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Abstract 

The purpose of this thesis is to evaluate the GARCH model and its ability to forecast Value at Risk 

of financial data. To assess the forecasting performance, it has been used three different 

distributions on error term: Normal distribution, Student-t distribution and skewed Student-t 

distribution. It has been selected four stock market indexes to test : NASDAQ’s daily index, 

Standard and Poor’s 500 daily index, NIKKEI’s daily index and Dow Jones’s daily index. The data has 

been collected from January 1, 2010 to January 01, 2017. 
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1 Introduction 

Many phenomena, like the movement of stock prices, are measured in intervals over a period of 

time. Time series analysis methods are very useful for analysing these types of data. 

Financial time series data, like the relative return of a stock or a portfolio of stocks, often contain 

of periods of “calm” behaviour alternating with periods of very wild variations. One way to express 

this is the following quotation, taking from Mandelbrot (see [1]) 

 

 “large changes tend to be followed by large changes, of either 

sign, and small changes tend to be followed by small changes”  

 

Generally, the difficulty to predict a future value of a stock or some other asset is a measure of 

how risky the asset is. In financial terms this is called the volatility of the asset. There are some 

characteristics of financial volatility data like, long memory, fat tails and excess kurtosis, clustering 

volatility and leverage effect which are introduced by Baillie, Bollerslev and Mikkelsen, see [2]. The 

ARMA model is used to present the stationary time series based on autoregressive process and 

moving average of noises. For time series which needs to be differenced to be made stationary, 

the ARMA become ARIMA(autoregressive integrated moving average). On the other hand, the 

autoregressive conditional heteroscedasticity (ARCH) model which was early introduced in the 

Engle’s paper (see [3]) and it has been focused on time varying conditional variance.  

Practically, high ARCH order has to be selected. For solving this problem, Bollerslev (see [4]) 

extended this model to Generalized ARCH (GARCH) model. GARCH model describe variance at a 

certain time with both past values and past variances. Most time series is sufficiently modelled 

using GARCH (1,1) that only includes three parameters. GARCH model have been certificated not 

only to catch volatility clustering but also to contain fat tails from the volatility data. The main 

point is that the GARCH model is symmetric, so it has a poor performance in reflecting the 

asymmetry. In other words, good and bad news have the same effect on the volatility in this 

model. This asymmetric phenomenon is leverage effect. 
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Today, many have designed modifications of the GARCH model, which has given rise to the 

expression of an ARCH/GARCH family of models, see [5]. 

Volatility modelling is very important in market risk applications, such as value at risk (VaR). Jorion 

(see [6]) defined the VaR as “the worst loss over a target horizon that will not be exceeded with a 

given level of confidence (or under normal market conditions)”. 

The aim of the thesis is analysing the historical data. It is mainly focused on the selection of the 

suitable model to estimate the financial volatility. After developing the model, we would like to 

know how well the model forecasts and for this aim it has been performed rolling forecast method 

which is used for comparing out-of-sample of  value at risk (VaR) by backtesting method, see [7]. 

The research performs the statistical analysis of the log-returns of different stock prices by testing 

different GARCH models and ARMA-GARCH models with three types of residuals distributions: 

normal, Student-t and skewed Student-t, to find the good models. There are presented theoretical 

background in section 2 and data description and analysis in section 3. In section 4, it includes the 

application and results of models and forecasting. The conclusion is presented in section 5. It has 

been used software R for programming. 
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2 Theoretical Background 

The base of analysis of a time series is stationarity. In a stationary process, means and variances do 

not change by time, and covariance only depends on the difference of the time subscripts, 

otherwise we can say a process is not a stationary.  

There are two types of stationary processes: strictly stationary and weakly stationary. Strictly 

stationary is hard to reach empirically. A time series in discrete time {𝑋𝑡}𝑡=−∞
∞  is called  stationary 

(or weakly stationary) when both mean of 𝑋𝑡 and covariance between 𝑋𝑡 and 𝑋𝑡−𝑠, where s is an 

integer, are invariant through the time. Before introducing the time series models, we also need to 

define white noise processes. There are two types of white noise processes: weak sense white 

noise and strict sense white noise. The time series {𝜀𝑡} is said to be a white noise (or weak sense 

white noise) with mean zero and variance 𝜎𝜀
2, written as 

  

𝜀𝑡~𝑊𝑁(0, 𝜎𝜀
2), 

 

if and only if 𝜀𝑡 has zero mean and   

 

                                                                  𝛾𝜀(ℎ)={
𝜎𝜀
2    𝑖𝑓     ℎ = 0
0      𝑖𝑓    ℎ ≠ 0

, 

where  function 𝛾𝜀: ℤ → ℝ defined by 𝛾𝜀(ℎ) = COV(𝜀𝑡, 𝜀𝑡−ℎ) is called autocovariance function of 

stationary process (weakly stationary process). It is clear that a white noise process is stationary. 

A process {𝜀𝑡} is strong sense white noise, if 𝜀𝑡 is 𝑖𝑖𝑑 with mean 0 and finite variance 𝜎𝜀
2, which it 

means in addition 𝜀𝑡 are not just uncorrelated but also independent. 

A particularly useful white noise series is Gaussian white noise, where 𝜀𝑡 are independent normal 

random variables, with mean 0 and variance 𝜎𝜀
2 or more briefly,  

 

𝜀𝑡~𝐼𝐼𝐷𝑁(𝑂, 𝜎𝜀
2). 
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 In this thesis, it has been used financial data, the log-return process of closing prices,{ 𝑋𝑡 =

100[log(𝑝𝑡) − log(𝑝𝑡−1)], 𝑡 ∈ ℤ} is a time series. Generally, this series can be decomposed into 

two elements: 

𝑋𝑡 = 𝜇𝑡 + 𝜖𝑡 

𝜖𝑡 = 𝜎𝑡𝜀𝑡, 

where 𝜇𝑡 is a predictable process and 𝜖𝑡 is a nondeterministic process driven by a noise random 

variable 𝜀𝑡 which is 𝑖𝑖𝑑 with mean zero and unit variance. The process {𝜎𝑡} called the volatility 

process (standard deviation process). Considering the filtration associated with the model, ℱ𝑡 is a 

sequence of increasing σ-algebras of ℱ representing all market information up to time t. Hence, 𝜇𝑡 

and 𝜎𝑡
2 represent the conditional mean and variance of 𝑋𝑡: 

𝜇𝑡 = 𝐸(𝑋𝑡|ℱ𝑡−1) 

    𝜎𝑡
2 = 𝑉𝑎𝑟(𝑋𝑡|ℱ𝑡−1) 

2.1 Moving Average Process 

A first generalization of the white noise is the moving average process (MA). Moving average 

models are widely used in the financial world to predict the start of trends which is important as 

trends are considered the best opportunity to make profits from the markets. 

 According to [8] moving average of order q, abbreviated 𝑀𝐴(𝑞) is 

                     

                𝑋𝑡 = 𝜃(𝐵)𝜀𝑡= 

                     = 𝜀𝑡 + 𝜃1𝜀𝑡−1 +⋯+ 𝜃𝑞𝜀𝑡−𝑞,      {𝜀𝑡}~𝑊𝑁(0, 𝜎
2)                         (1.1) 

 

where 𝜃1, … , 𝜃𝑞 are parameters and the moving average operator is 

 
𝜃(𝐵) = 1 + 𝜃1𝐵 + 𝜃2𝐵

2 +⋯+ 𝜃𝑞𝐵
𝑞, 

 

where 𝐵 is the backshift operator (or lag operator) such as 𝐵𝑘𝜀𝑡 = 𝜀𝑡−𝑘. 

Moving average models are always in the weakly stationary form, as they are finite linear 

arrangements of a white noise sequence for which the first two moments are time invariant. 

 

2.2 Autoregressive Models 

Autoregressive models are based on the idea that the current value of the series, 
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𝑋𝑡, can be explained as a function of p past values, 𝑋𝑡−1, 𝑋𝑡−2, … , 𝑋𝑡−𝑝, where p determines the 

number of steps into the past needed to forecast the current value. 

 According to [8]  simple Autoregressive 𝐴𝑅(1) model is:  

 

                                                         𝑋𝑡 = 𝜙0 + 𝜙1𝑋𝑡−1 + 𝜀𝑡,                                          (1.2) 

 

 where {𝜀𝑡} is defined as a white noise series with mean zero and variance 𝜎𝜀
2. This model follows 

the same rules of a simple linear regression model in which the dependent variable is 𝑋𝑡 and the 

explanatory variable is 𝑋𝑡−1. 

An autoregressive model of order p, abbreviated 𝐴𝑅(𝑝), is of the form 

                                          

                               𝑋𝑡 = 𝜙1𝑋𝑡−1 +⋯+ 𝜙𝑝𝑋𝑡−𝑝 + 𝜀𝑡                                           (1.3) 

 

where p is assumed to be a nonnegative integer and {𝜀𝑡}~𝑊𝑁(0, 𝜎
2) and  𝜙1, … , 𝜙𝑝 are constants 

(𝜙𝑝 ≠ 0). 

The mean of 𝑋𝑡 in (1.3) is zero. If the mean μ of  𝑋𝑡 is not zero, replace 𝑋𝑡 by 𝑋𝑡 − 𝜇 

in (1.3), 

 

                      𝑋𝑡 − 𝜇 = 𝜙1(𝑋𝑡−1 − 𝜇) +⋯+ 𝜙𝑝(𝑋𝑡−𝑝 − 𝜇) + 𝜀𝑡 , 

 

or write 

 

                               𝑋𝑡 = 𝛼 + 𝜙1𝑋𝑡−1 +⋯+ 𝜙𝑝𝑋𝑡−𝑝 + 𝜀𝑡                                    (1.4) 

 

where 𝛼 = 𝜇(1 − 𝜙1 −⋯− 𝜙𝑝). 

A useful form follows by using the backshift operator to write the 𝐴𝑅(𝑝) model, (1.3), as 

 

                       (1 − 𝜙1𝐵 − 𝜙2 𝐵2 −⋯+ 𝜙𝑝 𝐵𝑝)𝑋𝑡 = 𝜀𝑡 ,                                    (1.5) 

 

or can be written the model as 

 

                                                   𝜙(𝐵)𝑋𝑡 = 𝜀𝑡.                                                        (1.6) 
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where 𝐵 is the backshift operator such as 𝐵𝑘𝑋𝑡 = 𝑋𝑡−𝑘. 

 

     

 

              

2.3 ARMA Process 

The general autoregressive and moving average (ARMA) statistical model is used to describe a 

time series that evolves over time. In this process there is a linear relationship between the values 

at a certain time point and past values, noise as well. 

According to [8] time series {𝑋𝑡; 𝑡 ∈ ℤ}  is 𝐴𝑅𝑀𝐴(𝑝, 𝑞) if it is stationary and 

 

                        𝑋𝑡 = 𝜙1𝑋𝑡−1 +⋯+ 𝜙𝑝𝑋𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 +⋯+ 𝜃𝑞𝜀𝑡−𝑞 ,            (1.7) 

 

where p is the order of the autoregressive part and q is the order of the moving average part,  

with 𝜙𝑝 ≠ 0, 𝜃𝑞 ≠ 0 and 𝜎𝜀
2 > 0. If 𝑋𝑡 has a nonzero mean 𝜇, we set 𝛼 = 𝜇(1 − 𝜙1 −⋯− 𝜙𝑝) 

and write the model as 

 

              𝑋𝑡 = 𝛼 + 𝜙1𝑋𝑡−1 +⋯+ 𝜙𝑝𝑋𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 +⋯+ 𝜃𝑞𝜀𝑡−𝑞 ,             (1.8) 

 

where 𝜀𝑡~𝑊𝑁(0, 𝜎𝜀
2). 

 

As previously noted, when q = 0, the model is called an autoregressive model of order p, AR(p), 

and when p = 0, the model is called a moving average model of order q, MA(q).  

In particular, the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) model in (1.7) can then be written in short form as 

 

                                                            𝜙(𝐵)𝑋𝑡 = 𝜃(𝐵)𝜀𝑡,                                            (1.9) 

 

where 𝜙(𝐵) and 𝜃(𝐵) are defined as 

𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2 𝐵2 −⋯+ 𝜙𝑝 𝐵𝑝, where 𝐵 is the backshift operator such as 𝐵𝑘𝑋𝑡 = 𝑋𝑡−𝑘, 

𝜃(𝐵) = 1 + 𝜃1𝐵 + 𝜃2𝐵
2 +⋯+ 𝜃𝑞𝐵

𝑞, where 𝐵 is the backshift operator such as 𝐵𝑘𝜀𝑡 = 𝜀𝑡−𝑘. 
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The autoregressive moving average (ARMA) process was introduced by Box, Jenkins, and Reinsel 

(see [9]) that combines the autoregressive and moving average concepts, is a way to keep the 

number of parameters small.  

 

 

2.4 ARCH processes 

The first model of stochastic volatility proposed by Engle (see [3]) is the 𝐴𝑅𝐶𝐻(𝑞) process 

(Autoregressive conditional heteroscedasticity). In financial time-series a problem known as 

heteroskedasticity might occur, which explains that the variance error term is not constant over 

time. Working with a model that assumes constant variance would make worse the 

approximations and hence, the ARCH-model, that does not assume constant variance over time, 

might be a more suitable model to use. 

 According to [3] the main model can be an AR model, an ARMA model, or a standard regression 

model, i.e. 

  

𝑋𝑡 = 𝜇𝑡 + 𝜖𝑡, 

 

where 𝜖𝑡 is conditionally heteroskedastic in the form of 

  

 𝜖𝑡 = 𝜎𝑡𝜀𝑡, 

 

where  {𝜀𝑡, 𝑡 ∈ ℤ} is a sequence of independent, identically distributed (iid) random variables with 

zero mean and unit variance. This implied:  

   

 𝜖𝑡~D(0, 𝜎𝑡
2), 

 

 and 𝐴𝑅𝐶𝐻(𝑞) is 

 

                                                             𝜎𝑡
2 = 𝛼0 + 𝛼1𝜖𝑡−1

2 +⋯+ 𝛼𝑞𝜖𝑡−𝑞
2                              (1.10) 

 

where 𝛼0 > 0, 𝛼𝑗 ≥ 0 for 𝑗 = 1,… , 𝑞. The process is weakly stationary if and only if  ∑ 𝛼𝑖
𝑞
𝑖=1 < 1.  

It is easy to verify that 
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𝐸(𝜖𝑡) = 0, 

 

𝑣𝑎𝑟(𝜖𝑡) =
𝛼0

1 − 𝛼1 −⋯− 𝛼𝑞
, 

 

𝐸(𝜖𝑡𝜖𝑡−𝑠) = 0, ∀𝑠 ≠ 0 

and 

 

𝐸[𝜖𝑡|𝜖𝑡−1, 𝜖𝑡−2, … ] = 0, 

 

                            𝜎𝑡
2 = 𝐸(𝜖𝑡

2|𝜖𝑡−1, 𝜖𝑡−2, … ) = 𝛼0 + 𝛼1𝜖𝑡−1
2 +⋯+ 𝛼𝑞𝜖𝑡−𝑞

2 . 

 

The ARCH model can capture periods of tranquility and volatility in the {𝑋𝑡} series.  The 

conditional variance 𝜎𝑡
2 has two parts: a constant term 𝛼0 and the linear combination of the 

information about the squared errors 𝜖𝑡−1
2 , … , 𝜖𝑡−𝑞

2  ( i.e. an ARCH term).  

ARCH models are simple and easy to handle. ARCH models also take care of clustered errors, 

nonlinearities and changes in the econometrician’s ability to forecast, see [22]. 

 

2.5 GARCH processes 

The most important extension of the ARCH process is certainly the generalized ARCH, or GARCH 

process (Generalized Autoregressive Conditional Heteroskedastic) which was introduced by 

Bollerslev (see [4]) and Taylor (see [21]). 

According to [10] the error term in the main model 𝑋𝑡 = 𝜇𝑡 + 𝜖𝑡 satisfies 𝜖𝑡 = 𝜎𝑡𝜀𝑡, where 

{𝜀𝑡, 𝑡 ∈ ℤ} is a sequence of independent, identically distributed (iid) random variables with zero 

mean and unit variance. 𝜀𝑡 is independent of 𝜎𝑡 and 

 

                             𝜎𝑡
2 = 𝜔 + 𝛼1𝜖𝑡−1

2 +⋯+ 𝛼𝑞𝜖𝑡−𝑞
2 + 𝛽1𝜎𝑡−1

2 +⋯+ 𝛽𝑝𝜎𝑡−𝑝
2 .        (1.11) 

 

where 𝜔 > 0, 𝛼𝑗 ≥ 0 for 𝑗 = 1,… , 𝑞, 𝛽𝑘 ≥ 0 for 𝑘 = 1,… , 𝑝 and 𝜇𝑡 is constant.  

The GARCH (p, q) model is strictly stationary with finite variance when the conditions ω > 0, and 

∑ 𝛼𝑗 + ∑ 𝛽𝑘 < 1𝑝
𝑘=1

𝑞
𝑗=1  are required where the proof could be found in [4].  
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We can see the GARCH model has similar pattern with ARMA model, which shows we can derive 

GARCH process using similar theory and method with ARMA. 

Particularly, in most cases structure p = q = 1 is sufficient and it is sufficient for our purposes. 

