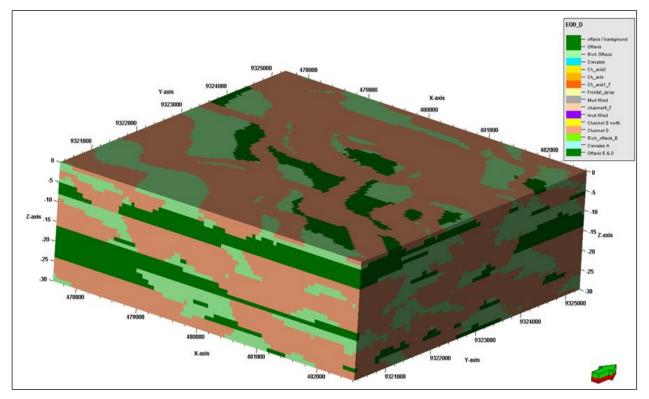


Figure 58 - Zone D Training Image 3D grid

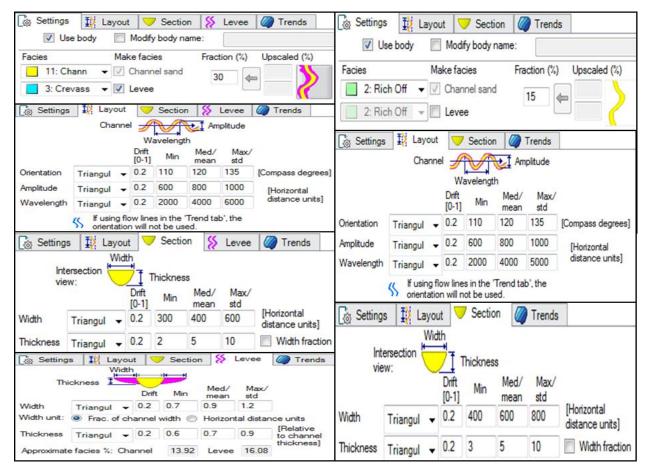


Figure 59 – Zone E Channel E North and Rich off axis input

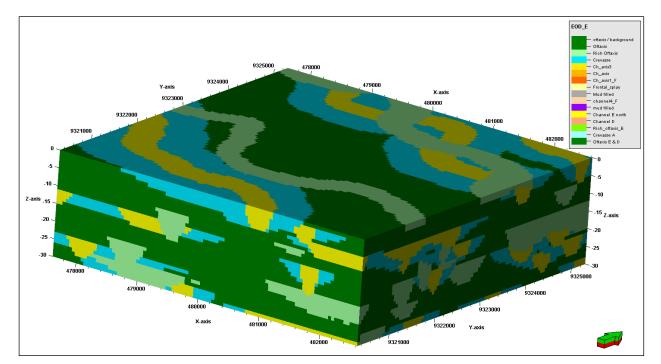


Figure 60 – Zone E Training Image 3D grid

log Settings	Layout	💙 S	ection	🥢 Tren	ds	a Settings	12 Layou	ıt 🤻	Section	on 🥘	Trends	
Use	body 📃 N	Nodify bo	dy name:			🔽 Us	e body 📃	Modif	fy body n	ame:		
Facies	Make	e facies	F	Fraction (*	Upscaled (%)	Facies	Ma	ke fac	ies	Frac	tion (%)	Upscaled (%)
9: chan	nel 👻 🗸 C	hannel s	and	40		4: Ch	axis 👻 🗸	Chan	nel sand	7		
2: Rich	Off - 🗖 Le	evee		40	╘═ /	2: Ric	h Off 🚽 🕅	Leve	e			
Settings	Layout	🤝 Sec	tion 🏼 🏹	Trends		Settings	Layout		Section	י 🥥 י	Trends	
	Channel		-	Amplitude			Chann			and the second s	plitude	
		Wavel Min	ength Med/ mean	Max/				Drift [0-1]	Min	Med/ mean	Max/ std	
Orientation	Triangul	- 110	120	135	[Compass degrees]	Orientation	Triangul 👻	0.2	110	120	135	[Compass degrees]
Amplitude	Triangul	- 600	800	1000	[Horizontal	Amplitude	Triangul 👻	0.2	600	800	1000	[Horizontal
Wavelength	Triangul	- 1000	1500	2000	distance units]	Wavelength	Triangul 👻	0.2	1000	1500	2000	distance units]
Rel. sinuosity	Triangul	- 0.2	0.3	0.4	[Positive number]		If using fi orientation				o', the	
Settings	Layout	: 🔻	Section	🥢 Ті	rends	C Settings	s 🚺 Layou	ut 🤝	Section	on 🦉	Trends	i
	Interse view:	- La		Thicknes	:5	Interview		+	Thicknes	is		
		Min	Med/ mean	Max/ std				Drift [0-1]	Min	Med/ mean	Max/ std	
Width	Triangul 👻	600	800	1000	[Horizontal distance units]	Width	Triangul 👻	0.1	140	180	200	[Horizontal distance units]
Thickness	Triangul 👻	5	15	20	Width fraction	Thickness	Triangul 👻	0.2	2	7	10	Width fraction

Figure 61 – Zone F Channel 4 and Channel axis 3 inputs

Eni Angola – Reservoir	Offshore Angola oil field: Multiple Point Statistics	Date	Page
Politecnico di Torino	(MPS) modelling approach	19/12/2018	46 of 87

log Settings	12 Layout		Section		Trends		a Settings	1 Layou	t 🔽	Section	n 🥥	Trends	
V Us	e body 📃 I	Modify	/ body na	me:			🔽 Us	e body	Modif	y body na	ame:		
Facies	Mak	e faci	es	Fracti	on (%)	Upscaled (%)	Facies	Ma	ke fac	es	Fract	ion (%)	Upscaled (%)
5: Ch_	axis 👻 🗸 🤇	Chann	el sand	15	-) <u> </u>	📕 6: Ch	_axis 🔻 🗸	Chanr	nel sand	26	3	, 💷 📐 .
2: Ricl	h Off 👻 🔳 L	evee				J 🔲 🧹	2: Ric	h Off 👻 🕅	Levee	•			
Settings	Layout		Section	n 🛛 🥥 '	Trends		Settings	Layout		Section	n 🥥 '	Trends	
	Channe	-			plitude			Channe	-		<mark>₩1</mark> Am	plitude	
		Drift [0-1]	Min	Med/ mean	Max/ std				Drift [0-1]	Min	Med/ mean	Max/ std	
Orientation	Triangul 👻	0.2	110	120	135	[Compass degrees]	Orientation	Triangul 👻	0.2	110	120	135	[Compass degrees]
Amplitude	Triangul 👻	0.2	600	800	1000	[Horizontal	Amplitude	Triangul 👻	0.2	600	800	1000	[Horizontal
Wavelength	Triangul 👻	0.2	1000	1500	2000	distance units]	Wavelength	Triangul 👻	0.2	1500	1900	2200	distance units]
If using flow lines in the 'Trend tab', the orientation will not be used.								S If using fl orientatio				o', the	
Settings	: 🚺 Layout	-	7 Sectio	n 🥥	Trends		Settings	s 🚺 Layou	ıt 🔽	Section	on 🥥	Trends	i
Interview		*	Thicknes	5			Interview	ersection	+	Thicknes	s		
		Drift [0-1]	Min	Med/ mean	Max/ std				Drift [0-1]	Min	Med/ mean	Max/ std	
Width	Triangul 👻	0.2	200	275	350	[Horizontal distance units]	Width	Triangul 👻	0.2	250	275	350	[Horizontal distance units]
Thickness	Triangul 👻	0.2	5	12	20	Width fraction	Thickness	Triangul 👻	0.2	3	6	10	Width fraction

Figure 62 – Zone F Channel 2 and Channel 1 input

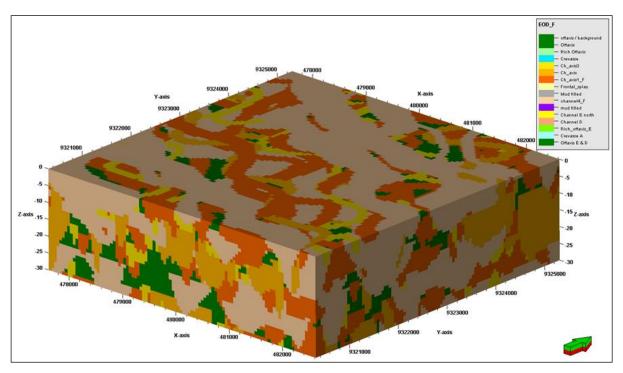


Figure 63 – Zone F Training Image 3D grid

• Simulation two: by analyzing the amplitude maps, some possible improvements could be made to optimize the EoD representation on zone C and zone D:

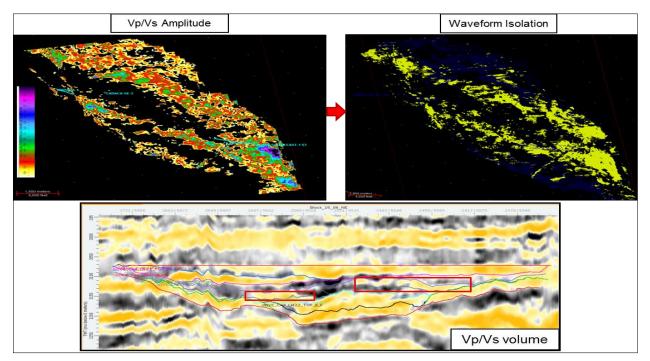


Figure 64 – Zone C, facies interpretation – Seismic

- Zone C: in Figure 64 the channel boundaries are not as clear as the EoD maps used on the standard model and on the TI simulation one. A levee was added to the two main channels on these zones;
- Zone D: changes were made in the TI input parameters optimizing the EoD boundaries and increasing the levee fraction on the training image.

Go Settings ▼ Us	se bod		Aodi	Secti fy body r		Lev	ree 🥻	Trends	Settings	E body		Sect lify body		S Lev	ee 🧸	Trends
Facies 9: cha 3: Cre	annel evass	Make ▼ ♥ 0 ▼ ♥ L	han	nel sand		action ((%) U	lpscaled (%)	Facies 4: Ch	axis 👻 🗹	ke fa Cha Leve	nnel san		action (%) Uş	oscaled (%)
Co Setting:	s I	Channe	=	Vaveler Min			ude ax/	Trends	💩 Settings	Chanr	el -	Vaveler Min			ide x/	Trends
Orientation	r i	Triangul	-	110	120	130	[0	Compass degrees	Orientation	Triangu	•	110	120	130	_	mpass degrees]
Amplitude		Triangul	-	600	800	100		forizontal stance	Amplitude	Triangu	-	600	800	1000	dis	orizontal tance
Wavelengt	th	Triangul	•	1000	1500	200		nits]	Wavelength	Triangu	-	1000	1500	2000		10 10 10
Rel. sinuos	sity	Triangul	+	0.1	0.2	0.3	[F	Positive number]	Rel. sinuosit	y Triangui	-	80.0	0.1	0.2	[Pc	sitive number]
Width Thickness	N. 1997	Interse view: ngul 👻		lin m	Med/ iean 30	hickne Max/ std 200	[Ho dista	rizontal ance units] Width fraction	Width Thickness	Interview Triangul		Min	Med/ mean	Max/ std 150	[Hor dista	izontal ince units] Vidth fraction
Setting	s I	Layout	5	🤝 Sec	ction	% ∟	evee.	Trends	Setting	s I Layo	ut	V Se	ection	% ∟	evee	Trends
Thi	icknes	The second second second	ghr	ness Mi	пп	/led/	Max/	e e e e e e e e e e e e e e e e e e e	Thi	ckness I	+	nness M	lin n	Med/ nean	Max/ std	
Width	Tria	ngul 👻	0.2	0.5	0.	8	0.9]	Width	Triangul -	. 0.	2 0.7	0	8	0.9	
Width unit:	Fr	ac. of cha	anne	el width	© н	orizont	al dista	nce units	Width unit:	Frac. of c	han	nel width	B B	orizont	al distar	nce units
Thickness	Tria	ngul 👻	0.2	0.7	0.	8	0.9	[Relative to channel thickness]	Thickness	Triangul -	. 0.	2 0.5	0	7	0.9	[Relative to channel thickness]
Approximate				· · · · · · · · · · · · · · · · · · ·				LI IICA IESS								

Figure 65 - Zone C- Channel 4 and Channel axis 3 inputs (second simulation)

eni		Eni Angola – Reservoir Politecnico di Torino	Offshore Angola oil field: Multiple Point Statistics (MPS) modelling approach	Date 19/12/2018	Page 48 of 87	
-----	--	---	--	--------------------	------------------	--

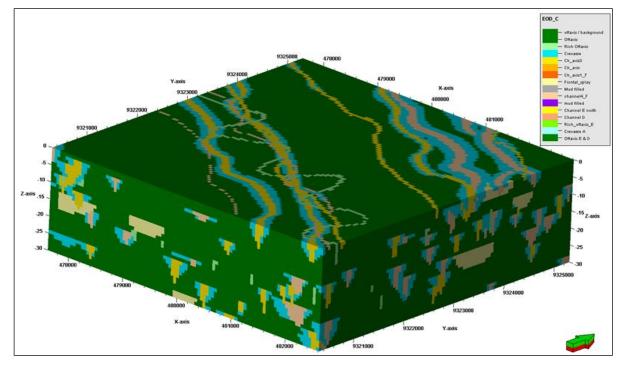


Figure 66 – Zone C Training Image 3D grid (second simulation)

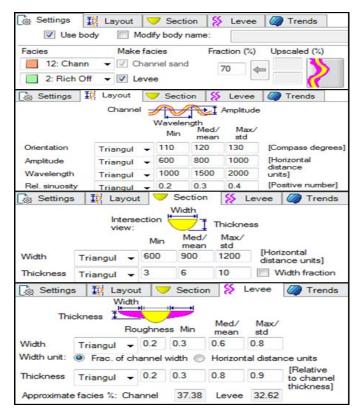


Figure 67 – Zone D- Channel D inputs (second simulation)

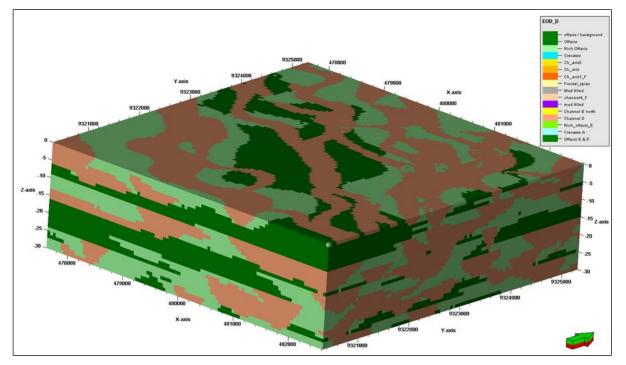
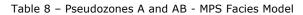


Figure 68 – Zone D Training Image 3D grid (second simulation)

Various sensitivities were realized until the TIs were representing the most likely model, honoring the well log correlation, the seismic data (amplitude maps), the sedimentological model and the EoD in each zone.

