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Executive Summary 
 

This thesis addresses the problem of allocating scarce resources among several 
locations in the most efficient way in a fashion retail environment. This 
allocation is called “reactive” because it occurs in the second half of the selling 

season in response to the actual demand faced by the stores in the network, to 
rebalance the items  in the system and increase the expected profit  of the stores 
in the upcoming period.  

Indeed, the Fashion and Apparel Industry is one of the pillars of the global 
economy, but it also represents one of the most flexible and unpredictable 
Industries, given the high volatility of demand and fast changes in customer 
tastes and trends, together with short products life cycles and long production 
lead times.  

The  top priority for almost all garment businesses is ensuring availability of 
products and, consequently, maintaining  high customer satisfaction and brand 
image, while minimizing remaindered end of season stock and maximizing 
margins.  Therefore, the most critical process for a company operating in this 
sector is the definition of the times and quantities to be allocated to the whole 
network of stores.  

However, due to the inherent uncertainty of demand forecasts, it is likely that the 
firm will end up with some stores selling more than expected and others less. The 
two situations entail two different risks: where there has been an over-allocation 
the firm needs to markdown – loosing margins-, and where too little has been 
allocated it will lose sales – losing potential profits and reducing customers’ 

satisfaction.  

Furthermore, It is also likely that, as the final weeks of the season approach, the 
central warehouse stock is quite limited and unable to fix the inventory shortages 
in all the stores of the network. The solution is to organize transshipments of 
units between the stores, accepting extra costs in order to benefit from higher 
expected revenues in the affected locations. 
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Therefore, the purpose of the thesis is to investigate how to optimize the 
reallocation from overstock stores to understock ones, both in terms of 
maximization of the final expected revenues and in terms of minimization of the 
transportation costs.   

Demands for the stock keeping units (SKUs) are random, so the relative expected 
sales and the starting inventory position must be considered in the decision, along 
with transportation costs. Transportation costs are  structured as seven stepwise 
functions of the transportation lot weight; each function is relative to a different 
zone, which is a proxy of the distance of the destination store from the origin of 
the transfer. The actual routing of the vehicles is done by the logistic carrier that 
provided the transportation costs information and thus is out the scope of the 
work.  

The mathematical model faithfully representing the problem of profit 
maximization shows a non-polynomial function and thus it is not solvable to the 
optimum using the commercial solvers available. Thus a Mixed Integer Linear 
Programming (MILP) version of the model has been proposed to approximate the 
original one. However, the dimension of the problem is very large, involving 
hundreds of SKUs and stores and all their combinations, and thus it cannot be 
solved entirely by means of an linear optimizer.  

Hence the MILP model was used iteratively on smaller instances, created by 
dividing the SKUs into subsets, to generate an initial solution. Right after, the 
MILP was inserted in a Matheuristic framework with a neighborhood search 
heuristic structure, in which small portions of the initial solution are relaxed and 
re-optimized at each iteration to improve the results.  

Computational results using one such adaptation show that the algorithm is fast 
enough for practical work, and that substantial improvement in expected profit 
can be achieved with this approach. Indeed, the tests run on the main SKUs set 
show an increase in expected revenues of about 78%;at the net  of transportation 
costs, the overall benefits of the operation for the considered SKU set are roughly 
59% of the actual expected revenues. This percentage gain, extended to the 
whole SKU set, can bring significant monetary gains to the company. 
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Chapter 1 

1. Introduction 
 

1.1 Origin and scope of the project 
 

In the specific context of this thesis, a case of reactive allocation of cloths 
between stores in a network is faced. The allocation is called reactive because it 
comes after the pre-season and in-season allocation and try to “react” to the mid-
season inventory state in the stores, improving the overall resources balance(?). 

The opportunity rose from the collaboration with O.R.S. for a big international 
apparel retail client. The work could be the starting point for a new project 
enlarging the system of software developed by O.R.S. for managing the supply 
chain of this client. 

For the very practical nature of the problem, the approach followed throughout 
the work has been “pragmatic”, focusing on achieving the goals satisfying the 

constraints. This, with the peculiarities of the problem structure,  has limited the 
research and in-depth analysis of the theoretical methodologies: in fact, almost 
no research have focused on the problem of optimizing the reallocation of 
merchandise between stores during the selling season, when transportation costs 
functions are given.  

 

1.2. Thesis  disposition 
 

 

1.3. The Fashion & Apparel industry 
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Even though a wide range of literature focused on both retailing replenishment 
optimization and supply chain management, only few researchers have directed 
their attention on the particular case of the fashion retail industry (Iannone, et al., 
2013). In fact, such industry presents specific characteristics that cause several 
issues in the supply chain management. 

First of all, fashion apparel is categorized as innovative product. Whilst  
functional products  typically do not change swiftly over time and have a stable 
and predictable demand, innovative products, instead, are characterized by 
novelty, great variety (Vaagen & Wallace, 2008) and customization (De Felice, 
et al., 2012).  

Companies supplying innovative products like fashion apparel are obliged to 
continuously bring newer innovations in the market to oppose imitators that 
gradually erode the competitive advantage of the current innovative products, 
which therefore have a short lifecycle (Barnes, 2009).  

This implies the need to have lower production volumes (De Carlo, et al., 2013) 
and higher flexibility with respect to other retailing industries, making demand 
unpredictable (Wang, et al., 2012). Demand fluctuations are also caused by the 
inherent seasonality of fashion goods, whose purchasing behavior is subject to 
impulsiveness, driven by the product popularity within fashion market and 
influenced by shelf availability (Lanzilotto, et al., 2014) as well. 

All the above suggests that an efficient Supply Chain strategy, which focuses on 
cost minimization, is more appropriate for functional products, while innovative 
products Supply Chains should follow a responsive/demand-driven strategy 
aiming at assuring product availability to match the marketplace with clients 
demand (Lam & Postle, 2006). 

From the supply side, the industry is characterized by long and complex demand-
driven supply chains which often are global, including suppliers located in 
several different Countries (Bruce, et al., 2007).   
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Fig. 1 The clothing and textile supply 
chain 

A traditional textile and apparel supply chain consists of four segments (Sen, 
2008) (Fig.1).  At the top of the supply chain, there are fiber suppliers who are in 
charge of collecting the natural or synthetic raw materials; then the second 
segment, the textile mills, work the rough fiber in different ways to make the 
fabric. The fabrics are the input to the third segment, the apparel manufacturers - 
or the manufacturers of industrial textile products – who cut and sew the fabric 
into finished cloths. The final segment constitutes the distribution and sales part 
of the chain and  includes the warehouses and the final retailers. The warehouses 
are the hubs of the distribution network where final products are received from 
suppliers, often located in far countries, and then allocated to stores and clients in 
accordance with their specific orders (Coraggia, 2009). Finally, the last ring of 
the supply chain is represented by  the Retailers which offer the clothing items 
and other textile products for sale to final consumers, trying to satisfy their 
demand. 

The widespread choice of adopting an international supply chain has the benefit 
of reducing labor costs but it contributes to extend lead time, thus making 
production inflexible and not able to adapt to demand changes. Indeed, a further 
feature of the traditional apparel industry is the long time-to-market, especially if 
the retailer does not have in‐ house production: it takes almost one year to pass 
from the definition of the clothing item to its delivery to the stores, after. Such 
long supply process forces producers to estimate the already volatile demand in 
far advance, further increasing the uncertainty of the forecasts. 

The main processes performed in a typical Fashion Retail Supply Chain are 
divided in three chronological phases: 

1. Pre-Season phase: it involves all the activities performed before the 
beginning of the real sales season, starting from the creation of the 
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collection and ending with the deliveries of the finished product to 
clients and stores. (Martino, 2015) 

Forecasting of market demand and future orders is one of the pillars of 
this phase since all the planning activities are based on it. As 
mentioned in the previous paragraph, this process is made particularly 
complex in the Fashion & Apparel industry due to demand 
unpredictability and high volatility. Demand predictions are based on 
historical sales data, whose information are integrated with 
characteristics of the new collection and the stores to update with 
respect to new trends. 

Usually, the forecasts are made for an higher aggregation level than 
the single item code. Single articles are grouped into product 
categories (Thomassey & Hapiette., 2007) to better reflect consumers 
purchasing behaviors and, above all, achieve more accurate 
predictions. Indeed, making aggregated forecasts for few clusters of 
products, instead of detailed projections for thousands of codes, 
allows reducing the prevision error. 

Classification of single items into wider product categories is also 
useful when planning for brand new products. Indeed, new fashion 
products to be offered in the upcoming season have no real historical 
sales data available to draft forecasts.  In these cases,  the buying and 
pricing decisions can be based on past record of similar products. 

2. In-Season phase: it starts with the first sales recorded in the stores and 
involves all the selling season, including the end-of-season clearance 
sales aimed to liquidate all stocks before the end of the season, until 
the remaindered stock is returned to the central warehouse.  

Even if a first replenishment schedule is defined earlier, stores are not 
stocked in a unique solution before the selling season. Indeed, 
depending on the length of the season, it is advisable to allocate only 
part of the central stock to stores in the first replenishment event and 
wait to gather actual sales data in order to decide whether to allocate 
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additional units. In fact, it is important to react according to how 
different products perform in different locations. 

Thus, the first replenishment draft before the selling season is based 
on previsions on past sales data while the following ones, during the 
in-season phase, are driven by both forecasts and real sales data, 
which allow to assess deviations between actual demand and 
projections.  

3. Post-Season phase: it involves all the activities necessary for the 
correct management of the unsold items, included their delivery to 
factory outlet stores, where they will be sold at discounted prices next 
seasons. 

The most valuable asset an enterprise can record is the satisfaction of its clients; 
this is true for the Fashion Industry as well. Customer satisfaction refers to a 
customer’s overall assessment of the extent to which product or service 

performance matches the expectations (Anderson & Sullivan, 1993) (Davis-
Sramek , et al., 2007). This factor is important to be taken into account because 
higher satisfaction within the customers basis has the potential to  increase 
clients’ loyalty (Martino, 2015) and, in turn, make sales grow. Customer loyalty 
refers to a customer behavior and positive attitude toward the service/product 
provider firm. Such behavior includes repeating purchase activity, expressing 
positive word-of-mouth, having the intention to continue the relationship, not 
switching to competitors or committing on the long-term (Davis-Sramek , et al., 
2007) (Giese, et al., 2004). On this basis, customer satisfaction is considered a 
key driver for increasing company sales.  

Moreover, customer satisfaction is important because of its inherent link with the 
firm reputation in the eye of the customers. 

In the retailing sector – and not only – what causes low customer satisfaction and 
raises a negative perception of the firms in the eye of customers is the event of 
low availability of the desired product. The negative perceptions affect the firm’s 

image, hence reducing future visits and total sales, in general. 
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This is especially true for the Fashion and Apparel Industry in which, as 
mentioned before, market demand is significantly affected by the availability of 
products in the stores (Martìnez-de Albèniz & Boada Collado, 2014), that is 
directly linked to the stores’ inventory level.  

With low inventory levels, customer may not find the demanded item available in 
the color or size she needs and thus can decide to avoid purchasing anything or 
switch to a similar product; in any case she feels a certain level of dissatisfaction. 
With regard to this, some researches have shown that unavailability of highly 
demanded items has higher likelihood to negatively impact firm perception if few 
appropriate substitutes are available (Boatwright & Nunes, 2001) (Broniarczyk, 
et al., 1998) (Campo, et al., 2000) (Sloot & Verhoef, 2005). 

The parameter that better measures availability is the out of stock,  which is 
defined as the number of orders that cannot be fulfilled. Previous research has 
shown that stock outs (a case of low inventory level in which some codes are 
missing, i.e. are out of stock), at the same time lower the appeal of the product 
category and make the customer uncertain on which item to choose or which 
action to take. Indeed, a customer can decide to act in different ways: to buy 
another product in the same store, to buy the same product in another store or 
through other channels (e.g. web and mobile channels) (Lanzilotto, et al., 2015), 
to wait until the product is available or not to buy at all. In all these cases stock-
outs generate customer dissatisfaction; this discontent translates into different 
economic consequences in the different situations, as out of stock costs are 
related to the possible lost sale and relative revenue. 

All that above does not imply that overstock is the answer to the shelf availability 
problem. Indeed as fashion items suffer a strong depreciation over time, 
overstocking would expose stores to higher holding costs and more unsold units 
at the end of the sales season; the remainder units will be highly marked down in 
the last season weeks, significantly reducing contribution margins and thus 
profits. 

Thus, the general objective of Retailing Industry actors is  dynamically 
optimizing stores assortment trying to ensure high product availability and to 
minimize overstock or out of stock events (Iannone, et al., s.d.). 
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To perceive this goal in the fast changing environment of the Fashion & Apparel 
industry as well,  the ability of being responsive to market fluctuations and react 
promptly to deviations from forecasts is imperative, especially for companies that 
manage an extended network of stores and try to satisfy separate demand streams 
in different locations.  

Coping with the demand-supply mismatch on time is especially relevant in the 
last ring of the supply chain, i.e. retailers, where late corrective actions may be 
difficult and more expensive. 

Chapter 2 

2. Description and analysis of the problem 
 

To create an algorithm for an optimization problem, it is paramount to 
understand the functioning of the real system, such to distinguish which features 
have to be modeled in the next phase and which characteristics can instead be 
overlooked for the purpose of the optimization.  

Therefore gathering data and collecting information about how the system of 
stores and items is organized is a critical phase of the analysis preceding the 
realization of the algorithm.  