GARCH(1,1) model is the most widely used, which is given by 

 

𝜎𝑡
2 = 𝜔 + 𝛼𝜖𝑡−1

2 + 𝛽𝜎𝑡−1
2  

 

To obtain strictly stationary solution, the conditions ω > 0, 𝛼 + 𝛽 < 1 are required and the proof 

could be found in Appendix. We see that GARCH(1,1) explains that the present volatility depends 

only on previous one. It is easy to calculate and simulate since there are only three parameters in 

GARCH(1,1) model. GARCH model successfully explains the volatility clustering, but it does not 

capture the leverage effect.  

 

2.6 ARMA-GARCH process 

According to [10], one of the important extension of GARCH model comes from the dynamic 

frame of the conditional mean. The ARMA-GARCH model combines an ARMA model for modelling 

the dynamic conditional mean and a GARCH model for modelling the dynamic conditional 

volatility. The conditional mean of an ARMA(P, Q)-GARCH(p, q) is of the form 

 

𝑋𝑡 = 𝑐 + ∑ 𝜙𝑖(𝑋𝑡−𝑖 − 𝑐) − ∑ 𝜃𝑗𝜖𝑡−𝑗 + 𝜖𝑡
𝑄
𝑗=1

𝑃
𝑖=1 ,  

 𝜖𝑡 = 𝜎𝑡𝜀𝑡,    

𝜎𝑡
2 = 𝜔 +∑ 𝛼𝑖𝜖𝑡−𝑖

2
𝑞

𝑖=1
+∑ 𝛽𝑗𝜎𝑡−𝑗

2
𝑝

𝑗=1
, 

 

 where 𝜔 > 0, 𝛼𝑗 ≥ 0 for 𝑗 = 1,… , 𝑞, 𝛽𝑘 ≥ 0 for 𝑘 = 1,… , 𝑝. we also assume that {𝜀𝑡, 𝑡 ∈ ℤ} is a 

sequence of independent, identically distributed (iid) random variables with zero mean and unit 

variance and if there exist real coefficients c, 𝜙1, … , 𝜙𝑃 and 𝜃1, … , 𝜃𝑞, where P and Q are integers. 

Stationary and invertible assumptions of the ARMA model are considered here as well. 

 

2.7 Maximum-Likelihood Estimation (MLE) 

The most common method for estimating the GARCH-type models is the maximum likelihood 

estimation (MLE). According to [8] the maximum likelihood estimation depends on the assumption 
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of a particular distributional form for the observations, known apart from the values of 

parameters 𝜃1, … , 𝜃𝑚. We can regard the estimation problem as that of selecting the most 

appropriate value of a parameter vector 𝜃, taking values in a subset Θ of ℝ𝑚. We suppose that 

these distributions have probability densities 𝑝(𝑥; 𝜃), 𝜃𝜖 Θ . For a fixed vector of observations 𝑥 , 

the function 𝐿(𝜃) = 𝑝(𝑥; 𝜃) on Θ is called the likelihood function. A maximum likelihood estimate 

𝜃(𝑥) of 𝜃  is a value of 𝜃𝜖 Θ that maximizes the value of 𝐿(𝜃) for the given observed value 𝑥, i.e., 

 

𝐿(𝜃) = 𝑃 (𝑥; 𝜃(𝑥)) = max
𝜃𝜖 𝛩

𝑝(𝑥; 𝜃) 

 

In this thesis, the GARCH-models are to be maximized under the Normal, Student-t, and Skewed 

Student-t distribution for the residuals which was discovered by Fernandez and Steel, see [11]. 

 

2.8 Distribution of error term 

In this thesis, it has been introduced  three distributions : Normal, Student-t, and Skewed Student-

t distribution. The normal distribution is the distribution that allows for less kurtosis. The Student 

t-distribution converges to the normal distribution as the degrees of freedom increase. The 

Student-t distribution is more appropriate than normal distribution to express the fat tails and a 

reasonable amount of excess kurtosis. The Skewed Student-t distribution can describe skewness 

and kurtosis appropriately, which are important characteristics in financial time series. 

  

2.8.1 Normal Distribution 

According to [29], the probability density function of  𝜀𝑡 is given as normal distribution, 

 

𝑓(𝜀𝑡) =
1

√2𝜋𝜎2
exp {−

1

2
(
𝜀𝑡−𝜇

𝜎
)
2

}, 

 

where 𝜇 is mean and 𝜎 is standard deviation. 

 

2.8.2 Student-t Distribution  

According to [30], the probability density function of  𝜀𝑡 is given as Student-t distribution, 
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𝑓(𝜀𝑡) =
Г(
𝜈+1

2
)

Г(
𝜈

2
)√𝜈𝜋

(1 +
𝜀𝑡
2

𝜈
)
−
𝜈+1

2
, 

 

where ν is the number of degrees of freedom and Г denotes the Gamma function. 

 

2.8.3 Skewed Student-t Distribution 

According to [31], the probability density function of  𝜀𝑡 is given as skewed Student-t distribution, 

𝑓(𝜀𝑡; 𝜇, 𝜎, 𝜈, 𝜆) =

{
  
 

  
 
𝑏𝑐 (1 +

1

𝜈−2
(
𝑏(

𝜀𝑡−𝜇

𝜎
)+𝑎

1−𝜆
)

2

)

−
𝜈+1

2

, 𝑖𝑓  𝜀𝑡 < −
𝑎

𝑏

𝑏𝑐 (1 +
1

𝜈−2
(
𝑏(

𝜀𝑡−𝜇

𝜎
)+𝑎

1+𝜆
)

2

)

−
𝜈+1

2

 , 𝑖𝑓  𝜀𝑡 ≥ −
𝑎

𝑏

, 

 

where 𝜇 and 𝜎2 are the mean and variance  of the skewed Student-t distribution. 

 𝜈 is a shape parameter with 2 < 𝜈 < ∞ and 𝜆 is a skewness parameter with −1 < 𝜆 < 1. The 

constants 𝑎, 𝑏 and 𝑐 are given as 

 

𝑎 = 4𝜆𝑐 (
𝜈−2

𝜈−1
) , 𝑏 = 1 + 3𝜆2 − 𝑎2 and 𝑐 =

Г(
𝜈+1

2
)

√𝜋(𝜈−2)Г(
𝜈

2
)

. 

 

2.9 Autocorrelation function (ACF) 

According to [12] , by assuming that we have a stationary time series {𝑋𝑡} with constant 

expectation and time independent covariance. The autocorrelation function (ACF) is  

 

𝜌𝑘=
𝐶𝑜𝑣(𝑋𝑡,𝑋𝑡−𝑘)

√𝑉𝑎𝑟(𝑋𝑡)𝑉𝑎𝑟(𝑋𝑡−𝑘)
=

𝛾𝑘

𝛾0
, 

 

for 𝑘 ≥ 0, where 𝑘 denotes the lag and 

𝜌−𝑘 = 𝜌𝑘. 

 

By graph of the autocorrelation function as a function of k, we can verify if the autocorrelation 

decreases as the lag gets larger, or if there is any particular lag for which the autocorrelation is 

large. 
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2.10 Partial Autocorrelation function (PACF) 

According to [12], the PACF of a stationary time series is a function of its ACF and could determine 

the appropriate lags p in  an AR(p) model. PACF is the correlation between {𝑋𝑡} and {𝑋𝑡−𝑘} minus 

the part explained by the intervening lags 

 

𝜌𝑘
∗ = 𝐶𝑜𝑟𝑟[𝑋𝑡 − 𝐸

∗(𝑋𝑡|𝑋𝑡−1, , … , 𝑋𝑡−𝑘+1), 𝑋𝑡−𝑘] 

 

Where 𝐸∗(𝑋𝑡|𝑋𝑡−1, , … , 𝑋𝑡−𝑘+1) is the minimum mean-squared error predictor of 𝑋𝑡 by  

𝑋𝑡−1, … , 𝑋𝑡−𝑘. 

 

2.11 Information Criteria 

According to [12], several information criteria are used to select order of ARMA process. All of 

them are based on likelihood. The well-known Akaike information criterion (AIC) as Akaike (see 

[23]) defines is 

 

AIC =
−2

𝑁
ln(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) +

2

𝑁
× (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠),             (1.12) 

 

where the likelihood function is evaluated at the maximum likelihood estimates and 𝑁  is the 

sample size. 

For a Gaussian AR(ℓ) model, AIC reduces to  

 

AIC(ℓ) = ln(�̂�ℓ
2) +

2ℓ

𝑁
, 

 

where  �̂�ℓ
2  is the maximum-likelihood estimate of �̂�𝜀

2, which is the variance of the white noise {𝜀𝑡}, 

and 𝑁 is the sample size. The first term of the AIC considering (1.12) measures the goodness of fit 

of the AR(ℓ) model to the data, and also the second term is considered as the penalty function of 

the criterion because it uses the number of parameters in a candidate model to penalizes it. 

Different penalty follow in different information criteria.  

Another commonly used criterion function is the Schwarz–Bayesian information criterion (BIC), 

see [24]. For a Gaussian AR(ℓ) model, the criterion is  
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BIC(ℓ) = ln(�̂�ℓ
2) +

ℓln(𝑁)

𝑁
, 

 
the penalty function for each parameter used is 2 for AIC and ln (𝑁) for BIC. Thus, compared with 

AIC, BIC tends to select a lower AR model when the sample size is moderate or large. This makes 

BIC the main criterion to select the best fit.  

 

Selection Process  

In order to use AIC to select an AR model, we should calculate AIC(ℓ) for ℓ = 0, … , 𝑝, where 𝑝 is a 

pre-specified positive integer and selects the order k that has the minimum AIC value. The same 

steps are involved when working with BIC. 

 

2.12 ARCH-LM Test 

 ARCH-LM test was introduced by Engle, see [3]. ARCH-LM test is a Lagrange multiplier test to 

assess the significance of autoregressive conditional heteroscedastic (ARCH) effects. The 

alternative hypothesis for Engle’s ARCH test is autocorrelation in the squared residuals, given by 

the regression 

𝐻𝑎:  𝜀𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 +⋯+ 𝛼𝑚𝜀𝑡−𝑚
2 + 𝑢𝑡          (1.13) 

where 𝑢𝑡 is a white noise error process and lag 𝑚 is a pre-specified positive integer. The null 

hypothesis is 

𝐻0: 𝛼0 = 𝛼1 = ⋯ = 𝛼𝑚 = 0  

The null hypothesis or 𝐻0 is no ARCH effect, otherwise someone can reject the null and conclude 

that there is an ARCH effect in the time series. The test statistic is defined as LM = 𝑁 ∙ 𝑅2 and is 

distributed as a chi-square with m degree of freedom. Where 𝑁 is the sample size and 𝑅2  is 

computed from the regression (1.13) using estimated residuals. 

 

2.13 Ljung-Box test 

To test for stationarity of residuals, Ljung-Box test is largely used. The  null hypothesis of this test 

is that the residuals are independently distributed. This test examines the sample autocorrelation 

functions simultaneously by test statistics 𝑄(𝐾) which  defined as 
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𝑄(𝐾) = 𝑁(𝑁 + 2)∑�̂�2(𝑖) (𝑁 − 𝑖)⁄

𝐾

𝑖=1

, 

 

where 𝑁  is the sample size, �̂�2(𝑖)  is the sample autocorrelation at lag 𝑖, and 𝐾  is the number of 

lags being tested. For large 𝑁, 𝑄(𝐾) can be approximately the chi-squared distribution with 

degrees of freedom 𝐾.  

The assumption of 𝛼 an i.i.d. sequence is rejected at significance level  if 𝑄(𝐾) > 𝜒1−𝛼
2 (𝐾), see [8]. 

 

2.14 Standardized Residuals  

In the GARCH model we impose the normal, Student-t, and Skewed Student-t distribution on the 

white noise term 𝜀𝑡 . These assumptions are tested by plotting the standardized residuals (see 

[20])  

𝜖�̃� =
𝜖�̂�
�̂�𝑡
, 

 

 where 𝜖�̂� = 𝑋𝑡 − �̂�𝑡. By comparing the 𝜖�̃� and the white noise term 𝜀𝑡 =
𝜖𝑡

𝜎𝑡
  we would see that it is 

logical to assess if the assumed distribution of 𝜀𝑡 is an appropriate assumption by plotting 𝜖�̃�.  

 

2.15 Evaluation of Estimated GARCH models 

After fitting a GARCH model, for assessing the adequacy of the fitted model, it could be used  

some graphical and statistical diagnostic checks. If the GARCH model is correctly specified, then 

the estimated standardized residuals 𝜖�̃� should behave like a white noise process. To assess 

whether the standardized residuals seem to be white noise, they should not display 

autocorrelation, conditional heteroskedasticity or any type of nonlinear dependence. The Ljung-

Box statistic could  be used to test the null of no autocorrelation up to a specific lag and ARCH-LM 

statistic could be used to test the null of no remaining ARCH effects. In addition, the Q-Q plot 

should look like a straight line, which means the standardized residuals should follow the assumed 

distribution. See [20]. 

 

2.16 Forecasting  
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Once we have fitted the GARCH model which modelled the risk, we would like to use it for 

forecasting and also we would like to check how well the model forecasts. Out-of-sample forecast 

performance are used to determine if estimated models are potentially useful for forecasting and 

commonly directed by dividing a given data set into an in-sample period, used for the initial 

parameter estimation and fitting the model, and an out-of-sample period, used to evaluate 

forecasting performance. The common approach used for out-of-sample forecast is known as 

rolling window procedure which has a fixed length of the in-sample period and both the start and 

the end of the estimation dates should increase by one and the model re-estimated at each time. 

For the m-step ahead forecasts, this process is continued until no more m-step ahead forecast can 

be computed. By rolling window procedure we divide the data sets into two parts, estimation 

window (𝑤𝐸) and forecasting window (𝑤𝐹) and 𝑤𝐸 + 𝑤𝐹 = 𝑁 where 𝑁 is number of our 

observations and 𝑛 = 1,… ,𝑁. Or equivalently we could consider 𝑛∗ = 1 − 𝑤𝐸 , … , 𝑤𝐹. 

Forecasting window and estimation window 

𝑛 𝑛∗ Window name 

1 1 − 𝑤𝐸 in-sample 

… … in-sample 

𝑤𝐸 0 in-sample 

𝑤𝐸 + 1 1 out-of-sample 

… … out-of-sample 

𝑤𝐸 +𝑤𝐹 𝑤𝐹 out-of-sample 

 

So the first estimation window is 𝑛 = (1,… ,𝑤𝐸), the second estimation window is 𝑛 = (1 +

1, … , 𝑤𝐸 + 1), the third estimation window is 𝑛 = (1 + 2, … ,𝑤𝐸 + 2) and so on, until the last 

estimation window is 𝑛 = (𝑤𝐸 , … , 𝑤𝐸 + 𝑤𝐹 − 1). The first estimation window is used to forecast 

�̂�𝑡=1
2 . The second estimation window is used to forecast �̂�𝑡=2

2  . The last estimation window is used 

to forecast �̂�𝑡=𝑤𝐹
2 . By one-day-ahead forecasting we update every day the parameters and then we 

will have 𝑤𝐹 number of estimated parameters but for economic reasons the true parameters do 

not shift a lot from day to day. So in order to not produce bad forecasts, we will do a re-estimation 

of parameters every 50 days  instead of every day, see [20]. 

 

2.17 Value at risk (VaR) 



20 
 

The most well known risk measure is value at risk (VaR). According to [6],  considering a log return 

series at a moment in time t (𝑟𝑡). The random variable of loss over the period [𝑡, 𝑡 + ℎ] is 

indicated as  

𝐿𝑡+ℎ = −(𝑟𝑡+ℎ − 𝑟𝑡) = ∆𝑟(ℎ). 

 

 Then, 𝐹𝐿 is the cumulative function of loss distribution and it holds that 𝐹𝐿(𝑥) = 𝑃(𝐿 ≤ 𝑥). VaR at 

significance level α (most often 1% and 5%, in this thesis it has been used 1%) is actually an α-

quantile of the distribution function 𝐹𝐿 ,or in other word, VaR presents the smallest real number 

satisfying the inequality FL(x) ≥ α, i.e.: 

𝑉𝑎𝑅𝛼 = inf (𝑥|𝐹𝐿(𝑥) ≥ 𝛼). 

2.18 Backtesting VaR 
 
VaR is a good measures of risk which has several backtesting procedures for validating a set of VaR 

forecasts, see [7]. The aim of backtesting is to estimate whether the amount of losses predicted by 

VaR is correct. This process applies unconditional and conditional coverage tests for the correct 

number of exceedances. The unconditional tests check whether the frequency exceptions, during 

the selected time interval, are in accordance with the chosen confidence level and for testing, it 

has been used the Kupiec test, see [13]. On the other hand, conditional coverage tests examine 

conditionality and changes in data over time, and the most famous test  is the Christoffersen 

independence test, see [7]. 

