
POLITECNICO DI TORINO

College of Engineering and Management

Master of Science in Industrial Engineering

Master of Science Thesis

Optimizing the reactive allocation of garments to
stores in the fashion industry

Adviser:
Prof. Federico Della Croce Di Dojola

Co-adviser:

Prof. Giuliana Carello, Politecnico di Milano

Candidate:
Eleonora Acero

December 2018

SUMMARY

1. Introduction .. 5

1.1 Origin and scope of the project ... 5

1.2. Thesis disposition ... 5

1.3. The Fashion & Apparel industry ... 5

2. Description and analysis of the problem .. 11

2.1 Products and Channels Classification ... 12

2.2 Problem statement ... 14

2.3 Problem structure and dimensions .. 15

2.3.1 Stores and SKUs sets ... 15

2.3.2 Demand.. 16

2.3.3 Inventory constraints ... 17

2.3.4 Transportation costs .. 17

2.4 Objectives .. 19

3. Solution approaches ... 20

3.1. Heuristic Approaches .. 21

3.1.1. Constructive (Greedy) algorithms .. 22

3.1.2. Neighborhood Search Heuristics .. 23

3.2. Computational complexity theory ... 25

3.2.1. Complexity classes .. 27

4. Mathematical models ... 29

4.1. Notation ... 29

4.2. The reactive allocation problem .. 30

4.2.1. Nonlinear optimization issues ... 35

4.3. A MILP formulation for the problem .. 37

4.4. Test Results ... 44

2

5. Heuristic approaches .. 47

5.1. Dimensions and Decomposition of the problem 48

5.1.1. Stores set .. 49

5.1.2. SKUs set... 49

5.1.3. Problem decomposition ... 50

5.1.4. Tariff slots number .. 51

5.2. Greedy Algorithm for the problem .. 53

5.2.1. Greedy logic .. 53

5.2.2. Computational complexity ... 56

5.3. Matheuristic approaches .. 58

5.3.1. Introduction to Matheuristics .. 59

5.3.2. A Matheuristic for the reactive allocation problem 61

6. Results of the tests .. 69

6.1. Data gathering and instances construction .. 69

6.2. Experimental results .. 71

7. CONCLUSIONS .. 73

Bibliography ... 73

3

Executive Summary

This thesis addresses the problem of allocating scarce resources among several
locations in the most efficient way in a fashion retail environment. This
allocation is called “reactive” because it occurs in the second half of the selling

season in response to the actual demand faced by the stores in the network, to
rebalance the items in the system and increase the expected profit of the stores
in the upcoming period.

Indeed, the Fashion and Apparel Industry is one of the pillars of the global
economy, but it also represents one of the most flexible and unpredictable
Industries, given the high volatility of demand and fast changes in customer
tastes and trends, together with short products life cycles and long production
lead times.

The top priority for almost all garment businesses is ensuring availability of
products and, consequently, maintaining high customer satisfaction and brand
image, while minimizing remaindered end of season stock and maximizing
margins. Therefore, the most critical process for a company operating in this
sector is the definition of the times and quantities to be allocated to the whole
network of stores.

However, due to the inherent uncertainty of demand forecasts, it is likely that the
firm will end up with some stores selling more than expected and others less. The
two situations entail two different risks: where there has been an over-allocation
the firm needs to markdown – loosing margins-, and where too little has been
allocated it will lose sales – losing potential profits and reducing customers’

satisfaction.

Furthermore, It is also likely that, as the final weeks of the season approach, the
central warehouse stock is quite limited and unable to fix the inventory shortages
in all the stores of the network. The solution is to organize transshipments of
units between the stores, accepting extra costs in order to benefit from higher
expected revenues in the affected locations.

4

Therefore, the purpose of the thesis is to investigate how to optimize the
reallocation from overstock stores to understock ones, both in terms of
maximization of the final expected revenues and in terms of minimization of the
transportation costs.

Demands for the stock keeping units (SKUs) are random, so the relative expected
sales and the starting inventory position must be considered in the decision, along
with transportation costs. Transportation costs are structured as seven stepwise
functions of the transportation lot weight; each function is relative to a different
zone, which is a proxy of the distance of the destination store from the origin of
the transfer. The actual routing of the vehicles is done by the logistic carrier that
provided the transportation costs information and thus is out the scope of the
work.

The mathematical model faithfully representing the problem of profit
maximization shows a non-polynomial function and thus it is not solvable to the
optimum using the commercial solvers available. Thus a Mixed Integer Linear
Programming (MILP) version of the model has been proposed to approximate the
original one. However, the dimension of the problem is very large, involving
hundreds of SKUs and stores and all their combinations, and thus it cannot be
solved entirely by means of an linear optimizer.

Hence the MILP model was used iteratively on smaller instances, created by
dividing the SKUs into subsets, to generate an initial solution. Right after, the
MILP was inserted in a Matheuristic framework with a neighborhood search
heuristic structure, in which small portions of the initial solution are relaxed and
re-optimized at each iteration to improve the results.

Computational results using one such adaptation show that the algorithm is fast
enough for practical work, and that substantial improvement in expected profit
can be achieved with this approach. Indeed, the tests run on the main SKUs set
show an increase in expected revenues of about 78%;at the net of transportation
costs, the overall benefits of the operation for the considered SKU set are roughly
59% of the actual expected revenues. This percentage gain, extended to the
whole SKU set, can bring significant monetary gains to the company.

5

Chapter 1

1. Introduction

1.1 Origin and scope of the project

In the specific context of this thesis, a case of reactive allocation of cloths
between stores in a network is faced. The allocation is called reactive because it
comes after the pre-season and in-season allocation and try to “react” to the mid-
season inventory state in the stores, improving the overall resources balance(?).

The opportunity rose from the collaboration with O.R.S. for a big international
apparel retail client. The work could be the starting point for a new project
enlarging the system of software developed by O.R.S. for managing the supply
chain of this client.

For the very practical nature of the problem, the approach followed throughout
the work has been “pragmatic”, focusing on achieving the goals satisfying the

constraints. This, with the peculiarities of the problem structure, has limited the
research and in-depth analysis of the theoretical methodologies: in fact, almost
no research have focused on the problem of optimizing the reallocation of
merchandise between stores during the selling season, when transportation costs
functions are given.

1.2. Thesis disposition

1.3. The Fashion & Apparel industry

6

Even though a wide range of literature focused on both retailing replenishment
optimization and supply chain management, only few researchers have directed
their attention on the particular case of the fashion retail industry (Iannone, et al.,
2013). In fact, such industry presents specific characteristics that cause several
issues in the supply chain management.

First of all, fashion apparel is categorized as innovative product. Whilst
functional products typically do not change swiftly over time and have a stable
and predictable demand, innovative products, instead, are characterized by
novelty, great variety (Vaagen & Wallace, 2008) and customization (De Felice,
et al., 2012).

Companies supplying innovative products like fashion apparel are obliged to
continuously bring newer innovations in the market to oppose imitators that
gradually erode the competitive advantage of the current innovative products,
which therefore have a short lifecycle (Barnes, 2009).

This implies the need to have lower production volumes (De Carlo, et al., 2013)
and higher flexibility with respect to other retailing industries, making demand
unpredictable (Wang, et al., 2012). Demand fluctuations are also caused by the
inherent seasonality of fashion goods, whose purchasing behavior is subject to
impulsiveness, driven by the product popularity within fashion market and
influenced by shelf availability (Lanzilotto, et al., 2014) as well.

All the above suggests that an efficient Supply Chain strategy, which focuses on
cost minimization, is more appropriate for functional products, while innovative
products Supply Chains should follow a responsive/demand-driven strategy
aiming at assuring product availability to match the marketplace with clients
demand (Lam & Postle, 2006).

From the supply side, the industry is characterized by long and complex demand-
driven supply chains which often are global, including suppliers located in
several different Countries (Bruce, et al., 2007).

7

Fig. 1 The clothing and textile supply
chain

A traditional textile and apparel supply chain consists of four segments (Sen,
2008) (Fig.1). At the top of the supply chain, there are fiber suppliers who are in
charge of collecting the natural or synthetic raw materials; then the second
segment, the textile mills, work the rough fiber in different ways to make the
fabric. The fabrics are the input to the third segment, the apparel manufacturers -
or the manufacturers of industrial textile products – who cut and sew the fabric
into finished cloths. The final segment constitutes the distribution and sales part
of the chain and includes the warehouses and the final retailers. The warehouses
are the hubs of the distribution network where final products are received from
suppliers, often located in far countries, and then allocated to stores and clients in
accordance with their specific orders (Coraggia, 2009). Finally, the last ring of
the supply chain is represented by the Retailers which offer the clothing items
and other textile products for sale to final consumers, trying to satisfy their
demand.

