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Astract

Topological Data Analysis (TDA) uses algebraic topology, statistics and computer science
techniques to infer robust features of complex datasets eventually corrupted by noise.

This thesis focuses on Persistent Homology (PH) technique and its purposed are:

1. to provide a satisfying explanation of TDA and PH fundamentals, tools and topics,

2. to analyse the robustness and the reliability of the inferred features with the
statistical interpretation of the results,

3. to practically implement some TDA techniques on some study cases.

In PH technique, the input is assumed to be a finite set of elements coming with a notion
of distance between them. The elements are mapped into a PCD that is completed by
building a nested family of simplicial complexes on it.

Homotopy groups are algebraic objects that intuitively measures the amount of
"n-dimensional holes" of a space but a more computable alternative are the homology
groups whose ranks represents the Betti numbers. The first three of them count
respectively the number of connected components, of holes and of voids in a topological
space.

With PH we study the homology of a filtered simplicial complex as a single algebraic
entity. Its features can be then analysed using its barcode representation and this is
formally justified by the Structure Theorem. Then, the most persistent features can be
easily detected and separated from topological noise using statistical methods as the
Bootstrap.

GUDHI has been highlight as one of the best available open-source libraries for TDA
computation. To analyse the topological information of different datasets, a console
application was implemented using GUDHI in Python, TDA in R and QlikView.
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1. Introduction

Topological Data Analysis (TDA) is a branch of applied mathematics that uses notions and
techniques of a miscellaneous set of scientific fields. Among these, algebraic topology,
data analysis, computer science and statistics are included. Its resulting tools allow to
infer relevant and robust features of complex datasets that can present rich structures
eventually corrupted by noise and incompleteness[74].

The works[62][38] of Edelsbrunner, Letscher, Zomorodian, and Carlsson, published
between 2002 and 2005, are considered the first milestones of this field. However, it
already supplies mature methods that had been successfully used in data mining.

This thesis focuses on persistent homology (PH) technique, but there are also other
methods in TDA such as the Euler calculus and cellular sheaves[74]. See paper [68] for
some examples. The purposes of this thesis are:

1. To provide a concise but satisfying explanation of TDA and PH fundamentals, tools
and topics.

2. To analyse the robustness and the reliability of the inferred features with the
statistical interpretation of the results.

3. To implement some TDA techniques using a mixture of Python[110], R[84] and
QlikView[107].

TDA aims to infer properties of the "shape" of data. To get an intuitive idea of what
"shape" of data is referred to, see the pipeline in Figure 1.1.

TDA methods can be divided[103] in:

• Topological Data Compression to represent the shape of data,

• Topological Data Completion to "measure" the shape of data.
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1. INTRODUCTION. TOPOLOGICAL DATA COMPRESSION

Figure 1.1: Given a dataset in (a), we can represent it in a 3D Euclidean coordinate system (b).
Suppose to get the graph in (c) by connecting with edges nearby points. If we approximate this
shape with a continuous one, by adding a face in correspondence of n-uples of nearby points, we
can detect a torus-shaped set (d). Torus image from [34].

This thesis focuses on the second family of methods, but now a brief overview of the first
one is provided. This is meant help the reader understand some of the limitations of more
common methods and how topology can avoid, or at least dampen, them.

1.1 Topological Data Compression

Topological Data Compression algorithms aim at representing a collection of high
dimensional clouds of points (PCDs) through graphs. These techniques relies on the fact
that an object made of lots or infinitely many points, like the complete circle in Figure
1.2, can be approximated using only some nodes and edges[28].

Figure 1.2: Compressed representations idea, image from [31].

Consider for example the "Y"-shape detectable in Figure 1.3.

2
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Figure 1.3: HR diagram with the flare stars indicated. The central panel has stellar temperature
as the horizontal axis, while the vertical axis shows the luminosity. Image from [58].

This shape occurs frequently in real data sets. It might represent a situation where the
core corresponds to the most frequent behaviors, and the tips of the flares to the extreme
ones[30]. However, classical models such as linear ones and clustering methods can’t
detect satisfactorily it. Another not trivial but important shape is the circular one. See the
example in Figure 1.6 (right).

Figure 1.4: Clouds of point modelizable by a linear model (left), clustering (middle) and a circular
model (right) respectively. Images from [29].

Loops can denote periodic behaviors. For example, in the Predatory-Prey model in Figure
1.5, the circular shapes are caused by the cyclicity of the described biological system.

In a dynamic system, an attractor is a set towards which it tends to evolve after a
sufficiently long time. System values that get close enough to the attractor ones have to
remain close to them, even if slightly disturbed. A trajectory of a dynamic system on an
attractor must not satisfy any particular property, but it’s not unusual for it to be periodic
and to present loops. See in Figure 1.5.
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1. INTRODUCTION. TOPOLOGICAL DATA COMPRESSION

Figure 1.5: On the left, the Predatory-Prey model for some specific choice of parameters. Image
from [41]. On the right, the attractor of Lorenz system. Image rearranged from [98].

Consider, moreover, the great amount of not trivial geometric information carried by
biomolecules and their importance for the analysis of their stability[63].

Figure 1.6: Examples of biomolecular systems. Image from [64].

Topological Data Compression can detect these shapes easily and the main algorithm in
this area is Mapper. Its steps can be described as follows[88]:

1. A PCD representing a shape is given.

2. It is covered with overlapping intervals by coloring the shape by filter values.

3. It is broken into overlapping bins.

4. The points in each bin are collapsed into clusters. Then a network is built
representing each cluster by a vertex and drawing an edge when clusters intersect.

4
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See Figure 1.7.

Figure 1.7: (a) A 3D object represented as a PCD. (b) A filter value is applied and the object is
colored by the values of the filter. (c) The dataset is binned into overlapping groups. (d) Each bin
is clustered and a network is built. Image from [3].

With topological data compression we can achieve a compressed representation
of all trivial and not trivial data shapes going beyond the results proposed by
predetermined structure models such as linear models or clustering.

The circle on the right of Figure 1.6 could be mapped by the Mapper as shown in Figure
1.8.

Figure 1.8: The Mapper approach is applied to a circular PCD. Image from [10].

Some achievements of the Mapper are now reported.

1.1.1 New Subtype of Cancer Discovered

In work published in 2011 by Nicolau, Carlsson, and Levine[37], a new subtype of
breast cancer was discovered[95] using the Progression Analysis of Disease (PAD), an
application of the Mapper that provided an clear representation of the dataset.

The used dataset describes the gene expression profiles of 295 breast cancer tumors[5]. It
has 24.479 attributes and each of them specifies the level of expression of one gene in a
tissue sample of the corresponding tumor.
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The researchers discovered the three-tendril "Y"-shaped structure shown in Figure 1.9.

Figure 1.9: The topological network for the dataset of gene expression profiles of breast cancer
patients. Image from [95].

In addition, they found that one of these tendrils decomposes further into three clusters.
One of these three clusters corresponds to a distinct new subtype of breast cancer that they
named c-MYB+.

A standard approach to the classification of breast cancers, based on clustering, divides
breast cancers into five groups and these results suggested a different taxonomy not
accounted before. In particular, the dendrogram of this dataset is shown in Figure 1.10.

Figure 1.10: Dendrogram of the cancer dataset. The bins defining the c-MYB+ group are marked
in red. Image from [95].

The c-MYB+ tumors are scattered among different clusters and there are many
non-members of their group which lie in the same high-level cluster. Although, PAD was
able to extract this group that turns out to be both statistically and clinically coherent.

6
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The problem is that clustering breaks data sets into pieces, so it can break things that
belong together apart.

1.1.2 A New Model Validation Technique

In Figure 1.11, an example of model validation using TDA is shown.

Figure 1.11: Dataset about information of some cancer patients represented using the Mapper. On
the left, the color is based on a score that indicated how much it is possible for a patient to die.
On the right, by the actual state of the patient. Image rearranged from [29].

We can see that the status of the terminal patients in the right part of the graph has been
adequately predicted. This has not happened in regards to the patients in the top left of the
graph: their actual status is indeed terminal.

Examining the data, it was found out that those patients had not answered some questions
about energy and movements in the questionnaire used to build the model[9]. Thanks
to this immediate graphical representation, it was easy to understand that, to improve the
model, the patients who did not fill that specific part of the questionnaire had to be studied
separately.

1.1.3 Improved Machine Learning Algorithms

Ayasdi[7] is a machine intelligence software company that offers to organizations
solutions able to analyze data and to build predictive models from them[9].

7
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In particular, the Ayasdi system runs many different unsupervised and supervised machine
learning algorithms on data, finds and ranks best fits automatically and then applies TDA
to find similar groups in the results. See Figure 1.12.

Figure 1.12: Ayasdi approach. Image from [113].

This is performed to reduce the possibility of missing critical insights by reducing the
dependency on machine learning experts choosing the right algorithms[10].

This methodology has lead to many achievements, for example:

• DARPA (Defense Advanced Research Projects Agency) used Ayasdi Core to
analyze acoustic data tracks. The analysis identified signals that had been
previously classified from traditional signal processing methods as unstructured
noise[9].

• Using TDA on the portfolio of a G-SIB institution, the bank was able to identify
performance improvements by 103bp in less than two weeks. This was worth over
34 million annually, despite this portfolio had been heavily analyzed
previously[26].

• TDA was used on the care process model for pneumonia of the Flagler Hospital.
Ayasdi methodology could extract nine potential pneumonia care pathways, each
with distinctive elements. This represented a potential savings of more than $400K
while delivering better care[6].

An example of output achieved with Ayasdi softwares is shown in Figure 1.13.

8
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Figure 1.13: Ayasdi anti-money laundering application example preview. Image from [8].

1.1.4 Mapper Open Points

The Mapper algorithm is simple but various choices that are left to the user[48]:

• The filter function: sometimes the centrality and the eccentricity functions appears
to be good choices that do not require any specific insight about the data.

• The covering: when the filter function is a real-valued function, the cover can be
chosen to be a set of regularly spaced intervals of equal length r > 0. A classical
strategy to choose r consists in exploring a range of parameters and chose the ones
that turn out to provide the most informative output.

• The clusters: a common strategy consists in applying a clustering algorithm, chosen
by the user, on each bin. A second strategy consists in building a neighboring graph
on top of the data and, for each bin, considering the connected components of the
corresponding subgraph.

These open points can pave the way for an interesting discussion, but in this thesis we will
focus on the topological summaries provided by Topological Data Completion methods
that use persistent homology.

9
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1.2 Topological Data Completion

Topological data completion aims at detecting and counting properties of the shape of data
that are preserved under continuous deformations such as crumpling, stretching, bending
and twisting, but not gluing or tearing. Components, loops and voids are examples of
these invariant properties.

For example, an "A"-shape has one loop and a "B"-shape has two. This property does not
change despite deforming continuously the letters, see Figure 1.14.

Figure 1.14: Invariance under deformation idea, image from [31].

PCDs, digital images, level sets of real-valued functions and networks can be studied
with topological data completion[74] and it generally consists of the following steps, also
shown in Figure 1.15.

Figure 1.15: Pipeline of TDA.

1. The input is assumed to be a finite set of elements coming with a notion of
distance between them. The choice of the metric is critical to revealing the
topological features of the data.

2. The elements are mapped into a PCD.

3. The PCD is completed by building "continuous" shape on it called complex. For
robustness reasons, a nested family of complexes, called filtration, is generally built.
This is often a simplicial filtration.

4. Homology associates to complexes some algebraic groups that allow to count
beyond individual occurrences: they will be used to count equivalence classes of
occurrences[28]. Homology is used because it is based on a well-understood
theoretical framework, is computable via linear algebra and is robust to small
perturbations[74].

10
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5. Finally, the most persistent features are detected using PH. They are supposed to
represent true characteristics of the underlying space rather than noise[31].

In Figure 1.16 proposed in [68], this pipeline is summarized.

Figure 1.16: PH of a simplicial approximation finds hidden structures in large data sets. Image
rearranged from [68].

Using topology, TDA represents data in such a way there is no dependence on a
coordinate system, while preserving the metric information[28]. Suppose we are
interested in identifying the loop shown in Figure 1.17. If the coordinates are stretched
out, with TDA our ability to detect the loop won’t be affected. This allows, for example,
to analyse data originated from different technologies.

Figure 1.17: Coordinate freeness idea, image from [31].

With topological data completion we can automatically detect and count
components, loops and voids benefiting of coordinate and deformation invariance.

A very incomplete list of successful applications of PH includes viral evolution[32],
bacteria classification[104], propagation on networks[117], analysis of disease
progression[37], complex network[83], sensor networks[72], cosmic web[57], signal
analysis[79], image analysis[43], shape study[92], material analysis[56] and fractal

11
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geometry[97]. Some examples are now given and new applications appear progressively
frequently[74].

1.2.1 Improved CT Reconstruction for Computed Tomography

To reduce the risk of radiation to patients, compressed sensing computed tomography
using sparse projection views has been extensively investigated. However, an analytic
reconstruction approach results in severe streaking artifacts due to the low number of
projection views. Moreover, CS-based iterative approach is computationally expensive.

In 2016, to address these issues, the KAIST[78] developed a deep residual learning
approach for sparse-view reconstruction based on a PH. The proposed approach
provided significantly better image reconstruction performance (see Figure 1.18) with
orders of magnitude faster computational speed over the image learning.

Figure 1.18: Comparison results of TDA-improved learning method and "classical" image
learning from 64 view reconstruction input data. Image from [78].

1.2.2 More Effective Brain Networks Analysis

Traditionally, the structure of very complex networks has been studied through their
statistical properties and metrics. However, the interpretation of functional networks can
be hard. This had motivated the widespread of thresholding methods that risk
overlooking the weak links importance. In order to overcome these limits, in the paper
Homological scaffolds of brain functional networks[24], an efficient alternative analysis
of brain functional networks was provided.

12
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Figure 1.19: Simplified visualization of the persistence homological scaffolds. Only the links
heavier than 80 are shown. Colors represent communities obtained by modularity optimization.
In (a) the placebo baseline is shown, in (b) the post-psilocybin structure one. The links widths are
proportional to their weight and the diameter of the nodes to their strength. Image from [24].

The detected topological information was leveraged to define the homological scaffolds,
objects designed, on one hand, to represent compactly the homological features of the
correlation network and, on the other, to allow the study of their homological properties
with networks methods.

These tools were applied to compare functional brain activity after intravenous infusion
of placebo and psilocybin, a psychoactive component. The results, consistently with
psychedelic state medical descriptions, show that the post-psilocybin homological brain
structure is characterized by many transient structures of low stability and of a low
number of persistent ones. This means that the psychedelic state is associated with less
constrained and more inter-communicative brain activities[24]. See Figure 1.19.

In [50], to overcome the threshold problem, TDA was used to model all brain networks
generated over every possible threshold. The evolutionary changes in the number of
connected components are displayed in Figure 1.20.

In [36], PH was successfully used to find hidden structures in experimental data associated
with the V1 visual cortex of certain primates.

13
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Figure 1.20: Graph filtration of (a) ADHD, (b) ASD and (c) PedCon at the filtration values ε =
0.1,0.15,0.2, ...,0.45. The color of nodes at ε = 0 is shown in the colorbar. If the nodes belong to
the same connected component, they are colored identically. The number of connected components
is displayed in the graph (d). Image from [50].

1.2.3 Combined Characterization of both Vertical and Horizontal
Evolution of Viral Genomes

Evolution is mediated not only by random mutations over a number of generations
(vertical evolution), but also through the mixture of genomic material between
individuals of different lineages (horizontal evolution). However, the standard
evolutionary representation, the phylogenetic tree, doesn’t represent faithfully the latter
case.

To address this issue, in 2013, Chan, Carlsson and Rabadan[32] presented an
evolutionary framework using TDA that extends beyond the limits of phylogenetic trees.
Moreover, their method indicates the evolutionary scales where phylogenetic inference
could be accurate.

In Figure 1.21, a metric space of pairwise genetic distances is calculated for a population
of genomic sequences. Two genomes are joined by a line if their genetic distance is
smaller than a chosen ε . Three genomes within ε of each other form a triangle, and so
on: this procedure builds a simplicial complex. A one-dimensional cycle, highlighted in
red, can be found at ε between 0.13 and 0.16 and it corresponds to a reticulate event.

14
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Figure 1.21: (a) Pairwise genetic distances. The resulting PCDs are show using PCA. (b) The
filtration is derived and the homology groups are calculated at different scales. The resulting
barcode is displayed. Image from [32].

1.2.4 Alternative Characterization of High-contrast Patches

The PH was used to find significant features hidden in a large data set of pixelated natural
images (3x3 and 5x5 high-contrast patches). The subspace of linear and quadratic gradient
patches forms a dense subset inside the space of all high-contrast patches and it was found
to be topologically equivalent to the Klein bottle. See Figure 1.22.

