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Abstract 

 

 

The objective of the thesis is to verify the effectiveness of staggered grid mesh applied to two 

known inversion methods in resolution enhancement. The staggered grid is an approach to 

enhance resolution and smoothness by averaging several coarse grid inversion solutions by 

shifting an original grid in both directions in case of 2D inversion without risk of 

undetermination associated with a fine grid. In this thesis we have taken an overview about the 

traveltime seismic tomography, with a focus on crosshole tomography and the use of staggered 

grid for inversion enhancement. The practical work was to improve some properties of an 

already developed matlab code (SGRAT), which is stand for Staggered Grid Random Tomography 

invented by Godio Alberto, and Luigi Sambuelli 2011; besides recovering some running errors 

and an application to synthetic and real field datasets. Some minor running errors have been 

recovered in forward modelling, conjugated gradient inversion tools regarding the velocity 

modelling and ray tracing and displaying the results. Plots for spatial coverage (total length per 

pixel) and ray density (total number of rays per pixel) have been introduced to the simultenious 

iterative reconustruction technique SIRT. Two data sets have been tested on SIRT inversion first 

then SIRT staggered random inversion and regular SIRT staggered inversion; results show some 

kind of resolution improvement measured by root mean square of data errors and velocity map 

image smoothness. Some open issues recommended to be investigated are the reliability of the 

conjugated gradient inversion method, effect of parallel computing on reducing computation 

time.  
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1.Chapter One: Introduction 

1.1. Seismic tomography: 

Historical definition of the term tomography roots from a Greek origin “tomos” meaning “slice” 

(C. Thurber, and J. Ritsema, 2007) .  Basically, seismic tomography term may take practical 

meaning; an imaging tool that uses seismic waves generated by earthquakes or explosions to 

create computer-generated images of Earth’s interior (C. Thurber, and J. Ritsema, 2007). Where 

Seismic tomography is one of the important techniques to investigate the distribution of 

physical properties that affect seismic-wave propagation such as velocity and density, 

tomography models often play a critical role in the analysis of the subsurface physical properties 

lithology, temperature, fracturing, fluid content, etc.   

 

Seismic tomography can be classified into two main categories; travel time tomography and 

amplitude tomography. With regard to the first category seismic travel time tomography is 

defined as Earth’s velocity model reconstruction based on Initial guess of velocity as one of 

characteristic model input and by use of seismic waves travel time deviations from this 

reference velocity model (M. Aravinitis, B.D. Al-Nazi, 2009)  

Physical classification in lieu with the nature of the seismic waves, travel time tomography can 

be divided into: straight (mostly in crosshole), signal refraction, signal reflection, and signal 

diffraction. Referring to the source, whether it is a natural earthquake or artificial seismic wave 

source, classified up tomography into passive and active tomography, respectively (M. 

Aravinitis, B.D. Al-Nazi, 2009).  

1.2. Problem Statement:  

The typical outcome of seismic tomography inversion is a 2D image or 3D volume representing 

velocity distribution or any other property. The quality of the image depends on the quality of 

the observations, coverage and the accuracy of the modeling tool (Tape, 2009). The 

Measurement of the quality of the image and the solution can be done by several tools like 

coverage, stability, robustness, solution uncertainity and image resolution. The resolution of this 

seismic tomography image is very important in geological interpretation of the model since it is 

supposed to study velocity distribution, anisotropy structures and attenuation (Zhao, 2015).  
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Because  the model  developed on by dividing up the certain region to be investigated into small 

parts parameter specified value in case of forward problem or to be estimated in case of inverse 

problem, in fact that increasing number of parts (cells) or pixels enhances information’s by 

enforcing details gotten from it  since the parameter in each cell is assumed to be constant, the 

increment of the pixels, will lead to consider more pixels in the computation of travel paths for 

each receiver (Imhof et al, 2010) and so lead to some computation problems. 

The discretization of the inverse model domain plays a critical role to a successful model, and 

the reliability of the result is affected by the chosen mesh. Of course, a fine cells grid may 

enhance the detail of a model but reduces the model resolution (Arato et al, 2014). The optimal 

solution which we are looking for is to invert on a grid that provides both high resolution and 

detail without affecting model construction and resolution. Our current resolution is 

cumbersome, thus, in this research work, model resolution represents thesis problem. 

1.3. Methodology (the proposed solution): 

The primary objective of this thesis is to develop an old matlab code implementing inversion 

process using both regular and irregular grid with regular and random parameterization utilizing 

two well known inversion algorithms: simultenuous iterative reconstruction technique (SIRT); 

and conjugated gradient (CG). Furthermore the code has the capability to apply a novel 

technique known as staggered grid in purpose of study the reliability and the resolution of the 

two methods of inversion. The second objective is to test the reliability of the data inversion 

algorithm and resolution enhancement after the application of staggered grid inversion. The test 

will take place in two datasets, syntheic model generated by the forward modeling tool of the 

code and field data collected in context of another experiment.  

The staggered grid method has been used in previous studies to enhance resolution and 

smoothness of inversion solutions in a variety of fields, optics, resistivity and even seismic 

tomography. With grid staggering, the image quality will be enhanced because the final result is 

obtained by averaging the model parameter of several inversions carried out on many coarse 

grid models. Moreover, the reduction in the number of model cells contributes to limiting the 

under-determination of the problem. Furthermore, the possibility to average the various 

solutions and to check the dispersion of the model parameter distribution which in our case 

velocity or slowness in each cell can be useful in reducing the possible non-uniqueness of the 
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solutions without constraining the model with a priori information (Arato et al, 2014). Therefore 

a larger amount of information from the final model with many possibilities can be obtained 

without the risk of biassing the estimated image from a single model. 

 

1.4. Thesis strucure: 

The first chapter is an introduction to seismic tomography as a concept with focus in the quality 

of the outcome image and how to enhance the resolution and the convergence to the observed 

data with avoidance of infecting the mathematical manipulation that lead to undetermination of 

the problem.The statement of the problem under research and the proposed procedures and 

methodology to achieve the research objectives, and breif description of thesis structure. 

The second chapter will discuss the seismic travel time inversion and explanation of inversion 

procedure in a detailed manner, by passing through common inversion algorithms like back 

projection and Gradient methods and their invariants. 

 The third chapter will go in detail with a special spatial configuration of seismic tomography 

well known as cross-hole seismic inversion and its application in engineering fields associated 

with a detailed discussion of its resolution analysis. 

The fourth chapter is an attempt to apply staggered grid inversion in a seismic cross-hole 

tomography to increase its resolution. It will start with introduction to SGRAT software for 

staggered grid seismic data inversion with breif summary of some development and 

improvement carried out for the original version of the software. Furthermore, an appliction on 

synthetic data and real field data will be analyzed to verify the effectivness of the method.   
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2. Chapter Two: Seismic Travel time Tomography 

2.1. Introduction 

The goal of seismic travel-time tomography is to find a velocity model for a subsurface volume 

or cross section consistent with measured traveltimes along ray paths that pass through the 

volume (R. L. Nowack, and C. Li, 2009). Today, a lot of methods exist for determining Earth 

structure from seismic traveltimes.  

In general, a study of seismic tomography according to (Zhao, 2015) includes the following 

steps:  

1- Model parameterization by assigning a reference or primary value to the model. 

2- Forward modeling to produce synthetic data to be correlated to the observations 

3- Inversion operation by the aim to estimate model parameters by solving the large 

system of observation equations. 

4- Resolution and error evaluation, by checking uncertainty and sensitivity of the 

obtained tomographic solution. 

2.2. Model parameterization: 

Model parameterization means to set an initial model parameter distribution in a way that care 

and represents the earth heterogenities and anistropies. In fact Earth has structural and 

lithological heterogenities on different spatial scales, including complications such as 

discontinuities, faults, layering, intrusions, inclusions, zones of excess temperature and random 

geological heterogeneities. This heterogenity has been represented with different ways of 

parameterization whether in 2D or 3D tomography schemes.  It is difficult to represents the 

heterogenities on a single scheme according to (C. Thurber, and J. Ritsema, 2007). This 

parameterization can be in regular or irregular. 