The widespread choice of adopting an international supply chain has the benefit
of reducing labor costs but it contributes to extend lead time, thus making
production inflexible and not able to adapt to demand changes. Indeed, a further
feature of the traditional apparel industry is the long time-to-market, especially if
the retailer does not have in‐ house production: it takes almost one year to pass
from the definition of the clothing item to its delivery to the stores, after. Such
long supply process forces producers to estimate the already volatile demand in
far advance, further increasing the uncertainty of the forecasts.

The main processes performed in a typical Fashion Retail Supply Chain are
divided in three chronological phases:

1. Pre-Season phase: it involves all the activities performed before the
beginning of the real sales season, starting from the creation of the

8

collection and ending with the deliveries of the finished product to
clients and stores. (Martino, 2015)

Forecasting of market demand and future orders is one of the pillars of
this phase since all the planning activities are based on it. As
mentioned in the previous paragraph, this process is made particularly
complex in the Fashion & Apparel industry due to demand
unpredictability and high volatility. Demand predictions are based on
historical sales data, whose information are integrated with
characteristics of the new collection and the stores to update with
respect to new trends.

Usually, the forecasts are made for an higher aggregation level than
the single item code. Single articles are grouped into product
categories (Thomassey & Hapiette., 2007) to better reflect consumers
purchasing behaviors and, above all, achieve more accurate
predictions. Indeed, making aggregated forecasts for few clusters of
products, instead of detailed projections for thousands of codes,
allows reducing the prevision error.

Classification of single items into wider product categories is also
useful when planning for brand new products. Indeed, new fashion
products to be offered in the upcoming season have no real historical
sales data available to draft forecasts. In these cases, the buying and
pricing decisions can be based on past record of similar products.

2. In-Season phase: it starts with the first sales recorded in the stores and
involves all the selling season, including the end-of-season clearance
sales aimed to liquidate all stocks before the end of the season, until
the remaindered stock is returned to the central warehouse.

Even if a first replenishment schedule is defined earlier, stores are not
stocked in a unique solution before the selling season. Indeed,
depending on the length of the season, it is advisable to allocate only
part of the central stock to stores in the first replenishment event and
wait to gather actual sales data in order to decide whether to allocate

9

additional units. In fact, it is important to react according to how
different products perform in different locations.

Thus, the first replenishment draft before the selling season is based
on previsions on past sales data while the following ones, during the
in-season phase, are driven by both forecasts and real sales data,
which allow to assess deviations between actual demand and
projections.

3. Post-Season phase: it involves all the activities necessary for the
correct management of the unsold items, included their delivery to
factory outlet stores, where they will be sold at discounted prices next
seasons.

The most valuable asset an enterprise can record is the satisfaction of its clients;
this is true for the Fashion Industry as well. Customer satisfaction refers to a
customer’s overall assessment of the extent to which product or service

performance matches the expectations (Anderson & Sullivan, 1993) (Davis-
Sramek , et al., 2007). This factor is important to be taken into account because
higher satisfaction within the customers basis has the potential to increase
clients’ loyalty (Martino, 2015) and, in turn, make sales grow. Customer loyalty
refers to a customer behavior and positive attitude toward the service/product
provider firm. Such behavior includes repeating purchase activity, expressing
positive word-of-mouth, having the intention to continue the relationship, not
switching to competitors or committing on the long-term (Davis-Sramek , et al.,
2007) (Giese, et al., 2004). On this basis, customer satisfaction is considered a
key driver for increasing company sales.

Moreover, customer satisfaction is important because of its inherent link with the
firm reputation in the eye of the customers.

In the retailing sector – and not only – what causes low customer satisfaction and
raises a negative perception of the firms in the eye of customers is the event of
low availability of the desired product. The negative perceptions affect the firm’s

image, hence reducing future visits and total sales, in general.

10

This is especially true for the Fashion and Apparel Industry in which, as
mentioned before, market demand is significantly affected by the availability of
products in the stores (Martìnez-de Albèniz & Boada Collado, 2014), that is
directly linked to the stores’ inventory level.

With low inventory levels, customer may not find the demanded item available in
the color or size she needs and thus can decide to avoid purchasing anything or
switch to a similar product; in any case she feels a certain level of dissatisfaction.
With regard to this, some researches have shown that unavailability of highly
demanded items has higher likelihood to negatively impact firm perception if few
appropriate substitutes are available (Boatwright & Nunes, 2001) (Broniarczyk,
et al., 1998) (Campo, et al., 2000) (Sloot & Verhoef, 2005).

The parameter that better measures availability is the out of stock, which is
defined as the number of orders that cannot be fulfilled. Previous research has
shown that stock outs (a case of low inventory level in which some codes are
missing, i.e. are out of stock), at the same time lower the appeal of the product
category and make the customer uncertain on which item to choose or which
action to take. Indeed, a customer can decide to act in different ways: to buy
another product in the same store, to buy the same product in another store or
through other channels (e.g. web and mobile channels) (Lanzilotto, et al., 2015),
to wait until the product is available or not to buy at all. In all these cases stock-
outs generate customer dissatisfaction; this discontent translates into different
economic consequences in the different situations, as out of stock costs are
related to the possible lost sale and relative revenue.

All that above does not imply that overstock is the answer to the shelf availability
problem. Indeed as fashion items suffer a strong depreciation over time,
overstocking would expose stores to higher holding costs and more unsold units
at the end of the sales season; the remainder units will be highly marked down in
the last season weeks, significantly reducing contribution margins and thus
profits.

Thus, the general objective of Retailing Industry actors is dynamically
optimizing stores assortment trying to ensure high product availability and to
minimize overstock or out of stock events (Iannone, et al., s.d.).

11

To perceive this goal in the fast changing environment of the Fashion & Apparel
industry as well, the ability of being responsive to market fluctuations and react
promptly to deviations from forecasts is imperative, especially for companies that
manage an extended network of stores and try to satisfy separate demand streams
in different locations.

Coping with the demand-supply mismatch on time is especially relevant in the
last ring of the supply chain, i.e. retailers, where late corrective actions may be
difficult and more expensive.

Chapter 2

2. Description and analysis of the problem

To create an algorithm for an optimization problem, it is paramount to
understand the functioning of the real system, such to distinguish which features
have to be modeled in the next phase and which characteristics can instead be
overlooked for the purpose of the optimization.

Therefore gathering data and collecting information about how the system of
stores and items is organized is a critical phase of the analysis preceding the
realization of the algorithm.

Furthermore, it could be useful to classify the case study with respect to the noted
problems in literature, such to benefit from the theoretical tools that already exist
in reference to it. Nevertheless, even if the literature on supply chain
management and inventory allocation problems applied to the fashion industry is
substantial, the case on hand cannot be attributed to a class of known problems
because of its peculiarities (the location in time of the problem, the presence of
transportation costs but the absence of vehicle routing, the fact that the transfers
are made between stores and not between a distribution center and the single
stores).

12

To comprehend the problem boundaries and dimensions, it is appropriate to start
from the description of the market the case study is dealing with, the taxonomy
of store and products used within the system and the products flow during and
after season.

2.1 Products and Channels Classification

The reference market is the North America division of the retailer, which
encompasses almost 300 stores all around the U.S.A., Canada and minor north
American regions. This market is supplied by the retailer through three different
sales channels:

1. Retail Stores are the channel which the current season products are
mainly designed for and in which they are sold at higher prices than
other channels (price promotions happen during special events or are
applied to special customers, always within a certain threshold). The
assortment includes the more recent seasonal products as well as the
mainstream basic ones. At the end of a certain season, the products of
such season are moved from retail floors to the web.

2. The web e-commerce is pretty different from other traditional sales
channels. It follows separate rules, sales are differently spread along
time and also best seller products are distributed in a diverse manner
with respect to traditional stores. At the beginning of a season all the
products sold in a retail store are also sold in the e-commerce channel.
At the end of the following season, (Fashion) products are taken to
Factory Stores.

3. Factory Stores are outlets to which out of season apparels are
shipped, including web e-commerce leavings and products selling
below expectations on retail floors. In such outlets prices are marked
down with respect to the original prices and can be further decreased
by promotions.

13

Products’ assortment show a large variety and thus requires a clear codification

to be managed at large scales. In fact, items are recorded with a specific
hierarchy which, from the highest level of aggregation to the lowest, is:

 Department

 Group Department

 Subdepartment e.g. Sport Shirts

 Class e.g. Oxford Sport Shirts

 Subclass

 Style: a combination of Model (the design of the Garment), Main
Fabric and Fit.

 Colorway : a combination of Style and Color e.g. White Oxford Sport
Shirts

 SKU (Stock Keeping Unit): a Colorway matched with a Size.