Furthermore, it could be useful to classify the case study with respect to the noted 
problems in literature, such to benefit from the theoretical tools that already exist 
in reference to it. Nevertheless, even if the literature on supply chain 
management and inventory allocation problems applied to the fashion industry is 
substantial, the case on hand cannot be attributed to a class of known problems 
because of its peculiarities (the location in time of the problem, the presence of 
transportation costs but the absence of vehicle routing,  the fact that the transfers 
are made between stores and not between a distribution center and the single 
stores).  
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To comprehend the problem boundaries and dimensions, it is appropriate to start 
from the description of the market the case study is dealing with, the taxonomy 
of store and products used within the system and the products flow during and 
after season.  

 

2.1 Products and Channels Classification 
 

The reference market is the North America division of the retailer, which 
encompasses almost 300 stores all around the U.S.A., Canada and minor north 
American regions. This market is supplied by the retailer through three different 
sales channels: 

1. Retail Stores are the channel which the current season products are 
mainly designed for and in which they are sold at higher prices than 
other channels (price promotions happen during special events or are 
applied to special customers, always within a certain threshold). The 
assortment includes the more recent seasonal products as well as the 
mainstream basic ones. At the end of a certain season, the products of 
such season are moved from retail floors to the web. 

2. The web e-commerce is pretty different from other traditional sales 
channels. It follows separate rules, sales are differently spread along 
time and also best seller products are distributed in a diverse manner 
with respect to traditional stores. At the beginning of a season all the 
products sold in a retail store are also sold in the e-commerce channel. 
At the end of the following season, (Fashion) products are taken to 
Factory Stores. 

3. Factory Stores  are outlets to which out of season apparels are 
shipped, including web e-commerce leavings and products selling 
below expectations on retail floors. In such outlets prices are marked 
down with respect to the original prices and can be further decreased 
by promotions. 
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Products’ assortment show a large variety and thus requires a clear codification 

to be managed at large scales. In fact, items are recorded with a specific 
hierarchy which, from the highest level of aggregation to the lowest, is: 

 Department 

 Group Department 

 Subdepartment e.g. Sport Shirts 

 Class e.g. Oxford Sport Shirts 

 Subclass 

 Style: a combination of Model (the design of the Garment), Main 
Fabric and Fit.  

 Colorway : a combination of Style and Color e.g. White Oxford Sport 
Shirts 

 SKU (Stock Keeping Unit): a Colorway matched with a Size. 

Moreover, each product can be classified according to the length of its lifecycle. 
Fundamentally, garments can be distinguished between Fashion products 
(Fashions), which have a short lifecycle, and Basic products (Basics), which 
have longer lyficycles. Fashion products are told to have short lifecycles because 
they are intended to sell only in a season of a specific year, while Basic items 
have long lifecycles because they represent the “evergreen” items of clothing, 

whose preference is quite independent from temporary fashion trends; ideally 
Basics have an “infinite” lifecycle because they can be sold year after year. 

For these reasons, the models developed in the next chapters have been tested on 
Fashions data, since they are more subject to demand swings and to markdowns 
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and final season clearance actions1.  Anyway, the models can be applied to 
Basics data sets as well.  

 

2.2 Problem statement 
 

The problem on hand places during the mid-season of sales:  the distribution 
center is running low in stock because the end season is approaching and it is not 
able to refill all stores and assuring the high service level (HSL) for each SKU. 
Evidently, the long lead times of production do not permit to manufacture new 
products on time to remedy the inventory shortage. In addition, because of the 
volatility of demand the allocation process did not run perfectly and some store 
sold less than expected on some SKUs while others have sold these SKUs over 
expectations. In the first case the stores are holding a stock quantity that exceeds 
the high service level target estimated for the rest of the season, while in the 
second case stores do not have sufficient inventory to satisfy the probable 
demand of the upcoming period.  

In this situation, the firm is bearing the risk of ending with a high level of unsold 
likely lost sales on one hand, and likely lost sales on the other. The realization of 
these situations would cause lost margins - due to the lost sales and to the 
remaining inventory markdowns - and/or extra shipping costs to return unsold 
units to the warehouse at the end of the season.  

To mitigate such risks, the firm would like to act in advance moving the items 
from the stores where they are over the target level (HSL) to the stores that are 
understock. This practice would increase the chances to sell out the items in the 
overstock stores while diminishing the probability to incur lost sales in the 
understock stores. Obviously, this solution is not free since moving stuff across 
stores requires extra movement and thus extra shipping costs, that are generally 

                                              
1 Actions taken at the end of a season to move products from the retail floor to the web e-
commerce. In practical terms, such products are remaindered to the warehouse, part of which 
virtually represents the inventory of the e-commerce. 
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higher than the tariffs applied for the transportation from the warehouse2. So the 
objective of this work is to find a way to strike a balance between these tradeoff, 
the higher expected revenues and the higher costs, to try increasing the overall 
expected profit.   

It is relevant to note that this approach  is particularly suitable for high value 
products, whose contribution margin is sufficiently high to justify the transfer 
cost, while it could be senseless for low price fashion firms [cercare referenze]. 
Most of the SKUs of the considered problem belong to such typology, but there 
are also smaller garment products, such as socks and small accessories, that lie 
outside this set; they are considered anyway since one of the primary objectives 
of the client is customers satisfaction, which in this case means to fix broken 
stores assortments spreading the available stock across the stores. Moreover, they 
are not considered alone but within batches containing higher priced products as 
well, so the per unit transportation cost for the small items does not result 
excessive with respect to their value. 

 

2.3 Problem structure and dimensions 
 

2.3.1 Stores and SKUs sets 
 

The wider and more general instance of the problem includes around a hundred 
of stores for each division (Factory and Retail) around the U.S.A. territory. The 
exchanges have to be done only between stores of the same division, Factory 
Outlets or Retail Stores, since these two divisions do not sell the same 
merchandise at the same time and with the same pricing rules. This implies that 
the two sets of stores and relative SKUs will be treated as two separated 

                                              
2 The transportation costs from the warehouse to the single stores are given by a flat tariff and 
thus are  independent from the weight of the moved lot. Instead, in the case on hand the weight 
of the transportation batch determines the total shipping costs from a store to another. 
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instances of the same problem, given that there are no particular features 
distinguishing the two reallocation problems apart for the input data. 

Within every division, each store has its own colorways and SKUs sets on sales, 
which do not perfectly match with the other stores’ sets.  

 

2.3.2 Demand  
 

As it is typical in the fashion industry, demand is stochastic. From the analysis 
made by O.R.S. on historical sales data, it emerged that sales follow a Poisson 
distribution, which is estimated at the colorway level and then turned on the 
single stock keeping units. Due to the differences among stores (location, 
climate, type of clientele..etc.), each colorway in each store has its own 
distribution parameter for sales λ (the expected sales for the colorway), which is 
then projected to the single SKUs according to their selling frequency within the 
colorway assortment – which, again, varies from store to store. Consequently, 
each SKU can have a different definition of the service level quantity (HSL)3 for 
each store in which it is sold.  

This implies that it is not indifferent to move an SKU to a store or another that 
has the same initial inventory, since the probability to sell that SKU could be 
                                              

3 “In inventory management, service level is the expected probability of not hitting a stock-out 
during the next replenishment cycle or the probability of not losing sales.  Safety  stock  is  
inventory  that is carried to prevent stock outs. Companies choose to keep safety stock level high 
as a buffer against demand variability: the  safety  stock  level  must  be  high  enough  to  cover  
vendor’s  delivery  times,  sufficient enough  to  satisfy  customers’  demand,  but  not  so  high  

that  the  company  loses  money because  of  high  carrying  costs. The  target  service  level  can  
be therefore defined  as  a  trade-off  between  the  cost  of inventory  and  the  cost  of  stock-
outs.” (Radasanu, 2016) 

So the high service level quantity (HSL) coincides with an high quantile of the probability 
distribution (e.g. 95%) which defines the target quantity a store should hold in inventory to 
avoid out-of-stocks with adequate confidence level. 
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very different in the two locations and thus could impact the overall expected 
profit in different ways.  

 

2.3.3  Inventory constraints 
 

Each SKU in the store’s SKUs’ set has an initial inventory Q
0, which is the stock 

available in store at the time the reallocation is settled. Comparing this stock-on-
hand and the target inventory level (HSL) of a SKU, a store can be classified 
either as in-stock (if the two quantities coincide), understock (if the on-hand 
quantity is lower than the target one) or overstock (if the initial stock exceed the 
HSL) for such SKU. In case of overstocked store the objective is to remove the 
units in excess and redistribute them across the understock stores, which in turn 
can only receive the SKUs for which they are running low in inventory and send 
the ones for which their stock exceeds the high service level quantity. The stores 
should neither send or receive the SKUs that are exactly in-stock. 

To decide how much to transfer from a store and where to move the 
merchandise, the decision maker should strike a balance between the selling 
probabilities - and thus the expected sales - in every destination store and the 
relative transportation cost. 

 

2.3.4 Transportation costs 
 

In the case on hand the transportation costs structure is based on information 
provided by the external logistic carrier that will actually handle the routing of 
vehicles, after the exchanges have been defined. For this reason,  in the 
formulations of the following chapters, transfers are managed as single paths 
from the origin store to the destination, regardless of the effective vehicle routing 
the carrier is going to implement - which is out the scope of this work.   
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In logistics transportation costs are generally a function of the distance and the 
weight/volume of the moved batch. In the specific case, the information about 
the distance and the difficulty of reaching a specific location is condensed in the 
zone number of the destination with respect to the store of origin (always 
considered in zone 1). There are seven zones, indexed 2 to 8, with increasing 
transportation cost per batch weight as the zone number increases. Thus, if store 
B is placed in zone 2 with respect to the sender store A and store C is in zone 3 
with respect to A, a batch with a given weight will cost more if sent from A to C 
than from A to B. It is noteworthy to highlight that the zone matrix (or distance 
matrix) reporting the zone number for each combination of sender and 
destination store is not symmetric, so there can be found cases in which a 
destination store B is in zone X with respect to A, while A is in Zone Y (Y≠X) 

with respect to the sender store B.  

Every zone tariff is divided into 147 equal weight ranges - of approximately 0,45 
lb - for which each zone number has its own transportation cost. Thus, each zone 
tariff shows a transportation cost function which is stepwise constant with respect 

to the lot weight and overall increasing with the total weight of the lot, as shown 
in [fig.]. The transportation cost per pound instead is decreasing as the total lot 
weight increases [fig.], which implies that is more cost-effective to transfer large 
lots between two stores than sending small packages to multiple destination 
stores.  
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2.4 Objectives 

 

The  satisfaction  of  the  client  is  the  most valuable  assets of  an enterprise.  
Measuring the service  level is relevant because it can affect the relationship  
with  the  customers  and can  determine  an  important  impact  on profitability. 
In the retail sector setting a high level of service (greater or equal to 95%) is 
crucial since the  level  of  service  is  a  key factor  in assuring the fidelity of the 
clients and the maximization of sales. (Radasanu, 2016) 

The client firm of this project gives lot of consideration to customer satisfaction 
as well and try to avoid stock-outs and consequent lost sales. With this purpose, 
it sets a high service level target and allows specific in store orders for customers 
who could not find their size in stock for the clothing they wanted to buy (which 
are handled by another O.R.S.’ software).  

Consequently, from the apparel firm perspective, the optimal situation would be 
to have the HSL quantity available in inventory for every SKU in every store. 
However,  it is likely that the reallocation problem arises in a situation in which 
the total resources are too scares to reach this target level in every store-SKU 
combination, since it is probable that the warehouses are facing inventory 
shortages as well. In these circumstances, there will be stores with HSL 
quantities or even more units in stock for some SKUs but most of the stores will 
run low in some SKUs’ inventory or even face deficits in the colorway 
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assortment. Consequently, it is reasonable to set as objective not the achievement 
of the target HSL quantities in every store and SKU, but rather the reallocation of 
the exceeding merchandise from the overstock stores such to maximize the 
expected profit. 

 

 
 
 
 
 
Chapter 3 

3. Solution approaches 
 

An algorithm is a step-by-step procedure for solving a computational problem. 
For a given input x, it generates the correct output f(x) - the answer for a 
corresponding problem solved -  after a finite number of steps.   

Solution methods for a general optimization problem can be divided into exact 
and approximated ones.  

If the algorithm gives an optimum solution, it is called exact algorithm. Exact 
methods are usually limited to small instances; they include mixed integer linear 
programming (MILP), dynamic programming (DP) and branch and bound (BB) 
methods. 

For larger instances, in order to find a “good” solution within an acceptable 

amount of time, two types of approximate methods can be developed: 
approximation and heuristics algorithms. 
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Heuristic algorithms can be very simple but still effective, producing “good” 

feasible solutions which are not guaranteed to be close to optimum. The 
performance of a heuristic algorithm is usually analyzed experimentally, through 
a number of runs using either generated instances or known benchmark 
instances. For instance, well-known examples of heuristic algorithms are the 
Tabu search, the Simulated Annealing and the Genetic Algorithms. 

An algorithm is called an approximation algorithm if it is possible to establish 
analytically how close the generated solution is to the optimum (either in the 
worst-case or on average), therefore the solutions found are guaranteed to be 
within a fixed percentage of the actual optimum.  Approximation algorithms 
produce solutions in polynomial time, but for the price of loss of optimality.  

A ρ-approximation algorithm is an algorithm that runs in polynomial time and 
delivers a solution of value at most ρ times the optimum for any instance of the  

problem. The value of ρ is called the worst-case ratio bound and estimates the 
“goodness” of the algorithm. 

Given the practical nature of the case treated in this work, it is not interesting to 
focus on approximation algorithm which instead can have relevance in a 
theoretical dissertation. Rather, next chapters will focus first on exact methods, in 
particular MILP models applied to restricted instances, and then on heuristics 
approaches that permit to deal with the real dimensions of the practical problem. 