Generally the parameterization can be divided into two forms of representation (Imhof et al, 

2010): 

a) Parametric based: depends on asigning a constant host velocity, and constant inclusion 

velocity, with spatial parameters to constrain dimensions and location. This will lead to 

an over-determined system of equations that can be solved with variational or least 
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squares inversion algorithms. This approach has the advantage of simplicity but is clearly 

lacking the ability to represent heterogeneous structure faithfully, even structures as 

simple as slight gradients in velocity or oblique discontinuities (C. Thurber, and J. 

Ritsema, 2007). 

b) Pixel based: The medium is divided in a number of uniform pixels; each of them is an 

unknown with a particular velocity or slowness value to be estimated by the inversion 

process and represented in a colour pattern as a tomogram.  It is clear that the smaller 

the pixels, the better the image resolution obtained, but the cost of pixel increment is 

an under-determined system of equations. 

A mix of both approaches can be conducted in order to avoid under parametrization and under 

determination. Reference to the common non uniform geometry of sources and recievers, 

missing data, and bended ray path, mostly a seismic tomography problem is uneven.and so 

some nodes or cells might not be sampled, while others may be sampled repeatedly. The pure 

pixel parametrization approach faces some difficulties to minimize misfit of uneven sampling 

inverse model; and thus affect the stability of the solution (C. Thurber, and J. Ritsema, 2007). 

With increasing seismic datasets scale, the digree of heterogenity will increase of course, giving 

inequal resolvibility. For a better parameterisation to these resolution variations; a kind of  

irregular mesh has been introduced; some potential benefits for irregular parameterization are  

increasing computational efficiency by use fewer unknowns, and un  improvement of stability of 

the inverse problem, moreover  a better  interpretation can be obtained because of structural 

compatibility with meshing, examples of these meshes are Delaunay tetrahedra or Voronoi 

polyhedra, that offer high levels of adaptability (C. Thurber, and J. Ritsema, 2007). 

 

2.3. Forward modeling and ray tracing: 

The forward problem in seismic tomography is a calculation of synthetic model data that best 

fitting the observations, given a set of values for the model parameters. When we are coming to 

traveltime tomography, the aim is to compute traveltimes based of source reciever geometry 

for a given velocity model. This action can be done using some form of ray tracing or wavefront 

tracking. Generally there are three approaches based on ray transmission used for large scales 

of seismic tomography which investigates deep crust and mantle: Shooting methods based on 
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Snell’s law of refraction, bending methods based on Fermat’s principle, Full wave equation 

methods based on Huygen’s principle (Berryman, 1991). 

But in our case of cross-hole tomography we adopted a rectlinear raytracing approach 

considering a semi homoginuous or very small variation of velocity distribution in such a way the 

refraction will be negligible. 

 The forward problem is to produce a traveltime vector according to the formula (2.1): 

𝑑 = 𝐺(𝑚)                                       (2.1) 

Where: 

d observations vector, G is a forward operator, and m is a given model parameter. This formula 

can be expressed in terms of traveltime and the forward operator to be considered is the ray 

path as in formula (2). 

𝑡 =  
1

𝑣(𝑥)
𝑑𝑥                                       (2.2) 

t represinting travel time, the forward operator is the reciprocal of the velocity v(x), which is can 

be replaced by slowness S. and the integration of the distance (x) will represent the forward 

operator, and can be written as a summation of small parts of discretized quintinum. 

𝑡𝑖 =  𝑆𝑖𝑛
𝑗=1 × 𝑙𝑖𝑗                                   (2.3) 

Where: (i) is the rank of the ray passes through j pixel, n total number of pixels.  

 The matrix of length of ray path (𝑙𝑖𝑗  ) representing the distance passed by each ray in each pixel 

can be replaced with the notation G. 

 

𝑑 = 𝐺 × 𝑆                                                     (2.4) 

𝐺 =  
𝑙1𝑙 … 𝑙1𝑛

: … :
𝑙𝑚1 … 𝑙𝑚𝑛

 ,               𝑆 =  

𝑠1

:
𝑠𝑛

 ,                     𝑑 =  

𝑡1

:
𝑡𝑚
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Fig (1.1): ray tracing from source to reciever according to LTI method in descitized model; by (Sambuelli et 
al, 2011) 

 

2.4. Inversion: 

 

The objective of the tomography is to characterize the Earth’s model parameters (e.g velocity). 

The inversion step then is crucial to calculate and adjust the model parameter vector. An 

automated adjustment of the model parameter values with the objective of better matching the 

model data to the observed data will take place. An objective function to be minimized should 

be defined with an appropriate minimizing algorithm. Since most of gephysical problems are 

non linear problems, this nonlinearity should be taken into account when inverting seismic data. 

The inversion of seismic data is almost a non linear problem because of hetergonities and the 

application of Fermat’s principle of ray transmission which states that the travel time is non-

linear function of the velocity. It can be solved by linearize the problem to the travel time 

residuals and model parameter pertubations using discretization suitable to our observed 

data.This non linear problem can be linearized in case of weak nonlinearity or solved with 

global search methods in case of strong nonlinear problems. 
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2.4.1. Linearization: 

According to Fermat principle we can consider a slowness of a non homogeneous mediu 

(curved route) as aggrigation of a linear (straight) path and some perturbation due to the 

heterogenity, mathmatically can be expressed as in formula (). 

𝑠 𝑥 = 𝑠0 𝑥 + 𝜕𝑠(𝑥)                                                 (2.5) 
 

𝑡 =  𝑠0(𝑥)𝑑𝑥 +  𝜕𝑠 𝑥 𝑑𝑥                                       (2.6) 
 

 
But the quantity ⨜(s0(x))dx can be substituted with the traveltime (t0) of straight ray plus an 

excess time of slowness perturbation  𝜕𝑠(𝑥) because of curved route due to heterogenity. 

 

 

 
 

𝑑𝑡 = 𝑡 − 𝑡0 =  𝜕𝑠(𝑥) 𝑑𝑥                                                       (2.7) 

 

When we have a linear prblem of observed data (d), and model parameter (m) the inversion 

step, will solve the inverse problem by searching for model parameter best fits the observed 

data according to the formula(). 

 
But in case of linearization we solve the inversion problem by adopting model parameter 

perturbations adjustment (dx) to better satisfy the tavel time residuals (dt) of the observed data 

and forward calculated data. 

  
 

𝑑𝑡 = 𝐺 × 𝑑𝑠                                                                                     (2.8) 
 
This misfit minimization traditionally carried out by a lot of mathematical algorithms developed 

specially for inversion schemes in last 40 years. Generally least-squares criterion is mostly used, 

and several methods originated from it. 

 

 

 



11 
 

2.4.2. Inversion algorithms: 

In very fine descritized large problems, many of the elements of G will be zero in the sense that 

each ray path will usually only traverse a small subset of the M blocks. Two big catogaries of 

linearized inverse problem solvers according to (Rawlinson, 1996) are:   

1- Backprojection methods: (ART, and SIRT), and 

2-  Gradients methods: (CG, and LSQR) 

 

2.4.2.1. Backprojection Methods: 

 

By refering to the backprojection techniques for solving the formula; they are depending on a 

row action method, by solving the problem along ray by ray (Rawlinson, 1996). Very well known 

tools are the Algebraic Reconstruction Technique (ART) and the Simultaneous Iterative 

Reconstruction Technique (SIRT). The ART is based upon the distribution of the traveltime 

residual of a certain ray to the unknown model parameters that the ray passed by; in an 

iterative way can be shown as in formula (). 