Moreover, each product can be classified according to the length of its lifecycle.
Fundamentally, garments can be distinguished between Fashion products
(Fashions), which have a short lifecycle, and Basic products (Basics), which
have longer lyficycles. Fashion products are told to have short lifecycles because
they are intended to sell only in a season of a specific year, while Basic items
have long lifecycles because they represent the “evergreen” items of clothing,

whose preference is quite independent from temporary fashion trends; ideally
Basics have an “infinite” lifecycle because they can be sold year after year.

For these reasons, the models developed in the next chapters have been tested on
Fashions data, since they are more subject to demand swings and to markdowns

14

and final season clearance actions1. Anyway, the models can be applied to
Basics data sets as well.

2.2 Problem statement

The problem on hand places during the mid-season of sales: the distribution
center is running low in stock because the end season is approaching and it is not
able to refill all stores and assuring the high service level (HSL) for each SKU.
Evidently, the long lead times of production do not permit to manufacture new
products on time to remedy the inventory shortage. In addition, because of the
volatility of demand the allocation process did not run perfectly and some store
sold less than expected on some SKUs while others have sold these SKUs over
expectations. In the first case the stores are holding a stock quantity that exceeds
the high service level target estimated for the rest of the season, while in the
second case stores do not have sufficient inventory to satisfy the probable
demand of the upcoming period.

In this situation, the firm is bearing the risk of ending with a high level of unsold
likely lost sales on one hand, and likely lost sales on the other. The realization of
these situations would cause lost margins - due to the lost sales and to the
remaining inventory markdowns - and/or extra shipping costs to return unsold
units to the warehouse at the end of the season.

To mitigate such risks, the firm would like to act in advance moving the items
from the stores where they are over the target level (HSL) to the stores that are
understock. This practice would increase the chances to sell out the items in the
overstock stores while diminishing the probability to incur lost sales in the
understock stores. Obviously, this solution is not free since moving stuff across
stores requires extra movement and thus extra shipping costs, that are generally

1 Actions taken at the end of a season to move products from the retail floor to the web e-
commerce. In practical terms, such products are remaindered to the warehouse, part of which
virtually represents the inventory of the e-commerce.

15

higher than the tariffs applied for the transportation from the warehouse2. So the
objective of this work is to find a way to strike a balance between these tradeoff,
the higher expected revenues and the higher costs, to try increasing the overall
expected profit.

It is relevant to note that this approach is particularly suitable for high value
products, whose contribution margin is sufficiently high to justify the transfer
cost, while it could be senseless for low price fashion firms [cercare referenze].
Most of the SKUs of the considered problem belong to such typology, but there
are also smaller garment products, such as socks and small accessories, that lie
outside this set; they are considered anyway since one of the primary objectives
of the client is customers satisfaction, which in this case means to fix broken
stores assortments spreading the available stock across the stores. Moreover, they
are not considered alone but within batches containing higher priced products as
well, so the per unit transportation cost for the small items does not result
excessive with respect to their value.

2.3 Problem structure and dimensions

2.3.1 Stores and SKUs sets

The wider and more general instance of the problem includes around a hundred
of stores for each division (Factory and Retail) around the U.S.A. territory. The
exchanges have to be done only between stores of the same division, Factory
Outlets or Retail Stores, since these two divisions do not sell the same
merchandise at the same time and with the same pricing rules. This implies that
the two sets of stores and relative SKUs will be treated as two separated

2 The transportation costs from the warehouse to the single stores are given by a flat tariff and
thus are independent from the weight of the moved lot. Instead, in the case on hand the weight
of the transportation batch determines the total shipping costs from a store to another.

16

instances of the same problem, given that there are no particular features
distinguishing the two reallocation problems apart for the input data.

Within every division, each store has its own colorways and SKUs sets on sales,
which do not perfectly match with the other stores’ sets.

2.3.2 Demand

As it is typical in the fashion industry, demand is stochastic. From the analysis
made by O.R.S. on historical sales data, it emerged that sales follow a Poisson
distribution, which is estimated at the colorway level and then turned on the
single stock keeping units. Due to the differences among stores (location,
climate, type of clientele..etc.), each colorway in each store has its own
distribution parameter for sales λ (the expected sales for the colorway), which is
then projected to the single SKUs according to their selling frequency within the
colorway assortment – which, again, varies from store to store. Consequently,
each SKU can have a different definition of the service level quantity (HSL)3 for
each store in which it is sold.

This implies that it is not indifferent to move an SKU to a store or another that
has the same initial inventory, since the probability to sell that SKU could be

3 “In inventory management, service level is the expected probability of not hitting a stock-out
during the next replenishment cycle or the probability of not losing sales. Safety stock is
inventory that is carried to prevent stock outs. Companies choose to keep safety stock level high
as a buffer against demand variability: the safety stock level must be high enough to cover
vendor’s delivery times, sufficient enough to satisfy customers’ demand, but not so high

that the company loses money because of high carrying costs. The target service level can
be therefore defined as a trade-off between the cost of inventory and the cost of stock-
outs.” (Radasanu, 2016)

So the high service level quantity (HSL) coincides with an high quantile of the probability
distribution (e.g. 95%) which defines the target quantity a store should hold in inventory to
avoid out-of-stocks with adequate confidence level.

17

very different in the two locations and thus could impact the overall expected
profit in different ways.

2.3.3 Inventory constraints

Each SKU in the store’s SKUs’ set has an initial inventory Q
0, which is the stock

available in store at the time the reallocation is settled. Comparing this stock-on-
hand and the target inventory level (HSL) of a SKU, a store can be classified
either as in-stock (if the two quantities coincide), understock (if the on-hand
quantity is lower than the target one) or overstock (if the initial stock exceed the
HSL) for such SKU. In case of overstocked store the objective is to remove the
units in excess and redistribute them across the understock stores, which in turn
can only receive the SKUs for which they are running low in inventory and send
the ones for which their stock exceeds the high service level quantity. The stores
should neither send or receive the SKUs that are exactly in-stock.

To decide how much to transfer from a store and where to move the
merchandise, the decision maker should strike a balance between the selling
probabilities - and thus the expected sales - in every destination store and the
relative transportation cost.

2.3.4 Transportation costs

In the case on hand the transportation costs structure is based on information
provided by the external logistic carrier that will actually handle the routing of
vehicles, after the exchanges have been defined. For this reason, in the
formulations of the following chapters, transfers are managed as single paths
from the origin store to the destination, regardless of the effective vehicle routing
the carrier is going to implement - which is out the scope of this work.

18

In logistics transportation costs are generally a function of the distance and the
weight/volume of the moved batch. In the specific case, the information about
the distance and the difficulty of reaching a specific location is condensed in the
zone number of the destination with respect to the store of origin (always
considered in zone 1). There are seven zones, indexed 2 to 8, with increasing
transportation cost per batch weight as the zone number increases. Thus, if store
B is placed in zone 2 with respect to the sender store A and store C is in zone 3
with respect to A, a batch with a given weight will cost more if sent from A to C
than from A to B. It is noteworthy to highlight that the zone matrix (or distance
matrix) reporting the zone number for each combination of sender and
destination store is not symmetric, so there can be found cases in which a
destination store B is in zone X with respect to A, while A is in Zone Y (Y≠X)

with respect to the sender store B.

Every zone tariff is divided into 147 equal weight ranges - of approximately 0,45
lb - for which each zone number has its own transportation cost. Thus, each zone
tariff shows a transportation cost function which is stepwise constant with respect

to the lot weight and overall increasing with the total weight of the lot, as shown
in [fig.]. The transportation cost per pound instead is decreasing as the total lot
weight increases [fig.], which implies that is more cost-effective to transfer large
lots between two stores than sending small packages to multiple destination
stores.

19

2.4 Objectives

The satisfaction of the client is the most valuable assets of an enterprise.
Measuring the service level is relevant because it can affect the relationship
with the customers and can determine an important impact on profitability.
In the retail sector setting a high level of service (greater or equal to 95%) is
crucial since the level of service is a key factor in assuring the fidelity of the
clients and the maximization of sales. (Radasanu, 2016)

The client firm of this project gives lot of consideration to customer satisfaction
as well and try to avoid stock-outs and consequent lost sales. With this purpose,
it sets a high service level target and allows specific in store orders for customers
who could not find their size in stock for the clothing they wanted to buy (which
are handled by another O.R.S.’ software).

Consequently, from the apparel firm perspective, the optimal situation would be
to have the HSL quantity available in inventory for every SKU in every store.
However, it is likely that the reallocation problem arises in a situation in which
the total resources are too scares to reach this target level in every store-SKU
combination, since it is probable that the warehouses are facing inventory
shortages as well. In these circumstances, there will be stores with HSL
quantities or even more units in stock for some SKUs but most of the stores will
run low in some SKUs’ inventory or even face deficits in the colorway

20

assortment. Consequently, it is reasonable to set as objective not the achievement
of the target HSL quantities in every store and SKU, but rather the reallocation of
the exceeding merchandise from the overstock stores such to maximize the
expected profit.