 

3.1. Heuristic Approaches  
  

Heuristic algorithms are a set of solution techniques of complex combinatorial 
problems able to bring satisfying results within limited running times. Differently 
from exhaustive algorithms, these methodologies cannot guarantee optimality, 
but try to achieve results as close as possible to the best solution. To this aim, the 
resolution decisions are taken basing on experience related to the structure of the 
problem, this way allowing to avoid the enumeration  of all the different 
possibilities and thus limiting the computational costs of the algorithm. 
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Therefore, it is necessary to deeply analyze the problem to understand how to 
exploit its properties in the resolution and building an efficient and effective 
heuristic.  

Heuristic algorithms can be classified into categories which differ for both 
complexity and quality of the results: 

 Constructive (or Greedy)  algorithms. 

 Neighborhood Search Heuristics. 

 

3.1.1. Constructive (Greedy)  algorithms 
 

Constructive (or Greedy)  algorithms. Constructive algorithms, as their name 
itself reveals, “build up” an admissible solution starting from the problem data. 
In practice, these algorithms start from an empty solution and, at each iteration, 
progressively expand the partial solution making choices that respect the problem 
constraints. Usually, these choices are made following very simple rules which 
lead to the decision that appears to be the most convenient at the moment to 
reach the optimum. Given that at each step the most desirable way is chosen, 
these algorithm are also called greedy. A characteristic of the greedy algorithm is 
that once the choices are made they  are not later challenged in the subsequent 
steps, i.e. no backtracking mechanisms are provided. 

The strategies to determine at each step which alternative is the most promising 
one can be multiple, like the  evaluation of the objective function of the partial 
solutions or the estimation of  a score computed basing on the reached status, but 
all are based on the local optimization criterion. As a matter of fact, at each 
iteration, the decision made optimizes only a small portion of the original 
problem, with the hope of reaching a global optimization. Although, the best 
solution is achieved in problems showing optimal sub-structures, but it rarely 
happens in normal problems; hence it is very common for this type of algorithm 
to fall back into a local optimum. In regards to this issue, a possible  
improvement can be reached by introducing a certain level of randomness in the 
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choices made, for instance selecting randomly among the n best feasible 
alternatives  or between the possibilities that differ less that a certain percentage 
from the best one. 

 

3.1.2. Neighborhood Search Heuristics 
 

The local search algorithm are methodologies that, starting from an initial 
solution, try to get improvements exploring the solution space around the current 
solution. This solution space around a starting poit is called neighborhood  and 
represents the portion of the overall solution space which is reachable applying a 
well-defined operator to the current solution.  

This type of algorithms is not able to start from an empty solution but need an 
initial feasible solution, which is generally provided by constructive-type 
algorithms, which are a fast way to get a feasible solution for the problem.  

Moreover, in the context of neighborhood search algorithms it is necessary to 
define a neighborhood structure; to do this, first of all the solutions representation 
of the problem has to be defined. This is definitely a very critical  passage since 
the representation of a solution heavily influences the neighborhood types that 
can be generated and the complexity of the objective function evaluation. Then, 
once the solution representation is established, a set of operators have to be 
selected to be applied to such representation, in order to create other solutions 
from the current one in an easy way. The choice of the neighborhood operators is 
not trivial since it influences the goodness of the local search and can even 
prevent the algorithm from reaching the optimum (which is the case for 
disconnected neighborhoods).  

Once the neighborhood is defined, a strategy to explore it and select the next 
solution has to be chosen. Among the most known local search strategies there 
are: 
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 The  Steepest Descent (or Best Improvement) strategy: the 
neighborhood is completely explored and the best solution found in it 
is chosen to become the curent solution of the next iteration. 

 The  First Improvement strategy: the neighborhood is not completely 
indagated at each iteration, often the neighbors are generated one at a 
time and the iteration stop as soon as a solution improving the current 
one is found. Consequently, this strategy allow to apply the local 
search also to neighborhoods that are too big to be fully evaluated 

The efficacy of both methodologies is strongly linked to the type, structure, 
dimension and feasibility of the chosen neighborhood.  

However, generally speaking, the Steepest Descent technique reaches an higher 
improvement at each step but it is slower in finding such improvement, while the 
First Improvement strategy finds lower improvements at each iteration but in a 
much faster way. Overall the two strategies have similar performances but,  
typically, the first improvement strategy reaches better final solutions because it 
is easier to quickly get stuck in a local optimum using the Steepest Descent 
approach.   

Indeed, the inability to avoid getting stuck into local optima -  the situation in 
which the exploration of the solution space is not able to find further 
improvements even if they actually exist -  is the main weakness point of this 
techniques. 

Neighborhood search methodologies can be divided into: 

 Classical local search 

 Metaheuristics (Iterated Local Search, Variable neighborhood search, 
Tabu Search, Grasp, Simulated Annealing, Genetic algorithms..etc.) 

 Matheuristics: a more recent family of resolution approaches based on 
the hybridization of heuristics methodologies and exact methods that 
will be treated in further detail in Chapter 5…) 
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The greedy algorithms are generally more simple and fast, while the 
neighborhood search heuristics are more complex, in particular the 
metaheuristics and matheuristics. Obviously this affects the running time, which 
increases as the methodologies get more complex, as well as the solutions 
goodness, that is generally low for the greedy approaches but gets better in the 
neighborhood techniques, especially for the metaheuristics and matheuristics. 

 

3.2. Computational complexity theory 
 

The purpose of the complexity theory is to measure the performances of a given 
resolution algorithm with respect to the necessary computational resources, i.e. 
the time and memory space. Even if in some applications the measure of the 
memory space needed by an algorithm can be a decisive factor, generally it is 
considered an issue of minor importance; therefore, this paragraph will linger 
only on the running time, bearing in mind that an analogous reasoning can be 
applied to the other resource as well. 

All the input parameters  x of a problem have to be firstly represented through a 
finite series of symbols, that will determine the dimension of the input. In 
general, given a certain problem, a set of input parameters x of codified 
dimension n is called an instance of the problem. 

The time complexity (or the running time) of an algorithm expresses the total 
number of elementary operations, such as additions, multiplications and 
comparisons, for each possible problem instance as a function of the size of the 
instance. Formally speaking, the time complexity  of an algorithm in relation to a 
certain problem is defined as the function T(n) that determines an upper bound to 
the number of steps made by the algorithm to solve the problem instance of size 
n. 

The measure of the computational complexity of the algorithms in terms of 
running time is based on their response to the increase in size of the examined 
problem. Often, it is not easy to determine with precision the function T(n), 



26 
 

hence it is preferred to define the asymptotic behavior of such function, 
considering only the predominant terms when n tend towards infinite. So, the 
big-O notation is used to specify the complexity of an algorithm, which implies 
that: 

T(n) ∈ O(g(n)) if there exists a constant c >0  and a non-negative number n0 such 
that T(n) ≤ cg(n) ∀n : n ≥ n0.  For instance, if the computational complexity is 
O(n²), the big O-symbol to stress that the number of elementary computations of 
the algorithm grows at the same rate as the function Cn², where C is a constant. 

Computational complexity allows to divide algorithm into categories sharing the 
same asymptotic behavior: 

 Polynomial time algorithms. An algorithm is called polynomial if f(n) 
can be computed in at most O(g(n)) steps where g is a polynomial of 
certain degree, so its complexity is upper bounded by such 
polynomial. This is the case of algorithms having complexity  O(nk), 
including constant (k=0) ,linear (k=1), quadratic (k=2) and cubic 
(k=3) ones. Algorithms having complexity function in the form of  
O(nk · logw(n))  are considered polynomial as well. 

 Super-polynomial algorithms, whose computational complexity 
cannot be upper bounded by any polynomial. Exponential algorithms 
(O(an)) and factorial ones (O(n!)) belong to this category. 

The difference among the various complexity levels are particular evident when 
the dimension of the instances grow. Indeed, in the exponential algorithms the 
running time sees and extraordinary increase with respect to the instance size. 

Problems can be divided  into optimization and decision problems. A problem is 
called a decision problem if the output range is {yes, no}. Computational 
complexity theory’s explanation refers to the decision version of optimization 

problems. It may be associated with each problem a decision problem by 
defining a threshold k for the objective function f. For instance, for a 
minimization problems, the relative decision problem is: does a feasible solution 
S exist satisfying f(S)  k? 
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Note that it is always possible to find the optimal solution of an optimization 
problem by solving iteratively its decision problem, varying the bound k. Thus, 
optimization problems and their decision versions are strongly connected:  if 
there exists a polynomial algorithm for the optimization problem, there exist one 
for the decision problem as well and vice versa. Therefore the theory developed 
for decision problems can be immediately extended to the corresponding 
optimization problems. 

 

3.2.1. Complexity classes 
 

Problems can be divided into computational classes that indicates their difficulty. 

P, which stands for “Polynomial time complexity”, is the class of decision 
problems which are polynomially solvable. A problem is called polynomially 
solvable if it can be solved by a polynomial algorithm that bring to the correct 
answer (yes/no}. Polynomial algorithms are sometimes called efficient or simply 
good. 

NP is the class of polynomially checkable decision problems with the property 
that for each “yes”-answer a certificate exists which can be used to verify the 
“yes”-answer in polynomial time. In other words, given a certain hypothesis of 
solution for the decision problem, it is possible to verify if such answer is correct 
or not using a polynomial time algorithm. NP stands for “non-deterministic 
polynomial”  because the first phase of resolution is executed through an non-
deterministic procedure. 

One of the biggest unsolved problems of modern mathematics is to determine if 
the class P is strictly included in NP or if the two sets coincide. In the last case, a 
great number of high complexity would be solvable by means of polynomial 
algorithms, so it is supposed not to be true, but it has not been demonstrated yet. 

Reducibility, NP-complete and NP-hard problems 
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An important concept in the computational complexity theory is the polynomial 
reducibility of one problem to another. For two decision problems P and Q, it is 
said that P reduces to Q (denoted by P ∝ Q) if there exists a polynomial-time 
computable function g that transforms inputs for P into inputs for Q such that n is 
a “yes”-input for P if and only if g(n) is a “yes”-input for Q. Polynomial 
reducibility allow to compare the complexity of one problem with respect to 
another one, since saying that P ∝  Q equals afforming that Q is at least as 
difficult as P and, consequently, if Q can be solved by means of a polynomial 
algorithm this is valid also for P. 

Polynomial reducibility allow to introduce the class of NP-complete and NP-hard 
problems. A decision problem Q is called  NP - complete if Q  NP (first 
condition) and, for all other decision problems P  NP, we have P ∝ Q, i.e. all 
problems in NP can be polynomially reduced to Q (second condition). Therefore, 
all NP-complete problems have the same difficulty and the NP-complete class 
includes the set of the most difficult problems of the NP class. Lot of problems 
belong to the NP-complete class, but so far no polynomial time algorithms are 
known to solve them. 

An optimization problem is NP- hard if its  decision version is NP- complete. So 
the NP-hard class definition coincide with the definition of the NP-complete 
class where the first condition is relaxed. So, problems belonging to this class are 
at least as difficult as the NP-complete ones but not necessarily belong to the NP 
class, therefore they comprehend also non-decision version of the NP-complete 
problems, like the classic optimization ones.  

For such problems, no polynomial-time algorithms are known and it is generally 
believed that these problems cannot be solved in polynomial time, and therefore 
they should be treated by other methods. 

As far as the present problem is concerned, the computation class it belongs to is 
not known, however it is believed that it is “hard” to solve, meaning that it is not 

solvable by means of  an exact  polynomial algorithm. 
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Chapter 4 
4. Mathematical models 

 

[frase introduttiva capitolo?] 

4.1. Notation 
 

This paragraph introduces the symbols employed to model constants and 
variables in the subsequent models. The notation for parameters follows the 
classification and the problem features anticipated in the previous chapter and it 
is held unvaried throughout the whole work. The variables chosen for the 
mathematical formulation of the problem are presented here for the first time and 
their definitions are maintained in the following chapters as well. 

Constants 

N = total number of stores (Retail or Factory Outlet) 

S = total number of SKUs 

T = total number of tariff slots (equal to 147 in every problem instance) 

E = total number of units exchangeable in the problem 

𝑝𝑠𝑖 = price of SKU s in store i4 

𝑤𝑠 = weight of SKU s 

                                              
4 As is typical in the retail industry,  the selling price of a colorway may vary across stores, but 
it is identical for all sizes of the same colorway sold in the same store. 
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𝜆𝑠𝑖 = Lambda of SKU s in store i (expected sales in the next period until end-of-
season) 

𝑄𝑠𝑖
0  = initial inventory of SKU s in store i 

HSLis = high service level quantity of SKU s in store i 

Usi = {
1    if Qsi

0 < HSLis, i. e. if store i is understock for the size s       

0    if Qsi
0 ≥ HSLis, i. e. if store i is not understock for the size s

  

UUsi =

{
 

 
1      if Qsi

0 < 𝜆𝑠𝑖 , i. e. store i is seriously understock for the size s         

       (initial quantity would not be enough to cover expected sales)

0     if Qsi
0 ≥ 𝜆𝑠𝑖 , i. e.  store i is not seriously understock for the size s 

(initial quantity would be enough to cover expected sales)

 

𝐶𝑇𝑖𝑗𝑡 = cost of slot t in the transportation tariff between I and j 

𝑏𝑡= maximum weight available for transportation in tariff slot t5 

Variables 

𝑥𝑠𝑖𝑗 = units of SKU s moved from store i inventory to store j 

𝐶𝑖𝑗𝑡 = {
1   if for the transfer from i to j the slot t of the tariff is applied 
0   otherwise                                                                                                

 

 

4.2. The reactive allocation problem 

 

The following model is the literal transposition of the objectives and constraints 
expressed in the previous chapter in mathematical terms. 