 

2.19 The Kupiec test  

According to [7], consider N be the observed number of exceedances in the sample, in the other 

words, 𝑁 = ∑ 𝐼𝑡
𝑇
𝑡=1  is the total number of violations over a  𝑇 period of time, where  

𝐼𝑡 = {
0, 𝑖𝑓  𝑟𝑡,𝑡+1 ≥ 𝑉𝑎𝑅𝑡              (𝐻𝑖𝑡)

1, 𝑖𝑓  𝑟𝑡,𝑡+1 < 𝑉𝑎𝑅𝑡  (𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛)
 

The Kupiec likelihood-ratio (LR) statistic examines that  the expected number of violations is 

indeed the stated 𝑝 (In this thesis we use a value of p = 0.01). In other words, we test the null 

hypothesis 𝐻0: 𝑝 =
𝑁

𝑇
  against  𝐻𝑎: 𝑝 ≠

𝑁

𝑇
. The test statistic is 
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𝐿𝑅𝑢𝑐 = 2ln
(
𝑁
𝑇
)𝑁(1 −

𝑁
𝑇
)𝑇−𝑁

𝑝𝑁(1 − 𝑝)𝑇−𝑁
 

The Kupiec test has a the chi-square distribution with one degree of freedom (𝜒2(1)) under the 

null hypothesis, see [25]. If the 𝐿𝑅𝑢𝑐 value is high, the null hypothesis will be rejected. If the null 

hypothesis is rejected, the specific model is not a suitable specification to estimate the VaR. The 

Kupiec test’s power is generally poor, so conditional coverage tests, such as the Christoffersen 

test, can be used for the further examination of VaR model reliability, see [13]. 

 

2.20 The Christoffersen test 

This test evaluates actual number of violations are the same as the stated number and if violations 

are clustered. According to [26], Christoffersen assumes that the violation process 𝐼𝑡  can be 

represented as a Markov chaine with two states:  

п = (
𝜋00 𝜋01
𝜋10 𝜋11

) = (
1 − 𝜋01 𝜋01
1 − 𝜋11 𝜋11

) 

and 

𝜋𝑖𝑗 = Pr(𝐼𝑡 = 𝑗|𝐼𝑡−1 = 𝑖), 

 

where 𝜋01 is the probability of a non-exception being followed by an exception, and 𝜋11 is the 

probability of an exception being followed by an exception. 

We want to test if violations are clustered or not, and it is possible to test this at the same time as 

we test if the stated p is the correct one. The null hypothesis is  

 

𝐻0 ∶ ᴨ = ᴨ𝑝 = (
1 − 𝑝 𝑝
1 − 𝑝 𝑝

) 

 

and in this thesis the coverage rate is p = 0.01. The test statistic testing independence is (see [27]): 

 

𝐿𝑅𝑖𝑛𝑑 = −2ln[(1 − 𝑝)𝑇−𝑁𝑝𝑁] + 2ln[(1 − 𝜋01)
𝜋00𝜋01

𝜋00(1 − 𝜋11)
𝜋10𝜋11

𝜋11], 
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The test statistic is distributed as chi-square distribution with two degrees of freedom (𝜒2(2)).By 

combining these two likelihood ratio tests (𝐿𝑅𝑢𝑐 and 𝐿𝑅𝑖𝑛𝑑 ) could create complete test for 

coverage and independence, which is also distributed as 𝜒2(2): 

 

𝐿𝑅𝑐𝑐 = 𝐿𝑅𝑢𝑐 + 𝐿𝑅𝑖𝑛𝑑 . 

This is the Christoffersen approach to check the predictive ability and accuracy of a VaR model.  

A full specification of null and alternative hypotheses for these tests are: 

 𝐿𝑅𝑢𝑐 𝐿𝑅𝑖𝑛𝑑 𝐿𝑅𝑐𝑐 

𝐻0 
Correct unconditional 

coverage 
Exceedances are 

independent 
Correct conditional 

coverage 

𝐻𝑎 
Incorrect unconditional 

coverage 
Exceedances are not 

independent 
Incorrect conditional 

coverage 

We would like to accept the null hypothesis and a high p-value is a sign of a good model. 
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3 DATA  

3.1 Data description 

3.1.1 NASDAQ Stock Market Daily Closing Price Index 

The NASDAQ Stock Market is an American stock exchange and was founded in 1971 by 

the National Association of Securities Dealers (NASD), which divested itself of NASDAQ in a series 

of sales in 2000 and 2001. “NASDAQ” originally represented “National Association of Securities 

Dealers Automated Quotations”. Except the New York Stock Exchange, it already becomes the 

second-largest stock exchange in the world’s stock market. The NASDAQ also has large trading 

volume than any other electronic stock exchange market. It has been chosen the data from Yahoo 

Finance between 2010-01-01 and 2017-01-01 because, NASDAQ daily closing price index is very 

significant and representative, see [14]. 

Figure 1. Nasdaq daily close prices in 7 years from 2010 to 2017 
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3.1.2 Standard & Poor 500 Stock Market Daily Closing Price Index 

The Standard & Poor's 500, which often called as the S&P 500 (or  the S&P), is  also an 

American stock market index . The S&P 500 introduced its first stock index in 1923, began tracking 

a small number of stocks and then in 1957 it expanded to its current 500. It is one of the most 

commonly followed equity indices, and many consider it one of the best representations of the 

U.S. stock market. It has been chosen the data from Yahoo Finance between 2010-01-01 and 

2017-01-01, see [15]. 

 

Figure 2. S&P500 daily close prices in 7 years from 2010 to 2017 

 

3.1.3 NIKKEI Stock Market Daily Closing Price Index 

The Nikkei (Nikkei heikin kabuki, Nikkei 225), which often called the Nikkei, the Nikkei index, or the 

Nikkei Stock Average, is a stock market index for the Tokyo Stock Exchange (TSE). It has been 

calculated daily by the Nihon Keizai Shimbun (Nikkei) newspaper since 1950. This index with 

https://en.wikipedia.org/wiki/Stock_market_index
https://en.wikipedia.org/wiki/Stock_index
https://en.wikipedia.org/wiki/1950_in_Japan
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longer duration and good comparability has already become the most common and reliable 

indicators to study the changes in the Japanese’s stock market. It has been chosen the index from 

Yahoo Finance between 2010-01-01 and 2017-01-01, see [16]. 

Figure 3. Nikkei daily close prices in 7 years from 2010 to 2017 

 

3.1.4 Dow Jones Stock Market Daily Closing Price Index 

The Dow Jones Industrial Average also called DJIA, the Industrial Average, the Dow Jones, the Dow 

Jones Industrial, the Dow 30 or simply the Dow, is a stock market index which is one of indices 

created by Wall Street Journal editor and Dow Jones & Company co-founder Charles Dow. The 

Dow Jones was first calculated on May 26, 1896. It is the second-oldest U.S. market index after 

the Dow Jones Transportation Average, which was also created by Dow. It has been chosen the 

index from Yahoo Finance between 2010-01-01 and 2017-01-01, see [17]. 

 

https://en.wikipedia.org/wiki/Stock_market_index
https://en.wikipedia.org/wiki/The_Wall_Street_Journal
https://en.wikipedia.org/wiki/Dow_Jones_%26_Company
https://en.wikipedia.org/wiki/Charles_Dow
https://en.wikipedia.org/wiki/Dow_Jones_Transportation_Average
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Figure 4. Dow Jones daily close prices in 7 years from 2010 to 2017 

 

3.2 Data Analysis 

The stationarity is one of the essential conditions in time series. Hence, to better examine the 

close returns, the continuously compounded returns, which is called as log-returns will be used 

instead of closing prices in this research. Log-returns simply eliminate the non-stationary 

properties of the data set, making the financial data more stable. The distribution of log-returns 

over larger periods of time (such as a month, half a year, a year) is closer to the normal 

distribution than for hourly or daily log-returns ( or returns). 

We calculate the return in percent:  

 

                                                    𝑟𝑡 = 100[log(𝑝𝑡) − log(𝑝𝑡−1)]                           (2.1) 

 

Where 𝑝𝑡 and 𝑝𝑡−1 are the closing prices of current and previous date respectively.  

After getting the returns of the stock price, we need to summary and list the features of these 

data, including sample size, mean, standard deviation, minimum, maximum, skewness, kurtosis, 

Shapiro–Wilk test which is a test of normality, see [18] and Quantile-Quantile plot. 

 

https://en.wikipedia.org/wiki/Normality_test
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3.2.1 NASDAQ Stock Prices analysis 

The NASDAQ stock market includes exactly 1763 observations from the 2010-01-01 to 2017-01-01 

in NASDAQ market. According to the formula (2.1), we get the 1762 returns data. 

Figure 5. Nasdaq daily returns 

The returns appear to oscillate around a constant level, but present volatility clustering. Large 

changes in the returns tend to cluster together, and small changes tend to cluster together. That 

is, the series present conditional heteroscedasticity. 

 

 
The descriptions of Nasdaq data 

    Sample size      Min       Max     Mean        Sd    Skewness    Kurtosis 

NASDAQ 1762     -7.15   5.16 0.05 11.016 -0.417 3.237 

 

 

The kurtosis of the NASDAQ daily returns is 3.237 which is a bit higher than the value of normal 

distribution (kurtosis=3). This value shows the financial time series has heavier tails and is called a 

leptokurtic distribution. The skewness is -0.417, not zero, which means it is not symmetric. It also 

has a negative value, so the left-hand tail will be longer than the right-hand tail. 

 

 



28 
 

 

Figure 6. Nasdaq histogram and kernel density estimate (see [19]) 

 

At the same time, the Shapiro–Wilk normality test could tell us another feature. By the 

assumption of 5% significance level, the p-value < 0.05 represents the non-normality of the series 

data (when the p-value is less than 0.05 then the null hypothesis that the data are normally 

distributed is rejected). In our case by the Shapiro-Wilk normality test, the p-value is less than 

2.2e-16, so the distribution of NASDAQ daily return is not normal. We perform a Quantile-Quantile 

plot (QQ-plot) as well. It can check whether or not a time series comes from a certain distribution, 

which is a visual method of analysis where the analyser can get a better knowledge of the 

empirical distribution and its deviations from a theoretical distribution. In our case, we can see 

empirical quantiles don't match normal quantiles in the tails 
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Figure 7. Quantile-Quantile plot for Nasdaq daily returns 

 

3.2.2 Standard & Poor 500 Stock Prices analysis 

The Standard & poor 500 stock market also includes exactly 1763 observations from the 2010-01-

01 to 2017-01-01. According to the formula (2.1), We get the 1762 return data. Also in this case, 

returns exhibit the volatility clustering property. 

Figure 8. S&P500 daily returns 
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The descriptions of S&P 500 data 

    Sample size      Min       Max     Mean        Sd    Skewness    Kurtosis 

S&P 500 1762     -6.89 4.63 0.04 0.98  -0.438 4.19 

 

The kurtosis of the S&P500 daily returns is 4.19 which is higher than the value of normal 

distribution (kurtosis=3), so S&P500 daily returns as Nasdaq daily returns also has a leptokurtic 

distribution. The skewness is -0.438, which means it is not symmetric and the left-hand tail will be 

longer than the right-hand tail. The p-value of Shapiro–Wilk normality test is less than 2.2e-16, so 

the distribution of S&P 500 daily returns is not normal. Also Q-Q plot shows empirical quantiles 

don't match normal quantiles in the tails. 

 

 

 

Figure 9. Histograms and Q-Q plots of the S&P500 daily returns 
 
 

3.2.3 NIKKEI Stock Prices analysis 

The Nikkei stock market contains exactly 1714 observations from the 2010-01-01 to 2017-01-01.  

According to the formula (2.1), we get the 1713 returns data. Also returns of Nikkei stock market 

present the volatility clustering property. 
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Figure 10. Nikkei daily returns 

 

The descriptions of Nikkei data 

    Sample size      Min       Max     Mean        Sd    Skewness    Kurtosis 

Nikkei 1713 -11.15 7.43 0.034 1.43 -0.54 4.97 

 

 

The kurtosis of the Nikkei daily returns is 4.97 which is higher than the value of normal distribution 

(kurtosis=3), so it has a leptokurtic distribution. The skewness is -0.54, so it is not symmetric and 

the left-hand tail will be longer than the right-hand tail. The p-value of Shapiro–Wilk normality test 

is also less than 2.2e-16, so the distribution of Nikkei daily returns is not normal. Also Q-Q plot 

shows empirical quantiles don't match normal quantiles in the tails. 
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Figure 11. Histograms and Q-Q plots of the Nikkei daily returns 

 

3.2.4 Dow Jones Stock Prices analysis 

The Dow Jones stock market contains exactly 1763 observations from the 2010-01-01 to 2017-01-

01. According to the formula (2.1), We get the 1762 returns data. Also here the presence of 

the volatility clustering property is evidence. 

 

Figure 12. Dow Jones daily returns 
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The descriptions of Dow Jones data 

    Sample size      Min       Max     Mean        Sd    Skewness    Kurtosis 

Dow Jones 1762 -5.7 4.15 0.036 0.91 -0.38 3.516 

 

Based on the kurtosis and skewness’s values, the distribution of Dow Jones daily returns value is 

not symmetric and has the fat-tail characteristic (leptokurtic distribution) as Nasdaq, S&P 500 and 

Nikkei daily returns. Also the p-value of Shapiro–Wilk normality test is less than 2.2e-16, so the 

distribution of Dow Jones daily returns is not normal and Q-Q plot shows empirical quantiles don't 

match normal quantiles in the tails. 

 

 

Figure 13. Histograms and Q-Q plots of the Dow Jones daily returns 
 

3.3 Estimation 

The autocorrelation functions (ACF) and partial autocorrelation functions (PACF) of Nasdaq daily 

returns and its squared are presented in Figure 14 and Figure 15 respectively. The reason of 

looking at the ACF and PACF of squared returns to determine whether there exists ARCH effects is 

that the true variance of  𝑟𝑡 is  

var(𝑟𝑡|ℱ𝑡−1) = 𝐸((𝑟𝑡 − 𝐸[𝑟𝑡])
2|ℱ𝑡−1) = 𝐸(𝜀𝑡

2|ℱ𝑡−1) 
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So squaring returns  is a good process to study volatility. 

The results in ACF of Figure 14 represents almost all pikes within the 95% confidence band, that is, 

ACF decay rapidly to zero, although ACF approves significant autocorrelation at lag 3, 5,…  

On the other hand squared Nasdaq returns have high correlation as we can see in ACF of Figure 

15. Thus, we may conclude that the returns process has a strong non-linear dependence.   

In addition, PACF of squared return data does not show a clear sign of the exponential decay of 

lags towards to zero mean in this study. That’s why various ARMA models will be adopted in next 

section to search for a fit model and to see whether autocorrelation occurs at some lags. 

 

Figure 14. ACF and PACF of Nasdaq daily returns 
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Figure 15. ACF and PACF of squared Nasdaq daily returns 

 

ACF and PACF of daily returns and  squared daily returns of S&P 500 , Nikkei and Dow Jones stock 

markets are also presented in Figure 16, Figure 17 and Figure 18 respectively which we can 

interpret almost the same as Nasdaq.  

 

 

Figure 16. ACF and PACF of S&P 500 daily returns and its squared 
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Figure 17. ACF and PACF of Nikkei daily returns and its squared 

 

Figure 18. ACF and PACF of Dow Jones daily returns and its squared 

 

Has been performed the Box-Ljung test (see[8]) to test the independence of daily returns and 

squared values of daily returns . By the assumption of 5% significance level, all of the results on 

Nasdaq’s daily returns are significant so the null hypothesis has to be rejected (instead of Box-
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Ljung test of returns at lag 2 that are not correlated as the p-values>0.05). However, it shows signs 

of ARCH effect on the Nasdaq’s daily returns  which leads us to proceed ahead to GARCH model. 

 

The Box-Ljung test results on Nasdaq daily returns 

Box-Ljung test 
 

lag=2 lag=4 lag=6 

test value 1.3118 10.82 17.169 

p-value 0.519 0.02867 0.008681 

 

The Box-Ljung test results on squared values of Nasdaq daily returns 

Box-Ljung test 
 

lag=2 lag=4 lag=6 

test value 284.83 447.74 548.13 

p-value < 2.2e-16 < 2.2e-16 < 2.2e-16 

 

All of the results of S&P 500’s daily returns are also significant so the null hypothesis has to be 

rejected (instead of Box-Ljung test of returns at lag 2 that are not correlated as the p-values>0.05). 

However, it shows signs of ARCH effect on the S&P 500’s returns which leads us to proceed ahead 

to GARCH model. 

The Box-Ljung test results on S&P 500 daily returns 

Box-Ljung test 

 
lag=2 lag=4 lag=6 

test value 5.5227 13.049 26.347 

p-value 0.06321 0.01104 0.0001918 

 

The Box-Ljung test results on squared values of S&P 500 daily returns 

Box-Ljung test 

 
lag=2 lag=4 lag=6 

test value 387.66 568.36 681.64 

p-value < 2.2e-16 < 2.2e-16 < 2.2e-16 

 

All of the results of Nikkei’s daily returns are also significant so the null hypothesis has to be 

rejected (instead of Box-Ljung test of returns at lag 2 that are not correlated as the p-values>0.05). 