 

𝑚𝑗𝑘+1 = 𝑚𝑗𝑘 +
𝑡𝑛𝑘+1 × 𝑙𝑛𝑗

 𝑙2
𝑚𝑛

𝑀
𝑚=1

 

 

 

Where:  

 tn 
k+1

 = dn − t
k , tn is travel time of nth ray, dn is the residual given by  the difference of 

0
th

 and k
th

 iteration, 

 m
k

j  is the approximation to the j
th

 model parameter at the k
th

 iteration, 

 ln is  nth ray length 

Although of the highly usage of ART before, especially in cross-hole models, and local 

earthquackes, but ART suffers from poor convergence properties like slow convergence and 

unstability (Rawlinson, 1996).  
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SIRT addresses some of the convergence problems regarded ART method by averaging model 

perturbations applied to each model parameter (cell) from all the rays that are influenced by the 

model parameter.  

 

𝑚𝑗𝑘+1 = 𝑚𝑗 +
1

𝑅𝑗
𝑘  

𝑡𝑛
𝑘+1 × 𝑙𝑛𝑗

 𝑙𝑛𝑚
2𝑀

𝑚

𝑅𝑗
𝑘

𝑛=1

 

 

The SIRT method is popularly used in the inversion of teleseismic traveltime residuals, and in the 

inversion of reflection traveltimes for both velocity structure and interface depth. 

SIRT and back projection methods in general converge slowly, although of their fast 

computation, this is at least partially due to the use of a kind of regularisation (spatial 

averaging). (Rawlinson, 1996) 

 

2.4.1.2. Gradient Methods:  

They are based on minimization of an objective function (relative deviation from initial model) 

defined already. This minimization is almost done using least square criterion. The objective 

function is defined as the difference between the real observed data and the synthetic 

calculated data produced by the forward modelling, and sometimes with another term of 

regularization or damping. 

Let’s consider the same subsurface body that we considered in backprojection methods with 

model parameter vector m and data vector d and so the traveltime residuals (dt=tcalc-tobs) and 

model perturbations (dm=mcalc-m0), the objective function (W) without regularization will be in 

the form: 

𝑊 = 𝑑𝑡 − 𝐺(𝑑𝑚)                                                                     (2.9) 

By applying least square minimization iterativelly we can minimize the misfit function with 

repect to initial model m0 to an acceptable limit: 

 

𝑊 = ||𝑑𝑡 − 𝐺(𝑑𝑚)||2                                                                  (2.10) 

 

𝑊 =  𝑑𝑡 − 𝐺(𝑑𝑚) . (𝑑𝑡 − 𝐺(𝑑𝑚))𝑇                                         (2.11) 
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And by equalizing the first derivative to zero: 

𝜕𝑊

𝜕𝑚
= 0 = 𝐺𝑇 . 𝐺(𝑑𝑚) − 𝐺𝑑𝑡                                                        (2.12) 

 

The solution will be given according to the matrix equation, G is Jacobian matrix of derivative 

(
𝜕𝑚

𝜕𝑡
 ). 

𝑑𝑚 = (𝐺𝑇𝐺)−1𝐺𝑇𝑑𝑡                                                                    (2.12) 

𝑚 = 𝑚0 + 𝑑𝑚                                                                              (2.13) 

 

Where: the operator  (𝐺𝑇𝐺)−1𝐺𝑇  represents the generalized or psuedo inverse. 

 

Usually the square matrix (𝐺𝑇𝐺) is ill conditioned; that means the observed data are insufficient 

to give a unique solution to the formula. One way to constrain the model is to introduce a 

coefficient giving waight to solutions near to a certain value in minimization procedure. This 

operation so called regularization. When we use a kind of regularization in least square solution, 

the approach called Damped Least Square DLS. (R. L. Nowack, and C. Li, 2009).  

 

 
𝐺
𝜀𝐼

 𝛿𝑚 =  
𝛿𝑡
0

                                                                         (2.14) 

 

ε is a small, positive damping parameter. Solving this combined system using least squares results in  
 

𝛿𝑚 =  𝐺𝑇𝐺 + 𝜀2𝐼 −1𝐺𝑇𝛿𝑡                                            (2.15) 
 

 

In most tomographic applications data residuals and model perturbation are given waights to 

overcome the shortcomings of regularization process (R. L. Nowack, and C. Li, 2009).There are 

several least square algorithms to solve a formementioned formula based on manipulation of 

generalized inverse used to solve the inverse problem to obtain model parameter. 

 

Conjugate gradient Least Squares CGLS is one of iterartive methods commonly used to solve the 

inverse problem. It was introduced by Hestenes 1952 (Schleicher, 2018), and it is often used to 

solve large problems because it is faster than other algorithms. Each iteration a linear operator 
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and its adjoint are used. The reference model is the starting vector; and computation maight 

stop after few iterations (J.M.Lees, and R.S. Crosson, 1991). 

  

CGLS solve the normal eqation generated from inverse matrix formula by conustructing a set of 

vectors that are mutually conjugated with respect to the square matrix of ray path product 𝐺𝐺𝑇  

(Scales, 1987), (C. Thurber, and J. Ritsema, 2007). 

 

The power point of CGSL is that the least-squares solution for m can be calculated with an 

efficient iterative algorithm based only matrix–vector and vector–vector products in a recursive 

manner; no actual matrix decomposition or inversion is involved. A super Efficiency can be 

obtained by the use of sparse-matrix methods, because the procedure does not involve matrix 

factorizations that can destroy sparseness. Sparse-matrix methods are particularly effective in 

tackling massive-scale tomography problems. (C. Thurber, and J. Ritsema, 2007). 

CGSL came as a development to the steepest descent method which it uses only the gradient to 

minimize the objective function according to the equations bellow (W. Huang, H. Zhou, 2015). 

   

The objective function: 
𝑊 =  𝐺𝑚 − 𝑑 2                                                        (2.16) 

By taking the gradient: 

𝐽𝐾 = ∇ 𝑊 = 𝐺(𝐺𝑚𝑘 − 𝑑)                                        (2.17) 
 

And the model will be updated as: 

𝑚𝑘+1 = 𝑚𝑘 − 𝛼𝐽𝐾                                                        (2.18) 
 

Where the coefficient α can be achieved by standard quadratic line search or analytic solutions 

to reduce the value of objective function. 

While the CG method updates the model in the conjugate direction of the gradient, the 

advantage is acceleration of convergence rate. After the first iteration using the gradient as it 

was used in steepest descent, the updated model will use a subsequent conjugate gradient. 

𝑚𝑘+1 = 𝑚𝑘 − 𝛼𝑘𝑆𝑘                                                    (2.19) 

Where the subsequent conjugate gradient: 

𝑆𝐾 = 𝐽𝑘 + 𝛽𝑆𝑘−1                                                           (2.20) 

 Where: 

 𝑆0 = 𝐽0. 

And the coefficient β can be calculated as: 
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𝛽 =
𝐽𝑇 .𝐽

𝐽𝑘−1
𝑇 .𝐽𝑘−1

                                                          (2.21) 

 

Paige and Saunders, (1982) developed an iterative method for the solution of large least-squares using 

Lanczos bidiagonalization technique; the Least Squares Quadratic Root LSQR method has a verry large 

common use. LSQR is a recursive procedure for solving the normal equations that is Identical and 

equivalent to CGLS with improvement of stability properties (C. Thurber, and J. Ritsema, 2007) 

 

 

2.5. Sensitivity and Uncertainty analysis: 

The inversion process is a numerical solution to a matrix formula involves of use of a pseudo 

inverse operator matrix with dimensions (m,n) of measurements and model parameters to be 

calculated (pixels of ray path), three probabilities exist relative to this dimension index: 

1- Measurements graeter than the unknown model parameters (over determined 

problem) in which multiple solutions exist but can be constrained 

2- Unknown model parameters more than measurements (underdetermined problem), 

where infinite solutions for the inverse problem. 