On the TIs 3D grid the channels amalgamation on each zone can be appreciated, respecting the fining upward trend on the sand content and the geo-bodies channel geometry definition, in line with the sedimentological model.

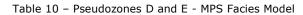

3.2.3 MPS Geo-body Facies (EoD) model

Once up-scaled the facies (EoD) log in the 3D grid, the EoD simulation has been performed by means of the MPS simulation algorithm. The process has been run by zone, since the TI has been defined by zone as well. On the data selection pane, the training images have been loaded considering that the facies fraction on the Training Image output was approximated to the facies fractions of the reference standard model and considering that the main impact on the training image facies fraction output is the EoD fraction input in the Training Image.

In the external constraint window, it is possible to add a probability property which acts as a guiding tool for the property distribution. The weight correction between the simulated facies and the secondary trend ranges from 0 to 1. Considering that the TI is the main input for the MPS facies distribution, different sensitivities have been made using different weight correction factors.

eni	Eni Angola – Reservoir Politecnico di Torino	Offshore Angola oil field: Multiple Point Statistics (MPS) modelling approach	Date 19/12/2018	Page 50 of 87

Da	ata selection 🔀 Extern	nal constraints 💡 Expert 🚱 Hi	nts		🚰 Da	ata sel	ection Strengt Con	straints 🛛 💡 Expert 🛛 🚱 Hir	its	
Trainin	ig image			?	Trainin	imag imag	ge			- ?
Traini	ing image property:	🔁 EOD_A	Grid: JP_TI	grid	Traini	ing ima	age property: => EC	DD_AB	Grid: III JP_TI	grid
Sa	ame zone as primary proj	perty Zones: Apply to all zo	nes		I SI	ame zo	one as primary property	Zones: Apply to all zon		
							and as human's higher of (
Facies	/ target fractions			?	Facies	/ targe	et fractions			- 7
Globa	al fractions: From training	g image property	- 📁	2	Globa	fracti	ions: From training imag	e property	- 🗇	2
	Use Facies	Training image facies	Fractions	2		Use	Facies	Training image facies	Fractions	1
1	O: offaxis / backg	round	-		1	ose [♥]				-
2	1: Offaxes	1: Offaxis	50.73		2		0: offaxis / background 1: Offaxis	0: offaxis / background	30.57	
3	2: Rich Offaxis	2: Rich Offaxis	20.54		3		2: Rich Offaxis		-	
4	✓ 3: Crevasse	3: Crevasse 🔹	8.02		4		3: Crevasse	3: Crevasse	• 28.21	
5	4: Ch_axis3	4: Ch_axis3 👻	18.34		5		4: Ch_axis3		-	
6	5: Ch_axis				6		5: Ch_axis		-	=
7 8	6: Ch_axis1_F 7: Frontal_splay				7		6: Ch_axis1_F		-	
9	8: Mud filled				8		7: Frontal_splay	7: Frontal_splay	▼ 26.92	
10	9: channel4_F	-			9		8: Mud filled		*	
11	✓ 10: mud filled	10: mud filled	2.37		10		9: channel4_F		-	
12	11: Channel E no	rth 👻			11		10: mud filled	10: mud filled	• 14.30	
13	12: Channel D	-			12		11: Channel E north		•	
14	13: Rich_offaxis_E	-			13 14		12: Channel D 13: Rich offaxis E		-	-
15	The Conseco of		fotal % 100.0	0	114	1.10-1	15: KICH OTTAXIS E	-	Total % 100	00
Da	ata selection 🛛 🗾 Extern		nts	-	🔽 Da	ata sel	ection 🛛 🧊 External con:	straints 🛛 📿 Expert 🛛 🚱 Hir	ts	
Propor	rtion / probability constrain	nts		- ?	Propor	tion / p	probability constraints			- ?
Ve	ertical proportion function	s 📝 Inverse x-axis			EN.		proportion functions	Inverse x-axis		
_						aucai	proportion functions	Inverse X-axis		
Pr	roportion maps				Pr	oportio	on maps			
Pr	roportion region propertie	5								
	robability properties	Weight: 0.30	1		E Pr	ороги	on region properties			
	robability properties	Weight: 0.30	//		V Pr	obabil	ity properties W	eight: 0.30	1	
	Facies	Probability properties				-				
1	1: Offaxis	Fra OffAxis Pr AB, C, D, E	Ð				Facies	Probability properties		
2	2: Rich Offaxis	Fra RoA_Prob (A,C,CD,D,E			1	0: off	faxis / background 📃			
3	3: Crevasse	Fra Crevasse Prob (AB,E)	,		2	3: Cr	evasse 🔽	Fra Crevass (AB,E)		
4	4: Ch_axis3				3	7: Fr	Contract of the second second	Fra Fsplay (AB, C)		
-					4			Fra MFch A,AB)		
5	10: mud filled	Fra MFch_Prob (A,AB)			-	area in		Promining A,AB)		



1	ata selection	rnal constraints 💡 Expert 🍕	Hints		Da	ata sele	ction 🔀 Externa	I constraints	💡 Expert 🛛 🥝 Hints	s	
Traini	ng image			- ?	Trainin	image					- ?
Train	ning image property:	EOD_C	Grid: JP_TI	grid	Traini	ng imag	property:	EOD_CD	Gr	id: JP_T	grid
<u> </u>	ame zone as primary pr	operty Zones: Apply to a	II zones		S	ame zoi	ne as primary prope	erty Zones:	Apply to all zone	15	
	s / target fractions			- ?			fractions				- ?
Glob	al fractions: From train	ing image property	- 2	?	Globa	I fractio	ns: From training	image property		- 💷	13
	Use Facies	Training image fa	cies Fractions	?		Use	Facies	Train	ning image facies	Fractions	1
1	0: offaxis / back	ground 0: offaxis / background	nd 🕶 81.04	-	1		i offaxis / backgro	und 0: offax	is / background 🔹	70.18	-
2	1: Offaxis		-		2		: Offaxis		-		
3	2: Rich Offaxis	2: Rich Offaxis	• 0.94		3		Rich Offaxis	2: Rich	Offaxis •	29.82	
4	3: Crevasse		•		4		Crevasse				
5	4: Ch_axis3 5: Ch_axis	4: Ch_axis3	• 4.96		5		: Ch_axis3			-	
7	5: Ch_axis 6: Ch_axis1_F				6		i: Ch_axis i: Ch_axis1_F				=
8	7: Frontal_splay	7: Frontal_splay	▼ 4.84		8		: Frontal_splay				
9	8: Mud filled	y. montal_splay	-		9		: Mud filled				
10	9: channel4_F	9: channel4_F	• 8.21		10		: channel4_F				
11	10: mud filled		-		11		0: mud filled		-		1
12	11: Channel E n	orth	-		12		1: Channel E norti	h	-		
13	12: Channel D		-		13	1	2: Channel D	1	-	-	
14	13: Rich offaxis	E	-	-	14		3: Rich offaxis E		-		-
				.99	_				-	otal % 100	.00
C D	ata selection	rnal constraints 🛛 💡 Expert 🛛 🌾	Hints		G Da	ita selei	tion 🔀 External	constraints	🦁 Expert 🛛 🚱 Hints	5	
								_			ſ
Propo	rtion / probability constra	inte									
торо	ruon / probability consul	11115			Proport	tion / pr	bability constraints	5			- ?
	ertical proportion function	ns 📝 Inverse x-axis									
P	roportion maps				Ve Ve	rtical pr	oportion functions	Inverse x	axis		
	roportion maps										
P	roportion region propert	es			Pr Pr	oportion	maps				
P	robability properties	Weight:	0.301		P-	oportion	region properties				
	rependently properties				r	oportion	region properties				
_					V Pr	obabilit	properties	Weight:	0.301		
	Facies	Probability properties									
1	0: offaxis / backgrou		Q		-						
2	2: Rich Offaxis		~				Facies	Probabili	y properties		
2	4: Ch_axis3	Fra Ch_Ax (A, C, F)	-								
4	and a second to be a second				1	0: offa	xis / background		Q		
-	7: Frontal_splay	Fra Fsplay (AB,C)			2	2: Rich	Offaxis		Pr D.D.E)		
5	9: channel4_F	Fra Ch4_F Prob (C,F)									

Table 9 – Pseudozones C and CD - MPS Facies Model

eni	Eni Angola – Reservoir Politecnico di Torino	Offshore Angola oil field: Multiple Point Statistics (MPS) modelling approach	Date 19/12/2018	Page 51 of 87

D	ata selecti	ion 🚺 External cons	traints 🛛 💡 Expert 🛛 🚱 Hints	51. · · · · · · · · · · · · · · · · · · ·		ata sel	lection Sternal c	xonstraints 💡 Expert 🚱 Hints	8	
	ng image					ng ima		1		?
Train	ing image	property: DI EOI	D_D Gr	id: JP_TI grid	Train	ing im	age property:	EOD_E Gr	rid: JP_TI grid	d
S	iame zone	as primary property	Zones: Apply to all zone	s	S S	ame z	one as primary propert	Zones: Apply to all zone	15	
	s / target fr						et fractions			2
Globa	al fractions	s: From training image	property	• 💷 🛛	-	al fract	ions: From training im	hage property	- 💷	2
	Use	Facies	Training image facies	Fractions		Use	Facies	Training image facies	Fractions	2
1		offaxis / background	0: offaxis / background	19.06 _	1		0: offaxis / backgrou	nd 0: offaxis / background *	55.08 -	
2	and the second se	Offaxis	•		2		1: Offaxis	-	-	
3		Rich Offaxis	2: Rich Offaxis	27.21	3		2: Rich Offaxis	2: Rich Offaxis	15.40	
4		Crevasse Ch_axis3			4		3: Crevasse 4: Ch_axis3	3: Crevasse	16.85	
5		Ch_axis3 Ch_axis			6		4: Ch_axis3 5: Ch_axis			
7		Ch_axis1_F		-	7		6: Ch_axis1_F	-	-	
8		Frontal_splay	-		8	1	7: Frontal_splay	-		
9	E 8:	Mud filled			9		8: Mud filled			
10		channel4_F	2		10		9: channel4_F			
11		mud filled	-		11		10: mud filled	-		
12		Channel E north		53 33	12		11: Channel E north	11: Channel E north		
13 14	and a second	: Channel D : Rich offaxis E	12: Channel D	53.73	13	1000	12: Channel D 13: Rich offaxis E		-	
LAN		Rich Oligais C	т	otal % 100.00			LO. RICH OHDRIS L	т	otal % 100.01	
D	ata selecti	ion 🛛 🔂 External cons	traints 🛛 🖓 Expert 🔞 Hints		D	ata sel	ection 🔂 External c	constraints 🛛 💡 Expert 🛛 🔞 Hints	3	
					ก					m
Propo	rtion / prob	bability constraints			Propor	rtion / p	probability constraints -			?
EV	ertical pro	portion functions	Inverse x-axis			ertical	proportion functions	Inverse x-axis		
	entical pro	portion functions	IIIVEISE X-dAIS							
P	roportion r	maps			Pi	roporti	on maps			
-					P	roporti	on region properties			
P	roportion r	region properties							-	
VP	robability	properties We	eight: 0.301		P P	robabi	ity properties	Weight: 0.301		
_			- 101							
							Facies	Probability properties		
		Facies	Probability properties							
1	O. offere	s / background 🕅 🖬	1		1	a second second	faxis / background			
-					2	2: Ri	ch Offaxis	Fra RoA_Pr CD,D,E)		
2	2: Rich (Offaxis 🔽 🗉	Fra RoA_Pr D,D,E)		3	3: Cr	evasse 🛛	Crevass (AB,E)		
3	12: Chai	nnel D	Fra Chn_D Prob		4	11: 0	hannel E north 🛛 😨	Fra ChE_N		
									A1	