This could lead to an efficient encoding of a large portion of a natural image: instead of
using an “ad hoc” dictionary for approximating high-contrast patches, one can build such
a dictionary in a systematic way by generating a uniform set samples from the ideal Klein
bottle[35].

Figure 1.22: On the left, 3x3 patches parametrized by the Klein bottle. Image from [35]. On the
right, a Klein bottle immersion in R3. Image from [15].
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1.2.5 Finding Cosmic Voids and Filament Loops

In [17] and [51], PH is used to provide a substantial extension of available topological
information about the structure of the Universe. See Figure 1.23.

Figure 1.23: The Cosmic Web in an LCDM simulation, Image from [17].

While connencted components, loops and voids do not fully quantify topology, they
extend the information beyond conventional cosmological studies of topology in terms
of genus and Euler characteristic[17].

Figure 1.24: Filament loops (a) and voids (b) identified in the Libeskind et al. (2018) dataset[1]
using SCHU. The most significant 10 filament loops (a) and the most significant 15 cosmic voids
generators (b) are shown in different colors. All of their persistence values are less than 0.001.
Images from [51].
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2. Theoretical Background

Geometry deals with shapes, relative positions, sizes of figures and properties of space
such as curvature. Topology studies the properties of space that are preserved under
continuous deformations.

To understand how spaces agree and differ in shape, and so classifying them, we need to
identify the intrinsic properties of spaces. In algebraic terms, this is translated into
identifying certain elements of a given set as equivalent because of some of their
features.

We will classify topological spaces up to homotopical equivalence.

In fact, spaces that are homotopy equivalent share many topological properties, in
particular they have the same homology[48].

2.1 Fundamentals of Algebra

2.1.1 Equivalence Relations

Definition 2.1. Given a set A 6= ∅, an equivalence relation ∼ in A, is a binary relation
between its elements such that:

• x∼ x ∀x ∈ A (reflexive property),

• x∼ y⇒ y∼ x ∀x,y ∈ A (symmetrical property),

• x∼ y∧ y∼ z⇒ x∼ z ∀x,y,z ∈ A (transitive property).

17
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A subset of A that contains all and only the elements equivalent to some element x ∈ A is
called equivalence class of x for the relation ∼.

Definition 2.2. Let A be a non-empty set and∼ an equivalence relation defined on it. The
quotient set of A for the relation ∼, A/∼, is the set of equivalence classes obtained from
A through ∼.

Definition 2.3. A partition of a set is a decomposition of the set into subsets such that
every element of the set is in one and only one of them.

Observation 2.4. Any equivalence relation provides a partition of a set into equivalence
classes, see Figure 2.1.

Figure 2.1: Example of equivalent relations and their partitions. If A = {a,b,c}, there are five
ways of partitioning it. Under each partition is written the equivalence relation determined by it.
Each partition of A determines and is determined by exactly one equivalence relation on A. Image
from [109].

2.1.2 Homomorphisms

Definition 2.5. Given a set G equipped with a binary operation ∗ : G×G→G, the couple
(G,∗) is a group if and only if:

1. ∀a,b,c ∈ G, a∗ (b∗ c) = (a∗b)∗ c (associativity),

2. ∃µ ∈ G|∀a ∈ G,µ ∗a = a∗µ = a (existence of the identity µ),

3. ∀a ∈ G,∃a′ ∈ G|a∗a′ = a′ ∗a = µ (existence of the inverse of a, a′).

(G,∗) is abelian if, moreover, ∀a,b ∈ G,a∗b = b∗a.

Definition 2.6. Given a group (G,∗), H ⊂ G is a subgroup of G if (H,∗) is a group.
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Definition 2.7. A group (G,∗) is cyclic if ∃g ∈ G|G =< g >= {gn|n ∈ Z}.

Definition 2.8. Given two groups (G,∗) e (H,◦), a function f : G → H is a
homomorphism if ∀a,b ∈ G, f (a∗b) = f (a)◦ f (b).

The purpose of defining a homomorphism is to create functions that preserve the
algebraic structure of groups. Homomorphisms preserve the identity, the inverses, and
the subgroups in the following sense.

Theorem 2.9. Let φ be a homomorphism of a group G into a group H.

• If µ is the identity in G, then φ(µ) is the identity in H.

• If a ∈ G, then φ(a′) = φ(a)−1

• If K is a subgroup of G, then φ(K) is a subgroup of H.

• If K is a subgroup of H, then φ(K)−1 is a subgroup of G.

Definition 2.10. A bijective homomorphism is an isomorphism.

Two isomorphic groups differ only in the notation of their elements and are identical for
all practical purposes.

Proposition 2.11. An isomorphism on any collection of groups is an equivalence relation
on that collection of groups.

2.1.3 Structure Theorem

Definition 2.12. A set F with two binary operations defined on it, + and ·, is a field if

• F is an abelian group under + with 0 as additive identity.

• The non-zero elements are an abelian group under · with multiplicative identity.

• · is distributive over +.
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Definition 2.13. A vector space on a field K is a set V with two operations + : V ×V →V

and ∗ : V ×V →V such that:

• (V,+) is an abelian group

• (ab)v = a(bv), ∀a,b ∈ K, ∀v ∈V

• 1v = v, ∀v ∈V

• a(u+v)= au+av, ∀a∈K, ∀u,v∈V

• (a+b)v= av+bv, ∀a,b∈K, ∀v∈V

Definition 2.14. The dimension of a vector space is the cardinality of one of its basis over
its base field.

Example 2.15. The vector space R3 has {(1,0,0),(0,1,0),(0,0,1)} as a basis, so
dimR(R3) = 3. More generally, dimF(Fn) = n for any field F .

Definition 2.16. Let V be a vector space. A set A ⊂ V is called convex if ∀x,y ∈ A the
segment that joins them, {(1− t)x+ ty : t ∈ (0,1)}, is entirely contained in A.

Figure 2.2: Examples of convex (left) and non-convex (right) 3-manifolds. Image from [118].

Definition 2.17. Given a set X with a binary operation ∗ : X ×X → X , the couple (X ,∗)
is a monoid if associativity and the existence of the identity hold.

Definition 2.18. Given a set R with two binary operations, ∗ : R×R→ R and @ : R×R→
R, the triplet (R,∗,@) is a ring if and only if:

• R is an abelian group under ∗,

• R is a monoid under @,

• @ is distributive with respect to addition.

R is commutative if @ is commutative.
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Definition 2.19. For an arbitrary ring (R,∗,@), let (R,∗) be its additive group. A subset
I is an ideal of R if it is an additive subgroup of R that satisfies the following conditions:

• (I,∗) is a subgroup of (R,∗)

• ∀x ∈ I,∀r ∈ R : x@r,r@x ∈ I

Definition 2.20. If every element of an ideal I can we written as x = ∑
n
k=1 akik where

ak ∈ A and {ik : k = 1, . . . ,n} is a fixed subset of I, I is finitely generated and we write
I = (i1, . . . , in). If it is generated by only one element it is a principal ideal.

Definition 2.21. An integral domain is a non-zero commutative ring in which the product
of any two non-zero elements is non-zero.

Definition 2.22. A principal ideal domain (PID) is an integral domain in which every
ideal is principal.

Example 2.23. Z, Q and R are PIDs.

Proposition 2.24. In a PID, any two elements x,y have a greatest common divisor, that
can be get as a generator of I = (x,y).

This property is needed by the Structure Theorem 2.34 that we will introduced. It allows
to uniquely represent the PH with a barcode or a persistence diagram.

Definition 2.25. Given two abelian groups (A,∗) and (B,@), their direct sum A⊕B is the
cartesian product A×B with the operation · defined as (a1,b1) ·(a2,b2)= (a1∗a2,b1@b2).
For an infinite family of abelian groups {Ai}i∈I , the direct sum is

⊕
i∈I

Ai = {(ai) ∈∏ j∈I A j : ai is the identity element o f Ai ∀ but f initely many i}

Definition 2.26. A graded ring is a ring that is a direct sum of abelian groups Ri such
that multiplication is defined as Ri ⊗ R j → Ri+ j. The elements in every Ri are called
homogeneous and have degree i.

Example 2.27. Given a field F , the polynomial ring over it, F [x], decomposes into F [x] =⊕
∞
i=0 xi ·F where xi ·F = {∑∞

i=0 aixi : ai ∈ F}. Moreover, the degree of the product of two
monomials is the sum of the degrees of the factors, so F [x] is a graded ring[121].
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Definition 2.28. Given a ring R with multiplicative identity µR, a left R-module M is an
abelian group (M,+) with an operation · : R×M→M such that ∀r,s ∈ R,∀x,y ∈M:

• r · (x+ y) = r · x+ r · y

• (r+ s) · x = r · x+ s · x

• (rs) · x = r · (s · x)

• µR · x = x.

Definition 2.29. A graded module is a left module M over a graded ring R such that
M =

⊕
i∈N0

Mi, and Ri⊗M j→Mi+ j.

Definition 2.30. A graded module M (ring R) is non-negatively graded if Mi = 0 (Ri = 0)
for all i < 0.

Definition 2.31. Given a graded module M, M(a) is the module M shifted by a steps so
that M(a)d = Ma+d .

We may grade R[x] non-negatively with the grading proposed in [38] (tn) = tn ·R[t],n≥ 0.

Definition 2.32. The left R-module M is finitely generated if ∃a1, ...,an ∈ M such that
∀x ∈M,∃r1, ...,rn ∈ R with x = r1a1 + ...+ rnan.

Definition 2.33. A left R-module M is cyclic if ∃x ∈M|M = (x).

The Structure Theorem for finitely generated modules over a PID intuitively states that
finitely generated modules over a PID can be uniquely decomposed similarly to integers
through prime factorization.

Theorem 2.34 (Structure Theorem[38]). If D is a PID, every finitely generated D-module

decomposes uniquely as

D = Dβ ⊕ (
m⊕

i=1

D/diD),

for di ∈ D : di/di+1 ∈ Z and β ,m ∈ Z . Similarly, every graded module M over a graded

PID D decomposes uniquely as

M = (
n⊕

i=1

ΩαiD)⊕ (
m⊕

i=1

ΩγiD/d jD)

where d j ∈ D are homogeneous elements so that d j/d j+1,αi,γi ∈ Z and Ωα denotes an

α-shift upward in grading, and m,n ∈ Z.
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In both cases the theorem decomposes the structures into a left free submodule that
includes generators able to build an infinite number of elements, in particular we have a
vector space of dimension β , and a right torsional portion whose generators may build a
finite number of elements. For example, if D = Z, Z/3Z = Z3 is a generator that can
build three elements. The torsional elements di are homogeneous.

2.2 Fundamentals of Topology

2.2.1 Topological Spaces

The notion of topological space represents a very general concept of space having a notion
of "closeness" between elements defined in the weakest possible way.

Definition 2.35. Given a set X 6=∅, a set τ is a topology on X if and only if:

1. τ ⊆P(X ) (that is, τ is a set of subset of X),

2. ∅,X ∈ τ ,

3. τ is closed with respect to arbitrary union,

4. τ it is closed with respect to finite intersection.
Elements of τ are called open sets in τ , while elements in X that are not in τ are
called closed set in τ .

Intuitively, open sets are subsets of topological spaces which do not contain their
boundaries[118]. For example in R, (−∞,0)∪ (1,+∞) and [0,1] are respectively open
and closed sets.

Definition 2.36. Given a set X 6=∅ and a topology on it τ , (X ,τ) is a topological space.

Definition 2.37. Let (X ,τ) be a topological space, and let Y ⊆ X . The subspace topology

τY on Y is τY = {U ∩Y : U ∈ τ}. τY is the topology "induced by" or "inherited from" τ .

Definition 2.38. Let (X ,τ) be a topological space, and let ∼ be an equivalence relation
on X . The corresponding quotient topological space is given by the topological space
(X/∼,τ∼) where τ∼ is the quotient topology where the open sets are defined to be those
sets of equivalence classes whose unions are open sets in X .
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Example 2.39. Given a topological space X and points x,y ∈ X , we can "glue" them with
the equivalence relation∼ such that (a∼ b)⇔ (a = b∨(a = x∧b = y)∨(a = y∧b = x)).

Definition 2.40. Given a x ∈ (X ,τ), a set A is called neighbourhood of x if A⊆ X and A

contains an open set containing x.

Observation 2.41. The concept of neighbourhood of x represents intuitively a set of
points "close" or "similar" to x.

Example 2.42. Given a set X we can always define the discrete topology D = P(X).
It is the finest topology that can be given on a set: it defines all subsets as open sets. In
particular, each singleton is an open set in the discrete topology, meaning that each of
them is isolated from the others.

Example 2.43. The trivial topology is the topology with the least possible number of
open sets, namely the empty set and the entire space. All points here are closed because
they all are sharing the same neighbourhood.

Example 2.44. the Euclidean topology is the natural topology induced on Euclidean
n−space Rn by the Euclidean metric. The open sets of the Euclidean topology on Rn are
given by (arbitrary) unions of the open balls Br(p) defined as
Br(p) := {x ∈ Rn | d(p,x)< r} ∀r > 0, ∀p ∈ Rn, where d is the Euclidean metric.

Even if we are used to see R intuitively as a straight line, R2 as a plane, etc., these
representations are valid only in Euclidean topology. In fact the shape of a set is
determined by its topology.

Example 2.45. R with the discrete topology can be seen as a cloud of separate and
unordered points, while with the trivial one as a single "big" point because all real
numbers are neighbors.

Definition 2.46. A topological space X is compact if for every collection C of open
subsets of X such that X =

⋃
x∈C x, there is a finite subset F of C such that X =

⋃
x∈F x.

Definition 2.47. A topological space X is connected if for any two points of X there exists
a path between them on X .

Definition 2.48. The maximally connected subsets of a topological space are its
connected components.
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Example 2.49. Euclidean space is connected while any discrete space of size more than
one is not connected.

2.2.2 Homeomorphisms

A homeomorphism is a function between topological spaces that models the intuitive idea
of deformation without tearing, overlapping or gluing.

Definition 2.50. Given two topological spaces X and Y , a function f : X → Y is a
homeomorphism among them if and only if f it is bijective, continuous and its inverse is
continuous.

Definition 2.51. Two topological spaces X and Y are homeomorphic, X ' Y , if and only
if there exists a homeomorphism from one to another (or equivalently if they have the
same topological properties).

General Topology studies the topological properties of topological spaces. These
features are the ones preserved by homeomorphisms, so they are also called
topological invariants.

Observation 2.52. Intuitively, Topology studies how things are connected, not how they
look. So, it allows to define concepts such as continuity, compactness, connection and
closeness even outside of Rn,n ∈ N.

Example 2.53. Given X = (−1,1) and f : X → R, f (x) := tan(πx
2 ),∀x ∈ X , f is a

homeomorphism. Note that X and R have different lengths. Moreover X is bounded and
R is not. Therefore length and boundedness are not topological properties.

Homeomorphism is the most fundamental notion of topological equivalence, for example
a doughnut and a cup are homeomorphic because we can derive one from the other as
shown in Figure 2.3.

Figure 2.3: A cup deformed into a doughnut without gluing or cutting. Image from [73].
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Example 2.54. Let Xε = ([0,1],ε) where ε represents the 1D-Euclidean topology. Let ∼
be the equivalence relation on Xε such that 0∼ 1. Intuitively, we get a circle, but to prove
that we should prove that Xε/∼ is homeomorphic to one. See Figure 2.4.

Figure 2.4: Example of equivalent relation ∼: 0∼ 1 applied to the topological space ([0,1],ε).

We now introduce manifolds to help the reader to understand more deeply topological
classifications.

2.2.3 Manifolds and Betti Numbers

Definition 2.55. A topological space M is a d-manifold if every element m ∈ M has an
open neighborhood N homeomorphic to an open Euclidean d-dimensional ball.

Example 2.56. An intuitive description of a d-manifold is given by a curved space. It
has the structure of an Euclidean space of dimension d locally, while globally has a more
complicated structure. Euclidean spaces are examples of manifolds[118]. See Figure 2.5.

Figure 2.5: Locally the earth’s surface resembles a plane, so it is a 2-manifolds. However, this
similarity does not preserve the distance between the points, since the sphere has a different
curvature. We can see as the curvature affects the sum of the internal angles of a triangle: in
the plane this sum is always 180°, while on a sphere it is always greater. Image from [111].

Definition 2.57. We’ll refer to 1-manifolds as curves and to 2-manifolds as surfaces.
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Example 2.58. Any discrete space is a 0-manifold while Rn is a n-manifold.

Given a tridimensional PCD, the non-manifold regions can be identified by local
dimension estimation[101] and splitted into dimensional manifold regions, as shown in
Figure 2.6.