However, it shows signs of ARCH effect on the Nikkei’s returns which leads us to proceed ahead to 

GARCH model. 
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The Box-Ljung test results on Nikkei daily returns 

Box-Ljung test 

 
lag=2 lag=4 lag=6 

test value 4.5328 12.84 13.139 

p-value 0.1037 0.01208 0.04088 

 

The Box-Ljung test results on squared values of Nikkei daily returns 

Box-Ljung test 

 
lag=2 lag=4 lag=6 

test value 128.51 156.92 167.83 

p-value < 2.2e-16 < 2.2e-16 < 2.2e-16 

 

All of the results of Dow Jones’s daily returns are also significant so the null hypothesis has to be 

rejected (instead of Box-Ljung test of returns at lag 2 that are not correlated as the p-values>0.05). 

However, it shows signs of ARCH effect on the Dow Jones’s returns which leads us to proceed 

ahead to GARCH model. 

 

The Box-Ljung test results on Dow Jones daily returns 

Box-Ljung test 

 
lag=2 lag=4 lag=6 

test value 5.8687 9.5817 21.673 

p-value 0.05317 0.04809 0.001388 

 

The Box-Ljung test results on squared values of Dow Jones  daily returns 

Box-Ljung test 

 
lag=2 lag=4 lag=6 

test value 396.76 579.27 681.57 

p-value < 2.2e-16 < 2.2e-16 < 2.2e-16 
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4 Application and Results  

4.1 Application in NASDAQ daily return 

4.1.1 Selection of ARMA (p, q) model 

First step is selection of suitable ARMA (p, q) model for NASDAQ daily return. Based on ACF and 

PACF in Figure 14 and Figure 15, we could select different parameter p and q for ARMA models. 

We compare the value of Akaike Information Criterion (AIC) and the Bayesian Information 

Criterion (BIC). A lower AIC or BIC value indicates a better fit (more parsimonious model). 

  

  AR(1) AR(2) MA(1) MA(2) ARMA(1,1) ARMA(1,2) ARMA(2,1) ARMA(2,2) 

AIC 5345.98 5347.08 5346 5347.21 5342.44 5343.19 5343.28 5344.76 

BIC 5362.4 5368.97 5362.42 5369.1 5364.34 5370.55 5370.65 5377.6 

 

The lowest AIC comes at 5342.44 of ARMA(1,1) model in comparison to others. As a result, the 

study will mainly focus on ARMA(1,1) model. So the conditional mean equation is as follows 

 

              𝑟𝑡 = 𝛼 + 𝜙1𝑟𝑡−1 + 𝜀𝑡 + 𝜃1𝜀𝑡−1, 𝑡 = 1,… , 𝑇. 

 

The estimated parameters are 𝛼 = 0.0490, 𝜙1 = −0.8534   and  𝜃1 =  0.8232. 

Then, we could calculate  

 

                                                     𝜀�̂� = 𝑟𝑡 − (�̂� + �̂�1𝑟𝑡−1 + 𝜃1𝜀𝑡−1). 

   

4.1.2 Testing estimation of residuals for ARMA model 

To examine independence of residuals, it has been checked the ACF of estimated residuals of 

ARMA(1,1) model. According to the results in ACF of Figure 19 almost all autocorrelations stay 

within the 95% confidence band. Although, there are still some significant autocorrelation at lags 

22 and 25.  
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Figure 19. ACF of the estimated residuals for ARMA(1,1) models 

 

To check the signal of autocorrelation in ARMA(1,1) model, the Ljung – Box test has been  used as 

well. By the assumption of 5% significance level, according to the p-value of mentioned lags, the 

null hypothesis has to be rejected and indicates that the independence assumption of residuals 

can be eliminated. 

Box-Ljung test 
 lag=22 lag=25 

test value 36.003 50.658 

p-value 0.03034 0.001767 

 

In addition, the histogram of estimated residuals of ARMA(1,1) model and QQ–plot in Figure 20  

have been used to test normality assumption of residuals. The charts approve that residuals are 

not normal distributed, so the GARCH models can be applied to Nasdaq’s returns. 

 

Figure 20. Histogram and QQ-plot of estimated residuals 



41 
 

 

4.1.3 GARCH Results 

We estimate GARCH(1,1), GARCH(2,1), ARMA(1,1)-GARCH(1,1) and ARMA(1,1)-GARCH(2,1)  with 

normal distribution, Student-t distribution and Skew Student-t distribution for the residuals. We 

can see the estimation of the models parameters for different distribution in Figure 21, Figure 22, 

Figure 23 and Figure 24.  

 

Parameters estimation for GARCH(1,1)  

Normal 

  Estimate Std.Error t value Pr(>|t|) 

Mu 0.08442 0.02145 3.935 8.31e-05 

Omega 0.05520 0.01144 4.825 1.40e-06 

alpha1 0.12059 0.01751 6.888 5.66e-12 

beta1 0.83159 0.02203 37.750 < 2e-16 

Student-t 

  Estimate Std.Error t value Pr(>|t|) 

Mu 0.10968 0.02026 5.413 6.19e-08 

Omega 0.04988 0.01330 3.752 0.000176 

alpha1 0.12893 0.02233 5.774 7.73e-09 

beta1 0.83385 0.02539 32.841 < 2e-16 

Shape 620.501 0.98879 6.275 3.49e-10 

Skew Student-t 

  Estimate Std.Error t value Pr(>|t|) 

Mu 0.08217 0.02107 3.900 9.62e-05 

Omega 0.04557 0.01232 3.698 0.000217 

alpha1 0.12491 0.02089 5.978 2.26e-09 

beta1 0.83809 0.02441 34.336 < 2e-16 

Skew 0.87749 0.02801 31.329 < 2e-16 

Shape 703.908 127.165 5.535 3.11e-08 

Figure 21.  Parameters estimation for GARCH(1,1) of Nasdaq returns  

 

By assuming the significance level of 5%, in GARCH(1,1) model, all of the estimated parameters are 

significant. In GARCH(2,1) model almost all of the estimated parameters are significant except 𝛼2 

for all the three different distribution (normal, Student-t and Skew Student-t distribution). 

 

Parameters estimation for GARCH(2,1)  

Normal 

  Estimate Std.Error t value Pr(>|t|) 

Mu 0.08308 0.02149 3.866 0.000111 

Omega 0.06178 0.01433 4.310 1.63e-05 

alpha1 0.09629 0.02887 3.335 0.000852 

alpha2 0.03386 0.03337 1.015 0.310220 

beta1 0.81618 0.02841 28.730 <2e-16 



42 
 

Student-t 

  Estimate Std.Error t value Pr(>|t|) 

Mu 0.10811 0.02029 5.327 9.96e-08 

Omega 0.06023 0.01718 3.506 0.000454 

alpha1 0.08652 0.03361 2.574 0.010043 

alpha2 0.06237 0.04165 1.497 0.134306 

beta1 0.80641 0.03431 23.503 <2e-16 

Shape 616.772 0.97708 6.312 2.75e-10 

Skew Student-t 

  Estimate Std.Error t value Pr(>|t|) 

Mu 0.07963 0.02116 3.764 0.000167 

Omega 0.05680 0.01628 3.489 0.000485 

alpha1 0.07958 0.03129 2.543 0.010977 

alpha2 0.06700 0.03943 1.699 0.089273 

beta1 0.80772 0.03339 24.189 <2e-16 

Skew 0.87517 0.02800 31.261 <2e-16 

Shape 695.358 124.280 5.595 2.2e-08 

Figure 22.  Parameters estimation for GARCH(2,1) of Nasdaq returns  

 

In ARMA(1,1)-GARCH(1,1) model, the parameters estimated for Skew Student-t distribution are all 

significant, but not under normal and Student-t distribution. As we can see in Figure 23, the 

coefficient of the first term of the autoregressive process, the first term of the moving average 

process and 𝜇 under normal distribution and Student-t distribution are not significant. On the 

other hand, the Skew Student-t distribution has the better estimated parameters and all are 

significant. 

 

 

Parameters estimation for ARMA(1,1)- GARCH(1,1)  

Normal 

  Estimate Std.Error t value Pr(>|t|) 

Mu 0.08259 0.05474 1.509 0.131 

ar1 0.01316 0.60011 0.022 0.982 

ma1 -0.02178 0.60902 -0.036 0.971 

omega 0.05568 0.01154 4.826 1.40e-06 

alpha1 0.12148 0.01765 6.882 5.91e-12 

beta1 0.83045 0.02221 37.399 < 2e-16 

Student-t 

  Estimate Std.Error t value Pr(>|t|) 

Mu 0.109673 0.056182 1.952 0.050925 

ar1 0.001539 0.476708 0.003 0.997425 

ma1 -0.023730 0.480911 -0.049 0.960645 

omega 0.050511 0.013482 3.747 0.000179 

alpha1 0.130804 0.022719 5.758 8.53e-09 

beta1 0.832250 0.025658 32.436 <2e-16 

shape 6.086.335 0.961863 6.328 2.49e-10 
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Skew Student-t 

  Estimate Std.Error t value Pr(>|t|) 

Mu 0.024652 0.009304 2.650 0.008059 

ar1 0.695278 0.100433 6.923 4.43e-12 

ma1 -0.761835 0.096364 -7.906 2.66e-15 

omega 0.040700 0.011416 3.565 0.000363 

alpha1 0.115839 0.019655 5.894 3.78e-09 

beta1 0.849638 0.023306 36.456 <2e-16 

Skew 0.835666 0.030098 27.764 <2e-16 

shape 7.317.389 1.354.971 5.400 6.65e-08 

Figure 23.  Parameters estimation for ARMA(1,1)- GARCH(1,1) of Nasdaq returns 

 

In ARMA(1,1)-GARCH(2,1) model, the parameters estimated for three distributions are not all 

significant. As we can see in Figure 24, the coefficient of the first term of the autoregressive 

process, the first term of the moving average process, μ and 𝛼2 under normal distribution and 

Student-t distribution are not significant. The parameter  𝛼2 is not significant also under Skew 

Student-t distribution. 

 

Parameters estimation for ARMA(1,1)- GARCH(2,1)  

Normal 

  Estimate Std.Error t value Pr(>|t|) 

mu 0.08043 0.05736 1.402 0.160883 

ar1 0.02356 0.64502 0.037 0.970860 

ma1 -0.03174 0.65541 -0.048 0.961373 

omega 0.06212 0.01448 4.290 1.79e-05 

alpha1 0.09553 0.02866 3.334 0.000856 

alpha2 0.03503 0.03347 1.047 0.295327 

beta1 0.81546 0.02872 28.398 <2e-16 

Student-t 

  Estimate Std.Error t value Pr(>|t|) 

mu 0.10606 0.05861 1.810 0.070355 

ar1 0.02015 0.50926 0.040 0.968446 

ma1 -0.04193 0.51414 -0.082 0.935000 

omega 0.06067 0.01743 3.480 0.000501 

alpha1 0.08695 0.03357 2.590 0.009592 

alpha2 0.06345 0.04207 1.508 0.131560 

beta1 0.80530 0.03479 23.151 <2e-16 

shape 604.840 0.94930 6.371 1.87e-10 

Skew Student-t 

  Estimate Std.Error t value Pr(>|t|) 

mu 0.024890 0.009939 2.504 0.012272 

ar1 0.683048 0.112113 6.092 1.11e-09 

ma1 -0.747956 0.108297 -6.907 4.97e-12 

omega 0.050296 0.015000 3.353 0.000799 

alpha1 0.075453 0.029555 2.553 0.010680 

alpha2 0.059321 0.037552 1.580 0.114180 
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beta1 0.823159 0.031770 25.910 <2e-16 

skew 0.835337 0.029839 27.995 <2e-16 

shape 7.177.019 1.309.113 5.482 4.20e-08 

Figure 24.  Parameters estimation for ARMA(1,1)- GARCH(2,1) of Nasdaq returns 

 

Figure 25 shows the Akaike Information Criterion (AIC) and Bayes information Criterion (BIC) under 

the three distributions for the models. As we know, a lower AIC or BIC value indicates a better fit. 

In our case ARMA(1,1)-GARCH(2,1) model with Skew Student-t  distribution has the lowest AIC 

which is 2.785 and then the lowest comes at 2.786 of ARMA(1,1)-GARCH(1,1) model with Skew 

Student-t  distribution. Obviously, the ARMA(1,1)-GARCH(1,1) model with Skew Student-t  

distribution is the best model, because all of the estimated parameters are significant and the 

fitted model is as follow 

𝑟𝑡 = 𝜇 + 𝜙1(𝑟𝑡−1 − 𝜇) + 𝜃1𝜖𝑡−1 + 𝜖𝑡,    𝜖𝑡 = 𝜎𝑡𝜀𝑡 

and 

𝜎𝑡
2 = 𝜔 + 𝛼1𝜖𝑡−1

2 + 𝛽1𝜎𝑡−1
2 , 

 

where estimated parameters according to Figure 23 are 

 𝜇 = 0.024652, 𝜙1 = 0.695278, 𝜃1 = −0.761835, 𝜔 = 0.0407, 𝛼1 = 0.115839  and  𝛽1 = 0.849638, 

also we could see the skewness value which has p-value < 0.05 and  is significant. Since, the skew 

value = 0.835666, it indicates that the student-t distribution is skewed positively. The shape 

parameter is the estimated degrees of freedom in the skewed Student-t distribution of 𝜀𝑡 and has 

p-value < 0.05, so is significant.  

Information Criterion Statistics 

  AIC BIC 

GARCH(1,1)-Normal  2.831 2.843 

GARCH(1,1)-Student-t 2.798 2.814 

GARCH(1,1)-Skew Student-t 2.790 2.808 

GARCH(2,1)-Normal  2.831 2.847 

GARCH(2,1)-Student-t 2.798 2.817 

GARCH(2,1)-Skew Student-t 2.789 2.811 

ARMA(1,1)-GARCH(1,1)-Normal  2.832 2.850 

ARMA(1,1)-GARCH(1,1)-Student-t 2.798 2.820 

ARMA(1,1)-GARCH(1,1)-Skew Student-t 2.786 2.811 

ARMA(1,1)-GARCH(2,1)-Normal  2.832 2.854 

ARMA(1,1)-GARCH(2,1)-Student-t 2.798 2.823 

ARMA(1,1)-GARCH(2,1)-Skew Student-t 2.785 2.813 

Figure 25. Information Criterion Statistics for different models of Nasdaq returns 
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4.1.4 Residuals Diagnostics of GARCH model  

In order to test for the validity of analysis of GARCH models, we should make sure that 

standardised residuals and squared standardised residuals are free from serial autocorrelation. In 

addition, we have to make sure that our model capture all ARCH effect, which means the ARCH 

effect should not be exist anymore, see [20]. It has been performed the Standardised Residuals 

Tests of ARMA(1,1)-GARCH(1,1) with Skew Student-t distribution in Figure 26. By looking at Ljung-

Box test on residuals and squared residuals which have p-values>0.05, it has been failed to reject 

the null hypothesis and there is no evidence of autocorrelation in the residuals and squared 

residuals. As a result, we can conclude that the residuals behave as white noise. 

 

Standardised Residuals Tests: 

       Statistic  p-value 

Jarque-Bera Test     R Chi^2 180.4154 0 

Shapiro-Wilk Test R W 0.9797459 4.357308e-15 

Ljung-Box Test R Q(10) 12.86835 0.2311257 

Ljung-Box Test R Q(15) 17.5842 0.2851557   

Ljung-Box Test R Q(20) 21.10254 0.3911193 

Ljung-Box Test R^2 Q(10) 4.265787   0.9345613  

Ljung-Box Test R^2 Q(15) 13.17962   0.5884266  

Ljung-Box Test R^2 Q(20) 18.89043   0.5289581  

LM Arch Test R NR^2 4.383378   0.9754836  

Figure 26. Standardised Residuals Tests of ARMA(1,1)-GARCH(1,1) with skew student-t distribution 

 

Looking at the ARCH LM Tests, the p-values>0.05 and it has been failed to reject the null 

hypothesis and there in no ARCH effect. This confirms that the residuals behave as a white noise 

process. So we could conclude that the ARMA(1,1)-GARCH(1,1) model with Skew Student-t 

distribution is appropriate. 
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Figure 27.ACF of residuals of ARMA(1,1)- GARCH (1,1) model 

 

Figure 28. Residuals and Q-Q plot of residuals of ARMA(1,1)- GARCH (1,1) model 

 

 

4.2 Application in the S&P 500 daily return 

4.2.1 Selection of ARMA (p, q) model 

As before, the first step is selection of suitable ARMA (p, q) model for S&P 500 daily return. Based 

on ACF and PACF in Figure 16, we could select different parameter p and q for ARMA models. By 

comparing the value of Akaike Information Criterion (AIC) or the Bayesian Information Criterion 

(BIC), it has been selected a model with a lower AIC or BIC value which indicates a better fit.  
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  AR(1) AR(2) MA(1) MA(2) ARMA(1,1) ARMA(1,2) ARMA(2,1) ARMA(2,2) 

AIC 4931.62 4932.5 4931.81 4932.98 4925.77 4927.7 4927.74 4920.91 

BIC 4948.04 4954.41 4948.23 4954.88 4947.66 4955.11 4955.11 4953.75 

 

The lowest AIC and BIC come at 4925.77 and 4947.66 of ARMA(1,1) model in comparison to others 

with changing model orders. As a result, the study will mainly focus on ARMA(1,1) model. So the 

conditional mean equation is as follows 

 

              𝑟𝑡 = 𝛼 + 𝜙1𝑟𝑡−1 + 𝜀𝑡 + 𝜃1𝜀𝑡−1, 𝑡 = 1,… , 𝑇. 