                                              
5 Note that such weight slots are equal for every zone tariff, the difference among tariffs lies in 
the costs  𝐶𝑇𝑖𝑗𝑡  relative to each 𝑏𝑡. 



31 
 

𝑚𝑎𝑥∑∑ ∑ (
𝜆𝑠,𝑖
𝑞
𝑒−𝜆𝑠𝑖

𝑞𝑠𝑖!

𝑄𝑠𝑖
0−∑ 𝑥𝑠𝑖𝑗

𝑁
𝑗

𝑞𝑠𝑖=0

𝑁

𝑖=1

𝑆

𝑠=1

)𝑞𝑠𝑖(1 − 𝑈𝑠𝑖)𝑝𝑠𝑖

+ ∑∑ ∑
𝜆𝑠𝑗
𝑞
𝑒−𝜆𝑠𝑗

𝑞𝑠𝑗!

𝑄𝑠𝑗
0 +∑ 𝑥𝑠𝑖𝑗

𝑁
𝑖

𝑞𝑠𝑗=0

𝑞𝑠𝑗

𝑁

𝑗=1

𝑆

𝑠=1

(𝑈𝑠𝑗)𝑝𝑠𝑗

− ∑∑∑𝐶𝑖𝑗𝑡𝐶𝑇𝑖𝑗𝑡

𝑇

𝑡=1

𝑁

𝑗=1

𝑁

𝑖=1

 

 
(3.1) 

Subject to   
 

∑𝑥𝑖𝑗𝑠 ≤ (𝑄𝑖𝑠
0 − 𝐻𝑆𝐿𝑖𝑠)

𝑁

𝑗

(1 − 𝑈𝑠𝑖)   ∀𝑖 = 1. . 𝑁, ∀ 𝑠 = 1. . 𝑆 
 

(3.2) 

 
∑𝑥𝑖𝑗𝑠 ≤ (𝐻𝑆𝐿𝑗𝑠 − 𝑄𝑗𝑠

0 )

𝑁

𝑖

(𝑈𝑠𝑗)   ∀𝑗 = 1. . 𝑁, 𝑠 = 1. . 𝑆 
 

(3.3) 

 𝑥𝑖𝑖𝑠 = 0  ∀𝑖 = 1. . 𝑁, ∀ 𝑠 = 1. . 𝑆 (3.4) 
 

𝐶𝑖𝑖𝑡 = 0  ∀𝑖 = 1. . 𝑁, ∀ 𝑡 = 1. . 𝑇 (3.5) 
 

∑𝐶𝑖𝑗𝑡 ≤ 1  ∀𝑖 = 1. . 𝑁, 𝑗 = 1. . 𝑁 

𝑇

𝑡

  (3.6) 

 
∑𝐶𝑖𝑗𝑡 ≤∑𝑥𝑖𝑗𝑠 

𝑆

𝑠

  ∀𝑖 = 1. . 𝑁, 𝑗 = 1. . 𝑁  

𝑇

𝑡

 (3.7) 

 
∑𝑤𝑠𝑥𝑖𝑗𝑠 ≤ ∑𝐶𝑖𝑗𝑡

𝑇

𝑡

𝑏𝑡 

𝑆

𝑠

∀𝑖 = 1. . 𝑁, 𝑗 = 1. . 𝑁 (3.8) 

 
𝑥𝑖𝑗𝑠  ∈  ℕ

+∀𝑖 = 1. . 𝑁, ∀ 𝑗 = 1. . 𝑁, ∀ 𝑠 = 1. . 𝑆 (3.9) 

 𝐶𝑡𝑖𝑗  ∈ [0,1]   ∀𝑖 = 1. . 𝑁, ∀ 𝑗 = 1. . 𝑁, ∀ 𝑡 = 1. . 𝑇 (3.10) 

Recalling the notation in the previous paragraph, the primary decision variables 
𝑥𝑖𝑗𝑠 represent the shipment quantities of each size s ∈ [1..S] from each sender 
store i ∈ [1..N] to each destination store j ∈ [1..N], where N and S are 
respectively  the total number of stores and the total number of SKUs in the 
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problem instance. These variables are constrained to be integer in (3.9) and are 
bounded by the inventory available/receivable for transfer in each store for each 
SKU:  

 Constraint (3.2) limits the quantities of each SKU that can be sent 
from every store: if a generic store i overstocks for the SKU s 
(Usi = 0),  its total shipment of s to other stores must never exceed the 
quantity 𝑄𝑖𝑠0 − 𝐻𝑆𝐿𝑖𝑠  which insures that its target service level 
quantity is preserved after the reshuffling while, if store i understocks 
for such SKU (Usi = 1), it cannot send it to any other store. Therefore, 
this constraint coincide with the logical implication 

Usi = 1 →   ∑𝑥𝑖𝑗𝑠 = 0

𝑁

𝑗=1

     ∀𝑖 = 1. . 𝑁, ∀ 𝑠 = 1. . 𝑆 

⋀ 

Usi = 0 →   ∑𝑥𝑖𝑗𝑠 ≤ (𝑄𝑖𝑠
0 − 𝐻𝑆𝐿𝑖𝑠)

𝑁

𝑗=1

 ∀𝑖 = 1. . 𝑁, ∀ 𝑠 = 1. . 𝑆 

 Similarly, constraint (3.3) limits the quantities of each SKU that can 
be received by every store. Every destination store j which is 
understock for s (Usj = 1) can acquire units of this size from all the 
other stores up until its inventory reaches the HSLis quantity. On the 
contrary, a store overstocking s (Usj = 0) cannot get additional units 
for that size from any other store. 

Usj = 1 →   ∑𝑥𝑖𝑗𝑠 ≤ (𝐻𝑆𝐿𝑗𝑠 − 𝑄𝑗𝑠
0 )

𝑁

𝑖=1

     ∀𝑗 = 1. . 𝑁, ∀ 𝑠 = 1. . 𝑆 

⋀ 

Usj = 0 →   ∑𝑥𝑖𝑗𝑠 = 0

𝑁

𝑖=1

     ∀𝑗 = 1. . 𝑁, ∀ 𝑠 = 1. . 𝑆 

The secondary decision variables 𝐶𝑡𝑖𝑗 help modeling the stepwise transportation 
cost function between store i and location j. Specifically, every binary (3.10)  𝐶𝑡𝑖𝑗 
indicates if between i and j the t-th tariff with upper weight bound bt is activated 
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(𝐶𝑡𝑖𝑗 = 0) or not (𝐶𝑡𝑖𝑗 = 1), which depends on the total heaviness of the lot 
transferred from i to j, ∑ 𝑤𝑠𝑥𝑖𝑗𝑠 

𝑆
𝑠 (3.8). Clearly, only one tariff can be applied to 

the batch movement (3.6) and no tariff will be on if there is no transfer between 
two stores (3.7). The corresponding logical implications are: 

∑𝑥𝑖𝑗𝑠 

𝑆

𝑠

= 0 →  ∑𝐶𝑖𝑗𝑡 = 0   ∀𝑖 = 1. . 𝑁, 𝑗 = 1. . 𝑁  

𝑇

𝑡

 

⋀ 

∑𝑥𝑖𝑗𝑠 

𝑆

𝑠

> 0 →  ∑𝐶𝑖𝑗𝑡 = 1   ∀𝑖 = 1. . 𝑁, 𝑗 = 1. . 𝑁  

𝑇

𝑡

 

Since the costs appear with negative sign in the objective function (3.1), the 
solver will tend to activate the cheapest tariff that respects the lower bound given 
by the total lot weight. 

Lastly, constraints (3.4) and (3.5) state the obvious condition that no store can 
exchange items with itself. 

Expression (3.1) defines the objective function to be maximized. As anticipated 
in the previous chapter, the ideal goal would be to satisfy the high service level 
condition in every store for every SKU. Nonetheless it is likely that the total 
resources available in the whole stores network are too scarce to allow the 
achievement of such target in every location. Consequently, it is reasonable to 
reallocate the exceeding merchandise present in the overstock stores with the 
purpose to maximize the expected profit, minimizing the transportation charges 
and maintaining the high service level (HSL) requirement only where it is 
possible and costless, i.e. in the stores that already record at least HSL units in 
their initial SKU stock (which are the in-stock or overstock stores).  

Thus the objective function is given by the expected profit, computed as the 
expected revenues after the transfer operation minus the transfers costs (last term 
of (3.1)). The expected revenues are computed as the probability of selling a 
quantity q times the quantity itself times the price of the relative SKU in the store 
(first and second term of (3.1)), summed over all sales scenarios from 0 to the 
final stock quantity – i.e. the inventory after the reshuffling – which is equal to 
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𝑄𝑠𝑖
0 − ∑ 𝑥𝑠𝑖𝑗

𝑁
𝑗  for the stores i that are overstock for SKU s, and 𝑄𝑠𝑗0 + ∑ 𝑥𝑠𝑖𝑗

𝑁
𝑖  for 

the stores j that, instead, understock for SKU s. 

As the probability calculations reveal, each article have been considered 
independently from the others. Nevertheless, this problem may involve 
connections between different articles or between different SKUs of the same 
colorway.  

In the former case, there can be substitutions or complementarities6 among the 
products at the store level: the sales probability of an item in a store can be 
boosted by the absence of a similar product (which means that the customer is 
willing to switch among the two cloths, which therefore can be considered 
substitutes) or by the presence of complementary products (for instance, a tie 
sales distribution could be positively related to the sales distribution of a 
particularly well matched shirt).  

In the second hypothesis, the interrelations appear between SKUs belonging to 
the same colorway set, i.e. within a colorway assortment. In this case, it could 
happen that the completeness of the assortment affect the selling probabilities of 
the single colorway SKUs. It could occur because of the psychological impact a 
more complete sizes assortment can have on the final customer entering the shop: 
for instance, the more the SKUs displayed in the store the more the visibility for 

                                              
6 In economic theory, two goods are substitutes if when the price increases for one good, the 
demand for the substitute product will increase (assuming that price remains constant). Instead, 
complementary goods literally complement each other, they are items that “go together”, so if 

the price of one increases the demand for the other will decrease. (Munson, 2014)  

However, in this treatise complementarity and substitution meanings are not linked to the 
elasticity of one good’s demand with respect to the variation in another good’s price, they are 

considered as the elasticity of a SKU demand with respect to the presence or the absence of 
another SKU in the stock. So the magnitude of substitution effect indicates how much a 
consumer is willing to switch to another product if the first choice SKU is missing instead of 
leaving the store without purchasing anything. While the complementarity effect measures how 
much the two goods can be considered complement and thus are purchased together by the 
customers.  
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the whole colorway set and the more the client could be induced to notice and try 
on that product.  

On the contrary, it could happen that the single SKU sales are increased by the 
absence of the SKUs right close in the size scale, in particular when the measures 
difference among subsequent sizes is not so remarkable.  

However, for the above mentioned hypothesis to be tested, a lot of accurate data 
at the SKU level in all combinations (in this case, every  SKUs pair) are needed 
to draw statistically significant results.  

Thus, because of data availability and for computational reasons the implemented 
formulation considers each article independently. Moreover, the conditional 
probability contribution to the overall expected profit is expected to be negligible 
with respect to the independent probability term, thus it can be ignored in first 
approximation. 

 

4.2.1. Nonlinear optimization issues 
 

Il can be seen that the objective function, unlike the constraints’ expressions, is 

not linear neither polynomial. Moreover, the integrity constraints for the 
variables add further complexity to optimization of this model. Indeed, while the 
research on continuous optimization is in an advanced state, the literature on 
mixed-integer nonlinear optimization is still in progress: nowadays there exist 
few solvers handling non-polynomial problems and, generally speaking, they are 
not so efficient. That is because nonlinear optimization is intrinsically very 
difficult to solve.  

Indeed, in convex optimization problems, which include linear programming 
ones (LP), the places to look for the optimum are limited to the extreme points 
(corner points) of the feasible region polytope [Fig. ]. This optimum is the point 
with the best value of the objective function anywhere in the feasible region, thus 
it is called global optimum.   
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On the contrary, in nonlinear programs optima are not restricted to extreme 
points, they can be anywhere in the feasibility region. Moreover these optima are 
not necessarily unique and optimizing nonlinear objective functions do not assure 
to reach the global optimal solution: the solver can get stuck in a locally optimal 
solutions that have better objective function values than any other feasible 
solutions in their “vicinity", but do not coincide with the global optimal solution 
(as distinct from convex problems) [Fig. ].  

 

 

 

 

 

 

 

Fig. 2 Feasibility polytope and optimum point position with 
respect to the objective function direction. 

Fig. 3 Local vs global optima in a non-convex function 
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This difference among the two categories influences also the time efficiency of 
the optimization problem: in linear (more generally convex) problems it is “fast” 

to find the optimal solution or, alternatively, to prove the absence of a feasible 
solution, whilst it can take a lot of time to verify whether a nonlinear 
(nonconvex) problem has no solution of if a local optimum is also global. 

 

4.3. A MILP formulation for the problem 
 

For all the issues non-linear optimization poses, it is useful to try linearize the 
problem. The most common approach is the piecewise linearization7 of the non-
linear objective function, which encompasses different methods to do this 
conversion. However, in the case on hand the non-linear function is not even 
polynomial and it is quite complicated, combining powers, exponentials and 
factorials altogether, which makes it also difficult to be represented graphically, 
so the piecewise linearization  appears not to be the best strategy. 