3- Even determined problem when the number of measurements is equal to number of 

unknown model parameters to be calculated. This case is rarely happening. 

Since most of geophysical problems are uneven, a non uniquness of the solution issue is 

essential, so it is obvious to investigate the solution non uniquness in order to choose the best 

resolution and the robust solution. 

Basically reliability of the inversion solution can be measured by its coverage (depends on the 

geometry and parameterization), stability (defined as the sensitivity to small random errors), 

robustness (sensitivity to small number of outliers), and the resolution.  

One of the common approaches for quality assesment is to apply synthetic resolution tests; 

otherwise, for linear inversion problems estimations of model covariance and resolution matrix 

can be made. 

Regard the former one of non linear problems specially a continous property variance 

parametrization a test method is introduced to estimate the robustness of the solution by 
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conustructing a synthetic model using the same source reciever geometry to give a similar 

length scale to the original one. This similarity can measure the reliability. One of these well 

known tests is so called check board test. 

For the second choice, a formal estimation of model resolution matrix is adopted. The concept 

of resolution matrixs comes from a fact that a generalized inverse product in inverse problem 

will not be an identity matrix, because it is not a true inverse, but it will be closed to the identity 

(Nolet, 2008). 

If we considered the inverse problem matrix: 

𝑚 = 𝐺−1𝑑                                                                     (2.22) 

Then we can obtain the following formula by multiplication with G. 

𝐺. 𝑚 = 𝐺. 𝐺−1𝑑                                                              (2.23) 

Since  𝐺𝐺−1 should equal to identity matrix, then it can be taken as a filter or a miror to reflect 

the approachment of model parameter m to the true model𝑚𝑡𝑟𝑢𝑒  for data that considered free 

of error (Nolet, 2008). 

Another term introduced to overcome shortcomings of resolution matrix to faithfully represent 

the accuracy of the solution is the Posteriori model Covariance matrix (Nolet, 2008); this 

approach best fits small matrix problem where singular value decomposition is can bias the 

resolution especially in damping cases. 

For an objective function with no smoothing term, the resolution matrix can be written as: 

 
𝑅 = 𝐼 − 𝐶𝑀 × 𝑐𝑚−1                                                    (2.24) 

 
I is the identity matrix, 

CM is a postiriori covariance matrix estimated by: 

CM = ε*G
T
C

−1
 d G + εC

−1
 m ]

−1                                  (2.25) 

Cm is model covariance matrix, the diagonal elements of CM indicate the uncertainty associated 

with each model parameter, and the diagonal elements of R range between zero and 1; in 

theory, when R = I, indicates a model perfectly resolved (N. Rawlinson, and W. Spakman, 2016). 
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3.Chapter three: Crosshole Seismic tomography:  

3.1. Introduction: 

In cross-hole tomography, the first arrival travel times of the signals transmitted between 

souces and recievers placed in oppiste to each other in two boreholes are used to determine the 

seismic velocities in the region between these boreholes close to each other as it shown in fig (). 

(Imhof et al, 2010). 

 

 

 

 

 Fig (3.1): cross-hole tomography, by (Tojo- Vekas International, 2018) 

 

It is the most case in seismic tomography similar to the origin of tomography techniques that 

invented by J. Radon in medical applications in the sense of the coverage and geometry (Nath et 

al, 2016). 

 

Seismic tomography can be done in wide range of scales: teleseismic, global seismolgy, regional 

and local earth quake relocations. But when we come to use it in applied geophysics, specially 

explorational field, our scale will be in terms of hundreds meters, the cross hole geometry will 

thus best fits our scale.  

In general the cross-hole tomography can be conducted either in parallel lines as two vertical 

boreholes or in orthogonal lines as vertical seismic profiling between a borehole and surface 
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(Gruber, 1998). Also the source reciever lay out can be placed each in bore hole or to swap both 

sources and recievers in both boreholes (Y. Rao et al, 2016).  

 

3.2. Cross-hole Seismics applications: 

The determination of the compressional (P) and/or shear (S) wave velocity of materials is one of 

significant advantages of cross-hole configuration in engineering and environmental fields, 

where the data can be used in analysis of soil mechanics, rock mechanics, foundation studies, 

and earthquake engineering; that need  dynamic elastic moduli calculations (Cross hole seismic 

testing_geometrics.com, 2018). Cross-hole tomography can provide very detailed seismic p- and 

s-wave velocity information between closely-spaced boreholes, which can be used in: 

 Bridge/dam foundation analysis. 

 Insitu materials testing. 

 Soil and rock mechanics. 

 Earthquake engineering. 

 Liquefaction analysis. 

 Seismic ties to well data of Oil and Gas exploration. 

3.2.1. Cross-hole in oil and Gas Industry: 

 

In geophysical exploration, often we need to correlate some properties between boreholes. A 

number of tecniques has been proposed for this purpose, for example seismic ties to well data 

using a syntheic seismogram generated from well logs, and vertical seismic profiling VSP. Those 

tecniques gave opportunities to stratigraphic correlations and corrections to surface seismic 

surveys. Seismic crosshole will be an optimum tool and more accurate since it uses mostly first 

arrivals and borehole shots to model anomalies between boreholes. An inversion process is 

necessary after the pre-processing tasks of the survey data, to be able to assess some kind of 

geophysical model about the medium involved. The tomographic outcomes are typically, 

slowness or velocity distribution, and/or attenuation tomogram through the domain that 

permits to discover variations in it, which will lead to detect the model anomalies. Typically, 

crosshole survey is classified as a post drilling geophysical tool in contrast with predrilling 

surface geophysical surveys.Cross-hole seismic surveys used to resolve hidden layer velocity 
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anomalies that cannot be detected with conventional surface surveys. The results of crosshole 

data can be used multipurposely; for example, the seismic velocity results obtained may be used 

for stratigraphy characterization, fluid content analysis, deformation studies, or investigations 

concerning attenuation of strong ground motion.  

A time lapse cross-hole survey is very useful in the entire oil exploration and production 

operations, especially for reservoir and geomechanics studies. Here are some cross-hole 

applications regarding oil and gas industry: 

 Identification of high porosity zones between wells (where porosity is clearly related to 

seismic velocity) 

 Locating well sites for infill drilling 

 Monitoring enhanced oil recovery programs 

 Structural and stratigraphic mapping of the reservoir and preparation of cross sections 

 Monitoring reservoir dynamics such as movement of the gas cap or fluid contacts 

 Improved reservoir characterization and modeling 

 

3.3. Cross-hole tomography procedure: 

 

Since the cross-hole is a tomography problem, the seismic inversion procedure will apply, 

Parameterization, ray tracing, inversion, and sensitivity analysis. In the next chapter we will 

investigate the inverse problem in cross-hole geometry in purpose of testing the reliability of 

grid manipulation represented by staggered grid method to enhance the image resolution.  

 

Regarding the parameterization cell grid with constant velocity inside the cell often adopted 

keeping in mind straight ray theory, considering a homogenious medium. This approximation is 

well fits for depths greater than 10m as was demonstrated by (Imhof et al, 2010), unlike smaller 

depths, where stress-dependent anisotropy and heterogeneity are present producing ray 

bending, which complicate the inversion. 

Most of popular inversion algorithms are commonly used for cross-hole tomography, such as 

the simultaneous iterative reconstruction technique (SIRT), algebraic, reconstruction technique 

(ART), and conjugate gradient (CG), and they are based on division of the subsurface area into a 

number of small constant-velocity cells and inversion of the time derivative matrix. 

 

http://wiki.aapg.org/Porosity
http://wiki.aapg.org/Fluid_contacts
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Fig (3.2): cross-hole straight raytracing in 49 cells using 7 scources and 7 recievers. 