 

The estimated parameters are 𝛼 = 0.0396, 𝜙1 = −0.8313  and  𝜃1 = 0.7853.     

Then, we could calculate  

 

                                                     𝜀�̂� = 𝑟𝑡 − (�̂� + �̂�1𝑟𝑡−1 + 𝜃1𝜀𝑡−1). 

 

4.2.2 Testing estimation of residuals for ARMA model 

To examine independence of residuals, it has been checked the ACF of estimated residuals of 

ARMA(1,1) model. According to the results in ACF of Figure 29 almost all autocorrelations stay 

within the 95% confidence band. Although, there are still some significant autocorrelation at lags 5 

and 25.  

 

          Figure 29. ACF of the estimated residuals for ARMA(1,1) model 
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To check the signal of autocorrelation in ARMA(1,1) model, the Ljung – Box test has been  used as 

well. By the assumption of 5% significance level, according to the p-value of mentioned lags, the 

null hypothesis has to be rejected and indicates that the independence assumption of residuals 

can be eliminated, so the GARCH models can be applied to S&P 500’s returns. 

 

Box-Ljung test 
 lag=5 lag=25 

test value 11.92 62.514 

p-value 0.0359 4.668e-05 

 

In addition, the histogram of estimated residuals of ARMA(1,1) model and QQ–plot in Figure 30  

have been used to test normality assumption of residuals. The charts approve that residuals are 

not normal distributed. 

 

 

Figure 30. Histogram and QQ-plot of estimated residuals 
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4.2.3 GARCH Results 

We estimate GARCH(1,1), GARCH(2,1), ARMA(1,1)-GARCH(1,1) and ARMA(1,1)-GARCH(2,1)  with 

normal distribution, Student t distribution and Skew Student t distribution. We can see the 

estimation of the models parameters for different distribution in Figure 31, Figure 32, Figure 33 

and Figure 34.  

 

Parameters estimation for GARCH(1,1)  

Normal 

 Estimate Std.Error t value Pr(>|t|) 

mu 0.067444 0.017925 3.763 0.000168 

omega 0.046361 0.008154 5.686 1.30e-08 

alpha1 0.150323 0.020253 7.422 1.15e-13 

beta1 0.799864 0.022576 35.430 < 2e-16 

Student-t 

 Estimate Std.Error t value Pr(>|t|) 

mu 0.08332 0.01660 5.019 5.19e-07 

omega 0.03873 0.00959 4.039 5.37e-05 

alpha1 0.16205 0.02647 6.121 9.30e-10 

beta1 0.80721 0.02622 30.790 < 2e-16 

shape 5.44624 0.75969 7.169 7.55e-13 

Skew Student-t 

 Estimate Std.Error t value Pr(>|t|) 

mu 0.064585 0.017567 3.677 0.000236 

omega 0.036284 0.009064 4.003 6.25e-05 

alpha1 0.157836 0.025112 6.285 3.27e-10 

beta1 0.810325 0.025557 31.707 < 2e-16 

skew 0.905846 0.028964 31.275 < 2e-16 

shape 5.915279 0.892840 6.625 3.47e-11 

Figure 31.  Parameters estimation for GARCH(1,1) of S&P500 returns  

 

 

By assuming the significance level of 5%, in GARCH(1,1) model, all of the estimated parameters are 

significant. In GARCH(2,1) model also all of the estimated parameters are significant for all the 

three different distribution (normal, Student-t and Skew Student-t distribution). 
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Parameters estimation for GARCH(2,1) 

Normal 

 Estimate Std.Error t value Pr(>|t|) 

mu 0.06601 0.01788 3.692 0.000223 

omega 0.05885 0.01151 5.113 3.18e-07 

alpha1 0.09438 0.02768 3.410 0.000650 

alpha2 0.08523 0.03506 2.431 0.015066 

beta1 0.75671 0.03228 23.444 < 2e-16 

Student-t 

 Estimate Std.Error t value Pr(>|t|) 

mu 0.08313 0.01654 5.025 5.02e-07 

omega 0.05363 0.01365 3.929 8.54e-05 

alpha1 0.07816 0.03356 2.329 0.01985 

alpha2 0.12941 0.04571 2.831 0.00464 

beta1 0.74965 0.03802 19.719 < 2e-16 

shape 5.44116 0.75702 7.188 6.59e-13 

Skew Student-t 

 Estimate Std.Error t value Pr(>|t|) 

mu 0.06393 0.01752 3.650 0.000262 

omega 0.05082 0.01288 3.945 7.97e-05 

alpha1 0.07610 0.03189 2.387 0.017008 

alpha2 0.12677 0.04354 2.912 0.003596 

beta1 0.75245 0.03686 20.413 < 2e-16 

skew 0.90333 0.02897 31.182 < 2e-16 

shape 5.92282 0.89379 6.627 3.43e-11 

Figure 32.  Parameters estimation for GARCH(2,1) of S&P500 returns  

 

 

In ARMA(1,1)-GARCH(1,1) model, the parameters estimated for Skew Student-t distribution are all 

significant, but not under normal and Student-t distribution. As we can see in Figure 33, the 

coefficient of the first term of the autoregressive process, the first term of the moving average 

process and 𝜇 under Student-t distribution are not significant. Also 𝜇 is not significant under 

Normal distribution. 
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Parameters estimation for ARMA(1,1)- GARCH(1,1) 

Normal 

 Estimate Std.Error t value Pr(>|t|) 

mu 0.030996 0.016480 1.881 0.05999 

ar1 0.542647 0.222417 2.440 0.01470 

ma1 -0.591449 0.220786 -2.679 0.00739 

omega 0.046411 0.008162 5.686 1.30e-08 

alpha1 0.151030 0.020428 7.393 1.43e-13 

beta1 0.799215 0.022755 35.123 < 2e-16 

Student-t 

 Estimate Std.Error t value Pr(>|t|) 

mu 0.046513 0.032562 1.428 0.153 

ar1 0.451083 0.376584 1.198 0.231 

ma1 -0.504515 0.374120 -1.349 0.177 

omega 0.038576 0.009597 4.019 5.83e-05 

alpha1 0.163406 0.026951 6.063 1.34e-09 

beta1 0.807012 0.026378 30.595 < 2e-16 

shape 5.355260 0.742062 7.217 5.32e-13 

Skew Student-t 

 Estimate Std.Error t value Pr(>|t|) 

mu 0.021874 0.008499 2.574 0.010060 

ar1 0.659843 0.117815 5.601 2.14e-08 

ma1 -0.739179 0.112310 -6.582 4.65e-11 

omega 0.032583 0.008503 3.832 0.000127 

alpha1 0.147080 0.024090 6.106 1.02e-09 

beta1 0.822473 0.025070 32.807 < 2e-16 

skew 0.860590 0.031805 27.058 < 2e-16 

shape 6.123877 0.940312 6.513 7.39e-11 

Figure 33.  Parameters estimation for ARMA(1,1)- GARCH(1,1) of S&P500 returns 

 

In ARMA(1,1)-GARCH(2,1) model, the parameters estimated for Skew Student-t distribution are all 

significant, but not under normal and Student-t distribution as in ARMA(1,1)-GARCH(1,1) model . 

As we can see in Figure 34, the coefficient of the first term of the autoregressive process, the first 

term of the moving average process and 𝜇 under student-t distribution are not significant. Also 𝜇 

is not significant under Normal distribution. 
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Parameters estimation for ARMA(1,1)- GARCH(2,1)  

Normal 

  Estimate Std.Error t value Pr(>|t|) 

mu 0.03063 0.01637 1.872 0.061275 

ar1 0.53695 0.22776 2.358 0.018398 

ma1 -0.58530 0.22566 -2.594 0.009495 

omega 0.05936 0.01166 5.091 3.55e-07 

alpha1 0.09262 0.02691 3.442 0.000577 

alpha2 0.08869 0.03485 2.545 0.010929 

beta1 0.75440 0.03296 22.888 < 2e-16 

Student-t 

  Estimate Std.Error t value Pr(>|t|) 

mu 0.04455 0.02907 1.533 0.12537 

ar1 0.47181 0.33726 1.399 0.16183 

ma1 -0.52563 0.33437 -1.572 0.11594 

omega 0.05413 0.01384 3.911 9.19e-05 

alpha1 0.07469 0.03248 2.300 0.02146 

alpha2 0.13615 0.04558 2.987 0.00282 

beta1 0.74710 0.03865 19.329 < 2e-16 

shape 5.34664 0.73536 7.271 3.57e-13 

Skew Student-t 

  Estimate Std.Error t value Pr(>|t|) 

mu 0.022676 0.009053 2.505 0.012251 

ar1 0.641594 0.128836 4.980 6.36e-07 

ma1 -0.720690 0.122946 -5.862 4.58e-09 

omega 0.047335 0.012355 3.831 0.000128 

alpha1 0.065672 0.028974 2.267 0.023417 

alpha2 0.126639 0.041042 3.086 0.002032 

beta1 0.763654 0.036495 20.925 < 2e-16 

skew 0.859435 0.031713 27.100 < 2e-16 

shape 6.082555 0.926129 6.568 5.11e-11 

Figure 34.  Parameters estimation for ARMA(1,1)- GARCH(2,1) of S&P500 returns 

 

Figure 35 shows the Akaike Information Criterion (AIC) and Bayes information Criterion (BIC) under 

the three distributions for the models. As we know, a lower AIC or BIC value indicates a better fit. 

In our case ARMA(1,1)-GARCH(2,1) model with Skew Student-t  distribution has the lowest AIC 

which is 2.476 and BIC which is 2.504. So the ARMA(1,1)-GARCH(2,1) model with Skew Student-t  

distribution is the best model, because all of the estimated parameters  are significant and the 

fitted model is as follow 

𝑟𝑡 = 𝜇 + 𝜙1(𝑟𝑡−1 − 𝜇) + 𝜃1𝜖𝑡−1 + 𝜖𝑡,    𝜖𝑡 = 𝜎𝑡𝜀𝑡 

and 

𝜎𝑡
2 = 𝜔 + 𝛼1𝜖𝑡−1

2 + 𝛼2𝜖𝑡−2
2 + 𝛽1𝜎𝑡−1

2 , 
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where estimated parameters according to Figure 34 are 𝜇 = 0.022676, 𝜙1 = 0.641594, 𝜃1 =

−0.720690, 𝜔 = 0.047335,  𝛼1 = 0.065672,  𝛼2 = 0.126639 and  𝛽1 = 0.763654, also we could the 

skew value = 0.859435 which indicates that the student-t distribution is skewed positively.  

Information Criterion Statistics 

  AIC BIC 

GARCH(1,1)-Normal  2.539 2.551 

GARCH(1,1)-Student-t 2.492 2.508 

GARCH(1,1)-Skew Student-t 2.488 2.507 

GARCH(2,1)-Normal  2.536 2.552 

GARCH(2,1)-Student-t 2.489 2.507 

GARCH(2,1)-Skew Student-t 2.484 2.506 

ARMA(1,1)-GARCH(1,1)-Normal  2.537 2.555 

ARMA(1,1)-GARCH(1,1)-Student-t 2.489 2.511 

ARMA(1,1)-GARCH(1,1)-Skew Student-t 2.480 2.505 

ARMA(1,1)-GARCH(2,1)-Normal  2.534 2.556 

ARMA(1,1)-GARCH(2,1)-Student-t 2.485 2.510 

ARMA(1,1)-GARCH(2,1)-Skew Student-t 2.476 2.504 

Figure 35. Information Criterion Statistics for different models of S&P500 returns 

 

4.2.4 Residuals Diagnostics of GARCH model  

It has been performed the Standardised Residuals Tests of ARMA(1,1)-GARCH(2,1) with skew 

Student-t distribution in Figure 36. By looking at Ljung-Box test on residuals and squared residuals 

which have p-values>0.05, it has been failed to reject the null hypothesis and there is no evidence 

of autocorrelation in the residuals and squared residuals. As a result, we can conclude that the 

residuals behave as white noise. 

Standardised Residuals Tests: 

      Statistic p-value 

Jarque-Bera Test     R Chi^2 307.5923 0 

Shapiro-Wilk Test R W 0.9761527 0 

Ljung-Box Test R Q(10) 13.7967 0.1824684 

Ljung-Box Test R Q(15) 19.5047 0.191767 

Ljung-Box Test R Q(20) 24.45178 0.2232144 

Ljung-Box Test R^2 Q(10) 10.06548 0.4347671 

Ljung-Box Test R^2 Q(15) 17.97802 0.263823 

Ljung-Box Test R^2 Q(20) 19.88817 0.4649444 

LM Arch Test R NR^2 10.21848 0.5968004 

Figure 36. Standardised Residuals Tests of ARMA(1,1)-GARCH(2,1) with Skew Student-t distribution 
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Looking at the ARCH LM Tests, the p-values>0.05 and it has been failed to reject the null 

hypothesis and there is no ARCH effect. This confirms that the residuals behave as a white noise 

process. So we could conclude that the ARMA(1,1)-GARCH(2,1) model with Skew Student-t 

distribution is appropriate. 

 

 

  

Figure 37.ACF of residuals of ARMA(1,1)- GARCH (2,1) model 

 

Figure 38. Residuals and Q-Q plot of residuals of ARMA(1,1)- GARCH (2,1) model 
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4.3 Application in the Nikkei daily return 

4.3.1 Selection of ARMA (p, q) model 

 Based on ACF and PACF in Figure 17, we select different parameter p and q for ARMA models for 

Nikkei daily returns. 

 AR(1) AR(2) MA(1) MA(2) ARMA(1,1) ARMA(1,2) ARMA(2,1) ARMA(2,2) 

AIC 6085.91 6087.38 6086.05 6087.35 6087.55 6089.3 6089.37 6073.79 

BIC 6102.25 6109.16 6102.38 6109.13 6109.33 6116.53 6116.6 6106.46 

 

The lowest AIC and BIC come at 6073.79 and 6106.46 of ARMA(2,2) model in comparison to others 

with changing model orders. As a result, the study will mainly focus on ARMA(2,2) model. So the 

conditional mean equation is as follows 

 

              𝑟𝑡 = 𝛼 + 𝜙1𝑟𝑡−1 + 𝜙2𝑟𝑡−2 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2, 𝑡 = 1,… , 𝑇. 

 

The estimated parameters are 

 

 𝛼 = 0.0335, 𝜙1 = −0.4707, 𝜙2 = −0.9037, 𝜃1 = 0.4502 and  𝜃2 = 0.9418.  

 

Then, we could calculate  

 

𝜀�̂� = 𝑟𝑡 − (�̂� + �̂�1𝑟𝑡−1 + �̂�2𝑟𝑡−2 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2). 

 

4.3.2 Testing estimation of residuals for ARMA model 

It has been checked the ACF of estimated residuals of ARMA(2,2) model to examine independence 

of residuals. According to the results in ACF of Figure 39 all autocorrelations stay within the 95% 

confidence band. 



56 
 

 

          Figure 39. ACF of the estimated residuals for ARMA(2,2) model 

 

In addition, the histogram of estimated residuals of ARMA(2,2) model and QQ–plot in Figure 40  

have been used to test normality assumption of residuals. The charts approve that residuals are 

not normal distributed. So the GARCH models can be applied to Nikkie’s returns. 

 

 

Figure 40. Histogram and QQ-plot of estimated residuals 
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4.3.3 GARCH Results 

We estimate GARCH(1,1), GARCH(2,1), ARMA(2,2)-GARCH(1,1) and ARMA(2,2)-GARCH(2,1)  with 

normal distribution, Student t distribution and Skew Student t distribution. We can see the 

estimation of the models parameters for different distribution in Figure 41, Figure 42, Figure 43 

and Figure 44.  

 

Parameters estimation for GARCH(1,1)  

Normal 

  Estimate Std.Error t value Pr(>|t|) 

mu 0.07185 0.02878 2.497 0.0125 

omega 0.09836 0.02285 4.304 1.67e-05 

alpha1 0.14428 0.01913 7.543 4.60e-14 

beta1 0.81419 0.02170 37.519 < 2e-16 

Student-t 

  Estimate Std.Error t value Pr(>|t|) 

mu 0.09672 0.02806 3.447 0.000568 

omega 0.10090 0.02931 3.442 0.000577 

alpha1 0.12497 0.02259 5.532 3.17e-08 

beta1 0.82796 0.02807 29.501 < 2e-16 

shape 7.21153 1.19929 6.013 1.82e-09 

Skew Student-t 

  Estimate Std.Error t value Pr(>|t|) 

mu 0.07106 0.02903 2.448 0.014363 

omega 0.09431 0.02714 3.474 0.000512 

alpha1 0.12308 0.02152 5.720 1.07e-08 

beta1 0.83123 0.02667 31.169 < 2e-16 

skew 0.89661 0.03068 29.227 < 2e-16 

shape 8.02206 1.47767 5.429 5.67e-08 

Figure 41.  Parameters estimation for GARCH(1,1) of Nikkei returns  

 

By assuming the significance level of 5%, in GARCH(1,1) model, all of the estimated parameters are 

significant. In GARCH(2,1) model almost all of the estimated parameters are significant except 𝛼2 

for all the three different distribution (Normal, Student-t and Skew Student-t distribution). 