Chapter 3

3. Solution approaches

An algorithm is a step-by-step procedure for solving a computational problem.
For a given input x, it generates the correct output f(x) - the answer for a
corresponding problem solved - after a finite number of steps.

Solution methods for a general optimization problem can be divided into exact
and approximated ones.

If the algorithm gives an optimum solution, it is called exact algorithm. Exact
methods are usually limited to small instances; they include mixed integer linear
programming (MILP), dynamic programming (DP) and branch and bound (BB)
methods.

For larger instances, in order to find a “good” solution within an acceptable

amount of time, two types of approximate methods can be developed:
approximation and heuristics algorithms.

21

Heuristic algorithms can be very simple but still effective, producing “good”

feasible solutions which are not guaranteed to be close to optimum. The
performance of a heuristic algorithm is usually analyzed experimentally, through
a number of runs using either generated instances or known benchmark
instances. For instance, well-known examples of heuristic algorithms are the
Tabu search, the Simulated Annealing and the Genetic Algorithms.

An algorithm is called an approximation algorithm if it is possible to establish
analytically how close the generated solution is to the optimum (either in the
worst-case or on average), therefore the solutions found are guaranteed to be
within a fixed percentage of the actual optimum. Approximation algorithms
produce solutions in polynomial time, but for the price of loss of optimality.

A ρ-approximation algorithm is an algorithm that runs in polynomial time and
delivers a solution of value at most ρ times the optimum for any instance of the

problem. The value of ρ is called the worst-case ratio bound and estimates the
“goodness” of the algorithm.

Given the practical nature of the case treated in this work, it is not interesting to
focus on approximation algorithm which instead can have relevance in a
theoretical dissertation. Rather, next chapters will focus first on exact methods, in
particular MILP models applied to restricted instances, and then on heuristics
approaches that permit to deal with the real dimensions of the practical problem.

3.1. Heuristic Approaches

Heuristic algorithms are a set of solution techniques of complex combinatorial
problems able to bring satisfying results within limited running times. Differently
from exhaustive algorithms, these methodologies cannot guarantee optimality,
but try to achieve results as close as possible to the best solution. To this aim, the
resolution decisions are taken basing on experience related to the structure of the
problem, this way allowing to avoid the enumeration of all the different
possibilities and thus limiting the computational costs of the algorithm.

22

Therefore, it is necessary to deeply analyze the problem to understand how to
exploit its properties in the resolution and building an efficient and effective
heuristic.

Heuristic algorithms can be classified into categories which differ for both
complexity and quality of the results:

 Constructive (or Greedy) algorithms.

 Neighborhood Search Heuristics.

3.1.1. Constructive (Greedy) algorithms

Constructive (or Greedy) algorithms. Constructive algorithms, as their name
itself reveals, “build up” an admissible solution starting from the problem data.
In practice, these algorithms start from an empty solution and, at each iteration,
progressively expand the partial solution making choices that respect the problem
constraints. Usually, these choices are made following very simple rules which
lead to the decision that appears to be the most convenient at the moment to
reach the optimum. Given that at each step the most desirable way is chosen,
these algorithm are also called greedy. A characteristic of the greedy algorithm is
that once the choices are made they are not later challenged in the subsequent
steps, i.e. no backtracking mechanisms are provided.

The strategies to determine at each step which alternative is the most promising
one can be multiple, like the evaluation of the objective function of the partial
solutions or the estimation of a score computed basing on the reached status, but
all are based on the local optimization criterion. As a matter of fact, at each
iteration, the decision made optimizes only a small portion of the original
problem, with the hope of reaching a global optimization. Although, the best
solution is achieved in problems showing optimal sub-structures, but it rarely
happens in normal problems; hence it is very common for this type of algorithm
to fall back into a local optimum. In regards to this issue, a possible
improvement can be reached by introducing a certain level of randomness in the

23

choices made, for instance selecting randomly among the n best feasible
alternatives or between the possibilities that differ less that a certain percentage
from the best one.

3.1.2. Neighborhood Search Heuristics

The local search algorithm are methodologies that, starting from an initial
solution, try to get improvements exploring the solution space around the current
solution. This solution space around a starting poit is called neighborhood and
represents the portion of the overall solution space which is reachable applying a
well-defined operator to the current solution.

This type of algorithms is not able to start from an empty solution but need an
initial feasible solution, which is generally provided by constructive-type
algorithms, which are a fast way to get a feasible solution for the problem.

Moreover, in the context of neighborhood search algorithms it is necessary to
define a neighborhood structure; to do this, first of all the solutions representation
of the problem has to be defined. This is definitely a very critical passage since
the representation of a solution heavily influences the neighborhood types that
can be generated and the complexity of the objective function evaluation. Then,
once the solution representation is established, a set of operators have to be
selected to be applied to such representation, in order to create other solutions
from the current one in an easy way. The choice of the neighborhood operators is
not trivial since it influences the goodness of the local search and can even
prevent the algorithm from reaching the optimum (which is the case for
disconnected neighborhoods).

Once the neighborhood is defined, a strategy to explore it and select the next
solution has to be chosen. Among the most known local search strategies there
are:

24

 The Steepest Descent (or Best Improvement) strategy: the
neighborhood is completely explored and the best solution found in it
is chosen to become the curent solution of the next iteration.

 The First Improvement strategy: the neighborhood is not completely
indagated at each iteration, often the neighbors are generated one at a
time and the iteration stop as soon as a solution improving the current
one is found. Consequently, this strategy allow to apply the local
search also to neighborhoods that are too big to be fully evaluated

The efficacy of both methodologies is strongly linked to the type, structure,
dimension and feasibility of the chosen neighborhood.

However, generally speaking, the Steepest Descent technique reaches an higher
improvement at each step but it is slower in finding such improvement, while the
First Improvement strategy finds lower improvements at each iteration but in a
much faster way. Overall the two strategies have similar performances but,
typically, the first improvement strategy reaches better final solutions because it
is easier to quickly get stuck in a local optimum using the Steepest Descent
approach.

Indeed, the inability to avoid getting stuck into local optima - the situation in
which the exploration of the solution space is not able to find further
improvements even if they actually exist - is the main weakness point of this
techniques.

Neighborhood search methodologies can be divided into:

 Classical local search

 Metaheuristics (Iterated Local Search, Variable neighborhood search,
Tabu Search, Grasp, Simulated Annealing, Genetic algorithms..etc.)

 Matheuristics: a more recent family of resolution approaches based on
the hybridization of heuristics methodologies and exact methods that
will be treated in further detail in Chapter 5…)

25

The greedy algorithms are generally more simple and fast, while the
neighborhood search heuristics are more complex, in particular the
metaheuristics and matheuristics. Obviously this affects the running time, which
increases as the methodologies get more complex, as well as the solutions
goodness, that is generally low for the greedy approaches but gets better in the
neighborhood techniques, especially for the metaheuristics and matheuristics.

3.2. Computational complexity theory

The purpose of the complexity theory is to measure the performances of a given
resolution algorithm with respect to the necessary computational resources, i.e.
the time and memory space. Even if in some applications the measure of the
memory space needed by an algorithm can be a decisive factor, generally it is
considered an issue of minor importance; therefore, this paragraph will linger
only on the running time, bearing in mind that an analogous reasoning can be
applied to the other resource as well.

All the input parameters x of a problem have to be firstly represented through a
finite series of symbols, that will determine the dimension of the input. In
general, given a certain problem, a set of input parameters x of codified
dimension n is called an instance of the problem.

The time complexity (or the running time) of an algorithm expresses the total
number of elementary operations, such as additions, multiplications and
comparisons, for each possible problem instance as a function of the size of the
instance. Formally speaking, the time complexity of an algorithm in relation to a
certain problem is defined as the function T(n) that determines an upper bound to
the number of steps made by the algorithm to solve the problem instance of size
n.

The measure of the computational complexity of the algorithms in terms of
running time is based on their response to the increase in size of the examined
problem. Often, it is not easy to determine with precision the function T(n),

26

hence it is preferred to define the asymptotic behavior of such function,
considering only the predominant terms when n tend towards infinite. So, the
big-O notation is used to specify the complexity of an algorithm, which implies
that:

T(n) ∈ O(g(n)) if there exists a constant c >0 and a non-negative number n0 such
that T(n) ≤ cg(n) ∀n : n ≥ n0. For instance, if the computational complexity is
O(n²), the big O-symbol to stress that the number of elementary computations of
the algorithm grows at the same rate as the function Cn², where C is a constant.