A more straightforward approach is the exploitation of some characteristics of 
the specific problem and a priori knowledge to write a different objective 
function that leads to similar results.  
                                              
7 A piecewise linear approximation is a method of constructing a function g(x) that fits a 
nonconvex objective function f(x) by adding extra binary variables, continuous variables, and 
constraints to reformulate the original problem. The specific goal is to approximate a single 
valued function of one variable in terms of a sequence of linear segments. Optimization 
problems with piecewise linear costs arise in many application domains; for example, the 
transportation cost, inventory cost, and production cost in a supply chain network are often 
constructed as a sum of nonconvex piecewise linear functions due to economies of scale. (Lin, 
et al., 2013) 
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Specifically, one can use the information about the probability distributions of 
the SKUs sales and the knowledge about the positioning of each store inventory 
with respect to the HSL level and the expected sales 𝜆𝑠𝑖   for each SKU. Indeed, 
the objective function aims at reallocating units among stores such to reach a 
final inventory quantity that optimizes the revenues of each SKU (minus the cost 
of the batches transferred between stores), balancing the resources such to assure 
availability to the greatest number of stores and, at the same time, fostering the 
allocation to the more “promising” ones – the stores who are expected to sell 
more of a given SKU, thus contributing to higher expected revenues - while 
respecting the high service level requirement (when it is sensible) to minimize 
lost sales.  

But the probability distributions are known at the beginning of the reshuffling: 
sales follow a Poisson distribution with a parameter 𝜆𝑠𝑖 for each SKU, coinciding 
with the expected sales in the next selling period of the season. The shape of the 
Poisson distribution is well known in statistics; its density function shows a peak 
in correspondence of the lambda value, which represents both the mean and the 
median of the distribution [Fig.3].  

 

 

 

 

 

 

 

 

 

Fig. 4 Poisson probability density function with different lambdas 
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This implies that the marginal contribution of an additional unit to the expected 
revenues – given by the q-th quantity times the probability of selling q units 
times the relative price - increases as the stock approaches the lambda quantity 
and starts decreasing after the value  λ + 1. Consequently it can be more 
convenient, both in terms of availability and incremental expected gain, to move 
one unit to a store that has not reached the λ level, rather than allocating an 
additional unit to a store that already overcomes the λ level in its SKU inventory, 
and thus it is building safety stock. This is also intuitively sensible: a store that 
already holds λ or more units in its stock for a certain SKU on average will be 

able to satisfy its expected demand, and any unit added will incur an higher 
probability to remain unsold; on the contrary, a store holding less than λ units for 

a SKU will not likely able to satisfy its expected demand and thus has high 
chances to incur in lost sales and customer dissatisfaction. 

Combining  the information about the likelihood distribution and the initial 
inventory available, one can recognize that each store-SKU combination can be 
in one out of three different situations with respect to the initial stock, each of 
which requires a different intervention. [Fig. 4] 

 

 

 

 

 

 

 

 Fig. 5 Initial inventory states with respect to the Poisson 
distribution and its parameters 
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1. Overstock: as stated in the previous paragraphs this situation occurs 
when the initial inventory of the SKU in the store overcomes the high 
service level target. In this case the objective is to move all the 
exceeding units to other stores ending with the HSL quantity in the 
sender store. As it is apparent from the graph, the probability to sell a 
high service level quantity is still low – and thus the chances to incur 
in remaindered stock is high - but it satisfies the customers’ 

satisfaction constraint minimizing the expected lost sales. 

2. Critical understock ( UUsi =1): the stock-on-hand for the SKU is 
insufficient for the store and would not be able to satisfy the expected 
demand of the upcoming period. Thus, the objective is to receive 
some units from other stores to fix the stock-out and, if possible, reach 
at least a quantity 𝜆𝑠𝑖 of units in the final stock to cover the average 
future demand and maximize the tradeoff  between probable lost sales 
and .remaindered stock. 

3. Non-critical understock (UUsi=0): understock with initial inventory 
higher than the expected sales 𝜆𝑠𝑖  (UUsi =0). The stock-on-hand for 
the SKU is enough to cover future expected demand but still too low 
to meet the high service level requirement. In a system with 
unconstrained items availability the objective would be to move some 
units in these stores to fill in the gap between the starting inventory 
and the high service level quantity (restoring the safety stock). But in 
case of limited total resources it would be more reasonable to 
discourage the allocation in non-critical locations in favor of the very 
understock ones, spreading the available floating units to the highest 
number of critically understock stores which, otherwise, would have a 
very high probability of incurring lost sales. Indeed, handling this last 
situation differently the system could end up with some non-critical 
understocks that have reached their HSL quantity and thus have high 
probability of remaining with unsold merchandise at the end of the 
season, and some critical understock locations that keep on being too 
low in inventory and thus face dramatically high chances to lose sales. 

Putting all the above together the model can be rewritten as follows: 
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𝑀𝑎𝑥(∑∑(𝑚𝑠𝑖(1 − 𝑈𝑠𝑖)∑𝑥𝑠𝑖𝑗

𝑁

𝑗=1

− 𝛼𝑚𝑠𝑖𝑈𝑠𝑖(1 − 2𝑈𝑈𝑠𝑖) [∑𝑥𝑠𝑗𝑖

𝑁

𝑗=1

 ] )

𝑆

𝑠=1

 

𝑁

𝑖=1

− ∑∑∑𝐶𝑖𝑗𝑡𝐶𝑇𝑖𝑗𝑡

𝑇

𝑡

𝑁

𝑗=1

𝑁

𝑖=1

) 

 
(3.11) 

Subject to   

 ∑𝑥𝑖𝑗𝑠 ≤ (𝑄𝑖𝑠
0 − 𝐻𝑆𝐿𝑖𝑠)

𝑁

𝑗

(1 − 𝑈𝑠𝑖)   ∀𝑖 = 1. . 𝑁, ∀ 𝑠 = 1. . 𝑆 
 

(3.2) 

 ∑𝑥𝑖𝑗𝑠 ≤ (𝐻𝑆𝐿𝑗𝑠 − 𝑄𝑗𝑠
0 )

𝑁

𝑖

(𝑈𝑠𝑗)   ∀𝑗 = 1. . 𝑁, 𝑠 = 1. . 𝑆 
 

(3.3) 

 𝑥𝑖𝑖𝑠 = 0  ∀𝑖 = 1. . 𝑁, ∀ 𝑠 = 1. . 𝑆 (3.4) 

 𝐶𝑖𝑖𝑡 = 0  ∀𝑖 = 1. . 𝑁, ∀ 𝑡 = 1. . 𝑇 (3.5) 

 ∑𝐶𝑖𝑗𝑡 ≤ 1  ∀𝑖 = 1. . 𝑁, 𝑗 = 1. . 𝑁 

𝑇

𝑡

  (3.6) 

 ∑𝐶𝑖𝑗𝑡 ≤∑𝑥𝑖𝑗𝑠 

𝑆

𝑠

  ∀𝑖 = 1. . 𝑁, 𝑗 = 1. . 𝑁  

𝑇

𝑡

 (3.7) 

 ∑𝑤𝑠𝑥𝑖𝑗𝑠 <= ∑𝐶𝑖𝑗𝑡

𝑇

𝑡

𝑏𝑡 

𝑆

𝑠

∀𝑖 = 1. . 𝑁, 𝑗 = 1. . 𝑁 (3.8) 

 𝑥𝑖𝑗𝑠  ∈  ℕ
+∀𝑖 = 1. . 𝑁, ∀ 𝑗 = 1. . 𝑁, ∀ 𝑠 = 1. . 𝑆 (3.9) 

 𝐶𝑡𝑖𝑗  ∈ [0,1]   ∀𝑖 = 1. . 𝑁, ∀ 𝑗 = 1. . 𝑁, ∀ 𝑡 = 1. . 𝑇 (3.10) 

In this mixed-integer programming (MIP) formulation, notation for variables and 
parameters remains the same as the non-linear model, just like the constraints 
expressions.  

The very difference is the objective function definition which is now linear and 
follows the logics expressed above. The first term represents the total units 
moved from overstock stores, that is the first goal to be maximized.  

The second term is the quantity moved to understock stores and can assume 
different signs depending on the value of the parameter 𝑈𝑈𝑠𝑖. Indeed, in case a 
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store is very understock for a SKU, the relative parameter 𝑈𝑈𝑠𝑖 is equal to 1 and 
thus the term assumes a positive sign; consequently, the quantity moved to the 
understock will be maximized. On the contrary, if a store is not heavily 
understock, i.e. 𝑈𝑈𝑠𝑖 equals zero, it is not necessary to move additional units in 
stock hindering their allocation in more needing locations, so the transfer of units 
is not avoided but penalized through a negative sign before the quantity received.  

Finally the last expression takes into account the movement costs as in the 
previous formulation.  

As it is evident, there is no term in the objective function that accounts for the 
change in selling probabilities, and thus expected revenues, of each allocation 
decision. Thus, since the linear model is not able to discriminate if a transfer is 
worthy or not  based on the difference in expected revenues and cost in the two 
scenarios – the current one and the eventual allocation-, it is reasonable to force 
the model to allocate all the units that can be moved instead of letting it choosing 
how many total units to transfer. Thus it is useful to add a constraint that fixes the 
total number of units moved in the problem, E: 

 
∑∑∑𝑥𝑖𝑗𝑠 = 𝐸 

𝑆

𝑠=1

𝑁

𝑗=1

𝑁

𝑖=1

 (3.12) 

The number E of total units exchanged obviously takes into account the total 
units offered by overstock stores  and the total units receivable by understock 
stores for each SKU. The constraint is written in an aggregate way for the whole 
problem without specifying the units to be transferred for each SKU; indeed, this 
would be redundant due to the presence of constraints (3.2) and (3.3) that already 
limit the units transferrable for each code.  

The addition of constraint (3.12) de facto makes the first term of (3.11) redundant 
because the total units to be moved from overstocks are decided a priori. As a 
consequence the related term is constant and could be removed from the 
objective function. However, it was decided to formally keep it because it could 
turn to be useful in some cases to discriminate among the overstocks to be 
selected as sources of the transfers, as it will be explained in next chapters. 
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In any case, it is clear that the linear objective function value is no more meant as 
the expected profit generated by the reshuffling operation. Thus some 
coefficients have to be added to partly compensate the lack of information about 
the expected monetary gain and to make the benefits’ terms and the costs’ one 
comparable.  

To this aim both the two first sums are multiplied by a parameter mis which has a 
double function. First of all it is useful to scale up the terms with respect to the 
transportation costs; otherwise the solver could decide not to move units between 
stores because the mathematical balance of benefits and costs would be 
unfavourable, even if in reality the marginal units moved would bring an increase 
in expected revenues exceeding the required costs. Indeed, this could happen 
because, without the scale correction, every unit moved will increase the 
objective function value by 2 (1 unit moved from an overstock plus 1 unit 
transferred to an understock) at a unit transportation cost which can be higher 
than 2$, especially for small batches, leading to a negative balance. 

The second purpose of the mis coefficient is to differentiate the SKUs, weighting 
more the more profitable ones. Indeed, while in the raw model it would be the 
same to move one SKU or another, in reality it makes a great difference on the 
overall profit to transfer a high priced SKU with respect to a low priced one in 
terms of increase in expected profit.  

For these reasons, even though it is not the unique way for calibration, it seems 
sound to set mis equal to the price 𝑝𝑠𝑖 or to the margin of the SKU s in the store i.  

Furthermore, setting the weights of the two first sums equal means to totally 
penalize and practically avoid the transfer to non-critical understock locations, 
since moving to one of these destination would completely cancel the benefits of 
taking away stock from one of the overstocks locations. As it was mentioned 
before, this is judicious when one deals with a very limited resources situation.  

However, in practice, the apparel firm can face more or less critical 
circumstances that can justify the relaxation of this penalization allowing also the 
allocation in non-critical understock stores. For this motivation the contingent 
coefficient α has been introduced: when α equals 1 or a higher threshold the 
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penalty of moving to low priority understocks is maximum; on the contrary as α 

diminishes the disincentive for the allocation gets smaller and smaller. 

 

4.4. Test Results 
 

In this paragraph the results of experiments conducted to test the performances of 
the MILP model are presented.  The instances of different dimensions have been 
built in R starting from real data provided by O.R.S, which have been used to 
compute the missing input parameters. Then the model has been coded in mosel 
language and solved by using the solver Xpress IVE 1.24.22., on an AsusTek PC 
with a Dual Core 2.16 GHz processor and 3 GB RAM. 

The first trials have been done to verify overall if the solution proposed by the 
model effectively improves the actual situation in terms of expected profits. Such 
solution depends on the value of the parameter alfa in the objective function. 
Thus the  verification was done using different values for this constant, such to 
determine how this number influences the solution of the model: five values, 
from very high penalty to almost no penalty, were chosen to cover a wide range 
of possibilities. Each variant of the model has been run on 20 instances, varying 
the number of stores (N) and keeping the number of SKUs (S) constant in some 
cases, and viceversa in others. The results of this preliminary analysis are 
reported in the table [tab.]. In the table, the generic instance named NnSk 
contains n stores and k SKUs. 



45 
 

 

Table 1 Running times for instances with different sizes, stores and SKUs number 

 
N S # variables Time* 

N3S5 3 5 1413 0 

N3S10 3 10 1503 0 

N4S10 4 10 2672 0 

N5s10 5 10 4175 0 
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N10S10 10 10 15700 0,1 

N20S10 20 10 62800 0,3 

N40S10 40 10 251200 2,3 

N50s10 50 10 392500 2,9 

N70S10 70 10 769300 6,6 

N90S10 90 10 1271700 9,3 

N108S10 108 10 1831248 17,1 

N108S5 108 5 1772928 4,5 

N108s15 108 15 1889568 7,9 

N108S20 108 20 1947888 11,7 

N108S40 108 40 2181168 19,6 

N108S50 108 50 2297808 27,9 

N108S70 108 70 2531088 52,8 

N108S64 108 64 2461104 38,2 

N108S75 108 75 2589408 49,7 

N10S15 10 15 16200 0,1 

N10S30 10 30 17700 0,1 

N10S50 10 50 19700 0,2 

N10S100 10 100 24700 0,2 

N10S200 10 200 34700 1,1 

N10S250 10 250 39700 2,5 

N10S343 10 343 49000 2,6 

N3S512 3 512 5931 0,1 

N4S512 4 512 10544 0,1 

N10S512 10 512 65900 3,9 
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Chapter 5 

5. Heuristic approaches 
 

The previous chapter has presented the exact model and a MILP formulation for 
the resolution of the problem through exact techniques through the Xpress solver. 
The chapter also highlighted the limitations of this approaches, which can be 
summarized in: 

 the approximated objective function of the MILP model, who is not 
able to capture the information about the selling probabilities and thus 
optimize the expected revenues. In other terms, the direction of 
optimization of the objective function of the MILP model does not 
perfectly match the one of the original model, except for the 
transportation costs term. 

 the fact that the model present a numerous set of variables which 
limits the dimensions of the instances that can be effectively solved to 
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the optimum in a reasonable time by a linear optimizer, so it is not 
feasible to run the entire problem at a time.  