 

Parameters estimation for GARCH(2,1)  

Normal 

 Estimate Std.Error t value Pr(>|t|) 

Mu 0.07261 0.02881 2.521 0.0117 

omega 0.10027 0.02397 4.183 2.88e-05 

alpha1 0.13621 0.02722 5.004 5.61e-07 

alpha2 0.01284 0.03341 0.384 0.7008 

beta1 0.80902 0.02634 30.712 < 2e-16 

Student-t 
 Estimate Std.Error t value Pr(>|t|) 

Mu 0.09792 0.02798 3.499 0.000467 
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omega 0.11074 0.03400 3.257 0.001126 

alpha1 0.10088 0.03179 3.174 0.001505 

alpha2 0.03859 0.04007 0.963 0.335530 

beta1 0.80993 0.03615 22.405 < 2e-16 

shape 7.15724 1.18154 6.058 1.38e-09 

Skew Student-t 

 Estimate Std.Error t value Pr(>|t|) 

Mu 0.07246 0.02901 2.498 0.012486 

omega 0.10091 0.03061 3.297 0.000979 

alpha1 0.10490 0.03116 3.367 0.000760 

alpha2 0.02866 0.03871 0.740 0.459072 

beta1 0.81828 0.03368 24.297 < 2e-16 

Skew 0.89828 0.03076 29.206 < 2e-16 

shape 7.94212 1.45075 5.474 4.39e-08 

Figure 42.  Parameters estimation for GARCH(2,1) of Nikkei returns 

 

As we can see in Figure 43, in ARMA(2,2)-GARCH(1,1) model, the parameters estimated for 

normal, Student-t and Skew Student-t distribution are all significant.  

Parameters estimation for ARMA(2,2)- GARCH(1,1)  

Normal 

 Estimate Std.Error t value Pr(>|t|) 

Mu 0.18301 0.07078 2.586 0.00972 

ar1 -0.52989 0.01461 -36.276 < 2e-16 

ar2 -0.96064 0.01464 -65.609 < 2e-16 

ma1 0.51490 0.01020 50.495 < 2e-16 

ma2 0.97512 0.01290 75.617 < 2e-16 

Omega 0.10398 0.02424 4.290 1.78e-05 

alpha1 0.14669 0.01995 7.354 1.93e-13 

beta1 0.80827 0.02327 34.740 < 2e-16 

Student-t 

 Estimate Std.Error t value Pr(>|t|) 

Mu 0.24334 0.06957 3.498 0.000470 

ar1 -0.53186 0.01617 -32.885 < 2e-16 

ar2 -0.95956 0.02417 -39.706 < 2e-16 

ma1 0.51368 0.01632 31.475 < 2e-16 

ma2 0.96936 0.02197 44.115 < 2e-16 

Omega 0.10646 0.03089 3.446 0.000569 

alpha1 0.12759 0.02324 5.490 4.03e-08 

beta1 0.82214 0.02947 27.896 < 2e-16 

Shape 7.21814 1.20782 5.976 2.28e-09 

Skew Student-t 

 Estimate Std.Error t value Pr(>|t|) 

Mu 0.18668 0.07149 2.611 0.009018 

ar1 -0.53044 0.01541 -34.428 < 2e-16 

ar2 -0.96256 0.01883 -51.108 < 2e-16 

ma1 0.51308 0.01342 38.225 < 2e-16 

ma2 0.97157 0.01792 54.208 < 2e-16 

Omega 0.09909 0.02843 3.486 0.000491 



59 
 

alpha1 0.12613 0.02213 5.698 1.21e-08 

beta1 0.82538 0.02782 29.668 < 2e-16 

Skew 0.90056 0.03125 28.820 < 2e-16 

Shape 8.04971 1.49621 5.380 7.45e-08 

Figure 43.  Parameters estimation for ARMA(2,2)- GARCH(1,1) of Nikkei returns 

 

In ARMA(2,2)-GARCH(2,1) model, the parameters estimated for normal, Student-t and Skew 

Student-t distributions are almost all significant except  the parameter  𝛼2  that is not significant  

under all three distributions.  

Parameters estimation for ARMA(2,2)- GARCH(2,1)  

Normal 

  Estimate Std.Error t value Pr(>|t|) 

Mu 1.828e-01 7.088e-02 2.579 0.00991 

ar1 -5.298e-01 1.461e-02 -36.263 < 2e-16 

ar2 -9.606e-01 1.466e-02 -65.540 < 2e-16 

ma1 5.149e-01 1.018e-02 50.584 < 2e-16 

ma2 9.752e-01 1.298e-02 75.134 < 2e-16 

Omega 1.037e-01 2.491e-02 4.161 3.17e-05 

alpha1 1.464e-01 2.930e-02 4.996 5.87e-07 

alpha2 1.000e-08 3.486e-02 0.000 1.00000 

beta1 8.087e-01 2.749e-02 29.418 < 2e-16 

Student-t 

  Estimate Std.Error t value Pr(>|t|) 

Mu 0.24441 0.06949 3.517 0.000436 

ar1 -0.53139 0.01756 -30.260 < 2e-16 

ar2 -0.95774 0.02955 -32.415 < 2e-16 

ma1 0.51293 0.01944 26.390 < 2e-16 

ma2 0.96737 0.02695 35.894 < 2e-16 

omega 0.11584 0.03592 3.224 0.001262 

alpha1 0.10582 0.03330 3.177 0.001486 

alpha2 0.03422 0.04135 0.827 0.407959 

beta1 0.80611 0.03785 21.296 < 2e-16 

Shape 7.14198 1.18660 6.019 1.76e-09 

Skew Student-t 

  Estimate Std.Error t value Pr(>|t|) 

Mu 0.18828 0.07142 2.636 0.00838 

ar1 -0.53023 0.01586 -33.431 < 2e-16 

ar2 -0.96156 0.02084 -46.138 < 2e-16 

ma1 0.51272 0.01467 34.959 < 2e-16 

ma2 0.97035 0.01979 49.028 < 2e-16 

omega 0.10500 0.03204 3.277 0.00105 

alpha1 0.11051 0.03264 3.386 0.00071 

alpha2 0.02415 0.03995 0.605 0.54543 

beta1 0.81452 0.03494 23.310 < 2e-16 

Skew 0.90195 0.03138 28.746 < 2e-16 

Shape 7.95517 1.46915 5.415 6.14e-08 
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Figure 44.  Parameters estimation for ARMA(2,2)- GARCH(2,1) of Nikkei returns 

 

Figure 45 shows the Akaike Information Criterion (AIC) and Bayes information Criterion (BIC) under 

the three distributions for the models.  

In our case ARMA(2,2)-GARCH(1,1) model with Skew Student-t  distribution has the lowest AIC 

which is 3.358 .Obviously, the ARMA(2,2)-GARCH(1,1) model with Skew Student-t  distribution is 

the best model, because all of the estimated parameters  are significant and has the lowest AIC. 

The fitted model is as follow 

𝑟𝑡 = 𝜇 + 𝜙1(𝑟𝑡−1 − 𝜇) + 𝜙2(𝑟𝑡−2 − 𝜇) + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2 + 𝜖𝑡,    𝜖𝑡 = 𝜎𝑡𝜀𝑡 

and 

𝜎𝑡
2 = 𝜔 + 𝛼1𝜖𝑡−1

2 + 𝛽1𝜎𝑡−1
2 , 

 

where estimated parameters according to Figure 43 are 

 𝜇 = 0.18668, 𝜙1 = −0.53044, 𝜙2 = −0.96256 , 𝜃1 = 0.51308  , 𝜃2 = 0.97157, 𝜔 = 0.09909,  𝛼1 =

0.12613, and  𝛽1 = 0.82538. Also we could see the skew value = 0.90056 and it indicates that the 

student-t distribution is skewed positively.  

 

Information Criterion Statistics 

  AIC BIC 

GARCH(1,1)-Normal  3.404 3.416 

GARCH(1,1)-Student-t 3.366 3.382 

GARCH(1,1)-Skew Student-t 3.360 3.380 

GARCH(2,1)-Normal  3.405 3.421 

GARCH(2,1)-Student-t 3.366 3.385 

GARCH(2,1)-Skew Student-t 3.362 3.384 

ARMA(2,2)-GARCH(1,1)-Normal  3.399 3.425 

ARMA(2,2)-GARCH(1,1)-Student-t 3.363 3.391 

ARMA(2,2)-GARCH(1,1)-Skew Student-t 3.358 3.390 

ARMA(2,2)-GARCH(2,1)-Normal  3.401 3.429 

ARMA(2,2)-GARCH(2,1)-Student-t 3.363 3.395 

ARMA(2,2)-GARCH(2,1)-Skew Student-t 3.359 3.394 

Figure 45. Information Criterion Statistics for different models of Nikkei returns 
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4.3.4 Residuals Diagnostics of GARCH model  

It has been performed the Standardised Residuals Tests of ARMA(2,2)-GARCH(1,1) with skew 

student-t distribution in Figure 46. By looking at Ljung-Box test on residuals and squared residuals 

which have p-values>0.05, it has been failed to reject the null hypothesis and there is no evidence 

of autocorrelation in the residuals and squared residuals. As a result, we can conclude that the 

residuals behave as white noise. 

 

Standardised Residuals Tests: 

      Statistic p-value 

Jarque-Bera Test     R Chi^2 286.1826 0 

Shapiro-Wilk Test R W 0.9818964 6.825436e-14 

Ljung-Box Test R Q(10) 8.820061 0.5492615 

Ljung-Box Test R Q(15) 15.19217 0.4376655 

Ljung-Box Test R Q(20) 17.48503 0.6212913 

Ljung-Box Test R^2 Q(10) 14.20882 0.163678 

Ljung-Box Test R^2 Q(15) 22.90597 0.08615685 

Ljung-Box Test R^2 Q(20) 27.68497 0.1170691 

LM Arch Test R NR^2 21.98413 0.05769804 

Figure 46. Standardised Residuals Tests of ARMA(2,2)-GARCH(1,1) with Skew Student-t distribution 

 

Looking at the ARCH LM Tests, the p-values>0.05 and it has been failed to reject the null 

hypothesis and there in no ARCH effect. So we could conclude that the ARMA(2,2)-GARCH(1,1) 

model with Skew Student-t distribution is appropriate. 
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Figure 47.ACF of residuals of ARMA(1,1)- GARCH (1,1) model 

 

Figure 48. Residuals and Q-Q plot of residuals of ARMA(1,1)- GARCH (1,1) model 

 

4.4 Application in the Dow Jones daily return 

4.4.1 Selection of ARMA (p, q) model 

As before, the first step is selection of suitable ARMA (p, q) model for Dow Jones daily return. 

Based on ACF and PACF in Figure 16, we could select different parameter p and q for ARMA 

models.  

 AR(1) AR(2) MA(1) MA(2) ARMA(1,1) ARMA(1,2) ARMA(2,1) ARMA(2,2) 

AIC 4670.32 4670.96 4670.54 4671.28 4667.71 4669.71 4669.71 4662 

BIC 4686.74 4692.85 4686.96 4693.18 4689.61 4697.08 4697.08 4694.85 

 

Many models have been tried, such as AR (1), AR(2), MA (1), MA(2) , ARMA (1, 1) and so on. The 

lowest AIC and BIC come at 4662 and 4694.85 of ARMA(2,2) model in comparison to others with 

changing model orders. As a result, the study will mainly focus on ARMA(2,2) model. So the 

conditional mean equation is as follows 

 

              𝑟𝑡 = 𝛼 + 𝜙1𝑟𝑡−1 + 𝜙2𝑟𝑡−2 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2, 𝑡 = 1,… , 𝑇. 

 

The estimated parameters are 

 



63 
 

 𝛼 = 0.0354, 𝜙1 = 0.1933, 𝜙2 = 0.7660 , 𝜃1 = −0.2509and  𝜃2 = −0.7372.   

 

Then, we could calculate  

 

𝜀�̂� = 𝑟𝑡 − (�̂� + �̂�1𝑟𝑡−1 + �̂�2𝑟𝑡−2 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2). 

 

4.4.2 Testing estimation of residuals for ARMA model 

To examine independence of residuals, it has been checked the ACF of estimated residuals of 

ARMA(2,2) model. According to the results in ACF of Figure 49 almost all autocorrelations stay 

within the 95% confidence band. Although, there is a significant autocorrelation at lag 25.  

 

          Figure 49. ACF of the estimated residuals for ARMA(2,2) model 

 

To check the signal of autocorrelation in ARMA(2,2) model, the Ljung – Box test has been  used as 

well. By the assumption of 5% significance level, according to the p-value of mentioned lag, the 

null hypothesis has to be rejected and indicates that the independence assumption of residuals 

can be eliminated. 

Box-Ljung test 
 lag=25 

test value 48.067 

p-value 0.003661 
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In addition, the histogram of estimated residuals of ARMA(2,2) model and QQ–plot in Figure 30  

have been used to test normality assumption of residuals. The charts approve that residuals are 

not normal distributed. So the GARCH models can be applied to Dow jones’s returns 

 

 

Figure 50. Histogram and QQ-plot of estimated residuals 

 

4.4.3 GARCH Results 

We estimate GARCH(1,1), GARCH(2,1), ARMA(1,1)-GARCH(1,1) and ARMA(1,1)-GARCH(2,1)  with 

normal distribution, Student t distribution and Skew Student t distribution. We can see the 

estimation of the models parameters for different distribution in Figure 51, Figure 52, Figure 53 

and Figure 54.  

 

Parameters estimation for GARCH(1,1)  

Normal 

  Estimate Std.Error t value Pr(>|t|) 

Mu 0.06681 0.01672 3.997 6.41e-05 

Omega 0.04183 0.00739 5.660 1.52e-08 

alpha1 0.16445 0.02153 7.636 2.24e-14 

beta1 0.78608 0.02326 33.798 < 2e-16 

Student-t 

  Estimate Std.Error t value Pr(>|t|) 

Mu 0.076583 0.015580 4.916 8.85e-07 

Omega 0.034382 0.008353 4.116 3.85e-05 

alpha1 0.179157 0.028053 6.386 1.70e-10 

beta1 0.792700 0.026411 30.014 < 2e-16 

Shape 5.691578 0.828895 6.866 6.58e-12 

Skew Student-t 
  Estimate Std.Error t value Pr(>|t|) 

Mu 0.061295 0.016510 3.713 0.000205 
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Omega 0.032897 0.008009 4.107 4.00e-05 

alpha1 0.174832 0.026821 6.518 7.10e-11 

beta1 0.795065 0.025951 30.638 < 2e-16 

Skew 0.916932 0.029408 31.180 < 2e-16 

Shape 6.111587 0.947633 6.449 1.12e-10 

Figure 51.  Parameters estimation for GARCH(1,1) of Dow Jones returns  

 

By assuming the significance level of 5%, in GARCH(1,1) model, all of the estimated parameters are 

significant. In GARCH(2,1) model also all of the estimated parameters are significant for all the 

three different distribution (normal, Student-t and Skew Student-t distribution). 

 

Parameters estimation for GARCH(2,1)  

Normal 

  Estimate Std.Error t value Pr(>|t|) 

Mu 0.065832 0.016715 3.938 8.20e-05 

omega 0.050700 0.009943 5.099 3.42e-07 

alpha1 0.113954 0.030539 3.731 0.00019 

alpha2 0.075395 0.036525 2.064 0.03900 

beta1 0.750083 0.032022 23.424 < 2e-16 

Student-t 

  Estimate Std.Error t value Pr(>|t|) 

Mu 0.07643 0.01557 4.908 9.21e-07 

omega 0.04451 0.01133 3.929 8.54e-05 

alpha1 0.10181 0.03807 2.674 0.0075 

alpha2 0.11491 0.04785 2.401 0.0163 

beta1 0.74596 0.03678 20.281 < 2e-16 

Shape 5.69978 0.82811 6.883 5.86e-12 

Skew Student-t 

  Estimate Std.Error t value Pr(>|t|) 

Mu 0.06054 0.01651 3.667 0.000245 

omega 0.04314 0.01093 3.948 7.87e-05 

alpha1 0.09786 0.03610 2.711 0.006714 

alpha2 0.11519 0.04578 2.516 0.011871 

beta1 0.74662 0.03625 20.596 < 2e-16 

Skew 0.91354 0.02954 30.924 < 2e-16 

Shape 6.15487 0.95750 6.428 1.29e-10 

Figure 52.  Parameters estimation for GARCH(2,1) of Dow Jones returns  

 

In ARMA(2,2)-GARCH(1,1) model, the parameters estimated are not all significant under normal, 

Student-t  and Skew Student-t distribution. As we can see in Figure 53, the coefficients of the first 

and the second term of the autoregressive process and the first term of the moving average 

process under all three distributions are not significant. On the other hand, the second term of the 

moving average process is not significant under Student-t and Skew Student-t distributions. 
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D 

Normal 

  Estimate Std.Error t value Pr(>|t|) 

Mu 0.093096 0.038951 2.390 0.0168 

ar1 0.102368 0.402026 0.255 0.7990 

ar2 -0.491642 0.255056 -1.928 0.0539 

ma1 -0.149328 0.393795 -0.379 0.7045 

ma2 0.515271 0.260363 1.979 0.0478 

Omega 0.041957 0.007386 5.680 1.34e-08 

alpha1 0.165251 0.021710 7.612 2.71e-14 

beta1 0.785263 0.023347 33.635 < 2e-16 

Student-t 

  Estimate Std.Error t value Pr(>|t|) 

Mu 0.100611 0.034867 2.886 0.00391 

ar1 0.117468 0.331337 0.355 0.72294 

ar2 -0.423896 0.312245 -1.358 0.17460 

ma1 -0.173294 0.326809 -0.530 0.59593 

ma2 0.450020 0.321826 1.398 0.16201 

Omega 0.034611 0.008421 4.110 3.95e-05 

alpha1 0.181826 0.028629 6.351 2.14e-10 

beta1 0.791249 0.026563 29.788 < 2e-16 

Shape 5.535894 0.793990 6.972 3.12e-12 

Skew Student-t 

  Estimate Std.Error t value Pr(>|t|) 

Mu 0.085090 0.038561 2.207 0.0273 

ar1 -0.117849 0.670425 -0.176 0.8605 

ar2 -0.296551 0.395200 -0.750 0.4530 

ma1 0.051208 0.668907 0.077 0.9390 

ma2 0.290676 0.437439 0.664 0.5064 

Omega 0.032890 0.008011 4.106 4.03e-05 

alpha1 0.176919 0.027154 6.515 7.25e-11 

beta1 0.794061 0.025987 30.556 < 2e-16 

Skew 0.904795 0.030376 29.787 < 2e-16 

Shape 5.954617 0.907684 6.560 5.37e-11 

Figure 53.  Parameters estimation for ARMA(2,2)- GARCH(1,1) of Dow Jones returns 

 

 

In ARMA(2,2)-GARCH(2,1) model, the parameters estimated for three distributions are not all 

significant. As we can see in Figure 54, the coefficient of the first term of the autoregressive 
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process and the first term of the moving average process, under normal distribution and Student-t 

distribution are not significant. On the other hand, the coefficient of the first and second term of 

the autoregressive process and the first and second term of the moving average process are not 

significant also under Skew Student-t distribution.  