		ection External cons	straints 💡 Expert 🚱 Hin	ts	ſſ
	ng imag				
		ge property: => => EO		arid: IIII JP_TI	and a
	_				gna
S	ame zo	one as primary property	Zones: Apply to all zon	es	
		et fractions			100
	1112	ions: From training image	e property	- 📁	
	Use	Facies	Training image facies	Fractions	
1		0: offaxis / background	0: offaxis / background	12.49	-
2		1: Offaxis		-	
3	[2: Rich Offaxis		-	
4		3: Crevasse		-	
5		4: Ch_axis3	4. cri_dxibb	• 6.41	
6		5: Ch_axis	Si cit_dxis	15.10	E.
7		6: Ch_axis1_F 7: Frontal_splay	6: Ch_axis1_F	▼ 26.04	
9		8: Mud filled		-	
10		9: channel4_F		▼ 39.96	
11		10: mod filled		-	
12		11: Channel E north		-	
13		12: Channel D		-	
14		13: Rich offaxis E		-	-
	ata sel	ection 🛛 🔂 External cons		Total % 100.	00
D	ata sei	External cons	Wants & Expert Min	1.5	6
					10
		probability constraints			
ropor	tion / p				- 6
			1		-6
		proportion functions	Inverse x-axis		-
	ertical		Inverse x-axis		- [
Ve Pr	ertical roportio	proportion functions 📝	Inverse x-axis		-
Pr	ertical roportio	proportion functions 🥑 on maps on region properties		_	- 6
Pr	ertical roportio	proportion functions 🥑 on maps on region properties	inverse x-axis	0	- 6
Pr	ertical roportio	proportion functions 🥑 on maps on region properties		ם	- 6
Pr	ertical roportio	proportion functions 🥑 on maps on region properties		1	_
Pr	roportio roportio robabil	proportion functions on maps on region properties ity properties We Facies	eight: 0.301	0	
Ve Pr Pr	ertical roportic robabil	proportion functions on maps on region properties ity properties We Facies (axis / background)	eight: 0.301 Probability properties		
Ve Pr Pr	ertical roportic roportic robabil 0: off 4: Ch	proportion functions on maps on region properties ity properties We Facies (axis / background axis 2	Probability properties	1	
Ve Pr Pr Pr	oportic roportic robabil 0: off 4: Ch 5: Ch	roportion functions on maps on region properties ity properties We Facies faxis / background _axis 2 2 1	eight: 0.301 Probability properties	ב	

Table 11 – Pseudozones F - MPS Facies Model

From different input settings arrangement a few simulations were run and correlated with the pre-existing standard model:

- Simulation 1: make use of the first training image simulation and a weight correction of 0.5;
- Simulation 2: using the same TI as simulation one, but reducing the weight • correction impact to 0.3, which means giving more emphases to the Training Image;
- Simulation 3: make use of the second training image simulation, which emphasizes the optimization of pseudozone C and pseudozone D and with a weight correction of 0.3;
- Simulation 4: maintaining the second training image simulation and changing the weight correction from 0.3 to 0.2, increasing the Training Image influence on the final EoD distribution.

As listed here above, two types of sensitivities were run: one aimed to test the effect of the Training Images on the final EoD model, and another one aimed to test the effect of the weight factor with the EoD probability volume. The results of these sensitivities follow below.

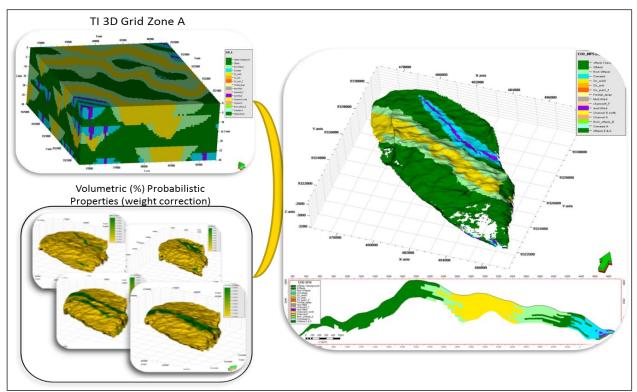


Figure 69 – MPS Facies modelling concept

Simulation 1: training image simulation one and weight correction = 0.5

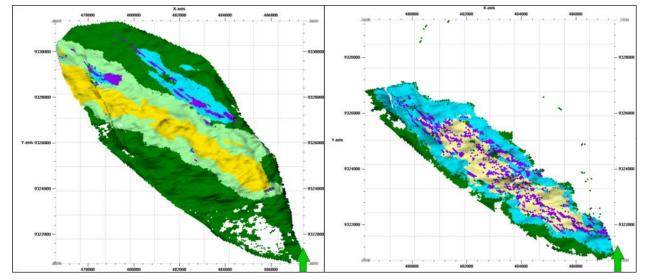


Figure 70 – Pseudozones A and AB – MPS model (simulation 1)

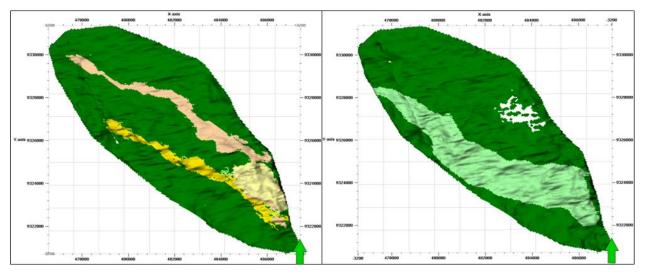


Figure 71 – Zone C and CD – MPS model (simulation 1)

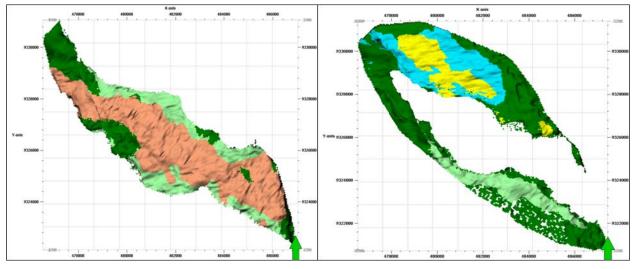


Figure 72 – Pseudozones D and E – MPS model (simulation 1)

	eni Angola – Reservoir	Offshore Angola oil field: Multiple Point Statistics	Data	Page
1 (A	enii Angola – Reservoli	Onshore Angola on held. Multiple Point Statistics	Dale.	Faye
C. C. S.	Politecnico di Torino	(MPS) modelling approach	19/12/2018	54 of 87

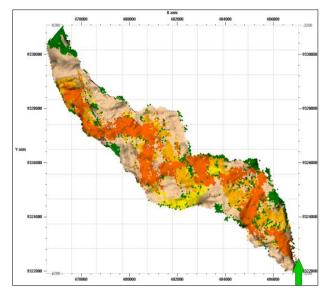


Figure 73 – Pseudozone F – MPS model (simulation 1)

• Simulation 2: training image as simulation one and weight correction of 0,3.

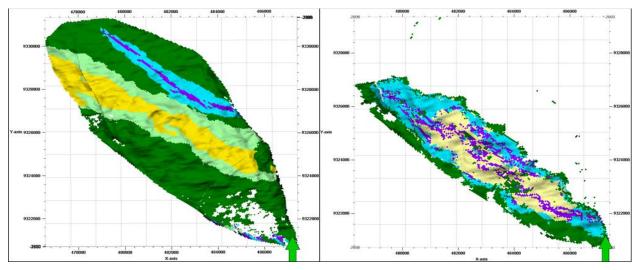
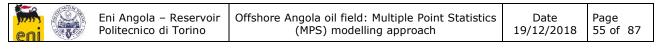



Figure 74 – Pseudozones A and AB – MPS model (simulation 2)

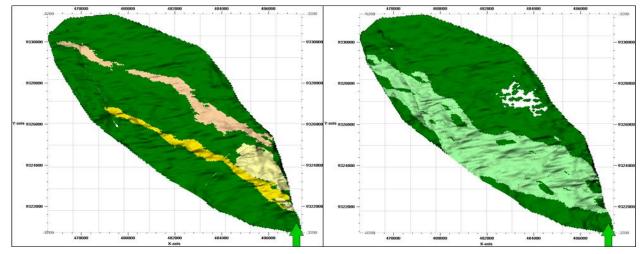


Figure 75 – Pseudozones C and CD – MPS model (simulation 2)

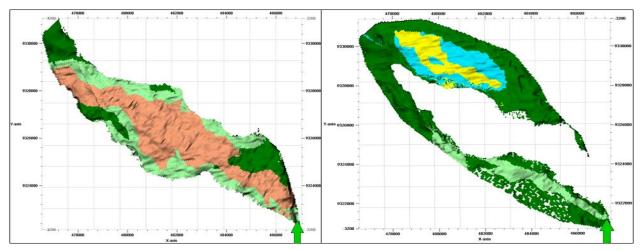


Figure 76 – Pseudozones D and E – MPS model (simulation 2)

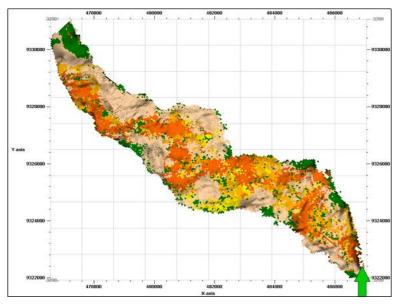


Figure 77 – Pseudozones F – MPS model (simulation 2)

THESIS POLITECNICO DI TORINO MASTER IN PETROLEUM ENGINEERING ALL THE ABOVE INFORMATION SHALL NOT BE SHOWN TO THIRD PARTIES NOR SHALL IT BE USED FOR REASONS DIFFERENT FROM THOSE FOR WHICH IT IS ISSUED

- 1980 C	Eni Angola – Reservoir	Offshore Angola oil field: Multiple Point Statistics	Date	Page
	Politecnico di Torino	(MPS) modelling approach	19/12/2018	56 of 87

By decreasing the weight correction factor from 0.5 (simulation 1) to 0.3 (simulation 2), the channel geometry changes: the definition of the shape reduces as well as the channel continuity (see Figure 75, zone C, where the channel 4 is illustrated).

Passing from a deterministic interpretation to a stochastic EoD simulation, the main improvement is related to geometry of the modelled objects. They reflect their real geological shape, allowing a better reconstruction of the depositional history, which strongly impacts on the dynamic behavior.

Here below this phenomenon can be appreciated in zone A, D and F, in line with the seismic analysis (Figure 78 and Figure 79).

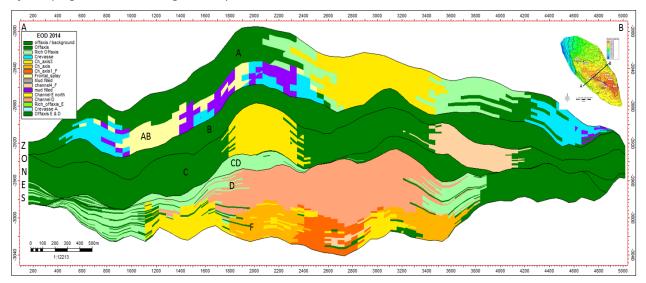


Figure 78 – Cross section – MPS model

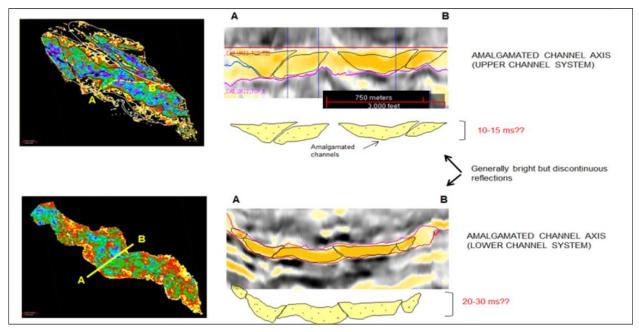


Figure 79 – Pseudozone A and F, Facies Interpretation - Seismic

 Simulation 3: based on the first results, an optimization on the training images of zone C and zone D was carried out (supported by the amplitude maps). A weight factor = 0.3 was considered. In particular, the main changes are listed here below:

Zone C: introduction of levee (crevasse) to the two isolated channels (EOD), supported by seismic interpretation (Vp/Vs volume).

Zone D: optimization of the TI (Figure 67), by reviewing the facies fraction of the different elements of deposition.