This considerations encourage to find a way to reduce the dimension of the 
problem and/or decompose it in smaller sub-problems that differ for some 
characteristics which can be exploited to improve the allocation decision of the 
solver. On the other hand, they suggest to consider fester ways of tackling the 
problem by means of heuristic algorithms and compare the results of the different 
approaches. 

 

5.1. Dimensions and Decomposition of the problem 
 

In chapter 3, the case was presented to be very big and not entirely manageable 
with exact solution methodologies. In the performed tests, it was not possible to 
reach a solution through the optimization of the MILP model for instances 
encompassing more than 75 SKUs over all the stores or more than 10 stores over 
all 512 SKUs, keeping the number of slots tariffs equals to 147.  

This is justified by the fact that this MILP formulation generates a lot of 
variables when the number of stores and/or SKUs in the instance increases. With 
the number of variables also the number of lines in the constraints matrix 
increases since it is strictly linked to the number of  variables due to (3.9) and 
(3.10): the dimension of the whole problem is in the order of O(N2∙T) or  

O(N2∙S), depending on whether the SKUs number S is less than T, i.e. the 
number of slots theoretically applicable for each transfer (if one considers that 
there are T slots from 1 to T), with N the total number of stores.  

These  considerations are valid for the more generic case in which the analyst 
does not know the data in details, i.e. she is not able to predict in any way which 
tariff slots are not going to be used or to have a finer view of the starting situation 
of each SKU in the system. However, when the numbers are known and easily 
manageable it is reasonable to exploit some characteristics of the actual data to 
reduce the dimension of the entire problem. 
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There are three possible reshaping directions: 

 Reducing the number of SKUs 

 Reducing the number of stores 

 Reducing the number of slots of each tariff 

 

5.1.1. Stores set 
 

Reducing the number of stores implies inevitably reducing the SKUs set to the 
codes that can be exchanged between the stores of the predefined subset, thus 
excluding all the other items. Therefore, if all the relevant SKUs to be reshuffled 
have to be included, no store can be excluded from the stores set of the whole 
problem formulation. Indeed, the actual store set has already been filtered during 
the instance construction phase, reducing the total number of locations from 116 
– the total Retail stores in the raw data set - to 108 relevant Retail stores. 

 

5.1.2. SKUs set 
 

For what concerns the SKUs set, further analysis can be done to remove some 
SKUs from the problem, based on the actual situation of the single size at the 
moment of the reshuffling. For instance, the data used until now included all the 
SKUs which are overstock or understock for at least two stores, without checking 
if they could be actually exchanged some way, i.e. if there is at least one 
overstock store and one understock store in the system for such SKU. Adding  
this filter to the dataset, it has been possible to reduce the overall SKUs set to 390 
codes.  

Moreover, further analysis found that among this new SKUs set there are some 
items whose allocation is obvious, which means that there is exactly one 



50 
 

understock store and one overstock one in the system for that size. In the case on 
hand, there are only four items belonging to this category; evidently, this fact 
only marginally impacts the dimension of the problem since the SKUs number is 
reduced just by 1%, however it is relevant because it strongly influences the 
allocation of the other items. Indeed, the presence of stores pairs which have to 
incur in a positive transportation cost regardless of the other allocation decisions 
modify the marginal transportation costs for moving additional units between 
these locations. As a matter of fact, in a model starting from scratch the 
incremental transportation costs for moving one unit from I to j in the first 
instance– for a SKU with weight lower that the first slot bound, which is the case 
for all SKUs – equals 8,3 dollars for each pair (i,j); on the contrary, if some pairs 
(i*,j*) already bear a transfer cost of 8,3 $ due to the first obvious allocation, the 
incremental cost of transferring one unit between these stores will be zero or 
slightly larger due to the cost structure, thus making this transfer choice preferred 
to the others in first approximation. 

 

5.1.3. Problem decomposition 
 

The remaining 386 SKUs can be divided into two sub-groups based on the units 
availability in the system: the ones for which the whole system can be considered 
understock and the ones for which the units available in the system are enough to 
satisfy the requests of the understock stores. In other words, for the first group of 
SKUs the total number of units that can be moved from the overstock stores are 
less than the total units needed by the understock stores to reach their target 
inventory level, so some stores will remain understock also after the reshuffling 
of units. In the second case, instead, the overstock units that can be re-allocated 
are enough to cover the understock stores’ requests and fulfill the high service 

level target in all these stores.  

This distinction is useful because the two sub-problems can be handled in 
slightly different ways tailoring the MILP model with small adjustments to 
enhance the allocation decisions. Indeed, for the first SKUs set it is known that 
all the overstock stores will get rid of their excess units, so the first term of (3.11) 
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is redundant, while the second one remains important since, first of all, the 
allocation in non-critical understock stores should be discouraged due to the 
scarcity of resources in the system and, secondly, in theory the critical 
understock destinations could be weighted in some way to take into account their 
different selling probabilities and initial inventory situation.   

On the contrary, in the second problem it is known that all the understocks will 
receive the units needed to reach the High Service Level quantity so there is no 
need to penalize the allocation to non-critical understock stores – i.e. the second 
term of (3.11) is redundant -  while not all the overstock locations will send all 
their excessing units. Therefore for this sub-problem the first term of (3.11) could 
be modified introducing weights to discriminate among the possible origin stores 
and prefer the more convenient ones. For instance, it is reasonably more 
profitable to move units from stores that, after the transfer, would remain with a 
positive final inventory (HSL) rather than from overstocks that have a HSL equal 
to zero – because the expected demand is very low – and thus would have a 
negative change in expected profit after the complete reallocation of its 
overstocked units. This adjustment to the MILP objective function has been 
proven to be successful by the performed tests, whose results are reported in 
Chapter 6 where it is also explained how the weights have been computed.  

 

5.1.4. Tariff slots number 
 

As far as the cost variables are concerned, it is necessary to understand if all the 
slots t can be actually used in the solution. To answer this question one can 
consider the stores pair which, in principle, can exchange the heaviest lot based 
on the starting situation of the relative SKUs; if these stores effectively exchange 
such quantity, the transportation cost would be determined by a certain tariff slot 
t*, which is the minimum t such that the relative weight bound bt can contain the 
lot weight which, as said, is the maximum possible weight transferred between 
two stores in the whole problem . Therefore t* can be considered as the highest 
possible slot applicable, since all the other stores pairs will exchange a weight 
equal or lower than bt*, thus employing at maximum the tariff slot t*.  
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Talking about the actual data on hand, such t* equals 70, which means to cut 
down the slots number by roughly 52 %. This remains a high number for the T 
parameter, however it can be further reduced for the single sub-instances, as it 
strongly depends on the SKUs and stores involved in each sub-problem. 

Another way to simplify the modelling of the transportation costs can be the 
linearization of the seven costs functions since, as it is apparent in fig. ,in first 
approximation  they resemble seven upward sloping lines with different slope 
coefficients. This approach would permit to get rid of the variables  Cijt  and write 
the costs part of the objective function as a linear 0-intercept function of the lot 
weight, with different proportionality coefficients for the different destination 
zones.  

This approximation works quite well for large weight lots, but it strongly distorts 
the results when lower weighted lots are employed, which is the most frequent 
case. Indeed, the approach was tried out with very scarce results in terms of 
quality of the solution. The issue lies in the presence of a base cost of 8,3 $ for 
the first slots, that should be modeled differently from a linear function. 
Theoretically, one should be able to design a model that takes into account if a 
lot moved between two stores is “large” or not relatively to the zone tariff: if the 

lot weight is “small” the transportation cost should equal the base cost plus a 

correction factor to account for the extra costs of carrying a weight over the bt0 – 
i.e. the maximum weight bound to apply the base slot cost-; if the lot weight is 
“large”, instead, the linear approximation is acceptable. Implementing this kind 

of reasoning would likely mean introducing new variables to classify the transfer 
lot from store i to destination j , thus reducing the benefits of the linearization 
itself – i.e. eliminating the transportation cost variables and speeding up the 
linear programming model resolution. 

For this reason and for the fact that the model already approximate the exact 
problem formulation, it has been decided to opt for the first strategy, i.e. the 
evaluation of the maximum number of tariffs through exact computation of t*.  

As a matter of fact, the MILP model is itself an approximation of the real 
problem, because it misses the information about the expected revenues of the 
various alternatives. However, it is perfectly able to determine in each moment 
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the transfer with minimum cost. Therefore, the linear approximation of costs 
would further weaken the ability of the model to make decisions that converge 
toward the optimum of the original problem. Moreover, the cost structure - made 
of seven stepwise functions with constant weight pace but highly irregular 
incremental costs, in addition to a starting tariff which is constant only for the 
very first slots -  is one of the characteristics that make this problem “hard” to 

solve and neglecting this complexity would likely bring to a misrepresentation of 
it.  

 

5.2. Greedy Algorithm for the problem 
 

As highlighted in the previous section, the problem is too big and the number of 
possible alternatives so high that it is unthinkable to apply whatever algorithm 
that enumerates and evaluates all possible solutions to reach the optimum, 
because it would take practically an infinite time to run. Indeed, for each origin 
store it is necessary not only to establish to which destination the surplus of items  
should be moved, but also how many units of each SKU to transfer to each 
destination store, without forgetting the impact of each of such choices on the 
transportation costs for every origin- destination pair. Each variations of these 
possibilities creates a new alternative that should be evaluated in order to obtain a 
solution proved optimal, generating, with the increase of the stores/SKUs 
number, a so called combinatorial explosion. 

In these cases the strategy that is usually implemented is a constructive heuristic, 
which normally allows to reach a good solution in reasonable times, but that is 
not able to guarantee the optimality of the solution neither to give an estimate of 
the distance of such solution from the optimum. 

 

5.2.1. Greedy logic 
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A greedy algorithm builds the solution taking one choice at a time,  maximizing 
at every moment the small portion of problem it can envision.  

In the greedy logic for the present case, at each time the algorithm considers a 
single SKU and the related sets of origin and destination stores and allocates one 
unit at a time selecting the alternative which presents a higher expected profit at 
the moment of the decision. Clearly, at each iteration, the transfer lots weights 
are updated as well, modifying the costs increments of the future alternatives that 
will be evaluated.  

Since the SKUs are processed one after the other and the lots’ weights are 
updated at every decision made, the order according to which the SKUs are 
processed is not irrelevant since the choices made upstream drive the allocation 
choices downstream, due to the modified incremental costs, and thus affect the 
overall solution. Therefore, it has been chosen to give priority to the most valued 
SKUs, i.e. the products with the highest price8 because they will likely contribute 
more to the final overall expected profit and thus optimizing their allocation is 
most important. As a consequence, the SKUs have been sorted by decreasing 
price and sequenced following such order. As the tables results in Chapter 6 
show, this choice emerged to be beneficial with respect to a random sequencing 
both in the application of the greedy and in the generation of the initial solution 
for the matheuristics, that will be explained in the relative paragraph in the next 
section. In any case, the algorithm starts from the results of the pre-allocated 
“obvious” SKUs discussed in the previous section. 

In paragraph 5.1. the whole problem was divided into two sub-problems with 
different features. Therefore, it is reasonable to apply a slightly different greedy 
algorithm to the two problems to exploit each case’s features and enhance the 

results, both in terms of expected profit and running time. 

As far as the first problem is concerned, i.e. the one including the SKUs which 
are overall understock in the system, it is known that all the overstock units in the 
relative stores will be reallocated to understocked destinations, which in turn will 

                                              
8 In practice, it would be better to use the contribution margin but , above from the numbers, the 
logic remains unchanged. 
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not be all served fully. Thus, the question is to identify the destinations that are 
more worthy to be chosen and the number of units allocated to each of them.  