Computational complexity allows to divide algorithm into categories sharing the
same asymptotic behavior:

 Polynomial time algorithms. An algorithm is called polynomial if f(n)
can be computed in at most O(g(n)) steps where g is a polynomial of
certain degree, so its complexity is upper bounded by such
polynomial. This is the case of algorithms having complexity O(nk),
including constant (k=0) ,linear (k=1), quadratic (k=2) and cubic
(k=3) ones. Algorithms having complexity function in the form of
O(nk · logw(n)) are considered polynomial as well.

 Super-polynomial algorithms, whose computational complexity
cannot be upper bounded by any polynomial. Exponential algorithms
(O(an)) and factorial ones (O(n!)) belong to this category.

The difference among the various complexity levels are particular evident when
the dimension of the instances grow. Indeed, in the exponential algorithms the
running time sees and extraordinary increase with respect to the instance size.

Problems can be divided into optimization and decision problems. A problem is
called a decision problem if the output range is {yes, no}. Computational
complexity theory’s explanation refers to the decision version of optimization

problems. It may be associated with each problem a decision problem by
defining a threshold k for the objective function f. For instance, for a
minimization problems, the relative decision problem is: does a feasible solution
S exist satisfying f(S) k?

27

Note that it is always possible to find the optimal solution of an optimization
problem by solving iteratively its decision problem, varying the bound k. Thus,
optimization problems and their decision versions are strongly connected: if
there exists a polynomial algorithm for the optimization problem, there exist one
for the decision problem as well and vice versa. Therefore the theory developed
for decision problems can be immediately extended to the corresponding
optimization problems.

3.2.1. Complexity classes

Problems can be divided into computational classes that indicates their difficulty.

P, which stands for “Polynomial time complexity”, is the class of decision
problems which are polynomially solvable. A problem is called polynomially
solvable if it can be solved by a polynomial algorithm that bring to the correct
answer (yes/no}. Polynomial algorithms are sometimes called efficient or simply
good.

NP is the class of polynomially checkable decision problems with the property
that for each “yes”-answer a certificate exists which can be used to verify the
“yes”-answer in polynomial time. In other words, given a certain hypothesis of
solution for the decision problem, it is possible to verify if such answer is correct
or not using a polynomial time algorithm. NP stands for “non-deterministic
polynomial” because the first phase of resolution is executed through an non-
deterministic procedure.

One of the biggest unsolved problems of modern mathematics is to determine if
the class P is strictly included in NP or if the two sets coincide. In the last case, a
great number of high complexity would be solvable by means of polynomial
algorithms, so it is supposed not to be true, but it has not been demonstrated yet.

Reducibility, NP-complete and NP-hard problems

28

An important concept in the computational complexity theory is the polynomial
reducibility of one problem to another. For two decision problems P and Q, it is
said that P reduces to Q (denoted by P ∝ Q) if there exists a polynomial-time
computable function g that transforms inputs for P into inputs for Q such that n is
a “yes”-input for P if and only if g(n) is a “yes”-input for Q. Polynomial
reducibility allow to compare the complexity of one problem with respect to
another one, since saying that P ∝ Q equals afforming that Q is at least as
difficult as P and, consequently, if Q can be solved by means of a polynomial
algorithm this is valid also for P.

Polynomial reducibility allow to introduce the class of NP-complete and NP-hard
problems. A decision problem Q is called NP - complete if Q NP (first
condition) and, for all other decision problems P NP, we have P ∝ Q, i.e. all
problems in NP can be polynomially reduced to Q (second condition). Therefore,
all NP-complete problems have the same difficulty and the NP-complete class
includes the set of the most difficult problems of the NP class. Lot of problems
belong to the NP-complete class, but so far no polynomial time algorithms are
known to solve them.

An optimization problem is NP- hard if its decision version is NP- complete. So
the NP-hard class definition coincide with the definition of the NP-complete
class where the first condition is relaxed. So, problems belonging to this class are
at least as difficult as the NP-complete ones but not necessarily belong to the NP
class, therefore they comprehend also non-decision version of the NP-complete
problems, like the classic optimization ones.

For such problems, no polynomial-time algorithms are known and it is generally
believed that these problems cannot be solved in polynomial time, and therefore
they should be treated by other methods.

As far as the present problem is concerned, the computation class it belongs to is
not known, however it is believed that it is “hard” to solve, meaning that it is not

solvable by means of an exact polynomial algorithm.

29

Chapter 4
4. Mathematical models

[frase introduttiva capitolo?]

4.1. Notation

This paragraph introduces the symbols employed to model constants and
variables in the subsequent models. The notation for parameters follows the
classification and the problem features anticipated in the previous chapter and it
is held unvaried throughout the whole work. The variables chosen for the
mathematical formulation of the problem are presented here for the first time and
their definitions are maintained in the following chapters as well.

Constants

N = total number of stores (Retail or Factory Outlet)

S = total number of SKUs

T = total number of tariff slots (equal to 147 in every problem instance)

E = total number of units exchangeable in the problem

𝑝𝑠𝑖 = price of SKU s in store i4

𝑤𝑠 = weight of SKU s

4 As is typical in the retail industry, the selling price of a colorway may vary across stores, but
it is identical for all sizes of the same colorway sold in the same store.

30

𝜆𝑠𝑖 = Lambda of SKU s in store i (expected sales in the next period until end-of-
season)

𝑄𝑠𝑖
0 = initial inventory of SKU s in store i

HSLis = high service level quantity of SKU s in store i

Usi = {
1 if Qsi

0 < HSLis, i. e. if store i is understock for the size s

0 if Qsi
0 ≥ HSLis, i. e. if store i is not understock for the size s

UUsi =

{

1 if Qsi

0 < 𝜆𝑠𝑖 , i. e. store i is seriously understock for the size s

 (initial quantity would not be enough to cover expected sales)

0 if Qsi
0 ≥ 𝜆𝑠𝑖 , i. e. store i is not seriously understock for the size s

(initial quantity would be enough to cover expected sales)

𝐶𝑇𝑖𝑗𝑡 = cost of slot t in the transportation tariff between I and j

𝑏𝑡= maximum weight available for transportation in tariff slot t5

Variables

𝑥𝑠𝑖𝑗 = units of SKU s moved from store i inventory to store j

𝐶𝑖𝑗𝑡 = {
1 if for the transfer from i to j the slot t of the tariff is applied
0 otherwise

4.2. The reactive allocation problem

The following model is the literal transposition of the objectives and constraints
expressed in the previous chapter in mathematical terms.

5 Note that such weight slots are equal for every zone tariff, the difference among tariffs lies in
the costs 𝐶𝑇𝑖𝑗𝑡 relative to each 𝑏𝑡.

31

𝑚𝑎𝑥∑∑ ∑ (
𝜆𝑠,𝑖
𝑞
𝑒−𝜆𝑠𝑖

𝑞𝑠𝑖!

𝑄𝑠𝑖
0−∑ 𝑥𝑠𝑖𝑗

𝑁
𝑗

𝑞𝑠𝑖=0

𝑁

𝑖=1

𝑆

𝑠=1

)𝑞𝑠𝑖(1 − 𝑈𝑠𝑖)𝑝𝑠𝑖

+ ∑∑ ∑
𝜆𝑠𝑗
𝑞
𝑒−𝜆𝑠𝑗

𝑞𝑠𝑗!