Figure 2.6: The decomposition of a 3D non-manifold neighborhood of the type accepted by the
algorithm described in [101] into two 2D manifold neighborhoods. Image from [101].

Important examples of topological invariants are the number of independent components,
rings and cavities called Betti-0, Betti-1 and Betti-2, respectively. See Figure 2.7.

Figure 2.7: Betti numbers of some shapes. For the torus, two auxiliary rings are added to explain
Betti-1= 2. Image rearranged from [34].

From Betti numbers another important invariant can be derived: the Euler characteristic.

Definition 2.59. Given a topological space X and its Betti numbers βi, its Euler
characteristic is

χ(X) =
∞

∑
i=0

(−1)i
βi

Betti numbers can bring very useful insights for data analysis in their own right. However,
in some cases they can contribute also to infer information about the global structure of the
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data. For example, Betti numbers were shown to completely classify compact connected
2-manifold without boundary.

In [53], a dataset of more than a million cyclo-octane conformations were analysed and
the obtained Betti numbers where (1,1,2). Since the cyclo-octane surface is non-manifold,
the Betti numbers were uninformative.

Although, using a triangulation of the conformation space, the researcher decomposed
the object into the two components distinguishable in Figure 2.8: the outer sphere and the
enclosed hourglass. Both of these objects were found to be compact connected surfaces
without boundary, each sharing points on the two intersection rings.

Figure 2.8: An example of conformation of cyclo-octane represented by the 3D coordinates of its
atoms(a). The coordinates are concatenated into vectors and shown as columns of a data matrix
(b). In (c), the Isomap method is used to obtain a lower dimensional visualization of the data.
Image rearranged from [53].

Unsurprisingly, the Betti numbers of the spherical component were (1,0,1). Instead, the
Betti numbers of the hourglass were (1,1,0): the Klein bottle ones. This object cannot be
embedded in less than four dimensions and this confirmed that 5D is necessary to fully
capture cyclo-octane conformation space.

TDA makes very few assumptions about the data and the goal is not to faithfully
reconstruct the data or to fit the data to a model but to provide unbiased summaries of the
geometric/topological structure of the data.

Nevertheless, for the sake of completeness, we report an important result on the
classification of 2d-manifolds and in Theorem 3.25 we’ll give a full characterization of
the compact surfaces in terms of orientability and Euler characteristic.

28



2. THEORETICAL BACKGROUND. FUNDAMENTALS OF TOPOLOGY

Theorem 2.60 ([18]). Every compact surface is homeomorphic to one and only one of

the following:

• the sphere, S2,

• the arbitraty connected sum of torus, T2# . . .#T2,

• the arbitraty connected sum of real projective plane, RP2# . . .#RP2.

2.2.4 Homotopy

A more flexible notion of equivalence is the homotopy one. Intuitively, two continuous
functions, defined from a topological space to another, are homotopic if one of them can
be continuously deformed into the other, see Figure 2.9.

Figure 2.9: Representation of a homotopy H between two curves γ0 e γ1. Image from [2].

The notion of homotopy equivalence is weaker than the notion of homeomorphism:
all homeomorphic spaces are also homotopy equivalent but the converse is not
necessarily true. However, spaces that are homotopy equivalent share the same
homology.

Definition 2.61. Given two topological spaces X and Y and two continuous functions
f and g from X to Y , an homotopy from f to g is defined to be a continuous function
H : X× [0,1]→ Y such that, if x ∈ X then H(x,0) = f (x) and H(x,1) = g(x).

Example 2.62. If f ,g : R→ R2 such that f (x) = (x,x3) and g(x) = (x,ex), then the map
H : R× [0,1]→ R2 given by H(x, t) = (x,(1− t)x3 + tex) is a homotopy between them.

Definition 2.63. Two topological spaces X and Y are homotopy equivalent if there exist
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continuous maps f : X→Y and g : Y → X such that g◦ f is homotopic to the identity map
idX and f ◦g is homotopic to idY .

See Figure 2.4 to visualize an example of homotopy equivalence.

Figure 2.10: These two sets are homotopy equivalent. Image from [54].

Example 2.64. The Möbius strip and an untwisted strip are homotopy equivalent since
we can deform both continuously to a circle, but they are not homeomorphic, see Figure
2.11.

Figure 2.11: Three homotopy equivalent shapes: a Möbius strip, a circle and an untwisted strip.
Image rearranged from [100].

Definition 2.65. A space is said to be contractible if it’s homotopy equivalent to a point.

As mentioned before, homotopy equivalence is used to classify topological spaces.

The homotopy equivalent items are collected into equivalence classes, called
homotopy classes. They form a group, called the n-th homotopy group, πn(X), of
the given space X .

Definition 2.66. In the n-sphere Sn we choose a base point a. For a space X with base
point b, we define πn(X) to be the set of homotopy classes of maps f : Sn→ X such that
a is mapped into b.

The first and simplest homotopy group is the fundamental group, which counts how many
loops there are in a space. See Figures 2.12 and 2.13.
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Figure 2.12: π1(S1) = Z. We can wrapping a band around a rod as many time as we want. The
wrappings with opposite directions cancel out each other. π1(S1) is an infinite cyclic group, and
it is isomorphic to the group Z under addition: a homotopy class is identified with an integer by
counting the number of times a mapping in the homotopy class wraps the circle. Image from [86].

Figure 2.13: π1(S2) = 0. Any continuous mapping from a circle to a sphere can be deformed into
one-point with continuity. So its homotopy class has only one element, the identity element and
π1(S2) can be identified with the subgroup of Z having only of the zero, 0. Image from [94].

Homotopy groups are algebraic objects that intuitively measures the amount of "n-
dimensional holes" of a space.

2.2.5 Metric Spaces

A metric space is a set of elements, called points, in which a distance between them is
defined. It represents a particular type of topological space.

Definition 2.67. A distance (o metric), on a not empty set X , is any function d : X×X→R
such that ∀x,y,z ∈ X :

• d(x,y)≥ 0

• d(x,y) = 0 ⇐⇒ x = y

• d(x,y) = d(y,x) (symmetry)

• d(x,y)≤ d(x,z)+d(z,y) (triangular inequality)

Definition 2.68. A metric space is a mathematical structure consisting of a pair (X ,d) of
elements, where X is a non-empty set and d is a metric on X .
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Example 2.69. The Euclidean metric in the plane is our intuitive distance function on
flat surfaces. To measure a distance between two points, we use the distance function
d2(x,y) =

√
(x1− y1)2 +(x2− y2)2. There are some less intuitive metrics that we can use.

We can define the Manhattan metric on the plane with the distance d1(x,y) = |x1− y1|+
|x2− y2|. While in the ’infinity’ metric we use distance d∞(x,y) = Max{|x1− y1|, |x2−
y2|}. By circle we mean the set of all points lying at a given distance from a fixed point.
In Figure 2.14 we can see that a circle is a diamond with d1 and a square with d∞. See
Figure 2.15.

Figure 2.14: The representation of a circle using (R2,d2), (R2,d1) and (R2,d∞) metrics.

Figure 2.15: Example of distances beetwen two points. Image from [19].

Definition 2.70. A finite metric space is a metric space having a finite number of points,
that is a PCD.

Proposition 2.71. Any metric space (X ,d) is compact if and only if it is complete and
totally bounded.
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Observation 2.72. Any PCD is compact.

Definition 2.73. Let X and Y be metric spaces with metrics dX and dY . A map f : X → Y

is an isometry if ∀a,b ∈ X ,dY ( f (a), f (b)) = dX(a,b). X and Y are isometric if a bijective
isometry exists between them.

Example 2.74. Any rotation, translation and reflection is an isometry on Euclidean
spaces.

2.2.6 Hausdorff distance

The Hausdorff distance provides a convenient way to quantify the proximity
between data sets issued from the same metric space.

Definition 2.75. Given a topological space X , it is Hausdorff if for every couple of points
x,y ∈ X there exists a neighborhood U of x and a neighborhood V of y such that U and V

are disjoint.

Observation 2.76. Any metric space is Hausdorff.

Definition 2.77. Let X and Y be two non-empty subsets of a metric space (M,d). We
define their Hausdorff distance dH(X ,Y ) by

dH(X ,Y ) = max{sup
x∈X

inf
y∈Y

d(x,y), sup
y∈Y

inf
x∈X

d(x,y)},

Figure 2.16: Components of the calculation of the Hausdorff distance between X and Y . Image
from [108].

See Figure 2.16.
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To compare datasets not sampled from the same ambient space, the notion of
Hausdorff distance can be generalized to the Gromov-Hausdorff one.

Thanks to it, any pair of datasets issued from compact metric spaces can be compared.
We will use these concepts in the study of the stability of the PH method.

Definition 2.78. Given two metric spaces M1 and M2, the Gromov-Haudoff distance

dGH(M1,M2) is the infimum of the r ≥ 0 such that there exists a metric space (M,ρ)

isometric to M1 and M2 and such that dH(M1,M2)≤ r.

The Gromov-Hausdorff distance measures how far two metric spaces are from being
isometric. See Figure 2.17.

Figure 2.17: On the right the Hausdorff distance between two subsets A and B of the plane. On
the left the Gromov-Hausdorff distance between A and B. Rotation is an isometric embedding of
A in the plane, so A can be rotated to reduce its Hausdoff distance to B. Image from [48].

Proposition 2.79. Given two metric spaces M1 and M2 that are subspaces of the same
metric space, dGH(M1,M2)≤ dH(M1,M2).

After this recap of the basic algebraic topology tools that will be used, we move to the
first step of TDA: define simplicial complexes.
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3.1 From Simplexes to Filtrations

Connecting similar points by edges pairs leads to the concept of neighboring graph from
which the connectivity of the data can be studied using clustering algorithms. To go
beyond connectivity, TDA builds higher dimensional counterparts of neighboring
graphs. This is achieved by connecting (k + 1)-uple of nearby points. The resulting
objects, called simplicial complexes, allow identifying topological features such as
cycles and voids.

The torus and the Klein bottle can be obtained from a square by identifying opposite edges
as indicated in Figure 3.1. Cutting a square along a diagonal produces two triangles, so
each of these surfaces can also be built from two triangles by identifying their edges in
pairs.

Figure 3.1: Representation on a torus (left) and a Klein bottle (right) using squares. Image from
[81].

The idea of a simplicial complex is to generalize structures like these to any number of
dimensions. We think of an n−simplex as an n-dimensional triangle, and we can
"triangulate" a space by gluing a bunch of these together.
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3.1.1 Simplexes

We denote the vertices of the simplex as pi, and the simplex as [p0, ..., pk].

Definition 3.1. Let P = p0, p1, ..., pk ⊆ Rd .

• A linear combination is x = ∑
k
i=0 λi pi, for some λi ∈ R.

• An affine combination is a linear combination with k
i=0λi = 1.

• A convex combination is an affine combination with λi ≥ 0,∀i.

• The set of all convex combinations is the convex hull.

• A set P is affinely (linearly) independent if no one of its points is affine (linear)
combinations of the other points.

Definition 3.2. A k-simplex is the convex hull of k+1 affinely independent points called
vertices.

Figure 3.2: k-simplices, ∀k : 0≤ k ≤ 3. Image from [125].

Summarizing, given p0, ..., pk ∈Rk such that p1− p0, ..., pk− p0 are linearly independent,
a k-simplex determined by them is

σ := {λ0 p0 + ...+λk pk | λi ≥ 0,0≤ i≤ k,
k

∑
i=0

λi = 1}.

Observation 3.3. A k-simplex is a k-dimensional polytope which is the convex hull of its
k+1 vertices[112].

Definition 3.4. Given a set of simplexes K, their union is a subset of Rd called underlying

space of K that inherits from the topology of Rd .

Definition 3.5. Let σ be a k-simplex defined by P = {p0, p1, ..., pk}. A simplex τ defined
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by T ⊂ P is a face of σ , σ > τ .

Observation 3.6. A k-simplex has ∑
k
l=−1

(k+1
g+1

)
= 2k+g faces and in particular

(k+1
g+1

)
faces

of dimension g.

Definition 3.7. The vertices of P are the zero-simplices in P.

Example 3.8. Given the 4 vertices of a tetrahedron, there are 4 different subsets composed
of 3 vertices each that are 4 triangular faces.

There are many tipes of complexes. For example digital images have a cubical structure,
given by the pixels (in 2D) or voxels (in 3D). Therefore, one approach to studying digital
images uses combinatorial structures called cubical complexes[74].

A generalization of the simplicial complex is the polytopal complex or cellular complex.
It consists of a collection X of convex polytopes in some Euclidean space Rd such that
every face of a polytope in X is in X and the intersection of any two polytopes in X is a
face of both[60]. An n-dimensional polytope in X is called an n-cell. However, we will
discuss the simplicial complex that is more common in literature.

3.1.2 Simplicial Complexes

Definition 3.9. A geometric simplicial complex P is a finite collection of non-empty
simplices such that every face τ of every simplex of P is a simplex of P, and if two
complexes intersect, this occurs on common a face.

Figure 3.3: On the left, we have an example of a simplicial complex, on the right some simplices
that do not intersect properly to build a simplicial complex. Image from [116].

Definition 3.10. The dimension of P is dim(P) = max{dim(σ)|σ ∈ P}, where dim(σ)

equals the number of elements in σ .
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Observation 3.11. The simplicial complexes of dimension 1 are graphs.

Simplicial complexes can be defined without using any geometry, although it may not
seem. We will present this definition next, as it displays the separation between topology
and geometry.

Definition 3.12. An abstract simplicial complex is a set P with a collection S of its subsets
such that ∀v ∈ P,{v} ∈ S and ∀σ ∈ S, if τ ⊆ σ , then τ ∈ S. The sets {v} are the vertices

of P.

Definition 3.13. σ is a simplex of dimension k if |σ |= k+1. If τ ⊆ σ , τ is a face of σ .

Definition 3.14. The maximal faces or facets of a complex are those faces that are not
subsets of any other faces.

The structure of a simplicial complex can be fully specified by the list of its facets.

Definition 3.15. Given an abstract simplicial complex P, suppose τ,σ ∈P such that τ ⊂σ

and in particular dim(τ)< dim(σ). If σ is a maximal face of P and no other maximal face
of P contains τ , τ is a free face.

We now relate this abstract set-theoretic definition to the geometric one by extracting the
combinatorial structure of a simplicial complex.

Definition 3.16. Let P be a simplicial complex with vertices V and let P be the collection
of all subsets {v0,v1, ...,vk} of V such that v0,v1, ...,vk span a simplex of P. P is the vertex

scheme of P.

Definition 3.17. Given two abstract simplicial complexes P1 and P2 having vertex sets V1

and V2 respectively, an isomorphism between them is a bijection φ : V1→V2 such that P1

and P2 are the same except for a relabelling of their vertices by φ and φ−1.

Theorem 3.18. For every abstract complex P there exist a geometric simplicial complex K

whose vertex scheme is isomorphic to P. K is a geometric realization of P. Two simplicial

complexes are isomorphic if and only if their vertex schemes are isomorphic as abstract

simplicial complexes.

The geometric realization of P is uniquely determined up to an isomorphism. So, abstract
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simplicial complexes can be seen as topological spaces and geometric complexes can as
geometric realizations of their combinatorial structure.

Example 3.19. Consider the simplicial complex {{a},{b},{c},{d},{e},{a,b},
{a,c},{a,d},{b,c},{c,d},{a,b,c}}. Its geometric realization is the subset of R2 is
displayed in Figure 3.4.

Figure 3.4: The geometric realization of the simplicial complex in R2. Image from [74].

Simplicial complexes are at the same time combinatorial objects (well-suited for
effective computations) and topological spaces (from which topological properties
can be inferred).

Definition 3.20. Given a topological space X , a simplicial complex K homeomorphic to
it, together with a homeomorphism h : K→ X , is a triangulation of X .

Figure 3.5: A triangulated torus. Image from [85].

For purposes of homology it will be important to keep track of the order of the vertices of
a simplex.

Definition 3.21. Let P be a simplicial complex. An orientation of a k-simplex σ ∈ P,
σ = [v0,v1, ...,vk], vi ∈ P, is an equivalence class of orderings of the vertices of σ , where
(v0,v1, ...,vk) ∼ (vτ(0),vτ(1), ...,vτ(k)) are equivalent orderings if the parity of the
permutation τ is even.
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Orientations may be shown graphically using arrows, as shown in Figure 3.6.

Figure 3.6: k-simplices, 0≥ k≥ 3. The orientation on the tetrahedron is shown on its faces. Image
from [38].

If we delete one of the n+ 1 vertices of an n-simplex [v0, ...,vn], then the remaining n

vertices span an (n− 1)-simplex. According to letterature, we adopt the convention that
the vertices of any subsimplex spanned by a subset of the vertices, will be ordered
according to their order in the larger simplex.