 

3.3.1. Resolution of seismic cross-hole tomography: 

 

The resolution analysis is essential aspect to any inversion scheme. In cross-hole tomography, it 

has been found that the analysis of seismic and electromagnetic tomography data does not 

always give accurate and reliable results of the anomalous region. Cross-hole seismic 

tomography is an ill posed problem because of the relative distribution of sources and recievers 

which involves almost parallel rays that can increase the conditioning number (the ratio of 

maximum to minimum singular values) of ray path matrix according to (Imhof et al, 2010). In an 

ill posed problem the solution exists but is non unique and unstable. Ivansson in 1986 (Imhof et 

al, 2010) showed that non-uniqueness can be reduced to an acceptable level by adding more 

diverse data, and imposing constraints based on a priori information.The resolution, accuracy 

and the degree of distortion in the estimated images of course depend on the type of inversion 

algorithm used, the location of the anomalous zones between the boreholes, and the initial 

model parameters. Moreover, the ray path consist of only a small number of the total number 

of cells, the time derivative matrix will be generally sparse, causing difficulty in convergence 

when SIRT schemes is used (Nath et al, 1999). However, because two boreholes are so close to 

each other, the picking errors in traveltime data may have a greater effect than other 

tomography works, and the least-squares solution might be biased. In crosshole seismic data, 

the signal-to-noise ratio likely depends on the vertical offset between a source and a receiver 

(i.e vertical wells). The smaller the vertical offset is the more certain the observation should be, 
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because the overall attenuation will be smaller in general for a shorter raypath and hence the 

strength of the arrival increases and can be distinguishable (Rao et al, 2016). 

 

In the next chapter we are going to apply the staggered grid inversion technique to seismic 

cross-hole tomography in purpose of increasing the reliability of the SIRT inversion and to obtain 

a better resolution levels and a reduction of non uniquness.  
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4. Chapter Four: 2-D cross-hole seismic 

inversion with staggered grid 
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4. Chapter Four: 2-D cross-hole seismic inversion with staggered grid 

4.1. Staggered grid: 

A lot of previous studies investigated ways of improving resolution, stability, and robusness of 

inversion algorithms with objective to get the highest degree of reliability. Some of these studies 

focused in smoothing and damping of an ultra fine discretization solution with introducing 

waighting coefficients (J.M.Lees, and R.S. Crosson, 1991). But some of them went in the 

direction of grid manipulation and adaptive meshing to minimize the mismatch of the data 

inversion and the observatin, because the damping and smoothing could bias the solution 

resolution (Arato et al, 2014). 

One of meshing manipulation approaches is the staggered grid method.The use of a staggered 

grid to increase resolution and minimizing the inversion ambiguities and instability has been 

tested in a variety of disciplines as optical engineering, resistitvity (Arato et al, 2014), seismic 

applications (F. I. Louis, K. C. Makropoulos, 2005) and non-destructive testing (Sambuelli et al, 

2011). In all these applications, the staggered grid approach has shown that a high reliability can 

be obtained to improve the resolution by shifting and merging a certain number of low 

resolution images. Arato et al, (2014) quoted that “Since the pixels can be equally resolved in 

every part of the image, the grid shift and the merging of the staggered images provide an 

enhancement to the spatial resolution by approaching several well-posed problems instead of 

solving one highly under-determined problem”.  

 

The staggerd grid is based on the reiteration of a tomographic inversion using several different 

grid meshing schemes and averaging the model parameter values (slowness in our case) 

obtained from every inversion at the same given point. The different meshes are usually created 

by shifting the nodes of a selected mesh along vertical and horizontal directions. The inner cells 

within the imaging region can be shifted, yielding to a deformation of the cell size along the 

boundaries of the imaging region, while the total number of cells and the size of the cells not 

confining with the imaging region boundaries are preserved (Arato et al, 2014). 
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Fig (4.1): image enhancement using several coarse inversion grids with staggering, by (Arato et al, 2014) 

 

Reasions behind the image enhancement by grid staggering is that the result is obtained by 

averaging the results of several inversions carried out on coarsely gridded models; this will 

contributes to limit the under‐determination of the problem. Furthermore, the possibility to 

average the various solutions and to check the dispersion of the model parameter distribution 

cell‐by‐cell, this step can be useful in reducing the possible non‐uniqueness of the solutions 

without imposing any a‐priori information to constrain conditions, because, these priori 

informations, sometimes, are unknown (Arato). 

(Luis et al, 2005) proposed a procedure for staggering seismic data in purpose of image 

enhancement, then applied by (Arato et al, 2014) in resistivity tomography which we are follow 

in this thesis. It can be summarized as follows:  

1. A starting mesh grid should be defined. The grid can either be regular, irregular, or 

adapted according to the sensitivity distribution over the model; the problem is thus 

solved for the given mesh. 

2. The nodes are horizontally and vertically shifted by a certain fixed amount, as ilustrated 

in fig (). Let’s consider a regular grid within the imaging region, the horizontal and 

vertical cell dimensions are dx and dz. Then the final smallest size of the sub-cells after 

performing Nx and Nz shifts in the horizontal and vertical directions respectively would 

be. 

𝑁𝑥 = 2 × (
𝑑𝑥

𝑠𝑢𝑏𝑠𝑖𝑧𝑒
− 1)                                            (4.1) 
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𝑁𝑧 = 2 × (
𝑑𝑧

𝑠𝑢𝑏 _𝑠𝑖𝑧𝑒
− 1)                             (4.2) 

Where, the factor 2 means that the shift has to be performed along the same axis but in 

the two different directions, with a shift that is proportional to N*sub_size. The size of 

the elements remains the same in the central part of the imaging region, and in some 

cases the cell boundaries can coincide, even though the cells that conform to the 

boundaries of imaging region change their volume as a consequence of the shift. 

3. The total number of newmeshes is N=Nx+Nz and the same traveltime dataset has to be 

inverted on each mesh. N should be not too large in order to avoid almost coincident 

meshes and to decrease the computationa time. 

4. The final solution is obtained by averaging the model parameter (slowness) values of the 

cells having the same spatial coordinates in all the solutions. 

5. This procedure is performed by resampling each staggered solution image to a new finer 

grid represented by sub-cells with dimensions of sub_size, keeping in mind a constant 

value initial parametrization. The resampled i-th cell has (dxi/sub_size) sub-cells in the x 

direction and (dzi/sub_size) sub-cells in the y- direction. 

6. A variance measure of slowness value at each sub-cell is calculated. 

 

 

 

 

                

Fig (4.2): grid shifting in horizontal and vertical axes, and sub_size pixel, by (Arato et al, 2014) 
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4.2. Staggered Grid Random Tomography software (SGRAT): 

Seismic tomography data inversion matlab software based in tomotool software and it is 

developed by: A. Godio and L. Sambuelli in 2011 to process seismic cross-hole data using 

Simultaneous Itrative Reconstruction Teqnique (SIRT) and Conjugated Gradient as inversion 

algorithims with regular rectangular grid. SGRAT has the ability to generate synthetic models 

and process real field data set to be inserted in migratom format with capability to use either 

regular or random parameterization. SGRAT uses rectlinear ray tracing to solve the forward 

model, SIRT, and CG for inversion in iterative operation. The user interface contains five 

principle commands: “File” to manage the input and output, “Forward model” to generate and 

manage synthetic models, “CG inverion” use of conjugated gradiend inversion method, “SIRT 

inversion” for SIRT algorithm, and finally “Display”to show the outputs like velocity map and 

statistics. 

4.2.1. Parameterization and Ray tracing: 

SGRAT has the capability to set the initial model according to the user needs. In case of model 

generation, the user can put an initial model by defining the max velocity, min velocity in a 

normlized (divided by 1000) or (km/s units), but the distribution should be inside the matlab 

script of set model function. There are options of creating either a random model parameter 

distribution or a regular one.  For raytracing related to the iterative operations of inverse 

algorithm however it was CG or SIRT, the initial slowness is set as a mean value inserted by the 

user as input parameter in case of CG inversion, and it is calculated as a mean of aparant 

velocity from the rectlinear ray path and the corresponding traveltime. The ray tracing used in 

the SGRAT software is straight rectlinear ray path to simplify the inverse problem; this 

assumption is acceptable in a very small velocity variance for depth more than 10 m (Imhof et al, 

2010).  