 

 

 

Parameters estimation for ARMA(2,2)- GARCH(2,1)  

Normal 

  Estimate Std.Error t value Pr(>|t|) 

Mu 0.08925 0.03028 2.948 0.003203 

ar1 0.19261 0.31083 0.620 0.535467 

ar2 -0.55902 0.19507 -2.866 0.004159 

ma1 -0.24016 0.29738 -0.808 0.419337 

ma2 0.59281 0.20724 2.860 0.004230 

Omega 0.05188 0.01014 5.119 3.07e-07 

alpha1 0.10433 0.02995 3.484 0.000495 

alpha2 0.08737 0.03628 2.408 0.016043 

beta1 0.74582 0.03248 22.960 < 2e-16 

Student-t 

  Estimate Std.Error t value Pr(>|t|) 

Mu 0.10486 0.02657 3.946 7.93e-05 

ar1 0.21380 0.22638 0.944 0.34494 

ar2 -0.58090 0.24026 -2.418 0.01562 

ma1 -0.26952 0.21527 -1.252 0.21057 

ma2 0.61650 0.25289 2.438 0.01478 

Omega 0.04601 0.01165 3.949 7.86e-05 

alpha1 0.08989 0.03667 2.451 0.01424 

alpha2 0.13337 0.04768 2.797 0.00515 

beta1 0.73897 0.03737 19.776 < 2e-16 

Shape 5.57064 0.79469 7.010 2.39e-12 

Skew Student-t 

  Estimate Std.Error t value Pr(>|t|) 

Mu 0.08345 0.03238 2.577 0.00997 

ar1 -0.05424 0.62263 -0.087 0.93059 

ar2 -0.35951 0.46842 -0.767 0.44279 

ma1 -0.01599 0.61884 -0.026 0.97938 

ma2 0.35805 0.51905 0.690 0.49030 

Omega 0.04497 0.01129 3.983 6.81e-05 

alpha1 0.08675 0.03380 2.566 0.01028 

alpha2 0.13468 0.04525 2.977 0.00291 

beta1 0.73738 0.03718 19.833 < 2e-16 

Skew 0.89862 0.03093 29.053 < 2e-16 

Shape 6.02463 0.91979 6.550 5.75e-11 

Figure 54.  Parameters estimation for ARMA(2,2)- GARCH(2,1) of Dow Jones returns 
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Figure 55 shows the Akaike Information Criterion (AIC) and Bayes information Criterion (BIC) under 

the three distributions for the models.  

In our case ARMA(2,2)-GARCH(2,1) model with Skew Student-t  distribution has the lowest AIC 

which is 2.354 and then the lowest comes at 2.357 of GARCH(2,1) model with Skew Student-t  

distribution. Obviously, the GARCH(2,1) model with Skew Student-t  distribution is the best model, 

because all of the estimated parameters  are significant and the fitted model is as follow 

 

𝑟𝑡 = 𝜇 + 𝜖𝑡,    𝜖𝑡 = 𝜎𝑡𝜀𝑡 

and 

𝜎𝑡
2 = 𝜔 + 𝛼1𝜖𝑡−1

2 + 𝛼2𝜖𝑡−2
2 + 𝛽1𝜎𝑡−1

2 , 

 

where estimated parameters according to Figure 52 are 𝜇 = 0.06054,𝜔 = 0.04314,  𝛼1 =

0.09786,  𝛼2 = 0.11519 and  𝛽1 = 0.74662 also we could the skew value = 0.91354which indicates 

that the student-t distribution is skewed positively.  

 

 

Information Criterion Statistics 

  AIC BIC 

GARCH(1,1)-Normal  2.403 2.416 

GARCH(1,1)-Student-t 2.363 2.378 

GARCH(1,1)-Skew Student-t 2.359 2.378 

GARCH(2,1)-Normal  2.402 2.417 

GARCH(2,1)-Student-t 2.360 2.378 

GARCH(2,1)-Skew Student-t 2.357 2.378 

ARMA(2,2)-GARCH(1,1)-Normal  2.403 2.428 

ARMA(2,2)-GARCH(1,1)-Student-t 2.361 2.389 

ARMA(2,2)-GARCH(1,1)-Skew Student-t 2.357 2.388 

ARMA(2,2)-GARCH(2,1)-Normal  2.402 2.430 

ARMA(2,2)-GARCH(2,1)-Student-t 2.358 2.389 

ARMA(2,2)-GARCH(2,1)-Skew Student-t 2.354 2.387 

Figure 55. Information Criterion Statistics for different models of Dow Jones returns 

 

4.4.4 Residuals Diagnostics of GARCH model  

It has been performed the Standardised Residuals Tests of GARCH(2,1) with Skew Student-t 

distribution in Figure 56. By looking at Ljung-Box test on residuals and squared residuals which 
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have p-values>0.05, it has been failed to reject the null hypothesis and there is no evidence of 

autocorrelation in the residuals and squared residuals. As a result, we can conclude that the 

residuals behave as white noise. Looking at the ARCH LM Tests, the p-values>0.05 and it has been 

failed to reject the null hypothesis and there in no ARCH effect. So we could conclude that the 

GARCH(2,1) model with Skew Student-t distribution is appropriate. 

 

Standardised Residuals Tests: 

       Statistic  p-value 

Jarque-Bera Test     R Chi^2 192.8589 0 

Shapiro-Wilk Test R W 0.9826086 8.47313e-14 

Ljung-Box Test R Q(10) 12.67659 0.2423202 

Ljung-Box Test R Q(15) 17.97563 0.2639489 

Ljung-Box Test R Q(20) 22.86617 0.2954138 

Ljung-Box Test R^2 Q(10) 5.922708 0.8217147 

Ljung-Box Test R^2 Q(15) 12.31793 0.6548226 

Ljung-Box Test R^2 Q(20) 16.51499 0.6842053 

LM Arch Test R NR^2 6.954667 0.8605947 

Figure 56. Standardised Residuals Tests of GARCH(2,1) with skew student-t distribution 

 

 

 

 

Figure 57.ACF of residuals of GARCH (2,1) model 
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Figure 58. Residuals and Q-Q plot of residuals of GARCH (2,1) model 

 

4.5 Out-of-sample forecast performance of Nasdaq’s GARCH Model 

For Nasdaq daily returns, it has been chosen ARMA(1,1)-GARCH(1,1) model with skew Student-t 

distribution as best model. The NASDAQ daily return includes 1762 observations of 7 years. It has 

been taken the last 10 percent of data as out-of-sample which includes 175 observations (𝑤𝐹 =

175). By rolling forecast approach, it has been fixed the length of the in-sample period which is 

1587 observations (𝑤𝐸 = 1587). In addition for not producing bad forecasts, we will do a re-

estimation of these parameters every 50 days (Refit Horizon= 50, No.Refits =
175

50
~3.5 which is 

rounded up to 4). It has been performed the forecast density in the figure 59.  

According to our model ARMA(1,1)-GARCH(1,1), by first estimation window we forecast the 

variance for 𝑇1: 

 

𝜎𝑇1
2 = �̂�(1) + �̂�1

(1)
𝜖𝑇0
2 + �̂�1

(1)
𝜎𝑇0
2 , 

 

where the estimate of 𝜎𝑇0
2   is set equal to the sample variance of the estimated window and 𝜖𝑇0

2  is 

the last squared innovation in the estimated window. 

We forecast the return series using the mean model: 

 

𝑟𝑇1 = �̂�
(1) + �̂�1

(1)
(𝑟𝑇0 − �̂�

(1)) + 𝜃1
(1)
𝜖𝑇0 . 
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It can be calculated new residual 𝜖𝑇1 by comparing the predicted return 𝑟𝑇1 to the observed 𝑟1 as 

𝜖𝑇1 = 𝑟1 − 𝑟𝑇1. So for the first 50 days of our out of sample we use these parameters 

(�̂�(1), �̂�1
(1)
, �̂�1

(1)
, �̂�(1), �̂�1

(1)
, 𝜃1

(1)
), but for the next 50 days (i.e. day 51 to 100) we will do a re-

estimation and use �̂�(2), �̂�1
(2)
, �̂�1

(2)
, �̂�(2), �̂�1

(2)
, 𝜃1

(2)
  and so on. 

 

GARCH Roll 

No.Refits : 4     

Refit Horizon : 50    

No.Forecasts : 175    

Model : ARMA(1,1)-GARCH(1,1)   

Distribution : sstd      

Forecast Density :     

  Mu Sigma Skew Shape 

25/04/2016 0.1199 0.7984  0.8331 7.79 

26/04/2016 0.1336 0.7747  0.8331 7.79 

27/04/2016 0.1425 0.7517  0.8331 7.79 

28/04/2016 0.1708  0.7557  0.8331 7.79 

29/04/2016 0.2346 0.8520  0.8331 7.79 

02/05/2016 0.2592 0.8613   0.8331 7.79 

    ................      

  Mu Sigma Skew Shape 

22/12/2016 0.0669 0.7069 0.8806 6.8557 

23/12/2016 0.1076 0.7048 0.8806 6.8557 

27/12/2016 0.0612 0.6823 0.8806 6.8557 

28/12/2016 0.1017 0.6745 0.8806 6.8557 

29/12/2016 0.0811 0.7433 0.8806 6.8557 

30/12/2016 0.0905 0.7165 0.8806 6.8557 

Figure 59.  Forecast density of GARCH ROLL 

 

It has been performed the backtesting of VaR in the Figure 60. The size of the forecasting window 

is 𝑤𝐹 = 175 and 𝑝 = 0.01 so  the expected number of violations is given by 

 

expected = 𝑤𝐹 ∗ 𝑝 = 175 ∗ 0.01 = 1,75~1,8 

 

 but the actual violations is given by 

 

𝑎𝑐𝑡𝑢𝑎𝑙 =∑𝐼𝑡

𝑊𝐹

𝑡=1
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Where 

𝐼𝑡 = {
0, 𝑖𝑓  𝑟𝑡,𝑡+1 ≥ 𝑉𝑎𝑅𝑡              (𝐻𝑖𝑡)

1, 𝑖𝑓  𝑟𝑡,𝑡+1 < 𝑉𝑎𝑅𝑡  (𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛)
 

 

 Let  �̂�𝑡 be the estimated mean in the rolling forecasting. Let 𝑠𝑘𝑠𝑡0.99(𝜐) be a 99 percent quantile 

from the Skewed Student-t distribution with 𝜐 degrees of freedom. Let �̂�𝑡 be the estimated 

volatility from the GARCH model. The formula for calculating VaR is 

 

𝑉𝑎𝑅𝑡 = �̂�𝑡 − 𝑡0.99(𝜐)�̂�𝑡 

 

If actual < expected the model is said to overestimate risk. If actual > expected the model is said to 

underestimate risk. A good model will have actual ≈ expected. 

 

VaR Backtest Report 

Model:ARMA(1,1)-GARCH(1,1)-sstd      
Backtest Length:        175      
Data:      
 

     
alpha: 1%      
Expected Exceed: 1.8      
Actual VaR Exceed: 2      
Actual %: 1.1%      
 

     
Unconditional Coverage (Kupiec)      
Null-Hypothesis:        Correct Exceedances      
LR.uc Statistic:       0.034      
LR.uc Critical:         6.635      
LR.uc p-value:        0.853      
Reject Null:            NO      
 

     
Conditional Coverage (Christoffersen)      
Null-Hypothesis:   Correct Exceedances      and      
                                 Independence of Failures      
LR.cc Statistic:        0.081      
LR.cc Critical:          9.21      
LR.cc p-value:         0.96      
Reject Null:             NO      
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 Figure 60.  Backtesting of VaR  of Nasdaq daily returns  

We performed the test for the 99% confidence region. The higher the p-value of the unconditional 

coverage (Kupiec) test and conditional coverage (Christoffersen) test the better the model is, 

because a high p-value indicates that the null hypothesis is correct. So we can conclude the 

selected ARMA(1,1)-GARCH(1,1) model with skewed Student-t distribution of residuals is good 

model for forecasting risk for Nasdaq Daily returns.  

In Figure 61, it has been performed the forecasted conditional mean, the forecasted conditional 

volatility and value at risk (VaR) together with the realized return. The VaR forecast varies over 

time, and when returns are more volatile the VaR forecast increases. The plot shows that the 

violations occur whenever the realized return (red) is lower than the VaR forecast (black). 

 

 

 

Figure 61.  ARMA-GARCH rolling forecast plots of Nasdaq’s daily returns 

 

4.6 Out-of-sample forecast performance of S&P 500’s GARCH Model 

For S&P 500 daily returns, it has been chosen ARMA(1,1)-GARCH(2,1) model with skew Student-t 

distribution as best model. The S&P 500 daily return includes 1762 observations of 7 years. It has 
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been taken the last 10 percent of data as out-of-sample which includes 175 observations (𝑤𝐹 =

175). By rolling forecast approach, it has been fixed the length of the in-sample period which is 

1587 observations (𝑤𝐸 = 1587). For not producing bad forecasts, we will do a re-estimation of 

these parameters every 50 days (Refit Horizon= 50, No.Refits =
175

50
~3.5 which is rounded up to 4). 

It has been performed the forecast density in the figure 62. 

 

According to our model ARMA(1,1)-GARCH(2,1), by first estimation window we forecast the 

variance for 𝑇1: 

𝜎𝑇1
2 = �̂�(1) + �̂�1

(1)
𝜖𝑇0
2 + �̂�2

(1)
𝜖𝑇−1
2 + �̂�1

(1)
𝜎𝑇0
2 , 

 

where the estimate of 𝜎𝑇0
2   is set equal to the sample variance of the estimated window and 𝜖𝑇0

2  is 

the last squared innovation in the estimated window. 

We forecast the return series using the mean model: 

 

𝑟𝑇1 = �̂�
(1) + �̂�1

(1)
(𝑟𝑇0 − �̂�

(1)) + 𝜃1
(1)
𝜖𝑇0 . 

 

It can be calculated new residual 𝜖𝑇1 by comparing the predicted return 𝑟𝑇1 to the observed 𝑟1 as 

𝜖𝑇1 = 𝑟1 − 𝑟𝑇1. So for the first 50 days of our out of sample we use these parameters 

(�̂�(1), �̂�1
(1)
, �̂�2

(1)
, �̂�1

(1)
, �̂�(1), �̂�1

(1)
, 𝜃1

(1)
), but for the next 50 days (i.e. day 51 to 100) we will do a re-

estimation and use �̂�(2), �̂�1
(2)
, �̂�2

(2)
, �̂�1

(2)
, �̂�(2), �̂�1

(2)
, 𝜃1

(2)
  and so on. 

 

GARCH Roll 

No.Refits : 4     

Refit Horizon : 50    

No.Forecasts : 175    

Model : ARMA(1,1)-GARCH(2,1)   

Distribution : sstd      

Forecast Density :     

  Mu Sigma Skew Shape 

25/04/2016 0.0558  0.6338 0.8417 6.9213 

26/04/2016 0.0752 0.6026 0.8417 6.9213 

27/04/2016 0.0671 0.5815 0.8417 6.9213 

28/04/2016  0.0615 0.5593 0.8417 6.9213 

29/04/2016  0.1309 0.5770 0.8417 6.9213 
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02/05/2016 0.1631  0.6713 0.8417 6.9213 

    ................     