At every step, the decision where to move a unit is taken computing, for each 
destination, the expected increase in profit (EP) after the allocation of one 
additional unit to the store stock. Such expected change in profit equals the 
difference among the expected revenues - in the scenario in which the unit is 
allocated to the store - and the present expected revenues of the SKU in the 
destination, minus the difference in transportation costs in the two scenarios. 
Hence, for each SKU, for each origin store and for each unit to be moved from it, 
all the possible destinations are ranked according to the expected profit and the 
unit is allocated to the most promising one. In synthesis, the procedure for the 
first problem can be stated in the following pseudo-code: 

1. FOR s in SKUs set of the first problem 

a) FOR i in origin stores for the SKU 

 WHILE there are overstock units in the origin store 

o FOR j in destination stores that are still understock for the 
SKU 

- Compute the EP= (expected revenues of the actual 
quantity + 1) - (expected revenues of the actual quantity) 
– (cost of moving one additional unit from i to j – 
present transportation cost from i to j) 

o j* = destination with max EP 

o Allocate one unit to the most promising destination j* 

o Update the inventory state for store j*  

o Update the lot weight between the origin store i and the 
chosen destination j* 
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o Update the inventory state for store i and thus the 
remaining overstocked units 

For the second problem, the logic is equivalent but the starting point are the 
understock stores, because it is known that they all will receive the units needed 
and thus will be destination of some transfer. The question is to understand 
which origin store will serve each understock store, which quantity will be 
transferred and, eventually, which overstock stores will remain overstocked and 
of what amount. The expected profit (EP) for each origin to be selected is 
computed in similar way as before and the store with higher benefits will be 
chosen to transfer the unit. Thus the pseudo-code reported before can be 
modified as follows: 

1. FOR s in SKUs set of the second problem 

a) FOR j in destination stores for the SKU 

 WHILE there are understock stores 

o FOR i in origin stores that are still overstock for the SKU 

- Compute the EP= (expected revenues of the actual 
quantity - 1) - (expected revenues of the actual quantity) 
– (cost of moving one additional unit from i to j – 
present transportation cost from i to j) 

o i* = origin with max EP 

o Allocate one unit from the most promising origin i* 

o Update the inventory state for store i* and store j 

o Update the lot weight between the origin store i* and the 
destination j 

 

5.2.2. Computational complexity 
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The computational complexity of a generic algorithm can be computed as the 
number of iterations made times the complexity of each single iteration, i.e. the 
number of elementary operations that are executed at each step.  

As said, the algorithm starts acting on a set of SKUs, thus the complexity is 
firstly dependent on the number of SKUs. Secondly, the procedure run until all 
the units that can be transferred are actually allocated, so the second determining 
factor is the number of exchangeable units  in the problem. Obviously, also the 
number of stores in the origin and destination sets matter to determine the 
computational complexity of the algorithm. 

Basically, the number of iterations coincides with the number of SKUs. Then, for 
each origin/destination, for each unit to be allocated from/to the each 
origin/destination, an expected profit has to be computed for each 
destination/origin store. The computation of this number takes constant time. 
Subsequently, the maximum EP should be found in the destination/origin set; the 
sorting algorithm takes O(nlogn) operations, where n coincides with the number 
of destinations per SKU (D) in one problem or the number of origins per SKU 
(O) in the other. All the he next updating operations in the cycle take constant 
time. 

Therefore, the overall running time of the greedy algorithm – for instance, for the 
first problem – is estimated as S*O*D*u*DlogD = S*O*u*D2*logD , where S is 
the number of SKUs in the problem, O the number of origin stores for SKU (on 
average), D the number of destination stores for SKU (on average) and u the 
number of moveable units for SKU (on average). Hence, in the worst case the 
complexity is O(S∙N

3
∙u∙logN) where S and N are respectively the total number of 

SKUs and stores in the whole problem.  

Actually, in practice, the inner loop of the algorithm, that allocates one unit to a 
destination, does not run over all the destination set every time since, as soon as 
the units are allocated allocated, the status of each store is updated and then the 
stores that are fully replenished are progressively removed from the list of 
destinations. Vice versa, in the second problem the overstock stores that have 
moved all their excessing units are gradually excluded from the origins list of the 
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loop. This process, together with the fact that it is unlikely that all the SKUs are 
present in the majority of stores - and thus the total store number in the 
destination/origin set is much lower than the maximum number N-, in practice 
reduces the running time with respect to the worst case of complexity 
O(S∙N

3
∙u∙logN).  

Indeed, from the data on hand it has been calculated that the average number of 
overstock stores per SKU is 4,2 for the first SKUs set and 24,88 for the second 
one, with a maximum of, respectively, 24 and 91 stores. As far as the number of 
understock stores are concerned, the average number per SKU is 17,65 for the 
first sub-problem and 5,09 for the second with a maximum of, respectively, 55 
and 27 stores.  

These numbers justify the choice to cycle on the overstock stores list in the first 
problem and on the understock ones on the second, to contain the overall number 
of operations made by the procedure. 

The greedy  algorithms presented in this section are a good method to obtain a 
solution to the problem in short times. Like all the constructive procedures, this 
heuristics does not give any information about the goodness of the results as 
well. However, given the dimension and the difficulty of the problem, it is 
reasonable to think that such solution is not the best possible and thus it is 
possible to obtain better results employing more sophisticated techniques . 

 

5.3. Matheuristic approaches 
 

As anticipated in Chapter 3, the resolution techniques for the combinatorial 
optimization problems are basically divided into two big categories: the exact 
ones, which can find the best possible solution and demonstrate its optimality but 
with an higher computational complexity, and the heuristics, which are able to 
get a good solution within a  short time limit. 

Recently, a new family of algorithms based on the hybridization of the two 
approaches is rapidly rising among the communities of researchers.  These are 
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the so called “matheuristics”, which will be first described in the next 

introduction paragraph and then used to deal with the present problem. 

 

5.3.1. Introduction to Matheuristics 
 

Typically combinatorial optimization problems can be modelled as  Mixed 
Integer Programming (MIP) problems and the exact resolution methods are 
therefore applied to the relative formulations of the MIP models. 

However, exact methods show a certain number of disadvantages. First of all, for 
several problems the dimension of the instances that can be actually solved is 
limited: indeed, the variance of the CPU time is normally very high even when 
applied to different instances with the same dimension for a certain problem, and 
often it grows extremely as the instances’ dimension increases. Hence If the 

optimal solution cannot be computed in an efficient way in practice, often the 
efficiency is preferred to the guarantee of optimality. In other terms, the certainty 
of finding an optimal solution is overlooked in favor of a good solution found 
through heuristic methods within reasonable times. With regard to this,  
neighborhood search based methods are likely the most effective class; indeed, 
when integrated in higher level mechanisms like in the metaheuristics, these 
approaches have been proven to be definitely effective to reach solutions close to 
the optimal one in a large number of difficult problems.  However, there no exist 
modelling frameworks which are able to handle definitions and representations 
of heuristics problems, i.e. there are no general-purpose metaheuristics solvers 
available on the market.  

Based on what stated above, it is not surprising that traditionally exact methods 
and heuristic ones have been considered strongly different and separated, but it is 
likely not completely true. Metaheuristic algorithms and MIP both have their  
pros and cons, but they soul dot be considered incompatibles. Actually, due to 
the complementarities of their features it seems more reasonable to combine 
these two techniques in even more effective algorithms, able to exploit the 
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advantages of both approaches, trying to avoid their disadvantages as much as 
possible. 

The hybridization of different techniques is already common and consolidated 
practice in the field of metaheuristics, but in the last years the same process has 
been applied also to exact methods and methaheuristics, giving birth to a new 
class of resolution techniques called “Matheuristics”.  Matheuristics are generally 
based on the idea of taking advantage of the strong points of both approaches, but 
there does not exist an unique classification or a consolidated methology in such 
field to give a more precise definition. A distinctive feature common to all the 
matheruristics is the use of a mathematical model, or some tool derived from it, 
in some way in a heuristic type structure, that is why these techniques are often 
called “model-based metaheuristics”; but the structures used or the degree to 
which the model tools are employed can be totally different from an approach to 
another. For instance, there are cases in which the metaheuristics are used 
directly within the linear programming procedures that use search trees, where 
efficient metaheuristics are often used to get good solutions that permit to prune 
the possibilities tree faster. Other cases use the opposite process in which exact 
methodologies are used within the metaheuristic algorithm for the resolution of 
sub-problems or for an optimal exploration of neighborhoods. 

So, most of the cases can be grouped into two big categories: 

1. Matheuristics in which heuristics methods intervene within an exact 
method. This case requires that the optimization algorithms can be 
modified integrating heuristics strategies able to speed them up and 
allow them to handle bigger instances. 

2. Matheuristics in which exact methods are used within an heuristic 
algorithm. This second case is simpler to be realized since the base 
components, i.e. the (meta)heuristic framework and the mathematical 
model, have already been implemented. 

The matheuristic algorithm that is being discussed in the next paragraphs used 
the last approach. 
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5.3.2. A Matheuristic for the reactive allocation problem 
 

In chapter 4 a Mixed-Integer linear programming model for the present problem 
has been presented to solve the allocation problem, in place of the non-linear 
original model. This MILP model however, given the complexity of the problem 
and the resulting impossibility to produce a more efficient formulation (for 
instance, eliminating the binary variables to model the transportation costs) , is 
solvable only for instances of limited size. Actually, this limitation exists only in 
the case one wants to reach the best solution. Indeed, if the optimality is ignored, 
for instance setting a time limit, the solvers can handle problem of larger 
dimensions and normally they are able to get feasible solution of good quality. In 
the extreme case, it is possible to get at least an information on the lower bound 
of the problem, solving the continuous relaxation9 of the MILP problem, which 
can be done by the linear optimizers (LP solver) in a small amount of time even 
for big sized problems. 

However, solving the linear relaxation of the present MILP model is quite 
senseless: allowing both variables, xijs and Cijt to be real would induce the model 
to set most of the x variables to the maximum integer value they can get to 
maximize the transferred units in the objective function, while the values of the 
Cs, which in principle should drive the decision on which transfer to activate at 
what cost, would be arbitrary set to the lowest real number possible to minimize 
costs. So, the two kind of variables would lose their interconnection, which is the 
real core of the problem, and thus the resulting solution would be comparable to 
a random generated one which respect all the constraints. A more sensible 
approach to the relaxation could be the partial relaxation, i.e. the relaxation of 
                                              
9 A relaxation of a problem is a version of the problem with some requirements or constraints 
removed (“relaxed”). This approach is used in branch-and-bound algorithms, for instance, 
relaxing the constraints on the integer nature of variables (continuous relaxation); the solution 
found by these methods is not necessarily a solution of the original problem, but a solution of 
the original problem is a solution to the relaxation. It follows that in the case of a minimization 
problem, the value of the optimal solution to the relaxation is a lower bound on the optimal 
solution to the original problem, even if this bound is a not-necessarily-tight lower bound. 
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only the variables x, to preserve the information  and consequent decision on the 
transportation costs; however some trials have shown that, although this last 
approach frequently gets to the optimal solution (i.e. the lower bound is tight 
with respect to the optimum), it is not convenient in terms of time, since the 
partial relaxed version of the model takes the same time or even more  with 
respect to the original version, in which the x variables can assume limited 
integer values because of the constraints (3.3) and (3.2)  instead of infinite real 
values in the same range. 

Initial Solution 

In the previous paragraph it has been noted that the continuous relaxation 
technique is not useful in this case to get a good initial solution with considerable 
savings in running time. 

On the contrary the first method, i.e. setting a time limit in the solver, is fully 
applicable to get a decent initial solution to start with and its results are reported 
in the results table at the end of the Chapter.  

However, a different method to generate the initial solution has been chosen, 
simply because it has shown to produce better results than time-limited 
optimization with the same total running. In particular, the whole problem has 
been subdivided in the two sub-problems stated in paragraph 5.1; the SKUs of 
each sub-problem have been ordered by decreasing price as done in the greedy 
algorithm of 5.2.  

The initial solution has been built starting from the sub-problem in which 
overstocked units for the SKUs are scarce  in the system. The SKUs has been 
divided into smaller subsets containing between 5 and 25 SKUs per instance – 
according of the relative difficulty of each sub-problem, approximated with the 
total number of units to be moved, which works as a proxy for the allocation 
choices number – following the decreasing price order. For each SKUs subset the 
relevant store subset has been identified to be part of the instance and the 
maximum slot number t has been computed in order to contain the overall 
dimension of each instance. Indeed, each instance size should be small enough to 
be solved quickly, but as high as possible to enhance the allocation choices of the 
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solver,  overcoming the myopic ones of the greedy, which only considers one 
SKU at a time.  

Then, the solution is created in a constructive way:  starting from the highest 
priced SKUs set the first instance is solved taking into account the initial lots 
weights – the ones derived from the allocation of the “obvious” SKUs - and the 
resulting  new lots weights are saved; then the second instance inherits the 
starting lots weights from the first one, optimize the allocation based on this 
information and saves the lots solution to be inherited by the following instance 
and so on. Basically, each instance is linked to the previous one by the 
information about the lot weights that are already being transferred from an 
origin to a destination, which influences the  incremental costs of the stores pairs 
which already exchange units and thus the allocation decisions of the subsequent 
instances. This approach can be seen as an extension of the greedy logic reported 
in 5.2. with the difference that in this case more than one SKU is considered ad a 
time and  that the information about the probabilities/expected revenues 
variations is not present in the linear model.  

Such procedure is then extended to the second sub-problem, the one in which the 
units  in excess in the overstocked  stores are abundant with respect to the request 
of the understock stores, in the same way starting from the lots weights generated 
at the end of the first problem. For simplicity the following discussion will focus 
mainly on the first sub-problem, mentioning the second one when necessary. 

Heuristic Structure 

In the previous paragraph it is described how to get a good initial solution of the 
problem, however there is no guarantee of optimality for this current solution. It 
is likely that such solution can be improved perturbing it and re-optimizing 
selected subsets of variables. This means optimizing the problem fixing some 
variables to a value, for instance the one of the initial solution, and let the solver 
runs and explores the solution space to optimize the portion of the solution 
variables left “free”.  The resolution of this simplified model can bring to a 

solution which is better than the previous one. 

The matheuristic implemented here is based exactly on this procedure, iterated 
several times in a local search framework. The neighborhood is represented by 
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the non-fixed variables, while the exploration and evaluation of the goodness of 
each neighbor is done by the solver itself which, evaluating all the possibilities 
and returning the best one of the possible solutions, is basically acting like a best 
improvement type local search. 

The window of non-fixed variable should be large enough to allow a relevant 
search and escape the local optimum, but quite circumscribed such to avoid every 
simplified model to run for long time. In the extreme case that also the simplified 
MILP requires too much resolution time it is possible to set a time limit, hence 
turning the search strategy into a first improvement like local search. However 
the first approach, i.e. the limitation of the window dimension rather than the 
running time, has been preferred.  