Definition 3.22. Two k-simplices that share a (k−1)-face are consistently oriented if they
induce different orientations on it.

Theorem 3.23 ([18]). Every surface has a triangulation. Each facet of a triangulation of

a surface is of dimension 2.

Definition 3.24. A surface is orientable if all the 2-simplices of a triangulation of it can
be consistently oriented. Otherwise it is non-orientable.

We have can provide a full characterization of the compact surfaces in terms of
orientability and Euler characteristic.

Theorem 3.25 ([18]). If a compact surface X is orientable, it is homeomorphic to

• S2 if χ(X) = 2,

• T2# . . .#T2 where there are g summands if χ(X) = 2−2g 6= 2.

If a compact surface X is not orientable, it is homeomorphic to RP2# . . .#RP2 where there

are g summands if χ(X) = 2−g.

Getting back to the main topic, there exist many ways to build simplicial complexes from
a dataset, or more generally from a topological or metric space.
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To be a useful, a simplicial complex has to satisfy some properties: intuitively, its
homology has to approximate the one of the space we want to study.

See Figure 3.7.

Figure 3.7: Three possible complexes build from the sample produced by a sensor observing an
annulus. Only the first complex provides a reasonable approximation of it. Image from [121].

For example, for the Čech complex, these properties are guaranteed by the Nerve
Theorem. In Table 3.1 a summarization of some simplicial complexes is shown.

Complex Size Justification
Čech 2O(N) Nerve Theorem
Vietoris-Rips (VR) 2O(N) Approximation of Čech complex
Alpha NO([d/2]) Nerve Theorem
Sparse Čech O(N) Approximation of Čech complex
Sparse VR O(N) Approximation of VR complex

Table 3.1: Some simplicial complexes, the worst-case sizes of the complexes as functions of the
cardinality N of the vertex set and their theoretical guarantees[74].

The general steps for the computation of a simplicial complex are shown in Figure 3.8
and can be described as follows:

1. A PCD is given and balls around its points are built.

2. An edge linking every couple of points whose balls intersect is added.

3. A filled triangle for every triplette of points whose balls intersect each other is
added.

4. n-dimensional polytypes are added generalizing the same logic of points 2 and 3.

In the next sections Čech, Vietoris–Rips and Sparse Čech complexes are described.
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Figure 3.8: In (a) the PCD is shown, in (b) a distance d, called the proximity parameter, is choosen
and in (c) the nearby points are connected by edges. In (d) the VR simplicial complex is built.
Figure from [125].

3.1.3 Čech Complexes

Definition 3.26. Given a PCD X and a proximity parameter r > 0, the Čech complex

Čr(X) is build as

Čr(X) := {[p1, p2, ..., pk] | {p1, p2, ..., pk} ⊂ X ,∩iB(pi,r) 6=∅}

where B(p,r) is the closed ball of radius r centered at p.

In Figure 3.9 an example is displayed.

Figure 3.9: The Čech complex Čα(X) of a finite point cloud in the plane R2. It’s dimension is 2.
Figure from [48].

The nerve of a covering is a construction of an abstract simplicial complex from a covering
of a topological space X .

Definition 3.27. Given a covering U = {Ui}i∈I of a topological space X , the nerve of U

is the abstract simplicial complex Nrv(U ) whose vertices are the Ui’s and such that

σ = [Ui0, ...,Uik ] ∈ Nrv(U )⇔∩ j=0,...,kUi j 6= 0
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For an example of nerve, see Figure 3.10.

Figure 3.10: The nerve of a cover of a set of points. Figure from [48].

Theorem 3.28 (Nerve Theorem[48]). Given a topological space X and an open cover

U = {Ui}i∈I of it such that the intersection of any subset of the Ui’s is either empty or

contractible, X and the nerve Nrv(U ) are homotopy equivalent.

Definition 3.29. Given two topological spaces X and Y , A function f : X → Y is proper

if the preimage of every compact set in Y is compact in X .

Definition 3.30. Given a compact subset of Rd K = {x0, ...,xn}:

• Given r ≥ 0, the r-offset of K is the union of balls of radius r centered on K.

• Given r ≥ 0, the r-sublevel set of K is the distance function

dK : Rd → R, dK(x) := in fy∈K||x− y||

• A function φ : Rd → R+ is distance-like if it is proper and x→ ||x||2− φ 2(x) is
convex.

• Let φ be a distance-like function and let φ r = φ−1([0,r]) be the r-sublevel set of φ .
A point x ∈ Rd is α-critical if ||Oxφ || ≤ α .

• For any 0 < α < 1, the reachα of φ is the maximum r such that φ−1((0,r]) does
not contain any α-critical point.

Theorem 3.31 (Reconstruction Theorem[48]). Let φ , ψ be two distance-like functions

such that ||φ −ψ||∞ < ε , with reachα(φ)≥ R for some positive ε and α . Then, for every

r ∈ [4ε/α2,R− 3ε] and every ρ ∈ (0,R), the sublevel sets ψr and φ ρ are homotopy

equivalent when ε ≤ R
5+ 4

α2
.
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The Reconstruction Theorem combined with the Nerve Theorem tell that, for well-
chosen values of r and ρ , the ρ-offsets of K are homotopy equivalent to the nerve
of the union of balls of radius r centered on K, Čr(K)[48]. This means that this
complex gives faithful representation of data.

See Figure 3.11.

Figure 3.11: The example of a PCD sampled on the surface of a torus in R3 (top left) and its offsets
for different values of r. For r1 and r2, the offsets are homotopy equivalent to a torus. Figure from
[48].

The Reconstruction Theorem requires the choice of a radius r and a regularity
assumption through reachα that may not be satisfied. To address these issues the PH will
be introduced. Before of that, we first introduce other two types of simplicial complexes
derived from the Čech one: Vietoris–Rips and Sparse Čech complexes.

3.1.4 Vietoris–Rips Complexes

Definition 3.32. Given a PCD X and an r > 0, the Vietoris–Rips complex V Rr(X) is

V Rr(X) := {[p1, p2, ..., pk] | {p1, p2, ..., pk} ⊂ X ,maxpi,p j∈σ (dist(pi, p j))≤ r}

Note that if dist is || · ||∞, then V R2r(X) = Čr(X)[39]. In Figure 3.12 an example is
displayed, while in Figure 3.13 a comparison between VR and Čech complexes is
shown.

Proposition 3.33. If X ⊂ Rd then Čα(X) and V R2α(X) have the same set of vertices and
edges[48].

The Čech complex is a subcomplex of the VR complex but it is more computationally
expensive because of the higher number of intersections of the balls in the complex[74].

44



3. TOPOLOGICAL DATA COMPLETION. FROM SIMPLEXES TO FILTRATIONS

Figure 3.12: The V R2α complex of the PCD in the plane R2 of Figure 3.9. It’s dimension is 3.
Figure from [48].

Figure 3.13: Comparison of Čr (left) and V R2r (right) complexes. Figure from [112].

However, the Nerve Theorem provides a guarantee that the Čech complex is homotopy
equivalent to union of the balls in the complex, while VR complex may not be[69] but
consider the proposition below[112][48].

Proposition 3.34. For every finite set of points K ⊂ Rd and r ≥ 0,

Čr(K)⊂V R2r(K)⊂ Č2r(K)

.Thus, if Čr(K) and Č2r(K) approximates the data in a good way, then V R2r(K) do it as
well and this estimate can be improved[72].

Proposition 3.35. For every finite set of points K ⊂ Rd and r ≥ 0,

V Rr′(K)⊂ Čr(K) i f
r
r′
≥
√

2d
d +1

.

On one hand, VR is ideally suited to communication networks, since the entire complex
is determined by pairwise structures. On the other, it doesn’t necessarily capture the
topology of the union of cover discs[72]. In Figure 3.14 a PCD example for which the
VR fails to capture the Čech complex is given.
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Figure 3.14: The Čech complex is homotopy equivalent to a circle. The VR one however is
homeomorphic to S2. Figure from [72].

Čech complex is difficult to calculate, but it is quite small and accurate. However,
VR complex is easy to calculate, but is usually very big[112] and less accurate.

Both complexes can produce a simplicial complex of dimension greater than the
considered space. To build simplicial complexes with few simplices that approximate the
homology of a space and are easy computable, we present another alternative: the Sparse
Čech complex.

3.1.5 Sparse Čech Complexes

For large proximity parameters few points of the PCD is needed to provide a good
approximation, see Figure 3.15. The idea behind Sparse Čech complex is to consider less
points as the chosen radius increases. As we will see, it approximates the PH of the Čech
complex but have fewer simplices than it.

Figure 3.15: The two complexes are similar but the right one actually uses fewer points. Figure
from [40].

Before defining it, we need some new definitions[39].
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Definition 3.36. Given P = {p1, ..., pn}, Pi = {p1, ..., pi} is the i-th prefix. P is ordered
according to a greedy permutation if and only if ∀i ∈ {2, ...,n},
dist(pi,Pi−1) = maxp∈Pdist(p,Pi−1). For each point pi, the value λi = dist(pi,Pi−1) is
the insertion radius. By convention, λ1 = ∞.

To build a sparse version of the Čech complex we define new radius and r−balls concepts.
Then, we apply them to the definition 3.26 so that as the radius increases, only a sparse
subset of points keeps contributing to the offsets. The concepts is that some balls will be
completely covered by their neighbors ones[39].

Definition 3.37. Given P = {p1, ..., pn} ordered by a greedy permutation with insertion
radii λ1, ...,λn and a constant ε < 1, the radius of pi at scale α is

ri(α) :=


α, if α ≤ λi(ε +1)

ε
λi(ε +1)

ε
, otherwise

Definition 3.38. Given a point pi, with insertion radio λi, radius ri and a constant ε < 1,
the α−ball of pi is

bi(α) :=

B(pi,ri(α)), if α ≤ λi(ε +1)2

ε

∅, otherwise

Definition 3.39. The Sparse Čech complex is defined as

Qα(X) := {[p1, p2, ..., pk] | {p1, p2, ..., pk} ⊂ X ,∩ibi(α) 6=∅}

Proposition 3.40. bi(α) =∅ unless λi is large enough compared to α , so fewer balls are
considered as the scale increases. Note that the number of vertices does not change.

The justification based on PH results for the use of this complex can be found in Theorem
4.13. However, the "vertex removals" mentioned in proposition 3.40 were proved to be
implementable as a sequence of elementary edge collapses.

The key result is that a collapse, in general, reduces a simplicial complex to a homotopy-
equivalent subcomplex. The resulting subcomplex is homotopy equivalent to the original
one if the link condition holds[59].

47



3. TOPOLOGICAL DATA COMPLETION. FROM SIMPLEXES TO FILTRATIONS

Definition 3.41. Let K be an abstract simplicial complex. Suppose τ,σ ∈ K such that the
following two conditions are satisfied:

• τ ⊂ σ , in particular dim(τ)< dim(σ),

• τ is a facet.

A simplicial collapse of K is the removal of all simplices γ such that τ ⊆ γ ⊆ σ , where τ

is a free face. If dim(τ) = dim(σ)−1, then this is called an elementary collapse.

The collapse is performed by identifying pairwise vertices as shown in Figure 3.16.

Figure 3.16: A simplicial complex simplified with different numbers of collapses. In (a) the VR
complex with ∼ 70 · 106 simpleces is shown. Its resulting complexes after 6000, 6700 and 6787
are shown in (b), (c) and (d) respectively. In the last case the number of simplices is∼ 100. Figure
from [114].

The link of a simplex σ in a complex K is Lk(σ) = {τ \ σ |τ ∈ K,σ ⊆ τ}. An edge
{u,v} ∈ K satisfies the link condition if and only if Lk{u,v}= Lk{u}∩Lk{v}. See Figure
3.17.

Figure 3.17: An example of collapse satisfying the link condition (left) an one of collapse not
satisfying it (rigth). Figure rearranged from [114].

Proposition 3.42. [39] If (P,d) is a finite subset of a convex metric space and {Sα} is its
corresponding sparse filtration, then the last vertex pn has a neighbor pi such that the edge
{pn, pi} ∈ Sα satisfies the link condition, where α = λn(1+ ε)2/ε and λn is the insertion
radius of pn.
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3.1.6 Filtrations

Definition 3.43. A filtration is a family of subsets {Xa|a∈ A} indexed by a totally ordered
set A such that Xa ⊂ Xb for a≤ b.

Note that given a simplicial complex, with the increase of the distance d, it becomes more
complicated. In particular, the simplicial complex generated by the distance d1 < d2 is
included in the one generated by the distance d2. The sequence of simplicial complexes
with its inclusion maps is a filtration called filtered simplicial complex. See Figure 3.18.

Figure 3.18: A filtration segment rapresentation on the simplicial complex of Figure 3.8. Image
from [125].

In particular, the Čech filtration, VR filtration and Sparse Čech filtration are respectively
defined as {Čα}α>0, {V Rα}α>0 and {∪δ≤αQδ}α>0 equiped with their inclusion maps.
This last definition is motivated by the fact that {Qα}α>0 is not a filtration[39].

Simplicial complexes provides a topologically faithful summary of the data,
but they are not well-suited for further processing. We need easier computable
topological descriptors, in particular numerical ones. This issue will be managed
by considering the homology.

3.2 Homology

The original motivation for defining homology groups was the observation that two shapes
can be topologically distinguished by examining their holes. For instance, a circle is not
topologically equivalent to a disk because the circle has a hole. However, it’s not trivial to
find holes with common techniques due to the fact that they are not "present".
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The fundamental group π1(X) is especially useful when studying loops and homotopies
of loops of low dimension spaces. However, the higher-dimensional homotopy groups are
extremely difficult to compute[81].

A more computable alternative to homotopy groups are homology groups Hn(X).

An important property of these algebraic structures is that they are robust as they are
homotopy invariant. An example from [81] is now proposed to show what the idea behind
homology is.

3.2.1 Simplicial Homology Example

Consider the graph in Figure 3.19 (a). It consists of two vertices joined by four edges.

Figure 3.19: Homology example.

Consider the chain of edges a−b+ c−d travelling forward edge a, then backward along
b and so on. Some of these chains can be decomposed into cycles in several ways, for
example [a− c] + [b− d] = [a− d] + [b− c], but we don’t want to distinguish between
these decompositions.

A geometric cycle is characterized by the fact that it enters and leaves each vertex the
same number of times. Generally, let C1 be the free abelian group with basis a,b,c,d that
are 1-dimensional chains. Let C0 be the free abelian group with basis x,y that are linear
combinations of vertices or 0-dimensional chains.

We can define a homomorphism ∂ : C1 → C0 by mapping each element of the basis
a,b,c,d into y− x. We get ∂ (ka+ lb+mc+ nd) = (k + l +m+ n)y− (k + l +m+ n)x

and the cycles are the kernel of ∂ whose basis consists of a− b, b− c and c− d. Thus

50



3. TOPOLOGICAL DATA COMPLETION. HOMOLOGY

every cycle in Figure 3.19 (a) is a unique linear combination of these three cycles. We
infer that the graph has three holes.

Let glue a 2-cell A along the cycle a−b, see Figure 3.19 (b). If A is oriented clockwise, we
can regard its boundary as the cycle a−b. This cycle can be now contracted to a point, so
it no longer encloses a hole. This suggests that we have quotientated the group of cycles
by factoring the subgroup generated by a−b.

We can define the homomorphisms C2
∂2−→C1

∂1−→C0 where C2 is the infinite cyclic group
generated by A and ∂2(A) = a− b. The quotient group we are interested in is the 1-
dimensional cycles modulo those that are boundaries, the multiples of a− b, that is the
homology group H1(X2) = Ker(∂1)/Im(∂2). Here H1(X2) has two generators, b− c and
c−d, so we have reduced the number of holes to two.

3.2.2 Simplicial Homology

All polyhedra can be decomposed into simplices so there is no loss of generality in
focusing on simplices. Homology detects k-dimensional holes in a simplicial complex X

imposing an algebraic structure on it. For each k ≥ 0, an abstract vector space Ck

(k-chains) is built with basis consisting of the set of k-simplices in K, so that the
dimension of Ck equals the number of k-simplices[76].

To define a basis, we have to choose an ordering of all the vertices and give to each
simplex the induced corresponding orientation. Let σ = [v0, ...,vk] be an oriented
k-simplex, viewed as a basis element of Ck. The boundary operator ∂k : Ck→Ck−1 is the
homomorphism ∂k(σ) = ∑

k
i=0(−1)i(v0, . . . , v̂i, . . . ,vk), where the oriented simplex

[v0, . . . , v̂i, . . . ,vk] is the i-th face of σ , obtained by deleting its i-th vertex. The signs are
inserted to take orientations into account, so that all the faces of a simplex are coherently
oriented, as indicated in the Figure 3.20.