Geobo	odies	Facies	Fractions
		VLCT	83
	offaxis	MXDT	16
		LCT	1
	Rich off Axis	VLCT	81
		MXDT	11.4
		LCT	6.94
		HCT_HP	0.66
	Crevasse	VLCT	70
		LCT	22
		HCT	8
	Channel 4	VLCT	82.5
		MXDT	10.23
Pseudozone		LCT	5
C		HCT	6.27
		VLCT	49.74
		MXDT	11.06
	Channel	LCT	33.64
	axis 3	HCT	2.3
		HCT_HP	10.33
		TRCT	2.46
		VLCT	26.27
	Frontal	MXDT	33.67
		LCT	13.53
	splay	HCT	13.87
		HCT_HP	12.66

Table 12- Zone C MPS Facies Fraction

🚾 Da	ata sel	lection External constraint	s 📿 Expert 🚱 Hints		
-					ſſ
	-				
	ng ima				
raini	ing imi	age property: DOD_C		Grid: JP_TI g	rid_leve
S	ame z	one as primary property	s: Apply to all zones		
icies	/ targ	et fractions			
iloba	al fract	ions: From training image prop	verty -		
	Use	Facies	Training image facies	Fractions	
_					
1			0: offaxis / background 💦 🔻	71.49	<u></u>
2 3		1: Offaxis	2: Rich Offaxis		
s 4			2: Rich Offaxis 3: Crevasse	1.03	
• 5			3: Crevasse 🔹 🔹	5.39	
5		4: Ch_axis3 5: Ch_axis	4: Ch_axis3	5.39	=
> 7		6: Ch_axis1_F			
, 3			7: Frontal_splay 🔹	5.40	
, ,		8: Mud filled	· · · · · · · · ·	5.40	
,			9: channel4_F	5.61	
11	_	10: mud filled	•	5101	
12		11: Channel E north			
13		12: Channel D	•		
				Total % 100	•
	ata se	lection 🛛 🧊 External constraint	s 📿 Expert 🚱 Hints	10tal /s 100	.00
					ſ
opo	rtion /	probability constraints			
			rse x-axis		
		ion maps			
		on region properties			
_	-	lity properties Weight:	0.201		
	(ODabi	weight.	0.201		
		Facies	Probability proper	ties	
1	0: of	faxis / background	$\square \Rightarrow$	Q	
2	2: Ri	ch Offaxis	Fra RoA_Prob (A, C, C)		
3		evasse		Q,	
4		h_axis3	Fra Ch_Ax_3_Prob (
5		ontal_splay annel4_F	Fra Fsplay Prob (AB		
Þ	9: cr	lannel4_r	Fra Ch4_F Prob (C, F	-)	

Table 13 – Pseudozones C - MPS Facies Model (simulation 3)

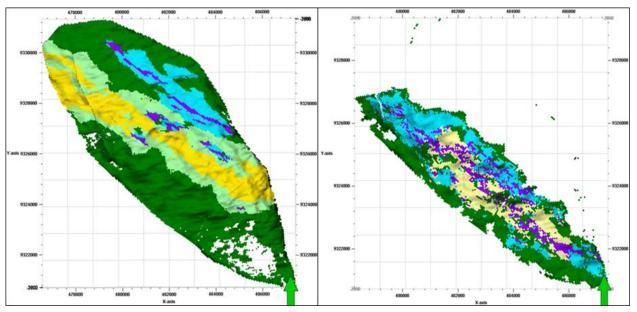
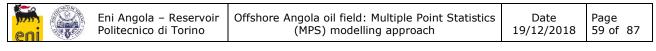



Figure 80 – Pseudozones A and AB – MPS model (simulation 3)

In simulation 3, Pseudozone C is in line with the seismic analysis represented on Figure 64, with the introduction of a levee for the two main channels.

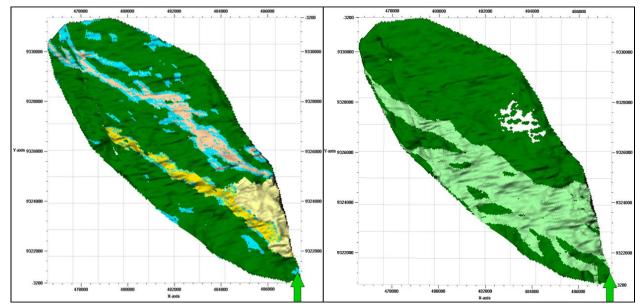


Figure 81 – Zone C and CD – MPS model (simulation 3)

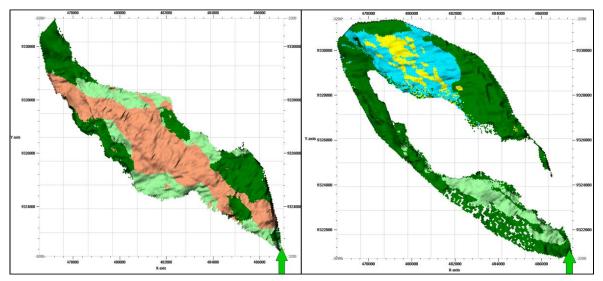


Figure 82 – Pseudozones D and E – MPS model (simulation 3)

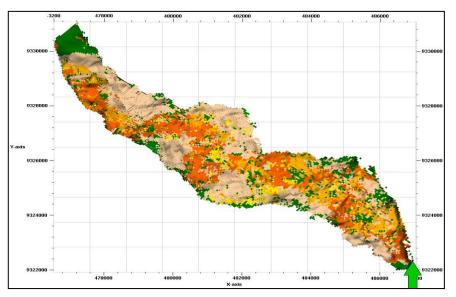


Figure 83 – Pseudozone F – MPS model simulation 3)

• Simulation 4: using the same training image of the simulation 3 and decreasing the weight factor from 0.3 to 0.2. Leading to the following changes:

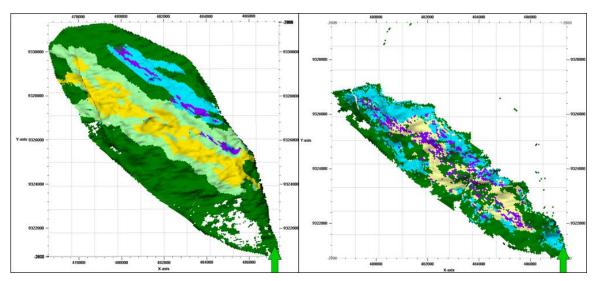
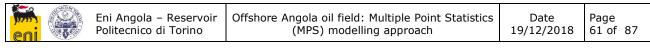



Figure 84 – Pseudozones A and AB – MPS model (simulation 4)

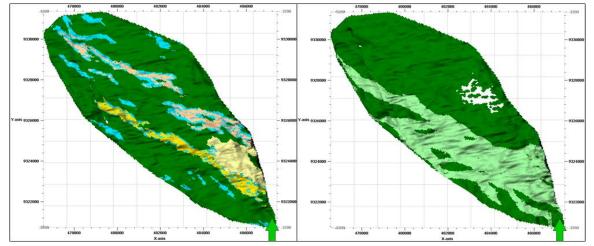


Figure 85 – Pseudozones C and CD – MPS model (simulation 4)

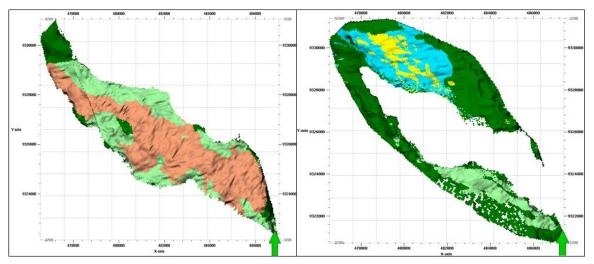


Figure 86 – Pseudozones D and E – MPS model (simulation 4)

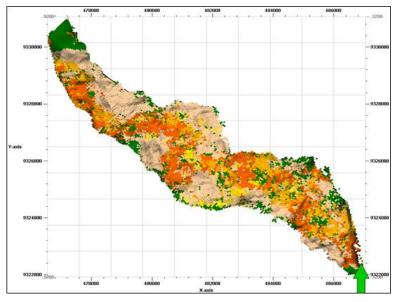


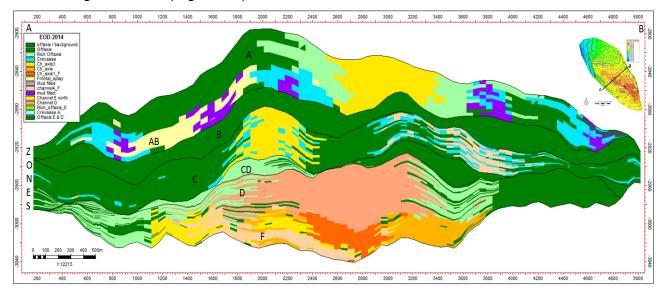
Figure 87 – Pseudozones F – MPS model (simulation 4) THESIS

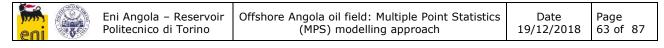
POLITECNICO DI TORINO MASTER IN PETROLEUM ENGINEERING ALL THE ABOVE INFORMATION SHALL NOT BE SHOWN TO THIRD PARTIES NOR SHALL IT BE USED FOR REASONS DIFFERENT FROM THOSE FOR WHICH IT IS ISSUED

Eni Angola – Politecnico di		stics Date Page 19/12/2018 62 of 87
--------------------------------	--	--

Looking at the simulations above, a reduction of the weight factor leads to an increase of the Training Image effect on the EoD distribution. Moreover it impacts on the channels continuity, as shown in Figure 84, Figure 85, Figure 86 and Figure 87. Looking at the four MPS facies simulations performed above, the stationary data features were compromised, mainly the channels axis continuity.

From the four different simulations performed, simulation 3 captures all the desired geological and sedimentological settings, analyzed on the log facies, amplitude maps and sedimentological model (Figure 88).




Figure 88 – Cross section – MPS model (simulation 3)

A significant change can be appreciated on the vertical cross section, where the relative geo-body geometry changes progressively to channel like boundary respecting the superposition law as well (see the basal sand level) (Figure 78 and Figure 88).

The results of the MPS modelling in Figure 89 and Figure 90 were achieved after different sensitivities, performed basing on the balance between the Training Images and the external constraints. The heterogeneous channels complex system was gradually represented through the simulations, where the geo-bodies channel shape was achieved.

The model changes in each pseudozone, clearly underline the impact of the multiple point statistics approach, reproducing:

- The geo-body channel like geometry;
- The amalgamated basal channels, as per the sedimentological model;
- The channel erosion, based on the sequence stratigraphy and superposition law.

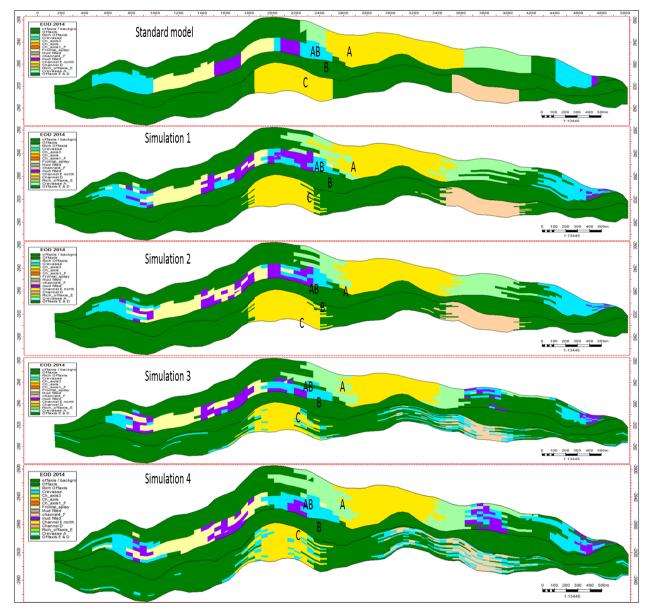
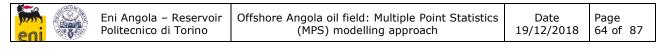



Figure 89 – Pseudozones A and AB and C Cross section – simulation progress

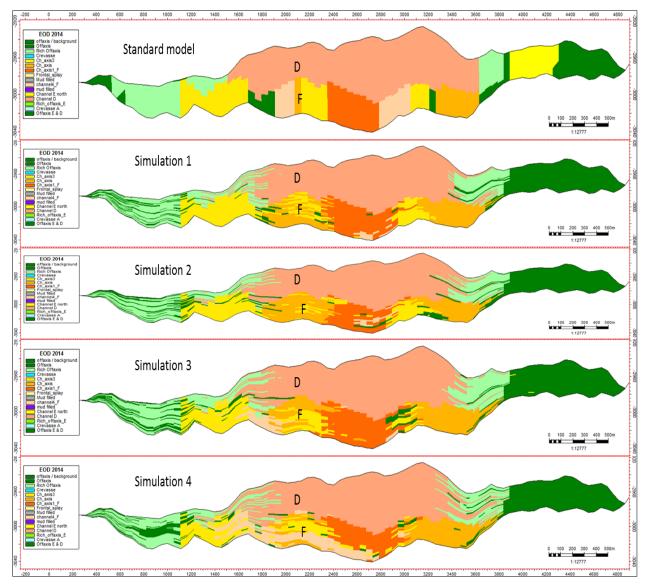


Figure 90 – Pseudozones D and F Cross section – simulation progress

During the MPS EoD (facies) modeling, the different distributions in each zone were analyzed, having the standard model facies fractions as reference.

Considering the Training Image used in the MPS and the sedimentological understanding of the channel shapes, an average gradual decrease of the channel (EoDs) facies fractions within each zone and a relative increase in the off-axis facies fraction were experienced, in line with expectations Figure 28.

In the Pseudozone C, the Offaxis facies fraction has been reduced, due to the new crevasse facies introduction. It was added as levee to the pre-existing channels (channel 4 and channel axis 3), basing on the analysis of the Vp/Vs amplitude maps (Figure 64).