𝑄𝑠𝑗
0 +∑ 𝑥𝑠𝑖𝑗

𝑁
𝑖

𝑞𝑠𝑗=0

𝑞𝑠𝑗

𝑁

𝑗=1

𝑆

𝑠=1

(𝑈𝑠𝑗)𝑝𝑠𝑗

− ∑∑∑𝐶𝑖𝑗𝑡𝐶𝑇𝑖𝑗𝑡

𝑇

𝑡=1

𝑁

𝑗=1

𝑁

𝑖=1

(3.1)

Subject to

∑𝑥𝑖𝑗𝑠 ≤ (𝑄𝑖𝑠
0 − 𝐻𝑆𝐿𝑖𝑠)

𝑁

𝑗

(1 − 𝑈𝑠𝑖) ∀𝑖 = 1. . 𝑁, ∀ 𝑠 = 1. . 𝑆

(3.2)

∑𝑥𝑖𝑗𝑠 ≤ (𝐻𝑆𝐿𝑗𝑠 − 𝑄𝑗𝑠

0)

𝑁

𝑖

(𝑈𝑠𝑗) ∀𝑗 = 1. . 𝑁, 𝑠 = 1. . 𝑆

(3.3)

 𝑥𝑖𝑖𝑠 = 0 ∀𝑖 = 1. . 𝑁, ∀ 𝑠 = 1. . 𝑆 (3.4)

𝐶𝑖𝑖𝑡 = 0 ∀𝑖 = 1. . 𝑁, ∀ 𝑡 = 1. . 𝑇 (3.5)

∑𝐶𝑖𝑗𝑡 ≤ 1 ∀𝑖 = 1. . 𝑁, 𝑗 = 1. . 𝑁

𝑇

𝑡

 (3.6)

∑𝐶𝑖𝑗𝑡 ≤∑𝑥𝑖𝑗𝑠

𝑆

𝑠

 ∀𝑖 = 1. . 𝑁, 𝑗 = 1. . 𝑁

𝑇

𝑡

 (3.7)

∑𝑤𝑠𝑥𝑖𝑗𝑠 ≤ ∑𝐶𝑖𝑗𝑡

𝑇

𝑡

𝑏𝑡

𝑆

𝑠

∀𝑖 = 1. . 𝑁, 𝑗 = 1. . 𝑁 (3.8)

𝑥𝑖𝑗𝑠 ∈ ℕ

+∀𝑖 = 1. . 𝑁, ∀ 𝑗 = 1. . 𝑁, ∀ 𝑠 = 1. . 𝑆 (3.9)

 𝐶𝑡𝑖𝑗 ∈ [0,1] ∀𝑖 = 1. . 𝑁, ∀ 𝑗 = 1. . 𝑁, ∀ 𝑡 = 1. . 𝑇 (3.10)

Recalling the notation in the previous paragraph, the primary decision variables
𝑥𝑖𝑗𝑠 represent the shipment quantities of each size s ∈ [1..S] from each sender
store i ∈ [1..N] to each destination store j ∈ [1..N], where N and S are
respectively the total number of stores and the total number of SKUs in the

32

problem instance. These variables are constrained to be integer in (3.9) and are
bounded by the inventory available/receivable for transfer in each store for each
SKU:

 Constraint (3.2) limits the quantities of each SKU that can be sent
from every store: if a generic store i overstocks for the SKU s
(Usi = 0), its total shipment of s to other stores must never exceed the
quantity 𝑄𝑖𝑠0 − 𝐻𝑆𝐿𝑖𝑠 which insures that its target service level
quantity is preserved after the reshuffling while, if store i understocks
for such SKU (Usi = 1), it cannot send it to any other store. Therefore,
this constraint coincide with the logical implication

Usi = 1 → ∑𝑥𝑖𝑗𝑠 = 0

𝑁

𝑗=1

 ∀𝑖 = 1. . 𝑁, ∀ 𝑠 = 1. . 𝑆

⋀

Usi = 0 → ∑𝑥𝑖𝑗𝑠 ≤ (𝑄𝑖𝑠
0 − 𝐻𝑆𝐿𝑖𝑠)

𝑁

𝑗=1

 ∀𝑖 = 1. . 𝑁, ∀ 𝑠 = 1. . 𝑆

 Similarly, constraint (3.3) limits the quantities of each SKU that can
be received by every store. Every destination store j which is
understock for s (Usj = 1) can acquire units of this size from all the
other stores up until its inventory reaches the HSLis quantity. On the
contrary, a store overstocking s (Usj = 0) cannot get additional units
for that size from any other store.

Usj = 1 → ∑𝑥𝑖𝑗𝑠 ≤ (𝐻𝑆𝐿𝑗𝑠 − 𝑄𝑗𝑠
0)

𝑁

𝑖=1

 ∀𝑗 = 1. . 𝑁, ∀ 𝑠 = 1. . 𝑆

⋀

Usj = 0 → ∑𝑥𝑖𝑗𝑠 = 0

𝑁

𝑖=1

 ∀𝑗 = 1. . 𝑁, ∀ 𝑠 = 1. . 𝑆

The secondary decision variables 𝐶𝑡𝑖𝑗 help modeling the stepwise transportation
cost function between store i and location j. Specifically, every binary (3.10) 𝐶𝑡𝑖𝑗
indicates if between i and j the t-th tariff with upper weight bound bt is activated

33

(𝐶𝑡𝑖𝑗 = 0) or not (𝐶𝑡𝑖𝑗 = 1), which depends on the total heaviness of the lot
transferred from i to j, ∑ 𝑤𝑠𝑥𝑖𝑗𝑠

𝑆
𝑠 (3.8). Clearly, only one tariff can be applied to

the batch movement (3.6) and no tariff will be on if there is no transfer between
two stores (3.7). The corresponding logical implications are:

∑𝑥𝑖𝑗𝑠

𝑆

𝑠

= 0 → ∑𝐶𝑖𝑗𝑡 = 0 ∀𝑖 = 1. . 𝑁, 𝑗 = 1. . 𝑁

𝑇

𝑡

⋀

∑𝑥𝑖𝑗𝑠

𝑆

𝑠

> 0 → ∑𝐶𝑖𝑗𝑡 = 1 ∀𝑖 = 1. . 𝑁, 𝑗 = 1. . 𝑁

𝑇

𝑡

Since the costs appear with negative sign in the objective function (3.1), the
solver will tend to activate the cheapest tariff that respects the lower bound given
by the total lot weight.

Lastly, constraints (3.4) and (3.5) state the obvious condition that no store can
exchange items with itself.

Expression (3.1) defines the objective function to be maximized. As anticipated
in the previous chapter, the ideal goal would be to satisfy the high service level
condition in every store for every SKU. Nonetheless it is likely that the total
resources available in the whole stores network are too scarce to allow the
achievement of such target in every location. Consequently, it is reasonable to
reallocate the exceeding merchandise present in the overstock stores with the
purpose to maximize the expected profit, minimizing the transportation charges
and maintaining the high service level (HSL) requirement only where it is
possible and costless, i.e. in the stores that already record at least HSL units in
their initial SKU stock (which are the in-stock or overstock stores).

Thus the objective function is given by the expected profit, computed as the
expected revenues after the transfer operation minus the transfers costs (last term
of (3.1)). The expected revenues are computed as the probability of selling a
quantity q times the quantity itself times the price of the relative SKU in the store
(first and second term of (3.1)), summed over all sales scenarios from 0 to the
final stock quantity – i.e. the inventory after the reshuffling – which is equal to

34

𝑄𝑠𝑖
0 − ∑ 𝑥𝑠𝑖𝑗

𝑁
𝑗 for the stores i that are overstock for SKU s, and 𝑄𝑠𝑗0 + ∑ 𝑥𝑠𝑖𝑗

𝑁
𝑖 for

the stores j that, instead, understock for SKU s.

As the probability calculations reveal, each article have been considered
independently from the others. Nevertheless, this problem may involve
connections between different articles or between different SKUs of the same
colorway.

In the former case, there can be substitutions or complementarities6 among the
products at the store level: the sales probability of an item in a store can be
boosted by the absence of a similar product (which means that the customer is
willing to switch among the two cloths, which therefore can be considered
substitutes) or by the presence of complementary products (for instance, a tie
sales distribution could be positively related to the sales distribution of a
particularly well matched shirt).

In the second hypothesis, the interrelations appear between SKUs belonging to
the same colorway set, i.e. within a colorway assortment. In this case, it could
happen that the completeness of the assortment affect the selling probabilities of
the single colorway SKUs. It could occur because of the psychological impact a
more complete sizes assortment can have on the final customer entering the shop:
for instance, the more the SKUs displayed in the store the more the visibility for

6 In economic theory, two goods are substitutes if when the price increases for one good, the
demand for the substitute product will increase (assuming that price remains constant). Instead,
complementary goods literally complement each other, they are items that “go together”, so if

the price of one increases the demand for the other will decrease. (Munson, 2014)

However, in this treatise complementarity and substitution meanings are not linked to the
elasticity of one good’s demand with respect to the variation in another good’s price, they are

considered as the elasticity of a SKU demand with respect to the presence or the absence of
another SKU in the stock. So the magnitude of substitution effect indicates how much a
consumer is willing to switch to another product if the first choice SKU is missing instead of
leaving the store without purchasing anything. While the complementarity effect measures how
much the two goods can be considered complement and thus are purchased together by the
customers.

35

the whole colorway set and the more the client could be induced to notice and try
on that product.

On the contrary, it could happen that the single SKU sales are increased by the
absence of the SKUs right close in the size scale, in particular when the measures
difference among subsequent sizes is not so remarkable.

However, for the above mentioned hypothesis to be tested, a lot of accurate data
at the SKU level in all combinations (in this case, every SKUs pair) are needed
to draw statistically significant results.

Thus, because of data availability and for computational reasons the implemented
formulation considers each article independently. Moreover, the conditional
probability contribution to the overall expected profit is expected to be negligible
with respect to the independent probability term, thus it can be ignored in first
approximation.