Observation 3.44. It holds that ∂ 2 = 0, meaning that a boundary has no boundary[76].
For example, ∂ 2([v0,v1,v2]) = ∂ ([v1,v2])− ∂ ([v0,v2])+ ∂ ([v0,v1]) = [v2]− [v1]− [v2]+

[v0]+ [v1]− [v0] = 0.

In Ck, elements of the subgroup Zk = ker∂k are referred to as cycles, and the subgroup
Bk = im∂k+1 consists of boundaries. From the observation 3.44 it follows that Bk is a
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Figure 3.20: k-simplices boundariers. Image from [81].

subspace of Zk. The goal of homology is to discard cycles that are also boundaries, so
we’ll quotientiate Zk using the following equivalence relation.

Definition 3.45. Two cycles z1,z2 ∈ Zk are homologous if they differ by a boundary, that
is z1 ∼ z2⇔ z1− z2 ∈ Bk.

Example 3.46. Consider the example in Figure 3.21 provided by [76]. The blue chain
b = [v0,v1] + [v1,v2] + [v2,v3] + [v3,v4] + [v4,v0] and the red chain
r = [v1,v2] + [v2,v3] + [v3,v4] + [v4,v1] are cycles because ∂ (b) = ∂ (r) = 0. These
cycles are homologous because their difference is a the green boundary,
g = b− r = [v0,v1]+ [v4,v0]− [v4,v1] = [v1,v4]− [v0,v4]+ [v0,v1] = ∂ [v0,v1,v4].

Figure 3.21: The blue and the red cycles are homologous because their difference is the boundary
of the green triangle. Image from [76].

Definition 3.47. The k-th homology group Hk of a simplicial complex S is the quotient
abelian group Hk(S) = Zk/Bk.

The elements of Hk(K) are the equivalence classes of homologous cycles. Hk(S) is
non-zero exactly when there are k-cycles on S which are not boundaries meaning
that there are k-dimensional holes in the complex. The rank of Hk(S) is the k-th
Betti number of S, βk = rank(Hk(S)) = dim(Zk)−dim(Bk).
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β0, β1 and β2 count respectively the number of connected components, the number
of holes and the number of voids in X .

Simplicial homology groups and Betti numbers are topological invariants: if K,K0 are
two simplicial complexes whose geometric realizations are homotopy equivalent, then
their homology groups are isomorphic and they have the same Betti numbers, see Figure
3.22.

Figure 3.22: The Betti numbers of the circle (left) and the 2-dimensional sphere (right). Image
from [48].

Another example is presented below.

Example 3.48. Let S be the triangle without its interior as a simplicial complex. Thus S

has three vertices v0, v1 and v2 and three edges. To compute the homology groups of S,
we start by describing the chain groups Ck.
C0 is isomorphic to Z3 with basis v0, v1, v2. C1 is isomorphic to Z3 with a basis given by
the oriented 1-simplices [v0,v1], [v0,v2], and [v1,v2]. The chain groups in other
dimensions are zero.
The boundary homomorphism ∂ : C1 → C0 is given by ∂ [v0,v1] = v1 − v0,
∂ [v0,v2] = v2− v0 and ∂ [v1,v2] = v2− v1. B0 is generated by the three elements on the
right of these equations, so H0(S) = Z0/B0 is isomorphic to Z with a basis given by the
image of the 0-cycle v0 (all three vertices become equal in the quotient group). So S is
connected.
The group of 1-cycles is ker(∂ ) which is isomorphic to Z, with a basis given, for
example, by [v0,v1]− [v0,v2]+ [v1,v2]. Since C2 = 0, the group of 1-boundaries is zero,
and so the homology group H1(S) is isomorphic to Z/0 ∼ Z. So, the triangle has one
1-dimensional hole.

We can finally introduce the PH, but before of that a little overview on singular homology
is provided.
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Singular Homology

Simplicial homology requires the space to be triangulated but not every space can be, and
even if it is, it is not necessarily true that the triangulation is unique.

Singular homology assigns homology groups to every topological space encoding
invariants of the space in an analogous way as simplicial homology assigns homology
groups to simplicial complexes[74].

Rather than decompose the space into simplices, it considers the collection of all
possible continuous maps of simplices into X . These maps generate extremely large
chain groups but the quotients, called singular homology groups, turn out to be generally
smaller. However in simplicial homology, unlike singular one, doing calculations is quite
straightforward and we’ll no further discuss singular homology.
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Our goal is to recover the properties of the underlying space of data robustly to small
perturbations. To do that, PH will be now introduced. Consider, for example, the simplicial
complex in Figure 4.1. How to choose the right proximity parameter d? If d is too small
(a), we might see multiple distinct components and small holes that can be a result of the
noise. If d is to big (c), we get a giant simplex with a trivial topology. In the Figure (b)
the distance d reveals a single hole, but we need to have some highlight to understand if
it’s a true feature of the data[125].

Figure 4.1: Simplicial complex examples built on different distance d values. Image from [125].

In order to do that, we can consider all the distances d > 0. Note that each hole appears at
a particular value d1, and disappears at another value d2.

Given a parameterized family of spaces, those topological features which persist over a
significant parameter range are to be considered as true features with short-lived
characteristics due to noise[70]. We can represent the persistence of the hole with a
segment [d1,d2), see Figure 4.2.
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4. PERSISTENT HOMOLOGY AND STABILITY.

Figure 4.2: Persistence of an hole appering for distance d1 and disappering for distance d2 as a
bar. Image from [125].

A collection of such bars is a persistence barcode, see Figure 4.3.

Figure 4.3: A filtration and its barcode. Image from [39].

An alternative graphical way to represent barcodes is the persistence diagram, in which
an interval [i, j) is represented by the point (i, j), see Figure 4.4.

Figure 4.4: On the right the union Xr of r-balls at points sampled from annuli with noise. On the
left, the persistence diagram in which x1 represents the ring α1, which born at r = 0.14 and dies
at r = 0.24. The noisy rings are plotted as the points close to the diagonal. Image from [65].

With PH we study the homology of a filtered simplicial complex as a single
algebraic entity. Its features can be then studied using its barcode and this is justified
formally by the Structure Theorem.
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4.1 From PH to Barcodes

As we explained, given a PCD and derived a simplicial complex Xr with proximity
parameter r, H(Xr) is a vector space that is the quotient of the k-cycles modulo those that
are boundaries. As r increases, the union of disks grows and the resulting inclusions
induce maps between the homology groups.

Example 4.1. Assume that V R = (V Ri)
N
1 is a sequence of VR complexes associated to a

fixed PCD for an increasing sequence of parameter values (εi)
N
1 . The inclusions V Rε1 ↪→

V Rε2 ↪→ ... ↪→ V RεN holds. Instead of examining the homology of the individual terms
V Ri, we examine the homology of the iterated inclusions H(V Ri)→H(V R j) for all i < j.

Definition 4.2. When 0≤ i≤ j≤ n, the inclusion x j
i : Ki ↪→ K j induces a homomorphism

Hp(x
j
i ) : Hp(Ki) → Hp(K j) on the simplicial homology groups for each dimension p.

The pth persistent homology groups are the images of these homomorphisms, and the pth

persistent Betti numbers β
i, j
p are the ranks of those groups

Observation 4.3. PH groups explain why VR complexes are an acceptable approximation
to Čech complexes[72], as mentioned in proposition 3.34. For any r > 0, there is a chain of
inclusion maps V Rr(K) ↪→ Čr(K) ↪→V R2r(K). So, although no single Rips complex is an
especially faithful approximation to a single Čech one, pairs of Rips complexes ’squeeze’
the appropriate Čech complex into a manageable hole.

Definition 4.4. Let X be a topological space and f a real function on X . A homological

critical value of f is a real number a for which there exists an integer k such that for all
sufficiently small ε > 0 the map Hk

(
f−1(−∞,a− ε]

)
→Hk

(
f−1(−∞,a+ ε]

)
induced by

inclusion is not an isomorphism.

Definition 4.5. A persistence module M is a vector space {Ma}a∈R with the linear maps
M(a≤ b) : Ma→Mb,∀a≤ b such that M(a≤ a) is the identity map and ∀a≤ b≤ c,M(b≤
c)◦M(a≤ b) = M(a≤ c).

Observation 4.6. Given any real-valued function f : S→ R on a topological space S, we
can define the associated persistence module, M( f ), where M( f )(a) = H( f−1((−∞,a]))

and M( f )(a≤ b) is induced by inclusion.

Definition 4.7. The k-th persistence module hk is the family of vector spaces Hk(X∗)

together with homomorphisms Hk(x∗
′
∗ ).
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Observation 4.8. The k-th persistence module can be given the structure of a graded
module over the polynomial ring R[x][121]:

hk =
∞⊕

i=0

Hk(Xi) ·F

The Structure Theorem states the existence of a simple description of persistent
modules as a set of intervals, the barcode.

The β found in Theorem 2.34 is the Betti number of the module. When R is Z, the
theorem describes the structure of finitely generated abelian groups. Over a field, the
torsion portion disappears and therefore, the module Hk is a vector space fully described
by the rank β . The graded ideals of F [x] are of the form xn ·F [x], where multiplication by
x corresponds to moving forward one step in the persistence module.

Theorem 4.9. There is a classification of persistence modules over a field F indexed by

N :

U '
⊕

i

xti ·F [x]⊕

(⊕
j

xr j · (F [x]/(xs j ·F [x]))

)
.

Intuitively, the free parts on the right side correspond to the homology generators that
appear at filtration level ti and never disappear, while the torsion parts correspond to those
that appear at filtration level r j and last for s j steps.

Definition 4.10. A barcode is a finite set of intervals that are bounded below.

Definition 4.11. Given a filter σ = {σi}, a persistence barcode is a set of intervals such
that if a simplex σi creates a homology class at time s which is destroyed at time t, 0 ≤
s < t ≤ ∞, then the interval [s, t) is added to the corresponding persistence barcode. If
a simplex σ j creates a homology class at time s which survives along the process, the
interval [s,∞) is added to the persistence barcode.

We summarize the relation between PH groups and persistence barcodes in the following
theorem from [70].
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Theorem 4.12. Given a persistent homology group H∗(x
j
i ), its rank is equal to the number

of intervals in its barcode spanning the parameter interval [i, j).

So, persistence modules capture the information contained in the homomorphisms and are
classifiable in terms of a compact combinatorial object called a barcode[43]. In Figure 4.5
a more complete example of barcode is provided and in Figure 4.6 the steps from PCD to
barcodes are schematized.

Figure 4.5: [bottom] An example of the barcodes for H∗(C). [top] The rank of Hk(Cεi) equals the
number of intervals in the barcode for Hk(C) intersecting the dashed line ε = εi. Image from [70].

Figure 4.6: TDA pipeline. Image from [14].
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To justify the use of the sparse filtration introduced in the previous sections, we report the
following theorem by [39].

Theorem 4.13. The persistence barcode of the sparse nerve filtration {Sα}α≥0 is a (1+
ε)-approximation to the persistence barcode of the original offsets {Pα}α≥0.

While barcodes provide an intuitive representation of persistence, persistence diagrams
are widely used to compute interesting measurements although they provide the same
information.

A multiset is a generalization of the classical concept of set that allows repeated
components.

Definition 4.14. A persistence diagram is the union of a finite multiset of points in R2

with the multiset of points on the diagonal {(x,y) ∈ R2 : x = y} where each point on the
diagonal has infinite multiplicity.

Definition 4.15. Let D be a persistence diagram. For x = (b,d) ∈ D, let `= d−b denote
the persistence of x. If D =

{
x j
}
, let Persk(D) = ∑ j `

k
j denote the degree-k total

persistence of D.

If we map the intervals [i, j) of Definition 4.11 into points (i, j) of the persistence diagram
we get that each point corresponds to a feature and its importance is proportional to the
absolute difference between the two coordinates of the point.

The points on the plane diagonal are included with infinite multiplicity because this
allows to give every persistence diagram the same cardinality and so compare them by
studying bijections between their elements[74]. This is used in the study of the stability
of persistent diagrams.

Some examples of applications are now provided to help the reader getting an idea of how
barcodes can be interpreted.

Analysis of Fullerene Structure[123]. In Figure 4.7, the PH analysis of icosahedron
and fullerene C70 are shown.
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Figure 4.7: Persistent homology analysis of the icosahedron (a) and fullerene C70 (b) are shown
respectively in (c) and (d) where there are three panels corresponding to β0, β1 and β2 bars,
respectively. Images from [123].

Note that for the icosahedron:

• β0: Originally 12 bars coexist, indicating 12 isolated vertices. Then, 11 of them
disappear simultaneously with only one survived. These vertices connect with
each other at ε = 2Å, i.e., the designed bond length. The positions where the bars
terminate are exactly the corresponding bond lengths.

• β1: As no one-dimensional circle has ever formed, no circle is generated.

• β2: There is a single bar, which represents a two-dimensional void enclosed by the
surface of the icosahedron.

In regarding of the fullerene C70 barcodes:

• β0: There are 70 initial bars and 6 distinct groups of bars due to the presence of 6
types of bond lengths in the C70 structure.

• β1: There is a total of 36 bars corresponding to 12 pentagon rings and 25 hexagon
rings. It appears that one ring is not accounted because any individual ring can be
represented as the linear combination of all other rings. Note that there are 6 types
of rings.

• β2: 25 hexagon rings further evolve to two-dimensional holes, which are
represented by 25 bars. The central void structure is captured by the persisting β2

bar.

Topological Fingerprints of Proteins[123]. Two most important protein structural
components, namely, alpha helices and beta sheets, are analyzed to reveal their unique
topological features, which can be recognized as their topological fingerprints. In Figure
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4.8 an alpha helix an its coarse-grained (CG) model are topologically compared.

Figure 4.8: Persistent homology analysis of the alpha helix structure (a) and CG model (c) are
shown respectively in (b) and (d) where there are three panels corresponding to β0, β1 and β2
bars, respectively. Atoms are demonstrated in green color and the helix structure of the main
chain backbone is represent by the cartoon shape in red. Images from [123].

The characteristic distance c is the relative influence domain of the atoms of biomolecules.
Usually, for the CG model (in witch each amino acid is represented by its Cα atom) the
optimized cut off distance is about 7−8Å. Optimal characteristic distances, however, can
be revealed from PH analysis.

As seen, the β0 bars can be very useful to reveal the bond length information. In Figure
a-4.8, we can observe that the helix alpha structure backbone has a loop-type structure,
but the corresponding barcode does not clearly demonstrate these patterns due to the fact
that there are two many atoms around the main chain. To extract more geometric and
topological details of the helix structure, we use the CG model.

As there are 19 residues in the alpha helix structure, only 19 atoms are used in the CG
model and the corresponding barcode is dramatically simplified. In Figure d-4.8, it is seen
that there are 19 β0 bars and the bar length is around 3.8Å, which is the average length
between two atoms. Additionally there are 16 β1 bars with similar birth time and persist
length. To reveal the topological meaning of these bars, we make use of a technique called
slicing.

Basically, we slice a piece of 4 atoms from the backbone and study its persistent homology
behavior. Then, one more atom is added at a time. The results are shown in Figure 4.9.
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Figure 4.9: Method of slicing for the analysis of alpha helix topological fingerprints. In the coarse-
grain representation, each residue is represented by a Cα atom. In an alpha helix. Images from
[123].

It can be seen that each four atoms in the alpha helix form a one-dimensional loop,
corresponding to a β1 bar. By adding more atoms, more loops are created and more β1

bars are obtained. Finally, 19 residues in the alpha helix produce exactly 16 loops as seen
in Figure 4.8. Each loop is contributed from 4 Cα .

4.2 Stability

In this paragraph we’ll show that, under some assumptions, the persistence diagram is
stable with respect to small perturbations: little changes in the data imply only small
changes in the diagram.

To compare persistence diagrams we’ll endow the space of persistence diagrams with
bottleneck distance, however consider that there are many variants of the stability results
for persistence diagrams, as we may define different distances between persistence
diagrams.

Definition 4.16. A multi-bijection is a bijective map between two multi-sets counted with
their multiplicity.

Definition 4.17. The Bottleneck distance between two persistence diagrams D1 and D2 is

dB(D1,D2) = in fγsupx∈D1||x− γ(x)||∞

where γ ranges over all multi-bijections from D1 to D2.
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Note that dB satisfies all axioms of a metric and thus deserves to be called a distance.
See Figure 4.10 for an example. For this definitions to make sense, we add infinitely
many copies of every point on the horizontal axis to the diagrams on the diagonal so they
guarantee that there are bijections between the multisets.

Figure 4.10: The Bottleneck distance between a blue and a red diagram. Image from [48].

However, the bottleneck metric is completely determined by the largest distance among
the pairs and do not take into account the closeness of the remaining pairs of points[48].
A variant, to overcome this issue, is the Wasserstein distance.