  Mu Sigma Skew Shape 

22/12/2016 0.0304 0.5921 0.8527 6.1395 

23/12/2016 0.0501 0.5729 0.8527 6.1395 

27/12/2016 0.0485 0.5536 0.8527 6.1395 

28/12/2016 0.0409 0.5354 0.8527 6.1395 

29/12/2016  0.0996 0.5705 0.8527 6.1395 

30/12/2016 0.1021 0.6231 0.8527 6-1395 

Figure 62.  Forecast density of GARCH Roll 

 

It has been performed the backtesting of VaR in the Figure 63.  

 

VaR Backtest Report 

Model: ARMA-GARCH-sstd      
Backtest Length: 175      
Data:      
alpha: 1%      
Expected Exceed: 1.8      
Actual VaR Exceed: 2      
Actual %: 1.1%      
 

     
Unconditional Coverage (Kupiec)      
Null-Hypothesis:        Correct Exceedances      
LR.uc Statistic:        0.034      
LR.uc Critical:          6.635      
LR.uc p-value:         0.853      
Reject Null:              NO      
 

     
Conditional Coverage (Christoffersen)      
Null-Hypothesis:       Correct Exceedances and      
                                     Independence of Failures      
LR.cc Statistic:        0.081      
LR.cc Critical:          9.21      
LR.cc p-value:         0.96      
Reject Null:            NO      

 Figure 63.  Backtesting of VaR  of S&P 500’s daily returns  

 

We performed the test for the 99% confidence region. The higher the p-value of the unconditional 

coverage (Kupiec) test and conditional coverage (Christoffersen) test the better the model is, 
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because a high p-value indicates that the null hypothesis is correct. So we can conclude the 

selected ARMA(1,1)-GARCH(2,1) model with skewed Student-t distribution of residuals is good 

model for forecasting risk for S&P 500’s Daily returns.  

In Figure 64, it has been performed the forecasted conditional mean, the forecasted conditional 

volatility and value at risk (VaR) together with the realized return. 

 

 

 

 

Figure 64.  ARMA-GARCH rolling forecast plots of S&P 500’s daily returns 

 

 

4.7 Out-of-sample forecast performance of Nikkei’s GARCH Model 

For Nikkei daily returns, it has been chosen ARMA(2,2)-GARCH(1,1) model with skew Student-t 

distribution as best model. The Nikkei daily return includes 1713 observations of 7 years. It has 

been taken the last 10 percent of data as out-of-sample which includes 171 observations (𝑤𝐹 =
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171). By rolling forecast approach, it has been fixed the length of the in-sample period which is 

1542 observations (𝑤𝐸 = 1542).  

For not producing bad forecasts, we will do a re-estimation of these parameters every 50 days 

(Refit Horizon= 50, No.Refits =
171

50
~3.5 which is rounded up to 4). It has been performed the 

forecast density in the figure 65. 

According to our model ARMA(2,2)-GARCH(1,1), by first estimation window we forecast the 

variance for 𝑇1: 

𝜎𝑇1
2 = �̂�(1) + �̂�1

(1)
𝜖𝑇0
2 + �̂�1

(1)
𝜎𝑇0
2 , 

 

where the estimate of 𝜎𝑇0
2   is set equal to the sample variance of the estimated window and 𝜖𝑇0

2  is 

the last squared innovation in the estimated window. 

We forecast the return series using the mean model: 

 

𝑟𝑇1 = �̂�
(1) + �̂�1

(1)
(𝑟𝑇0 − �̂�

(1)) + �̂�2
(1)
(𝑟𝑇−1 − �̂�

(1)) + 𝜃1
(1)
𝜖𝑇0 + 𝜃2

(1)
𝜖𝑇−1 . 

 

It can be calculated new residual 𝜖𝑇1by comparing the predicted return 𝑟𝑇1 to the observed 𝑟1 as 

𝜖𝑇1 = 𝑟1 − 𝑟𝑇1. So for the first 50 days of our out of sample we use these parameters 

(�̂�(1), �̂�1
(1)
, �̂�1

(1)
, �̂�(1), �̂�1

(1)
, �̂�2

(1)
, 𝜃1

(1)
, 𝜃2

(1)
), but for the next 50 days (i.e. day 51 to 100) we will do a 

re-estimation and use �̂�(2), �̂�1
(2)
, �̂�1

(2)
, �̂�(2), �̂�1

(2)
, �̂�2

(2)
, 𝜃1

(2)
, 𝜃2

(2)
  and so on. 

 

GARCH Roll 

No.Refits : 4     

Refit Horizon : 50    

No.Forecasts : 171    

Model : ARMA(2,2)-GARCH(1,1)   

Distribution : sstd      

Forecast Density :     

  Mu Sigma Skew Shape 

20/04/2016 0.1379 2.2100 0.9002 9.7143 

21/04/2016 0.2329 2.0559 0.9002 9.7143 

22/04/2016 -0.0483 2.0857 0.9002 9.7143 

25/04/2016 0.0196 1.9876 0.9002 9.7143 

26/04/2016 0.2323 1.8716 0.9002 9.7143 

27/04/2016 0.0373 1.7643 0.9002 9.7143 

................      
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  Mu Sigma Skew Shape 

22/12/2016 -0.1951  0.9394 0.8938 7.6451 

26/12/2016  0.3084 0.9131 0.8938 7.6451 

27/12/2016 0.2246 0.9040 0.8938 7.6451 

28/12/2016 -0.2415 0.8843 0.8938 7.6451 

29/12/2016 0.0372 0.8687 0.8938 7.6451 

30/12/2016 0.3818 0.9721 0.8938 7.6451 

 Figure 65.  Forecast density of GARCH Roll 

It has been performed the backtesting of VaR in the Figure 66. The size of the forecasting window 

is 𝑤𝐹 = 171 and 𝑝 = 0.01 so  the expected number of violations is given by 

 

expected = 𝑤𝐹 ∗ 𝑝 = 171 ∗ 0.01 = 1,71~1,7 

 

 but the actual violations is given by 𝑎𝑐𝑡𝑢𝑎𝑙 = ∑ 𝐼𝑡
𝑊𝐹
𝑡=1  

 

VaR Backtest Report 

Model: ARMA-GARCH-sstd           
Backtest Length:        171       

Data:                                      

alpha: 1%       
Expected Exceed: 1.7       
Actual VaR Exceed: 3       
Actual %: 1.8%       
        
Unconditional Coverage (Kupiec)       
Null-Hypothesis:        Correct Exceedances       
LR.uc Statistic:       0.083       
LR.uc Critical:         6.635       
LR.uc p-value:        0.37       
Reject Null:            NO       
        
Conditional Coverage (Christoffersen)       
Null-Hypothesis: Correct Exceedances and       
                               Independence of Failures       
LR.cc Statistic:       0.91       
LR.cc Critical:         9.21       
LR.cc p-value:        0.634       

Reject Null:            NO           

Figure 66.  Backtesting of VaR  of Nikkei’s daily returns 
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We performed the test for the 99% confidence region. The higher the p-value of the unconditional 

coverage (Kupiec) test and conditional coverage (Christoffersen) test the better the model is, 

because a high p-value indicates that the null hypothesis is correct. So we can conclude the 

selected ARMA(2,2)-GARCH(1,1) model with skewed Student-t distribution of residuals is good 

model for forecasting risk for Nikkei’s Daily returns.  

 

In Figure 67, it has been performed the forecasted conditional mean, the forecasted conditional 

volatility and value at risk (VaR) together with the realized return. 

 

 

 

Figure 67.  ARMA-GARCH rolling forecast plots of Nikkei’s daily returns 
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4.8 Out-of-sample forecast performance of Dow Jones’s GARCH Model 

For Dow Jones daily returns, it has been chosen GARCH(2,1) model with skew Student-t 

distribution as best model. The Dow Jones daily return includes 1762 observations of 7 years. It 

has been taken the last 10 percent of data as out-of-sample which includes 175 observations 

(𝑤𝐹 = 175). 

By rolling forecast approach, it has been fixed the length of the in-sample period which is 1587 

observations (𝑤𝐸 = 1587). For not producing bad forecasts, we will do a re-estimation of these 

parameters every 50 days (Refit Horizon= 50, No.Refits =
175

50
~3.5 which is rounded up to 4). It has 

been performed the forecast density in the figure 68. 

 

According to our model GARCH(2,1), by first estimation window we forecast the variance for 𝑇1: 

 

𝜎𝑇1
2 = �̂�(1) + �̂�1

(1)
𝜖𝑇0
2 + �̂�2

(1)
𝜖𝑇−1
2 + �̂�1

(1)
𝜎𝑇0
2 , 

 

where the estimate of 𝜎𝑇0
2   is set equal to the sample variance of the estimated window and 𝜖𝑇0

2  is 

the last squared innovation in the estimated window. 

We forecast the return series using the mean model: 

 

𝑟𝑇1 = �̂�
(1) + 𝜖𝑇0 . 

 

It can be calculated new residual 𝜖𝑇1by comparing the predicted return 𝑟𝑇1 to the observed 𝑟1 as 

𝜖𝑇1 = 𝑟1 − 𝑟𝑇1. So for the first 50 days of our out of sample we use these parameters 

(�̂�(1), �̂�1
(1)
, �̂�2

(1)
, �̂�1

(1)
, �̂�(1)), but for the next 50 days (i.e. day 51 to 100) we will do a re-estimation 

and use �̂�(2), �̂�1
(2)
, �̂�2

(2)
, �̂�1

(2)
, �̂�(2)  and so on.  
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GARCH Roll 

No.Refits : 4     

Refit Horizon : 50    

No.Forecasts : 175    

Model : GARCH(2,1)   

Distribution : sstd      

Forecast Density :     

  Mu Sigma Skew Shape 

25/04/2016 0.0646 0.6110 0.898 7.5597 

26/04/2016 0.0646  0.5739 0.898 7.5597 

27/04/2016 0.0646 0.5457 0.898 7.5597 

28/04/2016 0.0646  0.5211 0.898 7.5597 

29/04/2016 0.0646 0.6024 0.898 7.5597 

02/05/2016 0.0646 0.7208 0.898 7.5597 

................      

  Mu Sigma Skew Shape 

22/12/2016 0.059   0.5462 0.9097 6.416 

23/12/2016 0.059  0.5251 0.9097 6.416 

27/12/2016 0.059  0.5037 0.9097 6.416 

28/12/2016 0.059  0.4835 0.9097 6.416 

29/12/2016 0.059  0.5063 0.9097 6.416 

30/12/2016 0.059  0.5293 0.9097 6.416 

Figure 68.  Forecast density of GARCH Roll 

 

It has been performed the backtesting of VaR in the Figure 69. We performed the test for the 99% 

confidence region. The higher the p-value of the unconditional coverage (Kupiec) test and 

conditional coverage (Christoffersen) test the better the model is, because a high p-value indicates 

that the null hypothesis is correct. So we can conclude the selected GARCH(2,1) model with 

skewed Student-t distribution of residuals is good model for forecasting risk for Dow Jones’s Daily 

returns.  

In Figure 70, it has been performed the forecasted conditional mean, the forecasted conditional 

volatility and value at risk (VaR) together with the realized return. 

 

 

 

 

 



82 
 

 

VaR Backtest Report 

Model:               GARCH-sstd           
Backtest Length:        175       

Data:                                      

alpha: 1%       
Expected Exceed: 1.8       
Actual VaR Exceed: 2       
Actual %: 1.1%       
        
Unconditional Coverage (Kupiec)       
Null-Hypothesis:        Correct Exceedances       
LR.uc Statistic:       0.034       
LR.uc Critical:         6.635       
LR.uc p-value:        0.853       
Reject Null:            NO       
        
Conditional Coverage (Christoffersen)       
Null-Hypothesis: Correct Exceedances and       
                               Independence of Failures       
LR.cc Statistic:       0.081       
LR.cc Critical:         9.21       
LR.cc p-value:        0.96       

Reject Null:            NO           

 Figure 69.  Backtesting of VaR  of Dow Jones’s daily returns  
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Figure 70.  GARCH rolling forecast plots of Dow Jones’s daily returns 
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5 Conclusion 

Given the purpose of this thesis which is evaluating the GARCH model and its ability to forecast 

Value at Risk of financial data, it has been used different models to estimate separately on four 

different financial data (Nasdaq, S&P 500, Nikkei, Dow jones). In addition, it has been chosen the 

normal distribution, the Student-t distribution and the skewed Student-t distribution as the error 

term distribution. For each index, it has been selected the best model to forecast.  

To forecast the volatility, for NASDAQ daily return, it has been chosen the ARMA(1,1)-GARCH(1,1) 

model with skewed Student-t distribution, for S&P500 daily return, it has been chosen the 

ARMA(1,1)-GARCH (2, 1) model with skewed Student-t distribution, for Nikkei daily return, it has 

been chosen the ARMA(2,2)-GARCH(1,1) model with skewed Student-t distribution and for Dow 

Jones daily return, it has been chosen the GARCH(2,1) model with skewed Student-t distribution. 

As we could noticed, for all four model the skew Student-t distribution is more efficient than the 

normal distribution and Student-t distribution. 

The volatility forecast has been used to calculate value of risk (VaR). Finally, for validating a set of 

VaR forecasts it has been used backtesting procedure. In this thesis, the unconditional coverage 

(Kupiec) test and conditional coverage (Christoffersen) test have been used for backtesting VaR. 

According to the results of these tests, all four model adequately captures the risk. 
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Appendix : 

For the GARCH (1, 1) process given by  

 

𝜎𝑡
2 = 𝜔 + 𝛼1𝜖𝑡−1

2 + 𝛽1𝜎𝑡−1
2 , 

and 

𝜖𝑡 = 𝜎𝑡𝜀𝑡,       𝜀𝑡~𝐼𝐼𝐷𝑁(0,1), 

 

where 𝜔 > 0, 𝛼1 ≥ 0 and 𝛽1 ≥ 0, a necessary and sufficient condition for stationarity is  

 

                                                                  𝛼1 + 𝛽1 < 1                                                 (1) 

 

Proof:  we use recursive substitution to show that  

 

                𝜎𝑡
2 = 𝜔 + 𝛼1𝜀𝑡−1

2 𝜎𝑡−1
2 + 𝛽1𝜎𝑡−1

2  

= 𝜔 + 𝛼1𝜀𝑡−1
2 (𝜔 + 𝛼1𝜀𝑡−2

2 𝜎𝑡−2
2 + 𝛽1𝜎𝑡−2

2 ) + 𝛽1(𝜔 + 𝛼1𝜀𝑡−2
2 𝜎𝑡−2

2 + 𝛽1𝜎𝑡−2
2 ) 

                      ⋮ 

                     = 𝜔∑ 𝑀(𝑡, 𝑘),∞
𝑘=0                                                                                                    (2) 

 

where 𝑀(𝑡, 𝑘) = 𝛼1
𝑎𝛽1

𝑏∏ 𝜀𝑡−𝑆𝑙
2𝑎

𝑙=1 , for 𝑎 + 𝑏 = 𝑘 and 1 ≤ 𝑆1 < 𝑆2 < ⋯ < 𝑆𝑎 ≤ 𝑘.  

Since 𝜀𝑡 is i.i.d., the expected values of 𝑀(𝑡, 𝑘) do not depend on t, and  

                                   𝐸(𝑀(𝑡, 𝑘)) = 𝐸(𝑀(𝑠, 𝑘)) for all 𝑘, 𝑡, 𝑠.                              (3) 

In addition                            

                                                      𝑀(𝑡, 0) = 1, 

                                                     𝑀(𝑡, 1) = 𝛼1𝜀𝑡−1
2 + 𝛽1, 

𝑀(𝑡, 2) = (𝛼1𝜀𝑡−1
2 + 𝛽1)(𝛼1𝜀𝑡−2

2 + 𝛽1), 

and  generally,  

𝑀(𝑡, 𝑘 + 1) = (𝛼1𝜀𝑡−1
2 + 𝛽1)𝑀(𝑡 − 1, 𝑘), 

 

which yields together with (3), that  

                                                𝐸(𝑀(𝑡, 𝑘 + 1)) = (𝛼1 + 𝛽1)𝐸(𝑀(𝑡, 𝑘)) 

                                                                               ⋮ 

                                                                              = (𝛼1 + 𝛽1)
𝑘+1𝐸(𝑀(𝑡, 0)) 
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                                                                              = (𝛼1 + 𝛽1)
𝑘+1.                                              (4) 

 

and by (2) and (4), 

𝐸(𝜖𝑡
2) = 𝜔𝐸(∑𝑀(𝑡, 𝑘)

∞

𝑘=0

) 

          = 𝜔∑𝐸(𝑀(𝑡, 𝑘))

∞

𝑘=0

 

                                                                           = 𝜔∑ 1 (𝛼1 + 𝛽1)
𝑘+1⁄ ,∞

𝑘=0  

 

where (𝜖𝑡|ℱ𝑡−1)~𝑁(0, 𝜎𝑡
2) and 

 

𝐸(𝜖𝑡
2) = 𝜔(1 − 𝛼1 − 𝛽1)

−1 

if and only if (1) holds and 𝜖𝑡
2 converges almost surely. Then 𝐸(𝜖𝑡) = 0 and 𝐶𝑂𝑉(𝜖𝑡, 𝜖𝑠) = 0 for  

𝑡 ≠ 𝑠 follows by symmetry.                                                                                                                                ∎ 