4.2.2. Inversion algorithms: 

The software is designed to excute inversion operation using either Simultaneuos iterative 

reconustruction technique (SIRT) or Conjugate Gradient method (CG). 
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 DSIRT inversion: 

 A damped version of SIRT invented by Trampert and Leveque in 1990 (Sambuelli et al, 2011) is 

used in the inversion using a set of formula’s to be clarified below; the slowness vector 

estimation sq+1 after q iterations can be written as: 

 

𝑠𝑞+1 =   1 − 𝜃2 𝐼 − 𝐴−1𝐺𝑇𝐵−1𝐺 𝑆𝑞 + 𝐴−1𝐺𝑇𝐵−1𝑡 

𝐴 = 𝑑𝑖𝑎𝑔  𝜇1 +   𝐺𝑖𝑗  
𝛼
  

𝐵 = 𝑑𝑖𝑎𝑔(𝜇2 +   𝐺𝑖𝑗  
2−𝛼

 

Where:   

 α: is a weighting exponent has a range from 0 to 2; 

 μ1 and μ2: are two positive numbers that allows for inserting physical a priori 

information in the solution and, 

 θ2: is a damping constant comparable to the one used in a damped least-squares 

algorithm. 

 It is then possible to define both the data resolution matrix D and the model resolution matrix R 

. 

 
𝐷 = 𝐺(𝐺𝑇𝐵−1𝐺 + 𝜃2𝐴)−1𝐺𝑇𝐵−1 

 
𝑅 = (𝐺𝑇𝐵−1𝐺 + 𝜃2𝐴)−1𝐺𝑇𝐵−1𝐺 

 
 

The data will be filtered inside the inversion code before imposing the inversion algorithm to 

stabilize the output by eleminating the far extremist rays and cells in three criterions by taking 

following procedures: 

Firstly the average of numbers of cells intersected by each ray calculated with the standard 

deviation. This standarad deviation is weighted with a certain factor k1 range from (1-4) inserted 
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with inversion inputs, then the rays less than absolute value of mean substracted by the 

weighted standard deviation will be eleminated. Secondly,the travel times residuals (tobs-tcalc) 

average calculated considering apparent velocity of the straight path between source and 

reciever, then discarded rays of reiduals out of the range of absolute difference of the average 

and the k2 (same as k1) times standard deviation. Finally the total length of rays passed through 

the pixel was calculated with the average and standard deviation in a step to eleminate the cells 

out of the range of average and k3 times standard deviation. 

 The first stopping criterion is simply the maximum number of iterations, while the second is 

aminimum threshold on the difference between the root mean square residuals (rmsr) defined 

as: 

 

𝑟𝑚𝑠𝑟 =  
 (𝑡𝑖

𝑐𝑎𝑙𝑐 −𝑡𝑖
𝑚𝑒𝑎𝑠 )2𝑚

𝑖=1

𝑚
                                     (4.3) 

 
 

 
 Conjugated Gradient inversion: 

 
The algorithm used is the conjugate gradient inversion algorithm that introduced by Hestenes 

and described by (Scales, 1987) the same of that described in gradients methods in chapter two.  

 

4.3. Run Flow chart:  

 

The procedure to run SGRAT is illustrated as in the flow diagram as in shown in fig (4.3) and fig 

(4.4) 
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 Forward modeling flow chart (synthetic data generation): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (4.3): forward modeling flow diagram 
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 Inversion flow chart: 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Fig (4.4): illustrating inversion flow diagram 
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4.4. Modifications and improves of some functions of SGRAT:  

1- Solve some erorrs of the command “set_model” forward modeling command. The 

function (reshape) which is used to redistribute the values of velocity have been 

input to the model according to the cell matrix with dimensions (cx*cz). 

2- Recovering some errors in ray tracing for CG inversion and adding plots of ray 

coverage and velocity map to the inversion function to be displayed automatically 

3- Insert new script file to make the window of inserting SIRT inversion parameters 

more comfortable and visible enough. 

4- Including some plots of traveltime data stastistical results: plot of total length per 

cell (spatial coverage), ray density (total rays passed through the cell), in SIRT 

inversion and conjugated gradient. 

5- Some plots in both SIRT, and CG inversion regarding statistics located in function 

(Display) are activated and improved.   

6- Test the SIRT inversion algorithm before and after staggering on two sets of 

synthetic data and a real field dataset, and discusing the inversion outcome 

reliability. 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 
 

a)                                                           b) 

    

Fig (4.5):  the input screen of SIRT inversion parameters input, a) before and b) after. 

 

4.5. 2D seismic cross-hole inversion using SGRAT: 

4.5.1. Application to synthetic data: 

 

A synthetic model created using the modeling tool in forward subcommands.Travel time 

datasets generated by the enrty of shots and recievers coordinates; maximum, minimum, and 

background velocities are defined. A rectangular area of length 20 m, width of10 m; 29 shots 

and 29 recievers is considered in a way such that 19 of them along the length and the rest are 
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along the width like as shown in fig (4.6) and the recievers are in the front side to the source in 

same elevation or distance. The anomaly is considered to be the higher velocity in the center 

with an inverse (L) shape with a value of 3 km/s and the background is 1 km/s, fig (4.7). The 

forward grid is taken as each pixel equals to 1m2.  

 

Fig (4.6): Synthetic model ray tracing coverage 

 

Fig (4.7): synthetic model includes back ground velocity (1km/s) and velocity anomaly (3 km/s)  
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SIRT Inversion parameters to be inserted: 

Table (4.1): input parameters for SIRT inversion 

parameters value 

x-cells 10 (15 in case of fine grid) 

z-cells 10 (30 in case of fine grid) 

Α 1 

Θ 0.1 

µ1 0 

µ2 0 

Max iterations 30 

Time uncertainity 0.001 

K1 2 

K2 2 

K3 2 

Vel min 0.5 

Vel max 3 

Reduction factor 0.8 

Number of mishes 2 

Division factor 2 

   

We made another SIRT inversion test with a finer inversion grid for the same model to compare 

results of staggered inversion to the fine inversion. The input parameters are remained the 

same except the number of (x) cells (=15) and (z) cells to be (30). 

 

4.5.2 Application to Real field dataset: 

4.5.2.1. Location and Data aquision and processing:  
 

The real field data are open source data downloaded from internet from the UTAM (Utah 

University consertium of Tomography and Migration Modeling) website, and they are chosen 

although they are not a cross bore-hole tomography, because of their similarity to the cross hole 

configuration, that the ray path from source to reciever can be considered direct with reference 

to the degree of scale (tens of meters depth, hundred and fifty length) according to (Hanafy et 

al, 2012). The data are collected in the context of testing and validating the time reversed mirror 

scheme for locating trapped miners and its high-resolution and super-stacking properties, the 
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experiment was carried out on 21 May 2009, it was along a cliff in Moab, Utah by a group of 

researchers from geophysics dipartment of university of Utah.    

The fig (4.8 a) shows a cross-section sketch of the site of the experiment, and source-receiver 

geometry, while the other fig (4.8 b) shows the real cliff. The recievers spread layed out on the 

top of the cliff at a height of about 60 m and the array is 45 m away from the edge of the wedth 

side of the cliff. This means the straight line distance between the sources and receivers is 75 m 

or greater. Fig (4.8 b) is a picture taken at the experiment site.  