Definition 4.18. Given two persistence diagrams X and Y and p ∈ [1,∞], the p-th

Wasserstein distance between X and Y is

Wp[d](X ,Y ) :=

in fΨ:X→Y (∑x∈X d[x,Ψ(x)]p)
1
p , f or p ∈ [1,∞)

in fΨ:X→Y (supx∈X d[x,Ψ(x)]), f or p = ∞

where d is a metric on R2 and Ψ ranges over all bijections from X to Y .

Note that dB =W∞[L∞]. The Wasserstein distance is defined by finding the perfect pairing
that minimizes the sum, rather than the supremum, of the pairwise distances[12]. It is
more sensitive than bottleneck distance to details in the diagrams but requires additional
properties to be stable. The bottleneck distance is cruder but leads to a more general result,
so from now on we will focus on it.
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Definition 4.19. A function is tame if it has only finitely many homological critical
values, and all sublevel sets have finite rank homology groups.

In words, f is tame if for all but finitely many a ∈ R, the associated persistence module
M( f ) is constant and finite dimensional on some open interval containing a[22].

Theorem 4.20 (Stability Theorem for Tame Functions). Let X be a triangulable

topological space and f ,g : X → R two tame functions. For each dimension p,

dB(Dp( f ),Dp(g))≤ || f −g||∞

See Figure 4.11.

Figure 4.11: Left: two close functions, one with many and the other with just four critical values.
Right: the persistence diagrams of the two functions, and the bijection between them. Image from
[52].

The assumptions required for this result are mild and are satisfied by Morse functions on
compact manifolds, piecewise linear functions on simplicial complexes, and more.

Theorem 4.21 (Stability Theorem for Filtrations). Let K be a simplicial complex and

f ,g : K→ R two monotonic functions. For each dimension p, it holds that

dB(Dp( f ),Dp(g))≤ || f −g||∞

The bottleneck distance is based on a bijection between the points and is therefore always
at least the Hausdorff distance between the two diagrams [52]. So, we can get a lower
bound of || f −g||∞ using the dH that is generally easier to compute and to approximate.
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Proposition 4.22. Let X and Y be finite subsets in a metric space (M,dM), then

dB(D(X),D(Y ))≤ dH(X ,Y )

.

This gives a geometric intuition of the stability of persistence diagrams. Assume that X

is the true location of points and Y is a data obtained from skewed measurement with
ε = dH(X ,Y ). If there is a point (b,d) ∈ D(Y ), then we can find at least one generator in
X which is born in (b− ε,b+ ε) and dies in (d− ε,d + ε). See Figure 4.12.

Figure 4.12: Two data X and Y (left) and their persistence diagrams (right). The green region is
an ε−neighborhood of Dq(Y ). Image from [65].

More generally, we can obtain the following result[46].

Theorem 4.23. Let X and Y be two compact metric spaces and let Filt(X) and Filt(Y )

be the Čech (or VR) filtrations built on top them. Then

dB(D(Filt(X)),D(Filt(Y )))≤ 2dGH(X ,Y )

Moreover, if X and Y are embedded in the same space then

dB(D(Filt(X)),D(Filt(Y )))≤ 2dH(X ,Y )

We need methods for quantitatively assessing the quality of our results. In the next chapter,
we will discuss some statistical approaches to this problem.
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Some of the main goals of a statistical approach are to provide confidence regions for
topological features and select relevant scales at which the topological phenomenon
should be considered.

We’ll consider data as generated from an unknown distribution. The topological features
inferred by TDA methods will be seen as estimators of the topological quantities of the
true object[48]. We now report three of the main methods used for the statistical analysis
of PH results[74]:

• Compare the simplicial complexes built on empirical data to random simplicial
complexes used as null models;

• Study the properties of a metric space whose points are persistence diagrams;

• Map the space of persistence diagrams to Banach spaces amenable to statistical
analysis and machine-learning techniques. Such methods include persistence

landscapes.

We’ll now briefly describe and discuss these methods.

5.1 Random Simplicial Complexes

Non-local properties of networks are not expected to be closely reproduced by random
graphs with only local constraints[13]. For example, the global properties of human brain
differ drastically from the ones of a random graph whose degree distributions, degree
correlations and clustering are the same of the brain ones.

Following the paper [106], we introduce some definitions.
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Definition 5.1. The degree di of a node vi is the number of facets incident on it.

Definition 5.2. The size si of a facet σi is the number of nodes it contains.

This local information can be summarized by d = (d1, ...,dn) and s = (s1, ...,s f ), where n

is the number of nodes and f is the number of facets.

Definition 5.3. The simplicial configuration model (SCM) is the uniform distribution over
all labeled simplicial complexes with degree sequence d and facet size sequence s.

SCM allows describing arbitrary complexes in order to obtain a generic null model.

Observation 5.4. Let Ω(d,s) be the set of all labeled simplicial complexes with joint
sequences (d,s). Then if SCM has sequences (d,s), it places a probability

P(K;d,s) =

1/|Ω(d,s)| on K

0 on otherwise

Let’s now switch to the equivalent graphical representation of simplicial complexes. We
denote by F the facets set, and by V ∪F the complete node set. Facets are replaced by
nodes, and an edge connects facet σi ∈ F to node v j ∈V if and only if σi is incident to v j

in K, see Figure 5.1.

Figure 5.1: (a) Simplicial complex K and (b) its graphical representation. Image from [106].

Sampling from the SCM of parameters (d,s) is not equivalent to uniformly sampling from
all bipartite graphs with these degree sequences because the mapping is not bijective.
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Definition 5.5. A bipartite graph with joint degree sequences (d,s) is sequence

preserving if its equivalent simplicial complex has facet size sequence s and generalized
degree sequence d.

See Figure 5.2.

Figure 5.2: (a) Example of non-degree-preserving bipartite graphs. Image from [106].

A Markov chain is a stochastic model describing a sequence of possible events in which
the probability of each event depends only on the state attained in the previous event[66].
Given a k > 0, when the distribution of the state Xt+1 of the chain is the same as the
distribution of Xt for all t > k we talk of equilibrium distribution.

Markov Chain-based Monte Carlo (MCMC) methods are a class of algorithms for
sampling from probability distributions based on the construction of a Markov chain
having as equilibrium distribution the desired distribution. In [106], the MCMC
sampling strategy is used. The idea is to build a random chain of sequence preserving
bipartite graphs, to sample from it at regular intervals, and to treat the samples as if they
had been drawn i.i.d..

Since every instance of the SCM has the same fixed local structure but is maximally
random, we expect significant differences between the Betti numbers of an organized
simplicial complex and the bulk of the distribution of β in the corresponding randomized
ensembles.

Three datasets were analysed an it was found that the distribution of β0 and β1 for the
SCM associated was essentially random in one case. That is, the overwhelming majority
of simplicial complexes with the same sequences have similar β0 and β1. See Figure 5.3.

69



5. STATISTICAL DISCUSSION. THE BOOTSTRAP

Figure 5.3: The Betti numbers of these real systems appear as vertical lines. The distributions of
Betti numbers for the equivalent SCM with solid symbols (computed from 1000 instances of the
model) are shown. The shaded regions contain 95% of the samples. The distributions on the left
are associated with random features, while those in the middle and on the right differ from the
distributions of the random counterparts. Image from [106].

In contrast, the β of the other two datasets were highly different. The researcher could
conclude that the shape of the first dataset was completely determined by its local
structure, while large–scale organizational principles influence the structure of the other
ones.

In the discussion of the last two methods, we will use the bootstrap technique. Because
of this, now a brief explanation on it is provided.

5.2 The Bootstrap

The bootstrap is a general method that can be used for computing confidence
intervals[12].

Definition 5.6. A (1−α)-confidence interval for a parameter θ is an interval [a,b] such
that the probability P(θ ∈ [a,b]) is at least 1−α .

Given a measure space (X ,Ω,P), let X1, ...,Xn be i.i.d. random variables taking values on
it. If we want to estimate parameter θ related to the distribution P of the observation we
can use the statistic θ̂ = g(X1, ...,Xn), which is some function of the data. For example, θ

and θ̂ could be the population mean and the sample mean, respectively.

Given the cumulative distribution F of θ̂ −θ , the quantiles F−1(1−α/2) and F−1(α/2)
can be computed. Calculating a = θ̂ − F−1(1−α/2) and b = θ̂ − F−1(α/2) we can
obtain a 1−α confidence interval for θ as

P(θ ∈ [a,b]) = P
(

F−1
(

α

2

)
≤ θ̂ −θ ≤ F−1

(
1− α

2

))
= 1−α
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However, F depends on the unknown distribution P. So, we approximate it with the
empirical measure Pn that puts mass 1/n at each Xi in the sample.

Let’s sample X∗1 , . . . ,X
∗
n from X1, . . . ,Xn with replacement. Then, we can estimate the

distribution F(r) with the distribution

F̂(r) = Pn
(
θ̂
∗− θ̂ ≤ r

)
, where θ̂

∗ = g(X∗1 , . . . ,X
∗
n )

The distribution F̂ is still not analytically computable, but can be approximated by
simulation. For large B, obtain B different values of θ̂ ∗ and approximate F̂(r) with

F̃(r) =
1
B

B

∑
i=1

I
(
θ̂
∗
i − θ̂ ≤ r

)
.

Since the quantiles of F̃ approximate the quantiles of F, we define the estimated
confidence interval as

Cn =
[
θ̂ − F̃−1

n (1−α/2), θ̂ − F̃−1
n (α/2)

]
Summarizing, with the bootstrap we:

1. create a random sample with replacement from the original sample with sample size
as the original sample,

2. calculate the sample statistic

3. repeat steps 1 and 2 B times to obtain the bootstrap distribution

4. use this bootstrap distribution to calculate confidence intervals.

See Figure 5.4. We will get accurate estimates only if the sample size is sufficiently large.
Formally, one has to show that

sup
r
|F̃(r)−F(r)| P→ 0

which implies that
liminf

n→∞
P(θ ∈Cn)≥ 1−α

where Cn is the confidence interval.

An empirical process is a stochastic process based on a random sample.
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Figure 5.4: The bootstrap procedure. Image from [115].

Definition 5.7. Given a measure space (X ,Ω,P), let X1, ...,Xn be i.i.d. random variables
taking values in it. For a measurable function f : X→ R, we denote P f =

∫
f dP and

Pn f =
∫

f dPn = n−1
∑

n
i=1 f (Xi) .

Proposition 5.8. By the law of large numbers Pn f converges almost surely to P f .

The bootstrap empirical process, can be used to find a confidence band for a function h(t)

that is two functions a(t) and b(t) such that

P(h(t) ∈ [a(t),b(t)])≥ 1−α ∀t

Definition 5.9. Given a class F of measurable functions, we define the empirical process
Gn indexed by F as {Gn f} f∈F = {

√
n(Pn f −P f )} f∈F .

Definition 5.10. `∞(F ) is the collection of all bounded functions f : X→ R.

Definition 5.11. A class F of measurable functions f : X→ R is P-Donsker if a process
{Gn f} f∈F converges in distribution to a limit process in the space `∞(F ).

Proposition 5.12. The limit process to which {Gn f} f∈F converges is a Gaussian process
G with zero mean and covariance function P f g−P f Pg.

Definition 5.13. Let P∗n f = n−1
∑

n
i=1 f (X∗i ) where {X∗1 , . . . ,X∗n } is a bootstrap sample

from Pn, that is the measure that puts mass 1/n on each element of the sample
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{X1, . . . ,Xn} . The bootstrap empirical process G∗n indexed by F is defined as

{G∗n f} f∈F =
{√

n(P∗n f −Pn f )
}

f∈F

Theorem 5.14. [12] F is P -Donsker if and only if G∗n converges in distribution to G in

`∞(F ).

Suppose we are interested in constructing a confidence band of level 1−α for {P f} f∈F ,

where F is P -Donsker. Let θ̂ = sup f∈F |Gn f | . We proceed as follows:

• we sample X∗1 , . . . ,X
∗
n from Pn and compute θ̂ ∗ = sup f∈F |G∗n f |

• we repeat the previous step B times to obtain θ̂ ∗1 , . . . , θ̂
∗
B

• we compute qα = inf
{

q : 1
B ∑

B
j=1 I

(
θ̂ ∗j ≥ q

)
≤ α

}
• for f ∈F , we define the confidence band Cn( f ) =

[
Pn f − qn√

n ,Pn f + qg√
n

]
A consequence of Theorem 1.4 is that, for large n and B, the interval [0,qα ] has coverage
1−α for θ̂ and the band Cn( f ) f∈F has coverage 1−α for {P f} f∈F .

5.3 Distance Approach

Using the Stability Theorem 4.23, we can define confidence sets to separate topological
signal from topological noise. Given a persistence diagram D with an estimator D̂ , we
look for some value ηα such that

P
(

dB(D̂ ,D)≥ ηα

)
≤ α f or α ∈ (0,1)

The confidence set related will be{
D : dB(D̂ ,D)≤ ηα

}
We can visualize it by adding a box of side length 2ηα centered at each point on the
persistence diagram. Given a point p of the persistence diagram the corresponding box is
defined as

{q ∈ R2 : d∞(p,q)≤ ηα}

If this box intersects the diagonal, p is considered indistinguishable from noise[12]. We
can also visualize the confidence set by adding a band of width

√
2ηα around the diagonal.
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The points in the band are considered as noise. See Figure 5.5.

Figure 5.5: Persistence diagram and its confidence region. On the left, the confidence boxes. On
the right, the corresponding band of confidence. Image from [12].

Observation 5.15. This trivial separation between signal and noise is not the only way
to quantify the uncertainty in the persistence diagram. Indeed, some points near the
diagonal may represent interesting structures. One can imagine endowing each point
with a different confidence set or assigning it a specific p-value as in [51].

Several methods have been proposed to estimate ηα .

5.3.1 Subsampling Method

Let (M,ρ) be a metric space. Given X1, ...,Xn in M drawn i.i.d. from some unknown
measure µ whose support is a compact set Xµ , an estimator X̂ of Xµ is a function of
X1, ...,Xn that takes values in the set of compact metric spaces and that is measurable for
the Borel algebra induced by dGH .

Definition 5.16. Given a,b > 0, a measure µ satisfies the (a,b)-standard assumption if
for any x ∈ Xµ and r > 0, µ(B(x,r))> min

(
arb,1

)
.

According to the Theorem 4.23, we can state the proposition below.

Proposition 5.17. [46]

∀ε > 0, P
(

db

(
D
(
Filt
(
Xµ

))
,D(Filt(X̂))

)
> ε

)
6 P

(
dGH

(
Xµ , X̂

)
> 2ε

)
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where the probability corresponds to the product measure µ⊗n.

Using this proposition, we then derive the following result for persistence diagram
estimation.

Theorem 5.18. [12] If the probability measure µ on M satisfies the (a,b)-standard

assumption

∀ε > 0,P
(

db

(
D
(
Filt
(
Xµ

))
,D
(

Filt
(

X̂n

)))
> ε

)
6 min

(
2b

aεbe(naεb)
,1
)

This theorem can be used to find confidence sets for persistence diagrams. However, they
will depend on a and b which may be unknown.

Theorem 5.19. [12]

• Let Xb be a subsample of size b drawn from the sample Xn, where b = o(n/logn).

• Let qb(1−α) be the quantile of of the distribution of dH(Xb,Xn).

• Take η̂α := 2q̂b(1−α) where q̂b is an estimation qb(1−α) using a standard Monte

Carlo procedure.

Under an (a,b)-standard assumption, and for n large enough we can infer

P(db(D(Filt(K))),D(Filt(Xn)))> η̂α)≤ P(dH (K,Xn)> η̂α)≤ α +O
(

b
n

)1/4

An alternative strategy is the bootstrap method.

5.3.2 Bootstrap Method

Definition 5.20. A smooth function is a function that has derivatives of all orders
everywhere in its domain.

Definition 5.21.

• Let X1, . . . ,Xn be a sample from the distribution P, supported on a smooth manifold
X ⊂ RD.
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• Let K :R→R be an integrable function satisfying
∫

K(u)du= 1 and such that K(u)

is non-negative for all u.

• Let ph(x) =
∫

X
1

hD K
(
‖x−u‖

h

)
dP(u).

ph is a probability distribution called kernel density. The function K is called kernel and
the parameter h > 0 is its bandwidth.

Definition 5.22. The standard estimator for ph is the kernel density estimator

p̂h(x) =
1
n

n

∑
i=1

1
hD K

(
‖x−Xi‖

h

)

Note that if Xi are fixed, then p̂h is a probability distribution.

• Given a sample X1, . . . ,Xn the first step in the bootstrap approach is to compute p̂h.

• Then we sample X∗1 , . . . ,X
∗
n from X1, . . . ,Xn with replacement.