The final facies fractions for each pseudozone in the reference model (standard model) and in the four MPS facies simulation models performed are reported below (Table 14).

in a state of the state of the

Offshore Angola oil field: Multiple Point Statistics (MPS) modelling approach

	andard mode		Code	Simulation Name		Code	Simulation Name	2 %	Code	Simulation Name		Code	Simulation 4	%
0 1 2 3 4 10	offaxis / background Offaxis Rich Offaxis Crevasse Ch_axis3 mud filled	16.46 26.50 22.62 9.89 22.34 2.19	1 2 3 4 10	Offaxis Rich Offaxis Crevasse Ch_axis3	50.92 20.64 7.69 19.15 1.59	1 2 3 4 10	Offaxis Rich Offaxis Crevasse Ch_axis3	50.65 20.90 7.53 19.18 1.74	0 1 2 3 4 10	offaxis / background Offaxis Rich Offaxis Crevasse Ch_axis3 mud filled	49.75 0.06 21.02 7.73 18.83 2.62	0 1 2 3 4 10	offaxis / background Offaxis Rich Offaxis Crevasse Ch_axis3 mud filled	49.78 0.06 21.20 7.63 18.67 2.65
Code	Name AB		Code	Name	%	Code	Name	%	Code	Name		Code	Name	%
0 1 3 7 10	offaxis / background Offaxis Crevasse Frontal_splay mud filled	6.17 15.47 38.86 29.88 9.62	0 3 7 10	offaxis / background Crevasse Frontal_splay mud filled	29.49 28.13 27.50 14.88	0 3 7 10	offaxis / background Crevasse Frontal_splay mud filled	29.73 28.10 27.60 14.57	0 3 7 10	offaxis / background Crevasse Frontal_splay mud filled	43.19 24.69 20.50 11.61	3	offaxis / background Crevasse Frontal_splay mud filled	43.17 24.92 20.53 11.37
Code	Name C) %	Code	Name	%	Code	Name	%	Code	Name	%	Code	Name	%
0 1 2 4 7 9	offaxis / background Offaxis Rich Offaxis Ch_axis3 Frontal_splay channel4_F	54.38 23.35 1.00 5.89 5.53 9.86	1 2 4 7	offaxis / background Offaxis Rich Offaxis Ch_axis3 Frontal_splay channel4_F	80.05 0.02 0.07 5.83 5.59 8.44	0 1 2 4 7 9	offaxis / background Offaxis Rich Offaxis Ch_axis3 Frontal_splay channel4_F	80.14 0.02 0.04 5.67 5.44 8.70		offaxis / background Offaxis Rich Offaxis Crevasse Ch_axis3 Frontal_splay channel4_F	71.53 0.02 0.11 11.33 5.62 6.08 5.31	0 1 2 3 4 7 9	offaxis / background Offaxis Rich Offaxis Crevasse Ch_axis3 Frontal_splay channel4_F	71.69 0.02 0.08 11.35 5.57 5.63 5.66
Code	Name CD) % (Code I	Name	%	Code	Name	%	Code	Name	%	Code	Name	%
0 1 2	offaxis / background Offaxis Rich Offaxis	53.04 7.87 39.09	1 (offaxis / background Offaxis Rich Offaxis	69.29 0.01 30.70	1	offaxis / background Offaxis Rich Offaxis	69.31 0.01 30.68	0 1 2	offaxis / background Offaxis Rich Offaxis	69.31 0.01 30.68	0	offaxis / background Offaxis Rich Offaxis	69.31 0.01 30.68
Code	Name D) % C	iode N	Name	% (Code	Name	%	Code	Name	%	Code	Name	%
0 1 2 12	offaxis / background Offaxis Rich Offaxis Channel D	1.30 19.21 75.47	2 F	offaxis / background Rich Offaxis Channel D	18.97 27.21 53.82	2	offaxis / background Rich Offaxis Channel D	18.97 27.23 53.80	2	offaxis / background Rich Offaxis Channel D	19.09 28.53 52.37	2	offaxis / background Rich Offaxis Channel D	19.06 28.27 52.67
Code	Name E) % (ode N	lame	%	Code	Name	%	Code	Name	%	Code	Name	%
1 2 3 6	offaxis / background Offaxis Rich Offaxis Crevasse Ch_axis1_F Channel E north	15.64 17.79 19.22	1 0 2 R 3 C	ffaxis / background Viffaxis Vich Offaxis Virevasse Vihannel E north	55.47 0.00 14.90 16.73 12.90	1 2 3	offaxis / background Offaxis Rich Offaxis Crevasse Channel E north	55.02 0.00 14.80 16.84 13.34	0 1 2 3 11	offaxis / background Offaxis Rich Offaxis Crevasse Channel E north	51.26 0.00 15.02 23.58 10.13	0 1 2 3 11	offaxis / background Offaxis Rich Offaxis Crevasse Channel E north	50.81 0.00 14.92 23.96 10.30
Code	Name (F)) % C	ode N	lame	%	Code	Name	%	Code	Name	%	Code	Name	%
1	Ch_axis1_F	4.57 5.70 15.34 29.91	4 C 5 C 6 C	ffaxis / background h_axis3 h_axis h_axis1_F hannel4_F	12.02 6.00 16.02 26.73 39.24	4 5 6	offaxis / background Ch_axis3 Ch_axis Ch_axis1_F channel4_F	11.97 6.20 16.02 26.55 39.26	4 5 6	offaxis / background Ch_axis3 Ch_axis Ch_axis1_F channel4_F	13.98 4.12 16.65 25.93 39.31	4 5 6	offaxis / background Ch_axis3 Ch_axis Ch_axis1_F channel4_F	13.66 4.62 16.20 26.29 39.24

Table 14- Geo-bodies Facies Fraction per zone for all simulations

Jun J	
eni	A Barre

3.2.4 SIS Facies distribution property model

The lithological facies distribution was realized applying the Sequential Indicator Simulation (SIS) algorithm. For the off-axis/background facies a constant value (VLCT) was assigned. And for the other facies derived from the cluster analysis Figure 9, the same parameters and process as per the standard model were applied.

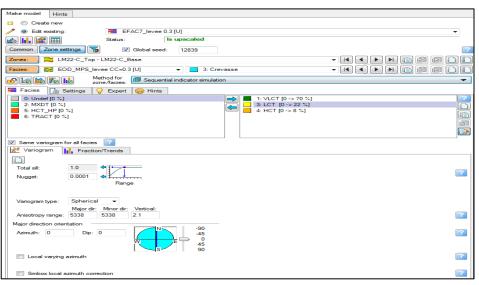


Figure 91 – Facies model settings

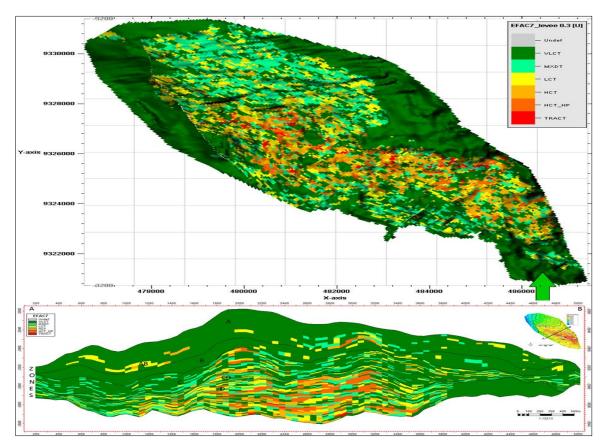


Figure 92 – Facies distribution result

THESIS POLITECNICO DI TORINO MASTER IN PETROLEUM ENGINEERING ALL THE ABOVE INFORMATION SHALL NOT BE SHOWN TO THIRD PARTIES NOR SHALL IT BE USED FOR REASONS DIFFERENT FROM THOSE FOR WHICH IT IS ISSUED

3.2.5 SGS Petrophysical properties model

The Sequential Gaussian Simulation (SGS) petrophysical modeling, which involved NTG, Porosity and Water Saturation, followed the same process (by facies) and parameters as the standard model.

NTG was modeled considering the facies distribution that is represented above (Figure 92). It was performed by means of the Gaussian random function simulation algorithm (GRFS) for VLCT, MXDT and LCT, while for HCT, HCT_HP and TRACTION a constant value of one was assigned.

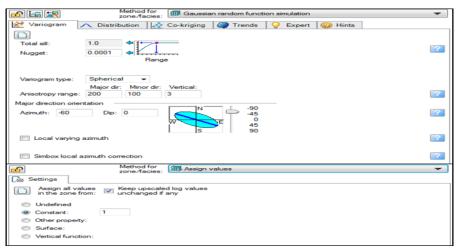


Figure 93 - NTG Properties distribution settings

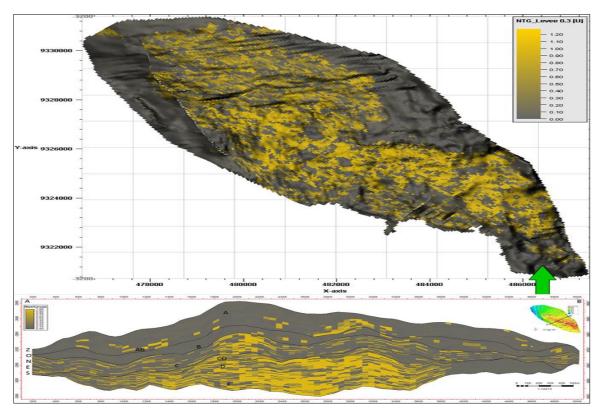


Figure 94 – NTG distribution

THESIS POLITECNICO DI TORINO MASTER IN PETROLEUM ENGINEERING ALL THE ABOVE INFORMATION SHALL NOT BE SHOWN TO THIRD PARTIES NOR SHALL IT BE USED FOR REASONS DIFFERENT FROM THOSE FOR WHICH IT IS ISSUED

eni		Eni Angola – Reservoir Politecnico di Torino	Offshore Angola oil field: Multiple Point Statistics (MPS) modelling approach		Page 68 of 87
-----	--	---	--	--	------------------

Porosity, the second element on the petrophysical modeling workflow, was modeled by means of the GRFS algorithm. The NTG volume modeled above was used as collocated co-Kriging property (Figure 94).

The the top of top of the top of top	Imernod for zone/facies: Gaussian random function simulation
😥 Variogram 🔨 Distribution 🔯 Co-kriging 💡 Expert 💡 Hints	🔀 Variogram 🔨 Distribution 🗟 Co-kriging 💡 Expert 🔞 Hints
Total all: Nugget: Range	Secondary variable Vetical function: Depth options: Based on layer index Ververse X axis
Major direction orientation	Horizontal: Image: Constant on Arriging Image: Wolfstein on Arriging Image: Constant on Arriging
W S 45 5 90	Secondary variable transformation
Simbox local azimuth correction	No transform Transform using input distribution Nomal score transform

Figure 95 – Porosity Properties distribution settings

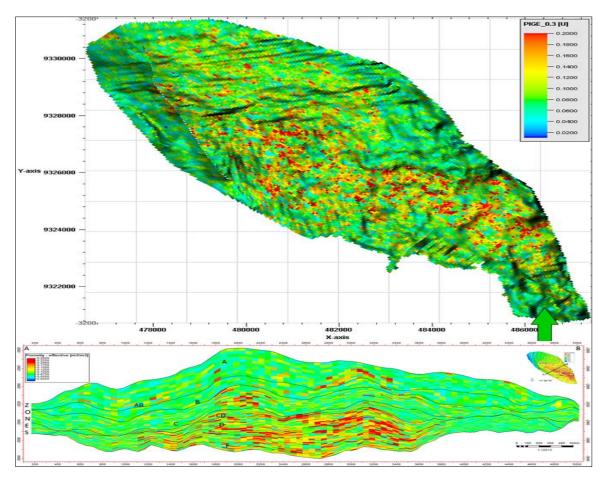


Figure 96 - Porosity distribution

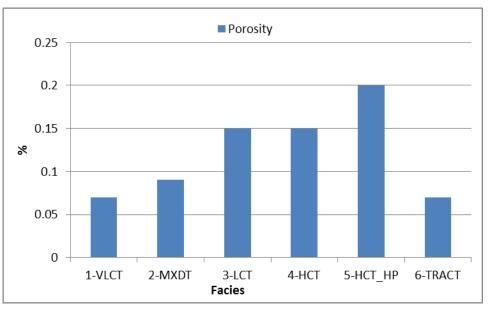


Figure 97 – Porosity model distribution per facies

The Water saturation distribution was performed by means of the GRFS algorithm, having as collocated co-Kriging property the Porosity (Figure 96).

Method for zone/facies: 📾 Gaussian random function simulation	▼ 🔐 🕼 🐹 Method for gone/facies: 🗐 Gaussian random function simulation ▼
😥 Variogram 🔨 Distribution 🐰 Co-kriging 💡 Expert 🔞 Hints	🔀 Variogram 🔨 Distribution 🗟 Co-kriging 💡 Expert
Total sill: 1.0 Nugget: 0.0001 Range	Secondary variable Vertical function: Depth options: Based on layer index V
Varlogram type: Spherical Major dir: Minor dir: Vertical: Anisotropy range: 300 150 5	Horizontal: ? ✓ Volume: ? ✓ Method ?
Major direction orientation Azimuth: -60 Dip: 0	Collocated co-Kriging Coefficient: Constant 0.8 [-1 to 1] [= Estimate ?
Local varying azimuth	Secondary variable transformation -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Simbox local azimuth correction	Transform using input distribution Normal score transform

Figure 98 – Porosity Properties distribution settings

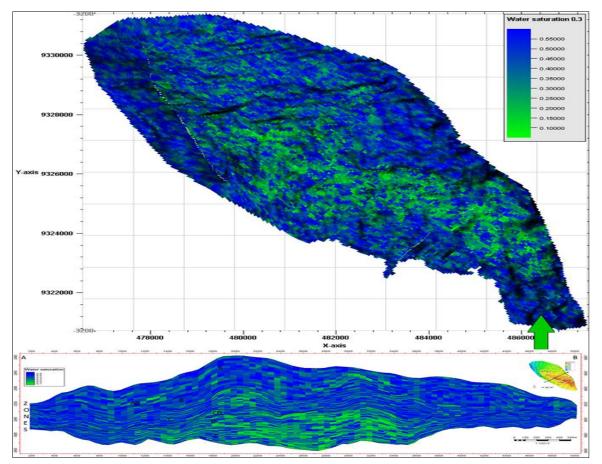


Figure 99 – Water Saturation distribution

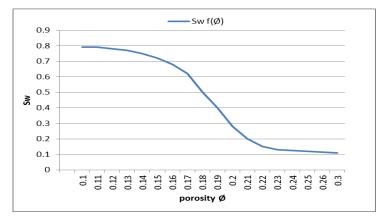
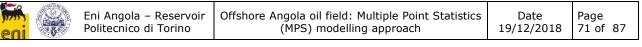



Figure 100 – Water saturation changes as a function of the porosity

The water saturation changes as a function of the porosity (Figure 100), when the porosity increases the water saturation decreases.