The seismic source was a sledge hammer at the bottom of the cliff. The recording array 

constructed from 72 receivers with a receiver interval of 2 metres; 21 shots with a shot spacing 

of 4 metres with a purpose of generating the seismic data to test the scheme of locating seismic 

sources with time reversal mirrors. During the acquisition of the data, multiple strikes of the 

hammer sources at the same location have been carried out and then these traces stacked 

together to reduce noise and amplify the signal. In this test, the data are acquired with a very 

high signal-to-noise ratio. The frequency band of the field data is estimated to be from 8–204 

Hz. The gathers are preprocessed with a band pass filter (8–204 Hz) and amplitude 

normalization. Then the gathers are trace normalized to correct the differences in geophone 

coupling, where the amplitude values of each trace are divided by the maximum absolute 

amplitude of that trace. In this field test, the P-wave velocity is estimated from the collected 

data to be 1364 m/s and the peak frequency of the data is 42 Hz to give a dominant wavelength 

of 16.2 m; thus, the Rayleigh resolution limit is computed to be 4.3. The data are recoreded in 

many formats (segy, matlab … etc), but in our case the matlab format was adopted and 

processed in a matlab code created for this purpose.  
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Fig (4.8) shows the location an sketch of the experiment, by (Hanafy et al, 2012) 

 
 
4.6.2. Travel time picking: 

Since the data are in signal digitalized sampled format (matlab file), a picking step is necessary to 

pick travel times (first arrivals), which are the principle input of the seismic traveltime 

tomography. A matlab code has been created to pick the travel times manually using the mouse 

from a seismic section as in fig (4.9).  

 

Fig (4.9): Seismic cross section of raw data collected in Utah University 
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A matrix of the picked travel times associated and their coordinates created in a text file format 

to be used in the software after convert it in a migratom file with extension (.tt).  

Software setup: the software set up by run the basic code tomotool to open the interface and 

the input data have been inserted according to the inversion method.  

By asigning values of inversion parameters through the inserting window, they should be 

reasonable and care of spatial resolution and mathematical solution capability (not under-

determined). The product of the number of cells in (x) direction and (z) diretion will define the 

dimension of model parameter vector (m) (slowness vector) should be less than the number of 

measurements in the traveltime input file (n). The inversion took place with a coarse grid 

(10*10), this will give a pixel dimensions to be (14.2*7.5) m2, and then staggered grid applied 

with a random and regular mesh. Another SIRT inversion scheme carried out in fine inversion 

grid (30*15) yields a regular (4.73*5) m2 cell diemension for comparison purpose. The 

coefficients values have been taken equal to be 1for α and 0.1 for θ with null value for a priori 

information coefficients µ1 and µ2. The stopping criteria values are the maximum iterations (40 

times) and time uncertainity (the acceptable error =0.001). Minimum and maximum normolized 

velocities have been intered with values: 0.5, and 3 respectively. We used 2 meshes for 

staggered grid inversion with step about 2 m in velocity map resampling and reconstruction. We 

got the outputs in terms of figures and numerical values for traveltime residuals saved as a text 

file.  

 SIRT inversion input parameters: Data are inserted as in shown in table (4.2). 
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Table (4.2): real data SIRT inversion input parameters 

parameter value 

X - cells 10 (30 in fine inversion) 

Z - cells 10 (15 in fine inversion) 

α 1 

θ 0.1 

µ1 0 

µ2 0 

Max iterations 40 

Time uncertainity 0.001 

K1  2 

K2 2 

K3 2 

Vel min 0.5 

Vel max 3 

Reduction factor 0.8 

Number of mishes 2 

Division factor 2 

 

4.6. Results and discussions: 

The typical results of the inversion are: plots evaluate coverage, numerical indicators of accuracy 

and number of iterations and velocity maps. The plots of coverage includes the ray tracing 

coverage, in addition to messures according to the statistics discussed above in DSIRT 

formulation and discard of radical values , this measures are spatial coverage plot represents the 

total length of rays pass through each pixel, and ray density which it shows the number of cells 

in each pixel. This statistics also supported with numerical values displayed in the work space 

and saved into a text file document.  

The resolution will be discussed with different Key Performance Indicators (KPIs), some applied 

to the single mesh inversion, and some for the average values of these staggered mesh 

produced from these single meshes. For those regards the single mesh inversion, we have plots 

of diagonal of the data resolution matrix, and diagonal of the model resolution matrix, in 

addition to comparisons between initial data residual values and final residual values using plots 

of the residuals of each ray, and a histogram of the initial and final residual values . Finally the 
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square root of the residuals calculated and plotted against number of iterations, and this KPI is 

used to evaluate the outcome of staggering along side with velocity maps. 

 

4.6.1. Results of Synthetic Model inversion: 

 

The initial mesh spatial coverage and ray density plots: 

These plots show a dense coverage in the middle region of the model coincide with right angle 

diagonal thanks to the geometry and distribution of source and recievers, which it yields to a 

non equal resolution, the resolution is high along this diagonal, and get lower far from the 

diagonal, this will give us an idea about the amount of information and details can be obtained. 

Fig (4.10) and fig (4.11) show the coverage for coarse and fine grids used. 

a)                                                                                       b) 

 

Fig (4.10): coarse grid SIRT inversion on synthetic data, a) spetial coverage, b) ray density  
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a)                                                            b) 

 

Fig (4.11): fine grid SIRT inversion on synthetic data. a) spatial coverage, b) ray density 

 

 The results of SIRT inversion: 

Table (4.3): results of SIRT inversion on synthetic data 

parameter Coarse (10*10) Fine (15*30) 

Rays eliminated 
(attraversing less cells) 

41 41 

Rays eliminated (high 
residuals) 

44 45 

Cells eliminated (less rays 
passed through the cell) 

3 10 

Fattore di incremento 
v<vmin (1<-<2) 

1.2 1.2 

iterations 16 16 

Error percentage 
(sqmres%) 

%10.54 %9.80 

Final sqmres value 1.3267 1.1765 

 

 Diagonal of resolution matrix plots: 

Those plots represent the resolution as explained before in the formulation of DSIRT inversion 

algorithm. They confirm the coverage estimation about the details can be obtaind with a better 

resolution in the middle of the image as in shown in model resolution matrix with maximum 

value approaching 50% and almost centered arround the average 45% with a very low deviation. 
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The same thing can be said to the data resolution matrix, except in the value of the resolution 

which it ranges from 0.03 to 0.13. 

Fine grid inversion gives better data resolution matrix and model resolution matrix than the 

coarser grid, can be shown clearly in fig (4.12), fig (4.13) and fig (4.14).  

 

Fig (4.12): Synthetic model SIRT inversion in coarse grid; Diagonal of DRM 

 

Fig (4.13): Synthetic model SIRT inversion in fine grid, Diagonal of DRM 
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 Model Resolution matrix: 

  

Fig (4.14): synthetic data SIRT inversion  diagonal of MRM, a) coarse grid, b) fine grid 

 

 The residuals comparison plot and evolution of rms of residuals: 

The residulas mean square root value reduced from an initial value of 1.7 ms to 1.2 ms in 16 

iterations for both coarse and fine grids, satisfying the second stop criterion in 16 iterations out 

of 30 iterations proposed. This residual root square gives an error percentage of 10.5 for the 

coarse grid and a bit better in fine grid with 9.8 as shown in table (4.3).  

Fig (4.15) shows how is the difference between the results of first and last iteration which it can 

be considered reliable results for some extent, residual values are in ms. 
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Fig (4.15): syntheic model SIRT inversion in coarse grid; plot of initial and final residuals 

 

Fig (4.16): synthetic model SIRT inversion in fine grid; plot of initial and final residuals 
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a)                                                    b) 

  

Fig (4.17): Synthetic model SIRT inversion in coarse grid; a): rms of residuals evolution. b) 

residuals histogram 

  

Fig (4.18): Synthetic model SIRT inversion in fine grid; a): rms of residuals evolution. b) residuals 

histogram 
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 Velocity map of sirt inversion: 

The velocity map fig (4.19) and fig (4.20) reflects the true model in geometry and position of the 

velocity anamoly in the centre in a gradual way unlike the sharp initial model, but the velocity 

values ranges from 0.5 to 2.5 km/s at maximum which it is lower than the value of the true 

model anomaly value.The fine grid inversion shows a wide area of velocity anomaly with a same 

value as coarse grid.The shape of the anomaly generally reflects the initial model but more 

chaiotic in case of fine grid. 