• We can now compute θ ∗=
√

n
∥∥p̂∗h(x)− p̂h(x)

∥∥
∞
, where p̂∗h is the density estimator

computed using X∗1 , . . . ,X
∗
n .

• Repeat the previous step B times we obtain θ ∗1 , . . . ,θ
∗
B.

• We can compute qα = inf
{

q : 1
B ∑

B
j=1 I

(
θ ∗j ≥ q

)
≤ α

}
.

Under suitable regularity conditions on the kernel K for which F is Donsker, it holds that

limsup
n→∞

P
(√

n‖p̂h− ph‖∞
> qα

)
≤ α.

We conclude that the (1−α) confidence band for E [p̂h] is[
p̂h−

qα√
n
, p̂h +

qα√
n

]

5.4 Persistence Landscapes

The two standard topological summaries of data are the barcode and the persistence
diagram. However, their spaces lack geometric properties that would make it easily to
define basic concepts such as mean, median, and so on. We will define a new
closely-related summary, the persistence landscape, and then compare it to the two
previous summaries. The basic idea is to convert the barcode into a function.
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Definition 5.23. Let M be a persistence module. For a ≤ b, the corresponding Betti

number of M is given by β a,b = dim(im(M(a≤ b))).

Definition 5.24. The rank function is the function λ : R2→ R given by

λ (b,d) =

β b,d if b≤ d

0 otherwise

Now let us change coordinates considering m = b+d
2 and h = d−b

2 .

Definition 5.25. The rescaled rank function is the function λ : R2→ R given by

λ (m,h) =

β m−h,m+h if h≥ 0

0 otherwise

Definition 5.26. The persistence landscape is a sequence of functions
λk : R→ [−∞,+∞], λk(t) := λ (t,k).

There exist maps in both directions between persistence barcodes (or diagrams) and
persistence landscape. To obtain a landscape from a barcode, one replaces every bar of
the barcode by a peak, whose height is proportional to the persistence of the bar. In the
landscape, we translate all peaks so that they touch the horizontal axis. See Figure 5.6.

Definition 5.27. The persistence landscape corresponding to the barcode B is the set of
functions {λk(t) : R→ R}k∈N , where λk(t) is the kth largest value of

{
f(ai,bi)(t)

}m
i=1 , and

λk(t) = 0 whenever k > m.

Figure 5.6: On the left, from an interval to the auxiliary function representation. In the middle,
from a barcode to a persistence landscape and on the right, the 3D visualization of the persistence
landscape. Image from [21].

Definition 5.28. Let M and M′ be persistence modules and let λ and λ ′ be their
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corresponding persistence landscapes. For 1≤ p≤ ∞, the p-landscape distance between
M and M′ is

Λp
(
M,M′

)
=
∥∥λ −λ

′∥∥
p

Theorem 5.29 (Landscape Stability Theorem). Given a real valued function f : X → R
on a topological space X , let M( f ) denote be the corresponding persistence module. Then

Λ∞(M( f ),M(g))≤ ‖ f −g‖∞

Thus the PL is stable with respect to the supremum norm. Note that there are no
assumptions on f and g, not even the q-tame condition.

Theorem 5.30. For persistence diagrams D and D′, Λ∞ (D,D′)≤ dB (D,D′).

So persistence landscape is a stable summary statistic and the landscape distance gives
lower bounds for the bottleneck and Wasserstein distances.

The main advantage of the persistence landscapes (PL) over persistence diagrams is that
their space is a separable Banach space.

Definition 5.31. A topological space is separable if there exists a sequence {xn}∞
n=1 of its

elements such that every non-empty open subset of it contains at least one element of the
sequence.

Definition 5.32. Given a metric space (X ,d), a sequence {xn} is Cauchy, if ∀ε > 0 ∃N ∈
N,N > 0|∀m,n ∈ N with m,n > N, d(xm,xn)< ε .

In words, the terms of the sequence get closer in a way that suggests that the sequence
ought to have a limit in X . Nonetheless, such a limit does not always exist within X .

Definition 5.33. A Banach space is a vector space X over R or C equipped with a norm
‖ · ‖X such that for every Cauchy sequence {xn} in X , ∃x ∈ X | limn→∞ ‖xn− x‖X = 0.

Sets of persistence diagrams do not have a unique mean, while the space of persistence
landscapes does. See Figure 5.7.
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Figure 5.7: We can create an average of two landscapes by taking the mean over the function
values in every layer. Image from [80].

Let X be a random variable on a probability space (Ω,F,P). Given ω ∈ Ω, X(ω) is the
data and Λ(ω) = λ (X(ω)) =: λ is the corresponding persistence landscape.

Definition 5.34. Let X1, ...,Xn be i.i.d. copies of X , and let λ1, ...,λn be the corresponding
PLs. The mean landscape is given by

Λn(Ω) = λ n, where λ n(k, t) =
1
n

n

∑
i=1

λi(k, t)

See Figure 5.8.

Figure 5.8: 200 points were sampled from a pair of linked annuli and a corresponding union of
balls (a) and 1-skeleton of the Čech complex is shown (b). This was repeated 100 times. Two of
the one degree persistence landscapes are shown in (c) and (d). Finally, the mean degree one
persistence landscape is shown in (e). Image from [22].
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To be able to say that the mean landscape converges to the expected persistence landscape
we need some notions from probability in Banach spaces[22].

• Let B be a real separable Banach space with norm ‖ · ‖.

• Let (Ω,F ,P) be a probability space.

• Let V : (Ω,F ,P)→B be a Borel random variable with values in B.

• Let B∗ be the dual space of continuous linear real-valued functions on B.

Proposition 5.35. ‖V‖ : Ω
V→B

‖·‖−→ R is a random variable.

Proposition 5.36. For f ∈B∗, f (V ) : Ω
V−→B

f→ R is a random variable.

Definition 5.37. For a random variable Y : (Ω,F ,P)→ R, the mean is

E(Y ) =
∫

Y dP =
∫

Ω

Y (ω)dP(ω)

Definition 5.38. For a sequence (Yn) of B-valued random variables, we say that (Yn)

converges almost surely to a B-valued random variable Y, if P(limn→∞Yn = Y ) = 1.

Theorem 5.39 (Strong Law of Large Numbers[22]).
(1

nSn
)
→ E(V ) almost surely ⇔

E‖V‖< ∞.

Definition 5.40. For a sequence (Yn) of B-valued random variables, we say that (Yn)

converges weakly to a B-valued random variable Y, if limn→∞ E (ϕ (Yn)) = E(ϕ(Y )) for
all bounded continuous functions ϕ : B→ R.

Definition 5.41. A random variable G with values in B is said to be Gaussian if for each
f ∈B∗, f (G) is a real valued Gaussian random variable with mean zero.

Definition 5.42. The covariance structure of a B-valued random variable, V, is given by
the expectations E[( f (V )−E( f (V )))(g(V )−E(g(V )))], where f ,g ∈ B∗.

Theorem 5.43 (Central Limit Theorem[22]). Let B = Lp(S ), with 2≤ p <∞. If E(V ) =

0 and E
(
‖V‖2) < ∞ then 1√

nSn converges weakly to a Gaussian random variable G(V )

with the same covariance structure as V .

Thanks to these concepts, it’s possible to apply the Strong Law of Large Numbers and the
Central Limit Theorem for persistence landscapes[22].

80



5. STATISTICAL DISCUSSION. PERSISTENCE LANDSCAPES

Theorem 5.44 (Strong Law of Large Numbers for persistence landscapes). Λ
n→ E(Λ)

almost surely⇔ E‖Λ‖< ∞.

Theorem 5.45 (Central Limit Theorem for persistence landscapes). Assume p ≥ 2. If

E‖Λ‖ < ∞ and E
(
‖Λ‖2) < ∞ then

√
n
[
Λ

n−E(Λ)
]

converges weakly to a Gaussian

random variable with the same covariance structure as Λ.

Example 5.46. In order to perform a hypothesis test, a functional can be applied to each
PL, resulting in a single value

X = ∑
k

∫
R

λk(t)dt

It’s value is the total area area under all of the persistence landscapes in the k-th homology
group. Since both SLLN and CLT hold, provided a sufficiently large sample, X has an
approximately normal distribution[21]. A permutation test can be performed to compare
the mean value of each homology group. In the data of Figure 5.9 a permutation t-test
(p-value 0.0028) differentiates the disk from the annulus in terms of the one-dimensional
cycle.

Figure 5.9: TDA on sets of points sampled for a disk and an annulus. (a) Some complexes of the
two VR filtrations. (b) Their barcodes for the first homology group. (c) The PLs corresponding to
each barcode. (d) The mean PLs. Image from [21].

We’ll now derive the confidence sets for PLs using the CLT and the bootstrap method.

5.4.1 Central Limit Theorem

First we apply a functional to the persistence landscapes to obtain a real-valued random
variable that satisfies the usual CLT.
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Corollary 5.47. Assume p≥ 2,E‖Λ‖< ∞ and E
(
‖Λ‖2)< ∞. For any f ∈ Lq(S ) with

1
p + 1

q = 1, let Y =
∫
S f Λ = ‖ f Λ‖1. Then

√
n
[
Y n−E(Y )

] d→ N(0,Var(Y )) where d

denotes convergence in distribution and N(µ,σ2) is the normal distribution with mean µ

and variance σ2.

Theorem 5.48 (Slutsky’s Theorem). Let Xn, Yn be sequences of random elements. If Xn

converges in distribution to a random element X and Yn converges in probability to a

constant c, then

• Xn +Yn
d−→ X + c;

• XnYn
d−→ cX;

• Xn/Yn
d−→ X/c.

where d−→ denotes convergence in distribution.

Assume that λ (X) satisfies the conditions of Corollary 5.47 and that Y is a corresponding
real random variable. By Corollary 5.47 and Slutsky’s Theorem we may use the normal
distribution to obtain the approximate (1−α) confidence interval for E(Y )

Y n± z∗
Sn√

n
, where S2

n =
1

n−1

n

∑
i=1

(
Yi−Y n

)2

and z∗ is the upper
α

2
critical value for the normal distribution.

5.4.2 Bootstrap Method

Let the diagrams P1, . . . ,Pn be a sample from the distribution P over the space of
persistence diagrams DT . Let L1, . . . ,Ln be the landscape functions corresponding to
P1, . . . ,Pn. In [12], the process

√
n
(
L n(t)−µ(t)

)
was proved to converge to a

Gaussian process, so the bootstrap empirical process can be used.

Let Pn be the empirical measure that the corresponding landscapes L ∗
1 , . . . ,L

∗
n . Let L

∗
n

be the empirical mean and θ̂ ∗ = supt∈R

∣∣∣√n
(
L
∗
n(t)−L n(t)

)∣∣∣ . Repeating this B times,

we obtain θ̂ ∗1 , . . . θ̂
∗
B, and we compute the quantile qα .
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Theorem 5.49. The interval Cn(t) indexed by t ∈ R, defined by

Cn(t) =
[
L n(t)−

qα√
n
,L n(t)+

qα√
n

]
is a confidence band for µ(t)

lim
n→∞

P(µ(t) ∈Cn(t) for all t)≥ 1−α

Example 5.50. Given the nine circles of radii 0.4 and 0.3 we obtain a sample X1, ...,X100

as follows: first, choose a circle Ci uniformly at random, then sample a point i.i.d. from
it. Let D be the β1 persistence diagram corresponding to the VR filtration for the sample,
and L be the landscape corresponding to D . We repeat this 50 times to obtain diagrams
D1, ...,D50 and landscapes L1, ...,L50. Then, we use the bootstrap procedure to obtain the
quantile qα = 0.234. Together with L50, this gives us an approximated 95% confidence
band for µ(t) = EP(Li(t)). See Figure 5.10.

Figure 5.10: Left: The set of circles from which samples are taken. Right: The confidence band for
the persistence landscape corresponding to the distance to the point set. Image from [22].

83





6. Implementation

In [74], different libraries such as javaPlex, Perseus, Dionysus, DIPHA, GUDHI, and
PHAT were tested and compared. GUDHI[75], which is available for C++ and Python,
has been highlight as one of the best available open-source libraries.

GUDHI proposed an efficient tree representation for simplicial complexes, the simplex

tree, see Figure 6.1. The nodes of the tree are in bijection with the simplices of the
complex.

Figure 6.1: A simplicial complex and its representation as simplex tree. With focus on the simplex
{2,3,4,5}. Image from [16].

The tree structure enables to store the informations of the complex and implement basic
operations on it efficiently. Lots of interesting calculation on complexes can be performed,
for example an elementary collapse of the free pair (τ,σ) consists in the removal of the
two-nodes subtree containing the nodes representing τ and σ [16].

We’ll now provide the implementation insights of some of the TDA steps previously
mentioned.
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6.1 Application

To analyse the topological information of different datasets a console application was
implemented. In particular, the application:

• computes the VR filtrations of different numerical datasets (GUDHI - Python),

• extracts the persistences of the filtrations (GUDHI - Python),

• computes the confidence bands using the bootstrap method (TDA - Python),

• computes the persistence barcodes, the persistence diagrams and the Betti curves in
a dynamic BI application that allows to easily access the insights provided by TDA
(QlikView).

See Figure 6.2 for an overview of the upload process and Figure 6.3 for the TDA
calculations steps.

Figure 6.2: The data upload process: Pandas module was used to handle and check the input
information and the Matplolib to achieve the 3d and 2d plots.
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Figure 6.3: Persistence computation process.

The code of the console application is now provided.

6.1.1 Python

import os

import gudhi

from pathlib import Path

import subprocess

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from pylab import *
import importlib

importlib.import_module(’mpl_toolkits’).__path__

from mpl_toolkits.mplot3d import Axes3D

def RaiseException(error):

print(error)

raise Exception(error)
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def maxminDistance(points, dim):

max_= 0

min_= sys.maxsize

avg_= 0

N=0

if dim==3:

for point in points:

if str(point[0])!=’nan’ and str(point[1])!=’nan’ and str(

point[2])!=’nan’:

for point2 in points:

if str(point2[0])!=’nan’ and str(point2[1])!=’

nan’ and str(point2[2])!=’nan’ and point2!=

point:

a=math.pow(point[0]−point2[0],2)
b=math.pow(point[1]−point2[1],2)
c=math.pow(point[2]−point2[2],2)
max_ = max(max_, sqrt(a+b+c))

min_ = min(min_, sqrt(a+b+c))

avg_=avg_+sqrt(a+b+c)

N=N+1

else:

for point in points:

if str(point[0])!=’nan’ and str(point[1])!=’nan’ :

for point2 in points:

if str(point2[0])!=’nan’ and str(point2[1])!=’

nan’ and point2!=point:

a=math.pow(point[0]−point2[0],2)
b=math.pow(point[1]−point2[1],2)
max_ = max(max_, sqrt(a+b))

min_ = min(min_, sqrt(a+b))

avg_=avg_+sqrt(a+b)

N=N+1

return max_,min_, avg_/N

def num_after_point(x):

s = str(x)

if not ’.’ in s:
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return 0

return len(s) − s.index(’.’) − 1

def GetAxes(Name, dict):

X=input(’What column should be used as ’+Name+ ’ axes?\n’)

if X == ’’:

RaiseException( Name+ ’ axes must be valorized’)

try:

X=int(X)

except:

RaiseException(’This choice is not possible’)

if (X <= i and X > 0 and isinstance(X, int))==False:

RaiseException(’This choice is not possible’)

X = dict[str(X)]

if np.issubdtype(df[X].dtype, np.number)==False:

RaiseException(X +’ is not a numerical column’)

return X

def GetDatasets(X, dict):

if X == ’’:

RaiseException( ’X axes must be valorized’)

try:

X=int(X)

except:

RaiseException(’This choice is not possible’)

if (X <= i and X > 0)==False:

RaiseException(’This choice is not possible’)

X = dict[str(X)]

return X

def GetOptionalAxes(X, dict):

try:

X=int(X)

except:

RaiseException(’This choice is not possible’)

if (X <= i and X > 0)==False:

RaiseException(’This choice is not possible’)
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X = dict[str(X)]

if np.issubdtype(df[X].dtype, np.number)==False:

RaiseException(X +’ is not a numerical column’)

return X

def drawPlot(plot, X, Y, Z):

if plot==’y’:

fig = plt.figure()

xs=[]

ys=[]

zs=[]

if Z == ’’:

fig = plt.figure()

ax = fig.add_subplot(111)

for index, row in df.iterrows():

xs.append(row[X])

ys.append(row[Y])

ax.scatter(xs, ys)

ax.set_xlabel(X)

ax.set_ylabel(Y)

plt.show()

return xs, ys, None

else:

fig = plt.figure()

ax = fig.add_subplot(111, projection=’3d’)

for index, row in df.iterrows():

xs.append(row[X])

ys.append(row[Y])

zs.append(row[Z])

ax.scatter(xs, ys, zs)

ax.set_xlabel(X)

ax.set_ylabel(Y)

ax.set_zlabel(Z)

plt.show()

return xs, ys, zs

elif plot==’n’:

xs=[]
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ys=[]

zs=[]

if Z == ’’:

for index, row in df.iterrows():

xs.append(row[X])

ys.append(row[Y])

return xs, ys, None

else:

for index, row in df.iterrows():

xs.append(row[X])

ys.append(row[Y])

zs.append(row[Z])

return xs, ys, zs

else:

RaiseException(’Not valid option’)

def AvgEuclideanDist(points):

points_array=np.asarray(points)

tot = 0

for i in range(len(points_array)−1):
tot += ((((points_array[i+1:]−points_array[i])**2).sum(1))**.5).
sum()

avgEuclDist = tot/((points_array.shape[0]−1)*(points_array.shape[0])/2.)
return avgEuclDist

if __name__ == ’__main__’:

print(’TDA summary application started’)

intervalPath = os.path.join(os.path.dirname(__file__), ’interval.txt’)

persistencePath = os.path.join(os.path.dirname(__file__), ’data.pers’)

bootstrapPath = os.path.join(os.path.dirname(__file__), ’bootstrap.csv’)

bootstrapCodePath = os.path.join(os.path.dirname(__file__), ’Boot.r’)

datasetPath= os.path.dirname(__file__)+’\\datasets’

Restart= ’y’

Norestart =’n’

while Restart==’y’:
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Norestart=’n’

while Norestart ==’n’:

# Data upload

print(’Found datasets:’)

i=0

dict={}

for file in os.listdir(datasetPath):

i=i+1

dict[str(i)] = file;

print(str(i)+’) ’+file)

dataset = input("Which dataset should I use?\n")

dataset= os.path.join(datasetPath, GetDatasets(dataset, dict

))

# Conversion from CSV to Pandas dataframe

df = pd.read_csv(dataset, error_bad_lines=False, sep=’;’)

print(’The attributes are: ’)

i=0

dict={}

for column in list(df.columns.values):

i=i+1

dict[str(i)] = column;

print(str(i)+’) ’+column)

if (df.columns.values==[]):

RaiseException(’The file has not the sufficient

number of attributes’)

dim=3

# Attribute choice

X = GetAxes(’X’, dict)

Y = GetAxes(’Y’, dict)

Z=input(’What column should be used as Z axes? [facoltative

]\n’)

if Z == ’’:

dim=2
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else:

Z = GetOptionalAxes(Z, dict)

# Plot

plot = input("Do you want to plot the dataset? (y/n)\n")

xs, ys, zs = drawPlot(plot, X, Y, Z)

points=[]

for elem in range(len(xs)):

if dim ==3:

points.append([xs[elem], ys[elem], zs[elem]])

if dim ==2:

points.append([xs[elem], ys[elem]])

#Restart

Norestart = input("Do you want to analyse this dataset? (y/n

)\n")

#Average, Max and Min Euclidean distances

maxdist, mindist, avgdist= maxminDistance(points, dim)

#avgdist= AvgEuclideanDist(points)

print(’The maximal Euclidean distance is ’+str(maxdist))

print(’The minimal Euclidean distance is ’+str(mindist))

print(’The average Euclidean distance is ’+str(avgdist))

#Calculating VR Complex

maxdistc = input("Witch maximal proximity parameter use? \n")

print(’Calculating VR complex using ’+str(maxdistc)+ ’ as proximity

parameter’)

rips_complex = gudhi.RipsComplex(points=points, max_edge_length=

float(maxdistc))

#Building the Simplex Tree

print(’Building the simplex tree’)

simplex_tree = rips_complex.create_simplex_tree(max_dimension=int(

dim))

print(’Using this parameter VR complex has: \n’ + repr(simplex_tree

.num_vertices()) + ’ vertices.\n’+ repr(simplex_tree.
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num_simplices()) + ’ simplices.’)

#Calculating Persistence

print(’Calculating persistence’)

diag = simplex_tree.persistence()

maxValue=0;

maxDecimal=0;

for interval in diag:

if(interval[1][1]!= inf):

maxValue=max(maxValue, interval[1][1])

maxValue=max(maxValue, interval[1][0])

interval_ = np.linspace(0,maxValue,100)

with open(intervalPath, ’w’) as f:

for elem in interval_:

f.write(’%f\n’ % elem)

print(’Writing persistence’)

simplex_tree.write_persistence_diagram(persistencePath)

print(’Persistence written’)

#Bootstrap

alpha = input("Which alpha use for bootstrapping?\n")

B = input("How many iterations for bootstrapping?\n")

print(’Report info for Bootstrap’)

with open(bootstrapPath, ’w’) as f:

f.write(’Path;Dim;alpha;B;Columns;MaxPersistence’+’\n’)

f.write(str(dataset)+’;’+str(dim)+’;’+str(alpha)+’;’+str(B)+

’;’+str(X)+’;’+str(maxdistc)+’\n’)

f.write(’;;;;’+str(Y)+’;\n’)

if (dim==3):

f.write(’;;;;’+str(Z)+’;’)

print(’Compiling Bootstrap’)

subprocess.call(["C:/Program Files/R/R−3.5.1/bin/R", ’−f’,
bootstrapCodePath])

print(’Program ended’)

Restart = input("Do you want to analyze again? (y/n)\n")

Note that in Python, an R script is called to be processed. It computes the confidence band
width and its code is provided below.
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6.1.2 R

if (!require(package = "TDA")) {install.packages(pkgs = "TDA")}

library('TDA')

pathDataset<- read.csv("./bootstrap.csv", header = TRUE, sep=';',

stringsAsFactors = FALSE)

B <- pathDataset[["B"]][1]

X <- pathDataset[["Columns"]][1]

Y <- pathDataset[["Columns"]][2]

S <- read.csv(pathDataset[["Path"]][1], header = TRUE, sep=';')

if(pathDataset[["Dim"]][1]==2) {

S <- as.matrix(S[,c(X, Y)])

XX <- as.matrix(S[,c(X)])

YY <- as.matrix(S[,c(Y)])

Xseq <- seq(XX[1], XX[2], by = ((XX[1]-XX[2])/(-10)))

Yseq <- seq(YY[1], YY[2], by = ((YY[1]-YY[2])/(-10)))

Grid <- expand.grid(Xseq, Yseq)

}

if(pathDataset[["Dim"]][1]==3) {

Z <- pathDataset[["Columns"]][3]

S <- as.matrix(S[,c(X, Y, Z)])

XX <- as.matrix(S[,c(X)])

YY <- as.matrix(S[,c(Y)])

ZZ <- as.matrix(S[,c(Z)])

Zseq <- seq(ZZ[1], ZZ[2], by = ((ZZ[1]-ZZ[2])/(-10)))

Xseq <- seq(XX[1], XX[2], by = ((XX[1]-XX[2])/(-10)))

Yseq <- seq(YY[1], YY[2], by = ((YY[1]-YY[2])/(-10)))

Grid <- expand.grid(Xseq, Yseq, Zseq)

}

h <- nrow(XX)^-.2

band <- bootstrapBand(X = S, FUN = kde, Grid = Grid, B = B, alpha =

pathDataset[["alpha"]][1], h = B^-.2)

write.table(band[["width"]], "./confidence.txt" ,col.names = FALSE)

The visualizations achieved in QlikView using the proprietary language will be presented
in the last chapter within the practical use of the program on some datasets.
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The program can be used on every numerical dataset having as separator a semicolon.
We’ll show the results found for different datasets:

• The Ecoli dataset (3D)

• Two datasets containing quite clear circular shapes (2D)

• Four datasets containing various elements. Two of them are corrupted by noise (2D
and 3D)

Ecoli dataset

The Ecoli Data Set[55] containing protein localization sites information and having 336
istances has been analysed. Its attributes are:

1. Sequence Name: Accession number for the SWISS-PROT database (Categorical).

2. mcg: McGeoch’s method for signal sequence recognition (Real).

3. gvh: von Heijne’s method for signal sequence recognition (Real).

4. lip: von Heijne’s Signal Peptidase II consensus sequence score (Binary).

5. chg: Presence of charge on N-terminus of predicted lipoproteins (Binary).

6. aac: score of discriminant analysis of the amino acid content of outer membrane
and periplasmic proteins (Real).

7. alm1: score of the ALOM membrane spanning region prediction program (Real).

8. alm2: score of ALOM program after excluding putative cleavable signal regions
from the sequence (Real).
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Using the application we decided to consider the attributes aac, mcg and gvh. See Figure
7.1.

Figure 7.1: On the left, the first steps of the console applications used on the Ecoli dataset. On the
right, the plot returned after the choise of plotting the dataset.

Between the points

• the average Euclidean distance is ∼ 0.35.

• the maximal Euclidean distance is ∼ 0.98.

• the minimal Euclidean distance is ∼ 0.01.

We choose as maximal proximity parameter 0.3. If we generate a VR complex we get:

• 336 vertices

• ∼ 28 million simplices

The persistence computation, in the whole [0,0.3] interval of proximity parameters,
revealed the presence of

• 336 components

• 135 loops

• 17 voids

In Figure 7.2 we can see the further steps of the application and the chosen parameters for
the confidence band calculation: α = 0.05 and 100 bootstrap iterations.
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Figure 7.2: Further steps of the console applications. The bootstrap parameters can be chosen.

All the information are stored in different files collected in QlikView.

SET DecimalSep='.';

SET MoneyThousandSep='.';

info:

LOAD Path, Dim as MaxDim, alpha, B, Columns, MaxPersistence

FROM [.\bootstrap.csv]

(txt, codepage is 1252, embedded labels, delimiter is ';', msq);

Qualify *;

persistenceUnique:

LOAD MaxPersistence resident info where MaxPersistence>0;

Unqualify *;

LET proximity = Peek('persistenceUnique.MaxPersistence');

interval:

LOAD @1 as proximity

FROM [.\interval.txt]

(txt, codepage is 1252, no labels, delimiter is '\t', msq);

confidence:

LOAD @1 as confidence, sqrt(2)*Num(@2) as band

FROM [.\confidence.txt]

(txt, codepage is 1252, no labels, delimiter is spaces, msq);

persistence:

LOAD

rowno() as uniqueIdentifier,
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@1 as Dim,

@2 as start,

if(@3='inf', $(proximity), @3) as end

FROM [.\data.pers]

(txt, codepage is 1252, no labels, delimiter is ' ', msq);

The resulting application template is show in Figure 7.3. The persistence barcode, the
persistence diagram and the Betti curves are provided.

Figure 7.3: Application front-end template.

Some basic information are displayed, such as β0, β1, β2 and the Euler characteristic.
We can select a specific feature analysis by clicking on it. If "Clear Noise" is selected,
bootstrapped noise is deleted, instead "Add All" sets the minimum considered persistence
to 0. Using the scrollbar, the persistence threshold can be set to specific values. see Figure
7.4.

Figure 7.4: Buttons and KPIs of the TDA applications.
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The specific dynamic selections are allowed, see Figure 7.5.

Figure 7.5: Application front-end template after pressing the red β2 button.

Coming back to the analysis at hand, in Figure 7.7, 7.8 and 7.6 the topological summaries
are presented. Clearing the persistence summaries from noise, we get 183 components
and a loop. See Figure 7.9. The green elements refer to componets, the yellow ones to
loops and the red ones to voids.

Figure 7.6: The rotated persistence diagram of Ecoli Data Set with the usual colors. The diagram
can be de-rotated just by clicking the arrow image.

101



7. RESULTS.

Figure 7.7: Persistence barcode of Ecoli Data Set ordered by persistence. The usual colors are
used.

Figure 7.8: The Betti curves with the usual colors.
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Figure 7.9: Persistence summaries of Ecoli Data Set after noise removal.

Circular Datasets

Consider the 2D-dataset represented in Figure 7.10.

Figure 7.10: Noisy circle dataset scatterplot.

If we run our application setting α = 0.05 and the number of bootstrap iterations to 100
we obtain the results in Figure 7.11.

It’s clear that the circle is a relevant topological features despite the little noise. The Betti
curves shows that the points collapse in a unique connected component with circular
shape. If we analyse the dataset in Figure 7.12, we obtain the same result but from the
charts in Figure 7.13 we can detect that first two persistent loops are found and they
collapses in one that finally disappears.
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Figure 7.11: Topological summaries of the dataset of Figure 7.10.

Figure 7.12: Circular dataset scatterplot.

Figure 7.13: Topological summaries of the dataset of Figure 7.12.
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Noisy Datasets

Finally, the datasets shown in Figure 7.14, 7.15, 7.16 and 7.17 were analysed and their
topological summaries are shown on side. The more persistent loops and voids have been
detected by the persistence barcode. The Python code to generate these datasets is
provided.

#(...)

with open(sphere, ’w’) as f:

f.write(’x;y;z\n’)

for i in range(0,1000):

v = [0, 0, 0]

while np.linalg.norm(v) < .001:

x = np.random.randn()

y = np.random.randn()

z = np.random.randn()

v = [x, y, z]

v = v / np.linalg.norm(v)

f.write(str(round(v[0],2))+’;’+str(round(v[1],2))+’;’

+str(round(v[2],2))+’\n’)

Figure 7.14: 3D sphere scatterplot on left and its barcode on right.

#(...)

with open(sphere3, ’w’) as f:

f.write(’x;y;z\n’)

for i in range(0,500):

v = [0, 0, 0]
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while np.linalg.norm(v) < .001:

x = np.random.randn()

y = np.random.randn()

z = np.random.randn()

v = [x, y, z]

v = v / np.linalg.norm(v)

f.write(str(round(v[0],2))+’;’+str(round(v[1],2))+’;’

+str(round(v[2],2))+’\n’)

f.write(str(round(v[0],2))+’;’+str(round(v[1],2))+’;’

+str(round(v[2],2)+0.7)+’\n’)

if (round(v[0],2)>0.6 or round(v[0],2)<−0.6) or (
round(v[1],2)>0.6 or round(v[1],2)<−0.6) :
f.write(str(round(v[0],2))+’;’+str(round(v

[1],2))+’;’+str(3)+’\n’)

Figure 7.15: 3D dataset scatterplot on left and its barcode on right.

#(...)

with open(spherenoise2d, ’w’) as f:

f.write(’x;y;z\n’)

for i in range(0,200):

v = [0, 0, 0]

while np.linalg.norm(v) < .001:

x = np.random.randn()

y = np.random.randn()

z = np.random.randn()

v = [x, y, z]
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v = v / np.linalg.norm(v)

f.write(str(round(x,2))+’;’+str(round(y,2))+’;’+str(

round(z,2))+’\n’)

for i in range(0,500):

v = [0, 0, 0]

while np.linalg.norm(v) < .001:

x = np.random.randn()

y = np.random.randn()

z = np.random.randn()

v = [x, y, z]

v = v / np.linalg.norm(v)

if (round(v[2],2)>0.6 or round(v[2],2)<−0.6) or (
round(v[1],2)>0.6 or round(v[1],2)<−0.6) :

f.write(str(0.3)+’;’+str(round(v[1],2))+

’;’+str(round(v[2],2))+’\n’)

f.write(str(0.3)+’;’+str(round(v[1],2)

+0.5)+’;’+str(round(v[2],2))+’\n’)

if (round(v[0],2)>0.6 or round(v[0],2)<−0.6) or (
round(v[1],2)>0.6 or round(v[1],2)<−0.6) :

f.write(str(round(v[0],2))+’;’+str(round

(v[1],2))+’;’+str(1.2)+’\n’)

Figure 7.16: Noisy 2D dataset scatterplot on left and its barcode on right.

#(...)

with open(spherenoise, ’w’) as f:

f.write(’x;y;z\n’)
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for i in range(0,500):

v = [0, 0, 0]

while np.linalg.norm(v) < .001:

x = np.random.randn()

y = np.random.randn()

z = np.random.randn()

v = [x, y, z]

v = v / np.linalg.norm(v)

f.write(str(round(x,2))+’;’+str(round(y,2))+’;’+str(

round(z,2))+’\n’)

f.write(str(round(v[0],2))+’;’+str(round(v[1],2))+’;’

+str(round(v[2],2))+’\n’)

f.write(str(round(v[0],2))+’;’+str(round(v[1],2))+’;’

+str(round(v[2],2)+0.7)+’\n’)

if (round(v[0],2)>0.6 or round(v[0],2)<−0.6) or (
round(v[1],2)>0.6 or round(v[1],2)<−0.6) :
f.write(str(round(v[0],2))+’;’+str(round(v

[1],2))+’;’+str(3)+’\n’)

Figure 7.17: Noisy 3D dataset scatterplot on top and its barcode below.
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