On the water saturation histogram (Figure 101), the Sw classes of the standard model are related with the ones coming from the four simulations performed following the principle shown in Figure 100.

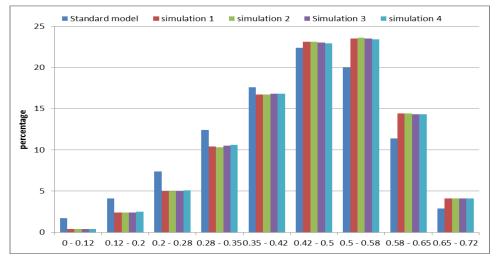


Figure 101 – Water Saturation evolution analysis

The facies distribution and NTG distribution are appreciated bellow, confirming the direct relation with the EoD Definitions, for the Standard model Figure 102 and for the MPS model Figure 104.

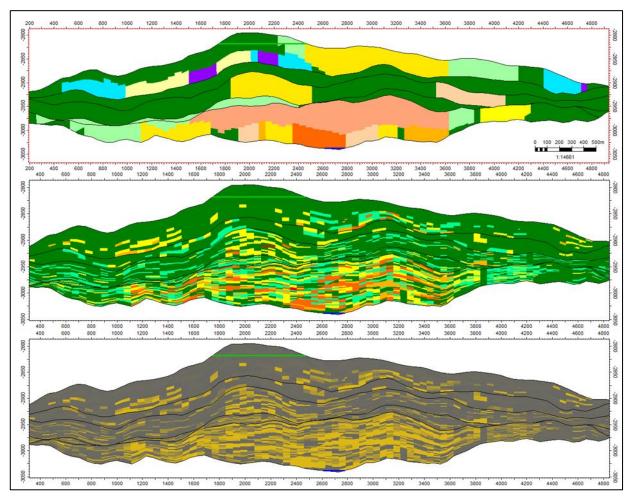
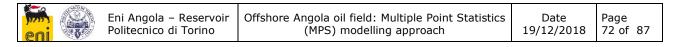



Figure 102 -standard model EoD, facies and NTG distribution

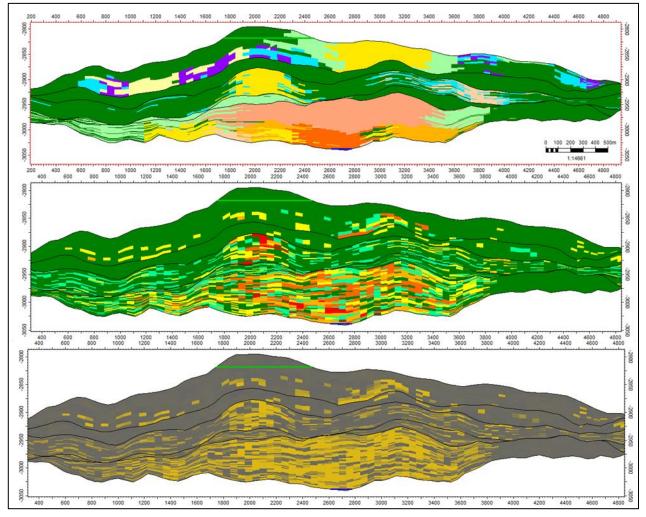


Figure 103 – MPS model EoD, facies and NTG distribution

3.2.6 Volumetric (STOIIP)

The volumetric calculation is the last step of the static modelling workflow summarized here below:

- EOD map analysis: leading to both the TIs and the EoD probability volumes generation;
- Geo-body (EoDs) simulation (probabilistic approach): by means of the Multiple Point Statistics (MPS) algorithm;
- Litho-Facies simulation SIS (Reservoir Characterization): based on the modeled geobodies, following the facies modelling workflow (algorithm and parameters) of the standard model;
- Petrophysical model: NTG, Porosity and Water saturation distributed as per the standard model workflow (algorithm and parameters).

Eni Angola – Reservoir Politecnico di Torino Offshore Angola oil field: Multiple Point Statistics Date (MPS) modelling approach 19/12/2018 73 of 87

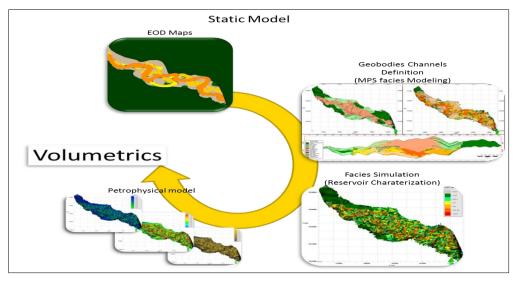


Figure 104 – Petrel MPS static model workflow

For each one of the sensitivity performed on the EoD model, the facies and petrophysical property distributions were carried out and finally a STOIIP value extracted by zone.

The volume calculation considers the same fluid contacts of the standard model: gas-oil contact at -2818 mssl, oil-water contact water at -3038m ssl and the perched water contact at 2997.5 mssl. The table here below shows the STOOIP analysis considering the contribution from each pseudozone.

	STOIIP[*10^6 STB]									
Pseudozones	Standard simulation	Simulation 1	Simulation 2	Simulation 3	Simulation 4					
Zone A	51.03	45.78	43.66	40.79	40.43					
Zone AB	32.8	29.74	29.7	24.78	25.18					
Zone B	43.53	43.23	43.23	43.23	43.53					
Zone C	105.25	108.53	105.69	112.29	113.37					
Zone CD	72.57	64.83	63.97	64.1	63					
Zone D	191.86	157.24	154.5	156.57	157.65					
Zone F	116.49	112.01	110.1	108.29	108.67					
Zone E	38.57	28	28.05	28.74	29.06					
Total STOOIP	652.1	589.36	578.9	578.79	580.89					

Table 15 - STOOIP per pseudozones

Eni Angola – Reservo Politecnico di Torino	Offshore Angola oil field: Multiple Point Statistics (MPS) modelling approach		Page 74 of 87
---	---	--	------------------

3.2.7 Static volumes comparison (Current vs. MPS workflow)

Below is illustrated the STOIIP variation in each pseudozone: for the reference case (standard model) and the four simulated MPS models.

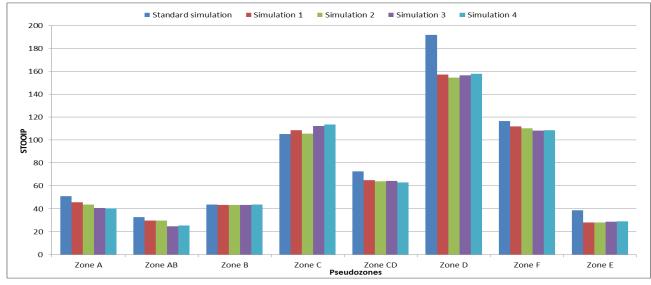
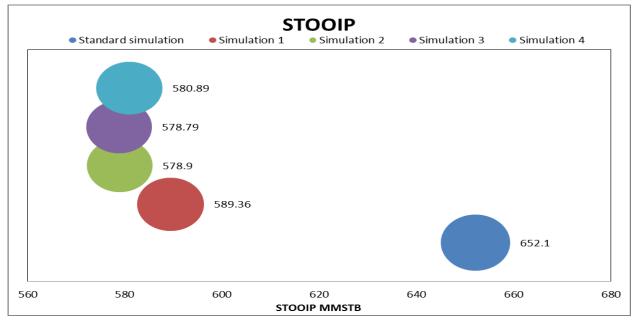


Figure 105 – STOOIP analysis per pseudozone

The STOOIP contribution in each pseudozone is described here below:


- Pseudozone A: a gradual decrease in the STOIIP from the standard model to the fourth simulation from 51 MMSTB to 40.4 MMSTB with a standard deviation up to 20% from the standard model STOIIP;
- Pseudozone AB: a gradual decrease is experienced as well; simulation one and two with very low differences. Zone AB represents a mud filled channels with a vast levee, with poor sand facies. Low changes are expected, in fact STOOIP variation is from 32.8 MMSTB to 25 MMSTB, standard deviation is -24% from the reference model;
- Pseudozone B: an assign value as VLCT facies was performed (mostly shale) in this zone, as per the standard model. No simulation was performed;
- Pseudozone C: a gradual increase on the STOIIP; on simulation 3 and 4 there was a reduction of the off-axis facies, due to the introduction of levee to the two sandy channels facies, with positive variation on the STOIIP from 105 MMSTB to 113 MMSTB, representing a standard deviation of +8% from the reference STOIIP (standard model);
- Pseudozone CD: STOIIP having a quite smooth variation through the different simulations, the main facies is reach off-axis;
- Pseudozone D: identified by an amalgamated channels facies, represented on Figure 90, and with a high STOIIP. Standard deviation is around 19% from the mean reference standard model that is in line with the geo-body channel definitions from the Training Image;

- Pseudozone F: an amalgamation of channels, respecting the superposition principle, which represents a cycle of stacked channels (sandy facies);
- Pseudozone E: the northern section of the field, characterized by a vast crevasse and a channel EoD. This level has a high standard deviation of 27% from the reference STOIIP, corresponding to a variation from 38 MMSTB to 28 MMSTB.

	Simulaion 1	Simulation 2	Simulation 3	Simulation 4
Zone A	-10.288	-14.442	-20.067	-20.772
Zone AB	-9.329	-9.451	-24.451	-23.232
Zone B	-0.689	-0.689	-0.689	0.000
Zone C	3.116	0.418	6.689	7.715
Zone CD	-10.666	-11.851	-11.671	-13.187
Zone D	-18.044	-19.473	-18.394	-17.831
Zone F	-3.846	-5.485	-7.039	-6.713
Zone E	-27.405	-27.275	-25.486	-24.656

Table 16- Pseudozones STOOIP St. Deviation from the standard model

Figure	106 -	STOOIP	analysis
--------	-------	--------	----------

STOIIP[*10^6 STB]								
STOOIP	Standard model	Standard model Simulation 1 Simula		Simulation 3	Simulation 4			
	652.1	589.36	578.9	578.79	580.89			
STOOIP (%)		90.38	88.77	88.76	89.08			
	100.00							
ST. Deviation		9.62	11.23	11.24	10.92			

Table 17- STOOIP Standard Deviation from the reference standard model

The STOIIP differences and the standard deviation from the reference STOIIP can be appreciated in Table 17.

4 UNCERTAINTY AND OPTIMIZATION ANALYSIS

Out of the different MPS simulations performed, the third one best represents the geological settings and the sedimentological model. It is the coupled effect of the combination between the most representative training image and the right weight correction balance.

A risk analysis has been performed, on the basal levels, representing the amalgamated complex channels system. It has to be considered that all the wells found massive sand facies in level D and F and all the wells were completed in the these pseudozones (D and F).

Computational capability available to run different sensitivities on a reasonable time frame (few hours ~70 hours) is a constraint, which does not allow running a risk analysis on the full model, including all the pseudozones (it could take several days).

4.1 Risk analysis (RA) purpose

The purpose of the RA is to analyze the selected EoDs/Facies ratio of the main channels and its impact on the STOIIP. This has been performed in the standard model and in the MPS reference model (3rd simulation model).

4.2 Standard model RA workflow

A set of the 6 channels, representing the amalgamated basal sand level D, E and F, was selected and the facies fraction of the referred EoDs was analyzed.

Eod\Facies	VLCT	MXDT	LCT	HCT	HCT_HP	TRAC
CH_AXIS_3	27	15	26	10	22	
CH_AXIS	18.56	13.93	14.11	28.66	23.26	1.48
CH_AXIS_1F	12.97	16.18	9.71	39.69	14.26	7.19
CHANNEL4_F	45	15	25	15		
CHANNEL_E_N	20.3	56.39	23.31			
CHANNEL_D	26.5	17	19	10.5	27	

Table 18- RA variables to be simulated

The FF reference variable (Mode) in each EoDs was defined, selecting the available best sandy facies (high concentration turbidity_ high porosity (HCT_HP)). If this reference facies is not present in an EoD the second best facies is selected, as highlighted in bold in Table 18.

The uncertainty analysis was made on the main FF variable (Mode) and an expression based on the Mode was applied to the others FF on the same EoD to maintain the same ratio among the facies in the EoD as in the standard model. In this way, changing the variable on the main FF on the EoD, the other facies fraction of the same EoD will directly respect the changes in main FF ratio.