 

Fig (4.19): Synthetic model SIRT inversion in coarse grid; velocity map 
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Fig (4.20): syntheic model SIRT inversion in fine grid; velocity map 

 The staggered grid inversion results: 

Results after random and regular mesh staggering on 2 meshes with division factor 2 units: 

Table (4.4): syntheic model SIRT Staggered grid results 

parameter Random staggered  Regular staggered 

Rays eliminated 
(attraversing less cells) 

46 33 

Rays eliminated (high 
residuals) 

44 44 

Cells eliminated (less rays 
passed through the cell) 

0 4 

Factor of increment v<vmin 
(1<-<2) 

1.2 1.2 

iterations 16 16 

Sqmres % (error percentage) %9.7487 %10.0592 

Final sqmres value 1.3267 ms  
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Fig (4.21): Synthetic model SIRT staggered inversion; irregular mesh. 

The velocity map after staggering: 

 

Fig (4.22): Synthetic model SIRT staggered inversion in irregluar (random) mesh; velocity map 
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Fig (4.23): Synthetic model SIRT staggered inversion in regluar mesh; velocity map 

The anomaly is shown clearly but with more reduced value of the velocity especially, from the 

random staggering fig (4.22, and increasing of high velocity areas, in the other hand the regular 

gives higher value to the anomaly in narrow area fig (4.23). 

The residuals percentages show some enhancement from %10 in case of regular mesh 

staggering, and %9.7 with random mesh staggering. 

 

 
 
 
 
4.6.2 Field data inversion results: 
  
The results of sirt inversion carried out in real field data are as shown in table:(4.5), the 

statistics, spatial coverage plot, and ray density fig(4.26), and fig (4.27) regard the model before 

inversion. Fig (4.28), fig(4.29), fig(4.30) and fig (4.31) show the diagonal of the model resolution 

matrix  and the data resolution matrix that reflect the assesment of the resoution of the sirt 

inversion algorithm. 
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Fig (4.24): Field data SIRT inversion, coverage and raytracing 

 

Fig (4.25): Field data SIRT inversion in fine grid, coverage and raytracing 
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 Spatial coverage and Ray density: 

a)                                                                        b) 

 

Fig (4.26): Field data SIRT inversion in coarse grid a) spatial coverage, b) ray density 

 

Fig (4.27): field data SIRT inversion in fine grid a) spatial coverage, b) ray density 
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 Results of sirt inversion: 

Table (4.5): field data SIRTinversion results 

parameter Coarse (10*10) Fine (30*15) 

Rays eliminated 

(attraversing less cells)  

21 21 

Rays eliminated (high 

residuals)  

68 68 

Cells eliminated (less rays 

passed through the cell) 

12 81 

Factor of increment 1.2 1.2 

No of iterations 29 31 

Root mean square of 

residuals 

%10.47 %10.24 

 

The resolution matrix: 

 

Fig (4.28): Field data SIRT inversion in coarse grid; Diagonal of DRM 
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Fig (4.29): Field data SIRT inversion in fine grid; Diagonal of DRM 

 

Fig (4.30):Field data SIRT inversion in coarse grid;Diagonal of MRM 
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Fig (4.31): Field data SIRT inversion in fine grid; Diagonal of MRM 

 

 The data and model resolution matrices show almost same level of resolution according to the 

values of diagonal elements. Lower level of resolution observed in real data inversion compared 

to the synthetic model, this can be refered to picking errors, the same note can be said to 

residuals plots fig (4.32), fig(4.33), fig (4.34) and fig (4.35) which is a bit higher values than the 

synthetic residuls but show a gausian distribution more clear than the synthetic.   

The velocity map fig (4.36), and fig (4.37) of both coarse and fine grids reflects same anomaly far 

right of the map but more detailed velocity distribution in case of fine grid. The values are 

almost equivalent. 
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 Residuals: 

 

Fig (4.32): Field data SIRT in coarse inversion; plot of initial and final residuals 

 

Fig (4.33): Field data SIRT inversion in fine grid; plot of initial and final residuals 
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a)                                                            b) 

   

Fig (4.34): Field data SIRT inversion in coarse grid; a) residuals evolution, b) residuals histogram 
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Fig (4.35): Field data SIRT inversion in fine grid; a) residuals evolution, b) residuals histogram 

 Velocity maps: 

 

Fig (4.36): Field data SIRT inversion in coarse grid; velocity map 
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Fig (4.37): Field data SIRT inversion in fine grid; velocity map 

 

 

 Staggered inversion: 

Two inversion operations carried out; random mesh generated with a mesh generator, and 

another regular grid using 2 meshes for both and axes step equal to 2 units and it gave results 

shown in the table (). 

 

Table (4.6): Field data SIRT staggered inversion results 

parameter 1st mesh 

Random  

2nd mesh 

random 

1st mesh  

Regular 

2nd mesh 

Regular 

Rays eliminated 

(attraversing less 

cells)  

21 21 21 21 

Rays eliminated 

(high residuals)  

68 68 68 68 
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Cells eliminated 

(less rays passed 

through the cell) 

14 17 12 13 

Factor of 

increment 

1.2 1.2 1.2 1.2 

No of iterations 27 27 29 28 

Root mean 

square of 

residuals 

%10.5842 %10.6096 %10.4693 %10.4716 

 

 

Fig (4.38): Field data SIRT inversion in staggered grid; irregular mesh 

 

And yield the random staggered velocity map as average of 2 meshes shifting velocity values 

resampled and reconstructed Fig (4.37). 
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Fig (4.39): Field data SIRT staggered inversion in irregular grid; velocity map 

 

Fig (4.40): Field data SIRT staggered grid inversion in regular mesh 

 

The most important output are the velocity map and the misfit root mean square value after 

several iterations. We got a misfit (traveltime residual) value of 12 ms in both grids. The velocity 

map reflects the anomaly in smooth way for random mesh staggering fig (4.39), but failed to 

image velocity distribution properly in regular mesh staggering.  
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Chapter five: Conclusions and 

Recommendations 
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5.Chapter five: Conclusions and Recommendations 

5.1. Conclusions: 

The objectives of the thisis are to apply the staggered grid inversion and test its 

resolution enhancement. The software used is Staggered Grid Random Tomography 

SGRAT invented by Prof. Godio and Prof. Sambuelli. The software was built to use 

Simultaneous Iterative Reconustruction Technique SIRT and Conjugated Gradient 

algorithms as basic inversion algorithms; then staggering take place by averraging the 

solutions and resampling the model. 

 

 Some minor errors have been recovered and new plots have been added to the 

software. The test carried out using only SIRT inversion algorithm on synthetic model 

and field data. The results show good results in SIRT inversion of both cases of inversion 

using either coarse grid or fine grid. Fast convergence observed especially in coarse grid 

due to the cells number utilized.Velocity maps generated by the software generally 

reflects the anomaly and its value with acceptable accuracy for some extent.Use of fine 

grid increases value of diagonal resolution matrix for both data, and model parameter. 

The effect of fine grid appears in more detailed anomaly distribution and less error 

percentage in the range of over-determined inverse problem. 

 

Staggered grid gives reliable results equivalent to the fine grid inversion, especially 

when associated with a random basic grid. The SIRT inversion relibility reduced when it 

comes to the field data due to the level of uncertainity of the data (picking errors) and 

lacking of piriori information. Regarding velocity map, the anomaly appeared clearly and 

smoothed in case of irregular (random) mesh inversion, but it was biased in regular grid 

inversion. 

For further studies, it is recommended to test the staggered grid on Conjugated gradient 

algorithm and to introduce parallel computing to reduce time of computation.  
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