The heuristic procedure can be summarized as follows: 

1. Initalization: 

a. Construction  of an initial solution sol (through the 
constructive approach explained in the initial solution 
paragraph) 

2. REPEAT 

a. Using the solution sol some variables of the MILP model of 
the problem are fixed 

b. The MILP model is solved by the solver obtaining a new 
solution sol_new. 

c. Since the objective function of the MILP does not coincide 
with the real objective function of the problem , through 
which the goodness of the solutions is actually evaluate, 
sol_new is not necessarily an improved solution. However, if 
this new solution is effectively an improved solution, the 
current best solution is updated setting sol =  sol_new. 

UNTIL all the predefined neighborhoods have been explored 
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Neighborhoods 

The procedure just outlined in the previous paragraph  is itself simple and easily 
to be implemented, but is yet necessary to define a critical point for its 
effectiveness: the strategy of selection of the variables to be fixed. Basically, 
these variables represent the neighborhood of the local search and thus have a 
strong influence on the algorithm results.   

As mentioned in the previous paragraph, since an exact method is employed, the 
neighborhood cannot be too large  otherwise the resolution duration would be 
again problematic. On the other side, it should contain as many feasible solutions  
differing from the starting one as possible, such that the algorithm can explore 
them, choose the best one and, this way, obtain an improvement.  

The chosen formulation contains a large number of integer and binary variables, 
part of which have to be fixed. Basically, the variables on which the strategy can 
theoretically operate belong to two groups: the integer variables xijs and the 
binary ones Cijt. As it was explained in the Chapter concerning the MILP model, 
the variables of the second group are logically linked to the ones of the first type 
through logical implication links. This means that, once the values of the 
variables xijs are determined, it is possible to derive the values of the variables Cijt 
by only using such logical constraints and the fact that , for each pair (i,j) of 
stores, the solver will always choose to “activate” the slot with the lower t to 

minimize transportation costs.  

At this point, it is reasonable to adopt a similar behavior in the construction of 
the neighborhood: the strategy of variables selection will only consider the xijs 
variables to be fixed, while the variables Cijt will be left free or fixed depending 
on the decisions made for the first type variables. 

Indeed, if one decides to leave some variables Cijt free in a complete random way, 
it is likely that these will refer to different constraints and thus the solver, in the 
attempt to modify their value, would probably obtain unfeasible solutions and 
thus would return a solution which is identical to the previous one. 

The strategy should aim at selecting variables which are someway related one to 
another, so that the software has maneuver margin to obtain solutions which 
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differ from the original one. The relation to allow an effective exploration of 
other possibilities can be basically defined along two dimensions: the stores set 
and the SKUs set. For instance, one can decide to free all the variables 
concerning a specific stores subset or a specific group of SKUs. Alternatively, it 
can be decided to contemporarily free some SKUs and some stores and re-
optimize the simplified problem.  However it is difficult to arbitrary define 
subsets of stores which are connected enough to create alternative feasible 
solutions to be explored in the neighborhood. For instance, once one choses two 
stores to be part of a subset, then she should consider, for each SKU that can 
theoretically be exchanged between the two stores, at least a third store that is 
exchanging such SKU with one of the two locations such to assure the presence 
of at least an alternative allocation of the relative units. Although it is a laborious 
process and it is difficult to contemporary keep the dimension of the window 
under control and to make the exploration as complete as possible. That is why it 
is preferable to define the neighborhoods as subsets of SKUs whose related 
variables are set free.   

Selection of the perturbation zone 

Once the neighborhood structure has been defined, it is necessary to decide 
which zone of the solution is more convenient to be unsettled, i.e. which regions 
of the solution space have a higher potential to be improved. Indeed, given an 
initial solution, there are regions able to generate improvements when unsettled 
and others that are too bounded by the constraints to actually produce further 
interesting solutions.  

One of the simplest ways to choose such areas is to randomize the choice, even if 
it means often looking over “useless” neighborhoods.  As far as the present case 

is concerned, the problem is so bounded and the interconnections among the 
stores-SKU pairs so complex that a random approach is likely to produce poor 
results. As a matter of fact, in the tests performed randomly no improving 
solution was found and thus these approach has been discarded in favor of a 
more effective one. 

A different method, which  has more chances to supply  improving 
neighborhoods, consists in selecting the SKUs to be set free starting from the 
ones that are present in the highest number of stores and/or have an unbalanced 
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number of overstock and understock stores, in particular when the number of 
source stores is much lower than the number of possible destinations. This choice 
is justified by the fact that for these SKUs the number of understock stores which 
are excluded from the allocation for scarcity of resources is potentially large. 
Therefore it is expected that a release of the related variables can bring to the 
identification of a better distributions of the units among the understocks, 
excluding less profitable destinations - both in terms of expected revenues and 
cost savings -  in the light of the transfers of all the other SKUs of the whole 
problem that, as usual, influence the marginal transportation cost for each origin - 
destination store pair. 

In practice, this reasoning has been implemented in two slightly different 
subsequent ways, essentially dividing the procedure in two phases which differs 
by the criterion of choice of the perturbation region. 

In the first phase, at each iteration the SKU which is present in the highest 
number of stores and that has an unbalanced number of overstock and understock 
stores – with more understocks than overstocks -  has been selected. Then, it has 
been checked if there were other SKUs which are sold in the same stores or in a 
subset of the them; the idea behind this last choice is to enlarge  the window of 
released variables to allow the solver to explore a wider portion of the solution 
space which is someway connected – in this case the SKUs share part of the 
stores set - and improve the solution, for instance pooling the transfers among 
store into bigger batches thus reducing costs. Afterwards, all the x variables 
relative to the just defined SKUs set have been left unestablished along with all 
the variables Cijt (for the reasons explained before), and the model have been 
optimized by the solver to get a new solution and go ahead with the heuristic 
procedure.  

Once the whole set of unbalanced SKUs have been examined, the definition of 
the region to be re-optimized has been slightly changed to explore further 
possibilities to improve the solution. During the first phase the neighborhoods, 
i.e. the relative released SKUs, that have produced an improvement with respect 
to the initial solution  have been saved in a list of improved_SKUs, because for 
these SKUs the initial allocation have shown to be not optimal and thus it is 
sensible to challenge it in different ways, also combining one with another in the 
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release. This is the incipit of the second phase which starts from the best solution 
of the previous stage and define the initial zone to be released as the first SKU of 
the  improved_SKUs list; if this perturbation results to be effective, the current 
released SKUs set (released_SKUs) is maintained and another SKU of the list is 
added to it, otherwise the last SKU added before the unsuccessful perturbation is 
removed and a new one is added from the improved_SKUs list. The logic for the 
determination of these new reshuffling zones is summarized below: 

Initialization: 

 The released_SKUs is set initially equal to the first SKU of the 
improved_SKUs list. i=1 (the index i represents  the number of the 
iteration and, consequently, the index of the last SKU added to 
released_SKUs  from the improved_SKUs list at that iteration) 

 The best current solution ,  best_sol, is set equal to the best solution 
found at the end of the previous phase 

REPEAT 

 If the solution found with the i-th perturbation, soli , is better that the 
current best solution best_sol, this last is updated setting best_sol  = 
soli ; else the last SKU added to the released_SKUs set before the i-th 
iteration is removed, i.e. released_SKUs = released_SKUs - 
improved_SKUs[i]; 

 In any case a new SKU is added to released_SKUs  from the 
improved_SKUs list: released_SKUs = released_SKUs U 
improved_SKUs[i+1]; 

 i = i + 1 

UNTIL all the improved_SKUs list has been visited. 

Therefore, at each iteration the subset of SKUs that are released is expanded if 
the latest solution improve the current best one or modified if this does not occur. 
This is done to limit the dimension of the re-optimization window which 
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potentially can grow until it encompasses the whole improved_SKUs  set, even if 
it is unlikely that all the SKUs will become part of the final released set since, as 
the window dimension grows, also the probability to escape the local minimum 
and incur in a worse solution increases. 

As far as the computational complexity is concerned, it is evident that number of 
iterations is strictly defined by the number improving SKUs in the 
improved_SKUs list, which in turn depends on the initial set of “unbalanced” 

SKUs chosen in the initialization of the first phase. This implies that the whole 
procedure will run for O(S) times and thus the whole matheruristic will take a 
time roughly equal to O(S)*average resolution time of the simplified model.  

 

 

Chapter 6 

6. Results of the tests 
 

The present Chapter reports the results on the tests made on the heuristic 
procedures explained in Chapter 5. After an introduction about the data gathering 
process and how the instances for the tests have been constructed, the tables 
showing the comparative results of the different methods are presented and 
commented. 

 

6.1. Data gathering and instances construction 
 

In order to compare the performances of the proposed models we real data from 
an international Fashion Company which works with hundreds of franchising and 
direct operated mono-brand stores were used. The data collected from the above-
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mentioned company concern the North American market, in particular the United 
States. Data used for the experiments and instance construction were limited to 
the Fashion clothing items and to the Retail stores.  

The sales reports of the past year, which are  records that demonstrate 
information on how the articles performed in terms of sales at the colorway level,  
were the key source in the empirical data gathering. To split the colorway 
quantity sold into single SKU’s sales the Size distribution report , which records 

the statistical frequency of each SKU sales in the colorway assortment, was used. 
To simulate a real situation, only the colorways that are intended to sell – i.e. 
which are planned to be allocated in the stores in a given period – in the current 
season, corresponding to the whole Spring/Summer (from February to August), 
where considered. The current date, at which the reshuffling operation is 
simulated to occur, was arbitrarily selected to be the 22 June of the current year; 
such date is far enough from the beginning of the season to justify the 
reallocation – due to a likely scarcity of resources in the warehouses - but quite 
far from the end of the season to allow  the operation to produce significant 
effects, considering also that the transportation lead times can be relevant. For the 
SKUs related to the  intended-to-sell colorways, the expected sales and the high 
service level quantity were computed as well as the inventory level at the current 
date.  

As far as the sales probability is concerned, the lambda of the Poisson 
distribution for each SKU was calculated as the mean of the quantity sold of the 
SKU from the starting of the current season to the current date (all days were 
considered in the calculation, since the American stores never close). The choice 
to focus only on the present season data is legitimate by the fact that several 
Fashion product, being strictly seasonal and linked to the current fashion trends, 
have never been sold before the current season. Clearly, this is not the most 
sophisticated and precise way to estimate the mean of the distribution and indeed, 
in reality, it is done through scenarios simulation and sampling; however, for 
testing the goodness of the models there was no need to have a precise estimation 
but just a realistic one. Once the lambdas for each SKU have been found, the 
corresponding high service level quantities were calculated as the quantity 
corresponding to the 95-th quantiles of the Poisson distribution having the λ of 

the SKU as parameter.  
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For what concerns the inventory data, the stock position at the current date for 
every SKU in the locations was drawn from Inventory reports of the stores; these 
datasets record the inventory changes in the store’s stock by SKU code.  

In the created instance, the weight of the articles is defined at the class level, i.e. 
all SKUs belonging to the same class are considered to weight the same, while 
the price extracted from the sales reports is considered constant for the single 
code over all stores. Obviously, in reality the price of a single SKU can vary 
across the stores, for instance because of promotions, however the mark down 
amount is usually limited in the Retail channel and, in any case, this 
approximation does not affect the model performance evaluation. 

Lastly, the tariffs and zones information were provided by the logistic carrier in 
charge for the transfer. 

All that said, the SKUs which were in-stock ,and thus have no need to be 
reshuffled, were removed from the input data to avoid creating uselessly big 
datasets and only the codes for which all the required data (class, colorway, sales, 
inventory…etc.) were available were included in the final version of the instance 
inputs. 

 

6.2. Experimental results 
 

In this section the results of computational experiments conducted to compare the 
performances of the various approaches explained in the previous chapters are 
presented.  

Most of the procedures were tested on an AsusTek PC with a Dual Core 2.16 
GHz processor and 3 GB of RAM. The most memory consuming processes, 
including the MILP run on the whole problem with time limit and the 
matheuristic, run on an Acer computer equipped with a Quad Core 3.40 GHz 
processor and 8 GB of RAM. The MILP models were coded in Mosel language 
and solved by using the ILP solver Xpress IVE 1.24.22 while the constructive 
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algorithms were written in R language using the RStudio software version 
1.1.423. 

Table 2 Results of the tests made on the set of SKUs for which the total units in the system are 
insufficient to cover all the understock needs. 

 

Expected 
Revenues 

[$] 

Costs [$] Expected 
Profit [$] 

∆ER 
[%] 

∆EP 
[%] 

Time 
[s] 

Greedy 
(random order) 26018,71 4070,41 21948,30 78,46 50,54 59,15 

Greedy (price 
order) 26073,45 3863,92 22209,53 78,84 52,34 62,67 

MILP with 
time limit 25.338,87 2571,51 22767,36 73,80 56,16 127* 

Initial solution 
(random order) 25333,05 2750,08 22582,97 73,76 54,90 133 

Initial solution 
(price order) 25672,86 2688,85 22984,01 76,09 57,65 126,6 

Matheuristic 
(first phase) 25.854,47 2645,95 23208,52 77,34 59,19 295,8* 

Matheuristic 
(second phase) 25865,17 2645,95 23219,22 77,41 59,26 111,9* 
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7. CONCLUSIONS 
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Fig. 6 The clothing and textile supply chain 

 

Fig. 7 Feasibility polytope and optimum point position with respect to the objective function 
direction. 

 

Fig. 8 Local vs global optima in a non-convex function 

 

Fig. 9 Poisson probability density function with different lambdas 

 

Fig. 10 Initial inventory states with respect to the Poisson distribution and its parameters 

 