	EoD CH_AXIS_3							
HCT_HP	\$HCTHP_CHA3							
НСТ	(100-\$HCTHP_CHA3)*(10/78)							
LCT	(100-\$HCTHP_CHA3-\$HCT_CHA3)*(26/68)							
MXDT	(100-\$HCTHP_CHA3-\$HCT_CHA3-\$LCT_CHA3)*(15/42)							
VLCT	(100-\$HCTHP_CHA3-\$HCT_CHA3-\$LCT_CHA3-\$MXDT_CHA3)							
	EoD CH_AXIS							
HCT_HP	\$HCTHP_CHA							
нст	(100-\$HCTHP_CHA)*(28.66/76.74)							
LCT	(100-\$HCTHP_CHA-\$HCT_CHA)*(14.11/48.08)							
MXDT	(100-\$HCTHP_CHA-\$HCT_CHA-\$LCT_CHA)*(13.93/33.97)							
VLCT	(100-\$HCTHP_CHA-\$HCT_CHA-\$LCT_CHA-\$MXDT_CHA)*(18.56/20.04)							
TRAC	(100-\$HCTHP_CHA-\$HCT_CHA-\$LCT_CHA-\$MXDT_CHA-\$VLCT_CHA)							
	EoD CH_AXIS_1F							
HCT_HP	\$HCTHP_CHA1F							
нст	(100-\$HCTHP_CHA1F)*(39.69/85.74)							
LCT	(100-\$HCTHP_CHA1F-\$HCT_CHA1F)*(9.71/46.05)							
MXDT	(100-\$HCTHP_CHA1F-\$HCT_CHA1F-\$LCT_CHA1F)*(16.18/36.34)							
VLCT	(100-\$HCTHP_CHA1F-\$HCT_CHA1F-\$LCT_CHA1F-\$MXDT_CHA1F)*(12.97/20.16)							
TRAC	(100-\$HCTHP_CHA1F-\$HCT_CHA1F-\$LCT_CHA1F-\$MXDT_CHA1F-\$VLCT_CHA1F)							
	EoD CH_4F							
НСТ	\$HCT_CH4F							
LCT	(100-\$HCT_CH4F)*(25/85)							
MXDT	(100-\$HCT_CH4F-\$LCT_CH4F)*(15/60)							
VLCT	(100-\$HCT_CH4F-\$LCT_CH4F-\$MXDT_CH4F)							
	EoD CH_E_N							
LCT	\$LCT_CHEN							
MXDT	(100-\$LCT_CHEN)*(56.39/76.69)							
VLCT	(100-\$LCT_CHEN-\$MXDT_CHEN)							
	EoD CH_D							
HCT_HP	\$HCTHP_CHD							
нст	(100-\$HCTHP_CHD)*(10.5/73)							
LCT	(100-\$HCTHP_CHD-\$HCT_CHD)*(19/62.5)							
MXDT	(100-\$HCTHP_CHD-\$HCT_CHD-\$LCT_CHD)*(17/43.5)							
VLCT	(100-\$HCTHP_CHD-\$HCT_CHD-\$LCT_CHD-\$MXDT_CHD)							

Table 19- EoD and facies fractions algorithm

With the algorithm implemented, corresponding to 29 variables to be simulated, the risk analysis was made by means of the Monte-Carlo uncertainty sampling method. 300 runs were made, which also corresponds to 300 samples per variable, considering one sample for each variable in one run.

The sensitivity was performed in around 15 hours, with an average of 3 minutes of simulation per sample.

Ta	sk:	Unc	ertair	nty					✓ ? No. of runs: 300
) E	Base case 🔋	Va	riable	es	Uncertainty				
₽	E 1								
	Туре		Pr	Int	Name	Base value	Distribution		Arguments
1	Uncertain	•			\$HCTHP_CHA3	22	Triangular	٠	Min 12 Mode 22 Max 32
2	Expression	•			\$HCT_CHA3	10		Ŧ	(100-\$HCTHP_CHA3)*(10/78)
3	Expression	٠			\$LCT_CHA3	26		Ŧ	(100-\$HCTHP_CHA3-\$HCT_CHA3)*(26/68)
4	Expression	•			\$MXDT_CHA3	15		Ŧ	(100-\$HCTHP_CHA3-\$HCT_CHA3-\$LCT_CHA3)*(15/42)
5	Expression	•	S		\$VLCT_CHA3	27		Ŧ	100-\$HCTHP_CHA3-\$HCT_CHA3-\$LCT_CHA3-\$MXDT_CHA3
5	Uncertain	•	S		\$HCTHP_CHA	23.26	Triangular	٠	Min 13 Mode 23.26 Max 33
1	Expression	•	3		\$HCT_CHA	28.66		Ŧ	(100-\$HCTHP_CHA)*(28.66/76.74)
B	Expression	•	3		\$LCT_CHA	14.11		Ŧ	(100-\$HCTHP_CHA-\$HCT_CHA)*(14.11/48.08)
9	Expression	•	3		\$MXDT_CHA	13.93		Ŧ	(100-\$HCTHP_CHA-\$HCT_CHA-\$LCT_CHA)*(13.93/33.97)
.0	Expression	•	3		\$VLCT_CHA	18.56		Ŧ	(100-\$HCTHP_CHA-\$HCT_CHA-\$LCT_CHA-\$MXDT_CHA)*(18.56/20.04)
1	Expression	•	3		\$TRACT_CHA	1.48		Ŧ	100-\$HCTHP_CHA-\$HCT_CHA-\$LCT_CHA-\$MXDT_CHA-\$VLCT_CHA
2	Uncertain	٠	3		\$HCTHP_CHA1F	14.26	Triangular	٠	Min 4 Mode 14.26 Max 24
3	Expression	•	3		\$HCT_CHA1F	39.69		Ŧ	(100-\$HCTHP_CHA1F)*(39.69/85.74)
4	Expression	•	3		\$LCT_CHA1F	9.71		Ŧ	(100-\$HCTHP_CHA1F-\$HCT_CHA1F)*(9.71/46.05)
15	Expression	•	3		\$MXDT_CHA1F	16.18		Ŧ	(100-\$HCTHP_CHA1F-\$HCT_CHA1F-\$LCT_CHA1F)*(16.18/36.34)
L6	Expression	٠	3		\$VLCT_CHA1F	12.97		Ŧ	(100-\$HCTHP_CHA1F-\$HCT_CHA1F-\$LCT_CHA1F-\$MXDT_CHA1F)*(12.97/20.16)
L7	Expression	•	3		\$TRACT_CHA1F	7.19		Ŧ	100-\$HCTHP_CHA1F-\$HCT_CHA1F-\$LCT_CHA1F-\$MXDT_CHA1F-\$VLCT_CHA1F
8	Uncertain	•	3		\$HCT_CH4F	15	Triangular	٠	Min 5 Mode 15 Max 25
9	Expression	•	3		\$LCT_CH4F	25		Ŧ	(100-\$HCT_CH4F)*(25/85)
20	Expression	٠	3		\$MXDT_CH4F	15		Ŧ	(100-\$HCT_CH4F-\$LCT_CH4F)*(15/60)
21	Expression	•	3		\$VLCT_CH4F	45		Ŧ	100-\$HCT_CH4F-\$LCT_CH4F-\$MXDT_CH4F
22	Uncertain	•	3		\$LCT_CHEN	23.31	Triangular	•	Min 13 Mode 23.31 Max 33
3	Expression	•	3		\$MXDT_CHEN	56.39		Ŧ	(100-\$LCT_CHEN)*(56.39/76.69)
24	Expression	•	3		\$VLCT_CHEN	20.3		Ŧ	100-\$LCT_CHEN-\$MXDT_CHEN
25	Uncertain	•	3		SHCTHP_CHD	27	Triangular	٠	Min 17 Mode 27 Max 37
6	Expression	•	3		SHCT_CHD	10.5		Ŧ	(100-\$HCTHP_CHD)*(10.5/73)
7	Expression	•	3		\$LCT_CHD	19		Ŧ	(100-\$HCTHP_CHD-\$HCT_CHD)*(19/62.5)
8	Expression	•	3		\$MXDT_CHD	17		Ŧ	(100-\$HCTHP_CHD-\$HCT_CHD-\$LCT_CHD)*(17/43.5)
9	Expression	•	3		\$VLCT_CHD	26.5		Ŧ	100-\$HCTHP_CHD-\$HCT_CHD-\$LCT_CHD-\$MXDT_CHD

Figure 107 – Uncertainty and optimization window RA Standard model

4.3 MPS model Risk Analysis workflow

On the MPS model approach, the probabilistic geo-body definition was analyzed risking the EoD fraction in the Training Image and performing also the FF analysis on the channels EoD as per the standard model RA.

	\$CHD	\$CHEN	\$RoA	\$CHA1F	\$CHA	\$CHA3	\$CH4F	\$offaxis	FRACTIONS
D	80							20	100
E		33	15					52	100
F				30	18	6	40	6	100

Table 20 – Training Image input facies fractions

The same principle as per the standard model RA was applied, the uncertainty was made on main EoD fractions (Mode) and an expression based on the Mode was applied to the others EoD fractions on the same training image to maintain the same ratio among the EoD.

	Pseudozone D							
\$CHD	\$CHD_D							
\$offaxis	(100-\$CHD_D)							
	Pseudozone E							
\$CHEN	\$CHEN_E							
\$RoA	(100-\$CHEN_E)*(15/67)							
\$offaxis (100-\$CHEN_E-\$RoA_E)								
	Pseudozone F							
\$CH4F	\$CH4F_F							
\$CHA3	(100-\$CH4F_F)*(6/60)							
\$CHA	(100-\$CH4F_F-\$CHA3_F)*(18/54)							
\$CHA1F	(100-\$CH4F_F-\$CHA3_F-\$CHA_F)*(30/36)							
\$offaxis	100-\$CH4F_F-\$CHA3_F-\$CHA_F\$CHA1F_F							

Table 21- Training image D, E and F facies fraction algorithm

The second section is aimed to run also the sensitivity on the facies fractions FFs inside the channel EoDs, as per the standard model RA algorithm (the same variable range from the mode, and the same algorithm for the other variables) (Table 19).

With the variables implemented, corresponding to 7 variables on the TI and to 29 variables on the probabilistic EoDs facies fractions, making a total of 36 variables, the RA was performed by means of the Monte-Carlo uncertainty sampling method with 500 samples, corresponding to 500 runs, which will consider one sample per each variable per run.

The sensitivity was performed in around 58 hours, with an average of 7 minutes of simulation per sample.

	Create new:								
0	Edit existing:	?	Stat	icRA	_MPS				
Ta	sk:	Unc	ertair	nty					▼ ? No. of runs: 500
🔁 E	Base case [Va	riable	s	Uncertainty				
									[
	Туре		Pr	Int	Name	Base value	Distribution		Arguments
1	Uncertain	•			\$CHD_D	80	Triangular	•	Min 70 Mode 80 Max 90
2	Uncertain	•			\$CHEN_E	33	Triangular	•	Min 23 Mode 33 Max 43
3	Expression	٠	3		\$RoA_E	15		Ŧ	(100-\$CHEN_E)*(15/67)
4	Uncertain	•	3		\$CH4F_F	40	Triangular	•	Min 35 Mode 40 Max 45
5	Expression	•	3		\$CHA3_F	6		Ŧ	(100-\$CH4F_F)*(6/60)
6	Expression	•			\$CHA_F	18		Ŧ	(100-\$CH4F_F-\$CHA3_F)*(18/54)
7	Expression	•			\$CHA1F_F	30		Ŧ	(100-\$CH4F_F-\$CHA3_F-\$CHA_F)*(30/36)
8	Uncertain	•			\$HCTHP_CHA3	22	Triangular	•	Min 12 Mode 22 Max 32
9	Expression	•			\$HCT_CHA3	10		Ŧ	(100-\$HCTHP_CHA3)*(10/78)
10	Expression	•			\$LCT_CHA3	26		Ŧ	(100-\$HCTHP_CHA3-\$HCT_CHA3)*(26/68)
11	Expression	•			\$MXDT_CHA3	15		Ŧ	(100-\$HCTHP_CHA3-\$HCT_CHA3-\$LCT_CHA3)*(15/42)
12	Expression	•			\$VLCT_CHA3	27		Ŧ	100-\$HCTHP_CHA3-\$HCT_CHA3-\$LCT_CHA3-\$MXDT_CHA3
13	Uncertain	•			SHCTHP_CHA	23.26	Triangular	•	Min 13 Mode 23.26 Max 33
14	Expression	•			SHCT CHA	28.66		Ŧ	(100-\$HCTHP_CHA)*(28.66/76.74)
15	Expression	•			SLCT CHA	14.11		Ŧ	(100-\$HCTHP_CHA-\$HCT_CHA)*(14.11/48.08)
16	Expression	•			\$MXDT CHA	13.93		Ŧ	(100-\$HCTHP_CHA-\$HCT_CHA-\$LCT_CHA)*(13.93/33.97)
17	Expression				\$VLCT_CHA	18.56		Ŧ	(100-SHCTHP_CHA-SHCT_CHA-SLCT_CHA-SMXDT_CHA)*(18.56/20
18	Expression	•			STRAC CHA	1.48		*	100-\$HCTHP_CHA-\$HCT_CHA-\$LCT_CHA-\$MXDT_CHA-\$VLCT_CH
19	Uncertain	•			SHCTHP_CHA1F	14.26	Triangular	•	Min 4 Mode 14.26 Max 24
20	Expression	•			\$HCT_CHA1F	39.69			(100-\$HCTHP_CHA1F)*(39.69/85.74)
21	Expression	•			\$LCT_CHA1F	9.71			(100-\$HCTHP_CHA1F-\$HCT_CHA1F)*(9.71/46.05)
22	Expression	•			\$MXDT_CHA1F	16.18			(100-\$HCTHP_CHA1F-\$HCT_CHA1F-\$LCT_CHA1F)*(16.18/36.34)
23	Expression	•			\$VLCT_CHA1F	12.97			(100-SHCTHP_CHA1F-SHCT_CHA1F-SLCT_CHA1F, (00:0) S0:04)
24	Expression	•			STRAC_CHA1F	7.19		-	100-SHCTHP_CHA1F-SHCT_CHA1F-SLCT_CHA1F-SMXDT_CHA1F-
25	Uncertain	•	-		SHCT_CH4F	15	Triangular	-	Min 5 Mode 15 Max 25
26	Expression				\$LCT_CH4F	25	mangalar	-	(100-\$HCT_CH4F)*(25/85)
20	Expression				\$MXDT_CH4F	15		-	(100-\$HCT_CH4F-\$LCT_CH4F)*(15/60)
27	Expression				\$VLCT_CH4F	45		-	100-SHCT_CH4F-SLCT_CH4F-SMXDT_CH4F
20 29	Uncertain	•	-		SHCTHP_CHD	45 27	Triangular	-	Min 17 Mode 27 Max 37
-		•					Triangular		
30 31	Expression	•	-		SHCT_CHD	10.5		-	(100-\$HCTHP_CHD)*(10.5/73) (100-\$HCTHP_CHD-\$HCT_CHD)*(19/62.5)
	Expression				\$LCT_CHD				
32	Expression	-			\$MXDT_CHD	17			(100-SHCTHP_CHD-SHCT_CHD-SLCT_CHD)*(17/43.5)
33	Expression	-			\$VLCT_CHD	26.5	Trian mula		(100-\$HCTHP_CHD-\$HCT_CHD-\$LCT_CHD-\$MXDT_CHD)
34	Uncertain		-		\$LCT_CHEN	23.31	Triangular	-	Min 13 Mode 23.31 Max 33
35	Expression	•	-		\$MXDT_CHEN	56.39		-	(100-\$LCT_CHEN)*(56.39/76.69)
36	Expression	•			\$VLCT_CHEN	20.3		*	100-SLCT_CHEN-SMXDT_CHEN
) Ri	un 🚺 🚺 Test		Statu	JS:	Test OK 0	ptions: 🔀			✓ Apply ✓ OK

Figure 108 – Uncertainty and optimization window RA MPS 3rd model

eni	()	Eni Angola – Reservoir	Offshore Angola oil field: Multiple Point Statistics	Date	Page
	()	Politecnico di Torino	(MPS) modelling approach	19/12/2018	81 of 87

4.4 Result comparison

For the standard model a histogram on the STOIIP was achieved with a P10, P50 and P90 probability volumes.