4.2.1. Nonlinear optimization issues

Il can be seen that the objective function, unlike the constraints’ expressions, is

not linear neither polynomial. Moreover, the integrity constraints for the
variables add further complexity to optimization of this model. Indeed, while the
research on continuous optimization is in an advanced state, the literature on
mixed-integer nonlinear optimization is still in progress: nowadays there exist
few solvers handling non-polynomial problems and, generally speaking, they are
not so efficient. That is because nonlinear optimization is intrinsically very
difficult to solve.

Indeed, in convex optimization problems, which include linear programming
ones (LP), the places to look for the optimum are limited to the extreme points
(corner points) of the feasible region polytope [Fig.]. This optimum is the point
with the best value of the objective function anywhere in the feasible region, thus
it is called global optimum.

36

On the contrary, in nonlinear programs optima are not restricted to extreme
points, they can be anywhere in the feasibility region. Moreover these optima are
not necessarily unique and optimizing nonlinear objective functions do not assure
to reach the global optimal solution: the solver can get stuck in a locally optimal
solutions that have better objective function values than any other feasible
solutions in their “vicinity", but do not coincide with the global optimal solution
(as distinct from convex problems) [Fig.].

Fig. 2 Feasibility polytope and optimum point position with
respect to the objective function direction.

Fig. 3 Local vs global optima in a non-convex function

37

This difference among the two categories influences also the time efficiency of
the optimization problem: in linear (more generally convex) problems it is “fast”

to find the optimal solution or, alternatively, to prove the absence of a feasible
solution, whilst it can take a lot of time to verify whether a nonlinear
(nonconvex) problem has no solution of if a local optimum is also global.

4.3. A MILP formulation for the problem

For all the issues non-linear optimization poses, it is useful to try linearize the
problem. The most common approach is the piecewise linearization7 of the non-
linear objective function, which encompasses different methods to do this
conversion. However, in the case on hand the non-linear function is not even
polynomial and it is quite complicated, combining powers, exponentials and
factorials altogether, which makes it also difficult to be represented graphically,
so the piecewise linearization appears not to be the best strategy.

A more straightforward approach is the exploitation of some characteristics of
the specific problem and a priori knowledge to write a different objective
function that leads to similar results.

7 A piecewise linear approximation is a method of constructing a function g(x) that fits a
nonconvex objective function f(x) by adding extra binary variables, continuous variables, and
constraints to reformulate the original problem. The specific goal is to approximate a single
valued function of one variable in terms of a sequence of linear segments. Optimization
problems with piecewise linear costs arise in many application domains; for example, the
transportation cost, inventory cost, and production cost in a supply chain network are often
constructed as a sum of nonconvex piecewise linear functions due to economies of scale. (Lin,
et al., 2013)

38

Specifically, one can use the information about the probability distributions of
the SKUs sales and the knowledge about the positioning of each store inventory
with respect to the HSL level and the expected sales 𝜆𝑠𝑖 for each SKU. Indeed,
the objective function aims at reallocating units among stores such to reach a
final inventory quantity that optimizes the revenues of each SKU (minus the cost
of the batches transferred between stores), balancing the resources such to assure
availability to the greatest number of stores and, at the same time, fostering the
allocation to the more “promising” ones – the stores who are expected to sell
more of a given SKU, thus contributing to higher expected revenues - while
respecting the high service level requirement (when it is sensible) to minimize
lost sales.

But the probability distributions are known at the beginning of the reshuffling:
sales follow a Poisson distribution with a parameter 𝜆𝑠𝑖 for each SKU, coinciding
with the expected sales in the next selling period of the season. The shape of the
Poisson distribution is well known in statistics; its density function shows a peak
in correspondence of the lambda value, which represents both the mean and the
median of the distribution [Fig.3].

Fig. 4 Poisson probability density function with different lambdas

39

This implies that the marginal contribution of an additional unit to the expected
revenues – given by the q-th quantity times the probability of selling q units
times the relative price - increases as the stock approaches the lambda quantity
and starts decreasing after the value λ + 1. Consequently it can be more
convenient, both in terms of availability and incremental expected gain, to move
one unit to a store that has not reached the λ level, rather than allocating an
additional unit to a store that already overcomes the λ level in its SKU inventory,
and thus it is building safety stock. This is also intuitively sensible: a store that
already holds λ or more units in its stock for a certain SKU on average will be

able to satisfy its expected demand, and any unit added will incur an higher
probability to remain unsold; on the contrary, a store holding less than λ units for

a SKU will not likely able to satisfy its expected demand and thus has high
chances to incur in lost sales and customer dissatisfaction.

Combining the information about the likelihood distribution and the initial
inventory available, one can recognize that each store-SKU combination can be
in one out of three different situations with respect to the initial stock, each of
which requires a different intervention. [Fig. 4]

 Fig. 5 Initial inventory states with respect to the Poisson
distribution and its parameters

40

1. Overstock: as stated in the previous paragraphs this situation occurs
when the initial inventory of the SKU in the store overcomes the high
service level target. In this case the objective is to move all the
exceeding units to other stores ending with the HSL quantity in the
sender store. As it is apparent from the graph, the probability to sell a
high service level quantity is still low – and thus the chances to incur
in remaindered stock is high - but it satisfies the customers’

satisfaction constraint minimizing the expected lost sales.

2. Critical understock (UUsi =1): the stock-on-hand for the SKU is
insufficient for the store and would not be able to satisfy the expected
demand of the upcoming period. Thus, the objective is to receive
some units from other stores to fix the stock-out and, if possible, reach
at least a quantity 𝜆𝑠𝑖 of units in the final stock to cover the average
future demand and maximize the tradeoff between probable lost sales
and .remaindered stock.

3. Non-critical understock (UUsi=0): understock with initial inventory
higher than the expected sales 𝜆𝑠𝑖 (UUsi =0). The stock-on-hand for
the SKU is enough to cover future expected demand but still too low
to meet the high service level requirement. In a system with
unconstrained items availability the objective would be to move some
units in these stores to fill in the gap between the starting inventory
and the high service level quantity (restoring the safety stock). But in
case of limited total resources it would be more reasonable to
discourage the allocation in non-critical locations in favor of the very
understock ones, spreading the available floating units to the highest
number of critically understock stores which, otherwise, would have a
very high probability of incurring lost sales. Indeed, handling this last
situation differently the system could end up with some non-critical
understocks that have reached their HSL quantity and thus have high
probability of remaining with unsold merchandise at the end of the
season, and some critical understock locations that keep on being too
low in inventory and thus face dramatically high chances to lose sales.

Putting all the above together the model can be rewritten as follows:

41

𝑀𝑎𝑥(∑∑(𝑚𝑠𝑖(1 − 𝑈𝑠𝑖)∑𝑥𝑠𝑖𝑗

𝑁

𝑗=1

− 𝛼𝑚𝑠𝑖𝑈𝑠𝑖(1 − 2𝑈𝑈𝑠𝑖) [∑𝑥𝑠𝑗𝑖

𝑁

𝑗=1

])

𝑆

𝑠=1

𝑁

𝑖=1

− ∑∑∑𝐶𝑖𝑗𝑡𝐶𝑇𝑖𝑗𝑡

𝑇

𝑡

𝑁

𝑗=1

𝑁

𝑖=1

)

(3.11)

Subject to

 ∑𝑥𝑖𝑗𝑠 ≤ (𝑄𝑖𝑠
0 − 𝐻𝑆𝐿𝑖𝑠)

𝑁

𝑗

(1 − 𝑈𝑠𝑖) ∀𝑖 = 1. . 𝑁, ∀ 𝑠 = 1. . 𝑆

(3.2)

 ∑𝑥𝑖𝑗𝑠 ≤ (𝐻𝑆𝐿𝑗𝑠 − 𝑄𝑗𝑠
0)

𝑁

𝑖

(𝑈𝑠𝑗) ∀𝑗 = 1. . 𝑁, 𝑠 = 1. . 𝑆

(3.3)

 𝑥𝑖𝑖𝑠 = 0 ∀𝑖 = 1. . 𝑁, ∀ 𝑠 = 1. . 𝑆 (3.4)

 𝐶𝑖𝑖𝑡 = 0 ∀𝑖 = 1. . 𝑁, ∀ 𝑡 = 1. . 𝑇 (3.5)

 ∑𝐶𝑖𝑗𝑡 ≤ 1 ∀𝑖 = 1. . 𝑁, 𝑗 = 1. . 𝑁

𝑇

𝑡

 (3.6)

 ∑𝐶𝑖𝑗𝑡 ≤∑𝑥𝑖𝑗𝑠

𝑆

𝑠

 ∀𝑖 = 1. . 𝑁, 𝑗 = 1. . 𝑁

𝑇

𝑡

 (3.7)

 ∑𝑤𝑠𝑥𝑖𝑗𝑠 <= ∑𝐶𝑖𝑗𝑡

𝑇

𝑡

𝑏𝑡

𝑆

𝑠

∀𝑖 = 1. . 𝑁, 𝑗 = 1. . 𝑁 (3.8)

 𝑥𝑖𝑗𝑠 ∈ ℕ
+∀𝑖 = 1. . 𝑁, ∀ 𝑗 = 1. . 𝑁, ∀ 𝑠 = 1. . 𝑆 (3.9)

 𝐶𝑡𝑖𝑗 ∈ [0,1] ∀𝑖 = 1. . 𝑁, ∀ 𝑗 = 1. . 𝑁, ∀ 𝑡 = 1. . 𝑇 (3.10)

In this mixed-integer programming (MIP) formulation, notation for variables and
parameters remains the same as the non-linear model, just like the constraints
expressions.