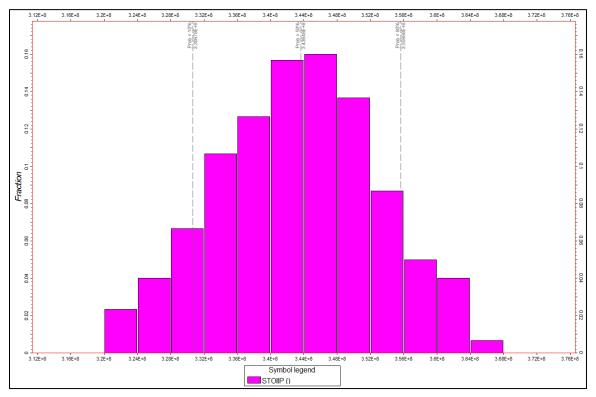


Figure 109 – Standard model uncertainty analyze histogram P10, P50 and P90

P10	P50		P90
330.6	343.6		355.6
-3.78%		3.	49%

Table 22- Standard model RA STOOIP P10, P50 and P90

The STOIIP of the base case is 347 MMSTB, the P50 on the RA is in line with the base case. The facies variation impact on the STOIIP is acceptable with a standard deviation from P50 around 3.7% to P10 and P90.

Eni Angola – Reservoir	Offshore Angola oil field: Multiple Point Statistics	Page
Politecnico di Torino	(MPS) modelling approach	82 of 87

The MPS model histogram on the STOOIP was achieved with a P10, P50 and P90 probability volumes.

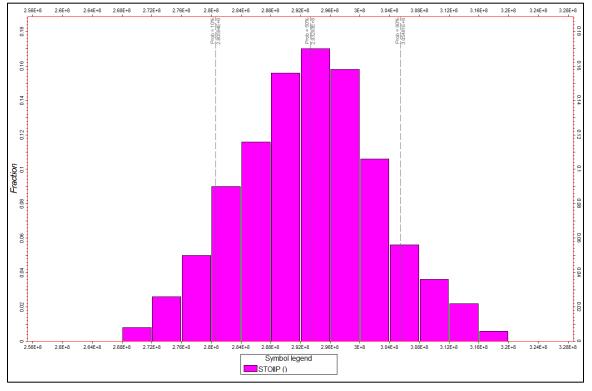


Figure 110 – MPS model uncertainty analyze histogram P10, P50 and P90

P10	P50		P90
280.6	293.3		305.5
-4.33%		4.	20%

Table 23- MPS model RA STOOIP P10, P50 and P90

The MPS STOIIP base case is 293.6 MMSTB, the P50 on the RA is in line with the base case, a standard deviation from P50 of 4.3% to P10 and P90 is observed.

On the MPS model RA the STOIIP standard deviation is higher than on the standard model RA, from an average 3.7 % to 4.3%, which is acceptable, considering that on the MPS RA the sensitivity was made with a high number of variables (36) corresponding to the EoD fraction as input for the training image and the facies fraction in the channel EoDs.

The standard model RA was made with less variables (29), corresponding to the facies fraction in the channel's EoDs.

Since the facies fraction algorithm in the channels EoDs was the same applied in both sensitivities, the difference between the two standard deviation values is linked to the RA performed on the MPS model in the EoD input fractions in the training image.

5 CONCLUSION AND WAY FORWARD

Multiple-point statistics (MPS) is a facies modeling technique based on multiple point statistics instead of the conventional variogram-based technique founded on bi-point statistics. Through the use of a Training Image (i.e. conceptual model), which describes the geometrical and statistical characteristics of the facies to be modelled, this technology enables to model non-linear facies, geo-body shapes such as sinuous channels, and to capture complex spatial relationships between multiple facies.

This was achieved extending the stochastic simulation approach to the sedimentological model by means of the MPS approach. In fact the Environment of Deposition (EoD) coming from the sedimentological interpretation have been used to build the training images (conceptual models) for each zone, as result a probabilistic EoD (Geo-body) was achieved. Instead of being the product of a deterministic interpretation.

The facies and petrophysical properties have been distributed following the same approach (parameters and process) of the standard modelling, in order to properly evaluate the impact of the MPS algorithm on the STOIIP.

The MPS model from a volumetric perspective is a conservative model compare with the standard one, given very similar percentages of EoDs. This is mainly due to the 3D definition of the sedimentological features. The MPS algorithm allows a very detailed geological modelling in terms of both shapes and spatial relationship among the EoDs and the geobodies, which are better geologically represented. This affects the facies and petrophysical properties distribution.

The external constraint in the MPS model have a huge influence, they work as a guiding tool for the geo-body distribution within the MPS approach, they allow constraining the simulation by modulating the strength of the secondary variable by means of a weigh factor value ranging from 0 to 1, In this way, depending on the maturity of the studies carried out on the field, the stochastic contribution of the algorithm can be fine-tuned, but always honoring the well data. High values of the weight factor will decrease the training image performance that will lead to a close match to the standard model and the geological meaning of the model is compromised.

The weight factor representing the 3D probability volume as external constraint will work in a simplified way accounting for the non-stationary features of the data related with the environment of deposition (EoD), represented in the MPS model.

A remarkable advantage of MPS methodology with respect to the standard model is the possibility to easily update the sedimentological model once new wells are available. If the well results show a different sedimentological behavior (i.e. a different EoD than expected) a new deterministic interpretation will not be needed. It will be enough up-scaling the EoD in the 3D grid and run the EoD simulation that is already considering the geological features.

Before going more in detail, it is important to remember that the "MPS modelling workflow" is very similar to the standard one. The main and most important difference is the EoD modelling way. The deterministic interpretation of the standard model has been replaced by a stochastic simulation (MPS based) driven by an external probabilistic constraint. This step has been tested with several sensitivities that lead to a volumetric analyze and finishing with

risk analysis focus on the impact on the volume based on the sensitivities on the deterministic and probabilistic EoDs and MPS Geo-body definition.

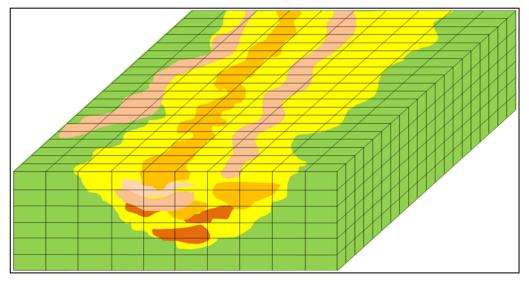


Figure 111 – MPS Concept model (with stacked geo-bodies)

The detailed results of the work are listed here below:

- The MPS technology has a better definition of the geological shapes and a robust simulation of sedimentological model considering the detail input parameters on the training image and external constraints;
- the definition of the TIs by means of the object modelling stochastic algorithm allows capturing and reproducing the stratigraphic and depositional principles (superposition, cross-cutting, intrusive relation);
- In the MPS model is easy to update the sedimentological model with new well data, which in reservoir development scenario can be a very important tool on the local model update to better understand the reservoir in an operational time frame;
- The EoD definition can be modified or optimized to seismic resolution, considering the vertical orientation of the sedimentological model;
- Training Image definition is a time consuming iterative process, many sensitivities are needed to get the right spatial configuration and distribution;
- The EoD probability volume (3D external trend property), requires a smoothness sensitivity on the EoD model definition, which to be performed a good understanding of the sedimentological model is needed. This is an iterative process and it is clearly time consuming;
- Being the sedimentological model closer to the real depositional behavior, a more realistic output from the model in term of well prognosis (facies and petrophysical properties) can be achieved;
- MPS simulation is a time consuming algorithm in terms of both training image definition and facies simulation. This has to be taken into account especially while planning a Risk Analysis.

MPS implementation in the reservoir model can be achieved easily once a few sedimentological data are available. Moreover it allows a faster and simpler updating of the model as well as the possibility to define the strength of the external deterministic constraints on the stochastic simulation, always honoring well data.

It is important to highlight that a proper computational capacity in needed to run this kind of simulation and it is even more critical when performing a complete reservoir Risk Analysis.

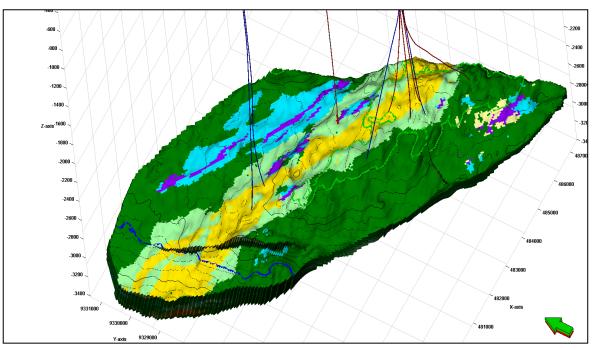


Figure 112 - MPS model

To complete the study a reservoir dynamic simulation should be performed (initialization, History Match and forecast) in order to verify if the dynamic behavior of the field is better matched and forecasted by a static model, which reproduces with more details the geological features and their spatial relationships.

These could influence the way forward on the pre-development and development campaign of a field, based on the better geological representation of the subsurface, the model conservative output and a robust dynamic model.

ACKNOWLEDGEMENTS

There are so many wonderful people from teachers to class mates that were a key element on Politecnico di Torino. Thanks for helping me during the last two year during the amazing Master Program in Petroleum Engineering.

The professors who brought the exiting engineering curiosity to the class, making the two year path memorable.

The outstanding class mates which through discussions and an exchange of experiences added value to the learning curve.

First, I would like to thanks my direct supervisor Tomasi Andrea for his guidance, technical discussions and Support over the last four months, your support was essential to my success.

I also would like to say thank you to my Politecnico supervisor, Professor Stefano Lo Russo for his patient and will to help and support during the last four months.

The learning curve is just a derivative of the wiliness to do so; the petroleum engineering course is a strong back bone for a carrier on the oil and gas industry.

Great appreciation to ENI Angola and the Reservoir manager **llario Franco**, for the opportunity on this project allowing the use of an Angola offshore field data.

Big thanks for the amazing engineers on the reservoir department that within they time gave me technical support.

REFERENCES

[1] - Tahmasebi P, Multiple point statistics: a Review 2018, P 618-620, Department of Petroleum Engineering, University of Wyoming, Laramie. WY 8271, USA <u>https://doi.org/10.1007/978-3-319-78999-6_30</u>.

[2] - S. Lyster, A Comparison of MPS Algorithms 2008, P 113-1. http://www.ccgalberta.com/ccgresources/report10/2008-113 mps comparison.pdf.

[2] - A. S. Høyer, G. Vignoli, T. M. Hansen, L. T. Vu, D. A. Keefer, F. Jørgenden, Multiple point Statistical simulation for hydrogeological models: 3-D training image development and conditioning strategies, Hydrology Earth System Science, 21, 6069-6089, 2017 <u>https://doi.org/10.5194/hess-21-6069-2017</u>.

[3] - A.G. Journel, Multiple-point Geostatisitics: a State of the Art, 2003, Stanford Center for Reservoir forecasting https://pangea.stanford.edu/departments/ere/dropbox/scrf/documents/reports/16/SCRF2003_Report16/SC RF2003_Andre_Journel.pdf.

[4] - Y. Yin, W.Feng, A location-based multiple point statistics method: modelling the reservoir with non-stationary characteristics, <u>https://doi.org/10.1515/geo-2017-0048</u>.

[5] - J. Caers, T. Zhang, Multiple-point geostatistics: a quantitative vehicle for integrating geologic analogs into multiple reservoir models 2006, Stanford University, Stanford Center for Reservoir forecasting, CA 94305-2220, https://pdfs.semanticscholar.org/3115/99f2be14da9271e04fb07a16785329e4da17.pdf.

[6] - Petrel 20117.1 User guide, training image scale. Schlumberger;

[7] – Cabaça Reservoir studies LM22, Eni Angola,