The very difference is the objective function definition which is now linear and
follows the logics expressed above. The first term represents the total units
moved from overstock stores, that is the first goal to be maximized.

The second term is the quantity moved to understock stores and can assume
different signs depending on the value of the parameter 𝑈𝑈𝑠𝑖. Indeed, in case a

42

store is very understock for a SKU, the relative parameter 𝑈𝑈𝑠𝑖 is equal to 1 and
thus the term assumes a positive sign; consequently, the quantity moved to the
understock will be maximized. On the contrary, if a store is not heavily
understock, i.e. 𝑈𝑈𝑠𝑖 equals zero, it is not necessary to move additional units in
stock hindering their allocation in more needing locations, so the transfer of units
is not avoided but penalized through a negative sign before the quantity received.

Finally the last expression takes into account the movement costs as in the
previous formulation.

As it is evident, there is no term in the objective function that accounts for the
change in selling probabilities, and thus expected revenues, of each allocation
decision. Thus, since the linear model is not able to discriminate if a transfer is
worthy or not based on the difference in expected revenues and cost in the two
scenarios – the current one and the eventual allocation-, it is reasonable to force
the model to allocate all the units that can be moved instead of letting it choosing
how many total units to transfer. Thus it is useful to add a constraint that fixes the
total number of units moved in the problem, E:

∑∑∑𝑥𝑖𝑗𝑠 = 𝐸

𝑆

𝑠=1

𝑁

𝑗=1

𝑁

𝑖=1

 (3.12)

The number E of total units exchanged obviously takes into account the total
units offered by overstock stores and the total units receivable by understock
stores for each SKU. The constraint is written in an aggregate way for the whole
problem without specifying the units to be transferred for each SKU; indeed, this
would be redundant due to the presence of constraints (3.2) and (3.3) that already
limit the units transferrable for each code.

The addition of constraint (3.12) de facto makes the first term of (3.11) redundant
because the total units to be moved from overstocks are decided a priori. As a
consequence the related term is constant and could be removed from the
objective function. However, it was decided to formally keep it because it could
turn to be useful in some cases to discriminate among the overstocks to be
selected as sources of the transfers, as it will be explained in next chapters.

43

In any case, it is clear that the linear objective function value is no more meant as
the expected profit generated by the reshuffling operation. Thus some
coefficients have to be added to partly compensate the lack of information about
the expected monetary gain and to make the benefits’ terms and the costs’ one
comparable.

To this aim both the two first sums are multiplied by a parameter mis which has a
double function. First of all it is useful to scale up the terms with respect to the
transportation costs; otherwise the solver could decide not to move units between
stores because the mathematical balance of benefits and costs would be
unfavourable, even if in reality the marginal units moved would bring an increase
in expected revenues exceeding the required costs. Indeed, this could happen
because, without the scale correction, every unit moved will increase the
objective function value by 2 (1 unit moved from an overstock plus 1 unit
transferred to an understock) at a unit transportation cost which can be higher
than 2$, especially for small batches, leading to a negative balance.

The second purpose of the mis coefficient is to differentiate the SKUs, weighting
more the more profitable ones. Indeed, while in the raw model it would be the
same to move one SKU or another, in reality it makes a great difference on the
overall profit to transfer a high priced SKU with respect to a low priced one in
terms of increase in expected profit.

For these reasons, even though it is not the unique way for calibration, it seems
sound to set mis equal to the price 𝑝𝑠𝑖 or to the margin of the SKU s in the store i.

Furthermore, setting the weights of the two first sums equal means to totally
penalize and practically avoid the transfer to non-critical understock locations,
since moving to one of these destination would completely cancel the benefits of
taking away stock from one of the overstocks locations. As it was mentioned
before, this is judicious when one deals with a very limited resources situation.

However, in practice, the apparel firm can face more or less critical
circumstances that can justify the relaxation of this penalization allowing also the
allocation in non-critical understock stores. For this motivation the contingent
coefficient α has been introduced: when α equals 1 or a higher threshold the

44

penalty of moving to low priority understocks is maximum; on the contrary as α

diminishes the disincentive for the allocation gets smaller and smaller.

4.4. Test Results

In this paragraph the results of experiments conducted to test the performances of
the MILP model are presented. The instances of different dimensions have been
built in R starting from real data provided by O.R.S, which have been used to
compute the missing input parameters. Then the model has been coded in mosel
language and solved by using the solver Xpress IVE 1.24.22., on an AsusTek PC
with a Dual Core 2.16 GHz processor and 3 GB RAM.

The first trials have been done to verify overall if the solution proposed by the
model effectively improves the actual situation in terms of expected profits. Such
solution depends on the value of the parameter alfa in the objective function.
Thus the verification was done using different values for this constant, such to
determine how this number influences the solution of the model: five values,
from very high penalty to almost no penalty, were chosen to cover a wide range
of possibilities. Each variant of the model has been run on 20 instances, varying
the number of stores (N) and keeping the number of SKUs (S) constant in some
cases, and viceversa in others. The results of this preliminary analysis are
reported in the table [tab.]. In the table, the generic instance named NnSk
contains n stores and k SKUs.

45

Table 1 Running times for instances with different sizes, stores and SKUs number

N S # variables Time*

N3S5 3 5 1413 0

N3S10 3 10 1503 0

N4S10 4 10 2672 0

N5s10 5 10 4175 0

46

N10S10 10 10 15700 0,1

N20S10 20 10 62800 0,3

N40S10 40 10 251200 2,3

N50s10 50 10 392500 2,9

N70S10 70 10 769300 6,6

N90S10 90 10 1271700 9,3

N108S10 108 10 1831248 17,1

N108S5 108 5 1772928 4,5

N108s15 108 15 1889568 7,9

N108S20 108 20 1947888 11,7

N108S40 108 40 2181168 19,6

N108S50 108 50 2297808 27,9

N108S70 108 70 2531088 52,8

N108S64 108 64 2461104 38,2

N108S75 108 75 2589408 49,7

N10S15 10 15 16200 0,1

N10S30 10 30 17700 0,1

N10S50 10 50 19700 0,2

N10S100 10 100 24700 0,2

N10S200 10 200 34700 1,1

N10S250 10 250 39700 2,5

N10S343 10 343 49000 2,6

N3S512 3 512 5931 0,1

N4S512 4 512 10544 0,1

N10S512 10 512 65900 3,9

47

Chapter 5

5. Heuristic approaches

The previous chapter has presented the exact model and a MILP formulation for
the resolution of the problem through exact techniques through the Xpress solver.
The chapter also highlighted the limitations of this approaches, which can be
summarized in:

 the approximated objective function of the MILP model, who is not
able to capture the information about the selling probabilities and thus
optimize the expected revenues. In other terms, the direction of
optimization of the objective function of the MILP model does not
perfectly match the one of the original model, except for the
transportation costs term.

 the fact that the model present a numerous set of variables which
limits the dimensions of the instances that can be effectively solved to

0

10

20

30

40

50
1

.4
1

3

1
.5

0
3

2
.6

7
2

4
.1

7
5

5
.9

3
1

1
0

.5
4

4

1
5

.7
0

0

1
6

.2
0

0

1
7

.7
0

0

1
9

.7
0

0

2
4

.7
0

0

3
4

.7
0

0

3
9

.7
0

0

4
9

.0
0

0

6
2

.8
0

0

6
5

.9
0

0

2
5

1
.2

0
0

3
9

2
.5

0
0

7
6

9
.3

0
0

1
.2

7
1

.7
0

0

1
.7

7
2

.9
2

8

1
.8

3
1

.2
4

8

1
.8

8
9

.5
6

8

1
.9

4
7

.8
8

8

2
.1

8
1

.1
6

8

2
.2

9
7

.8
0

8

2
.4

6
1

.1
0

4

2
.5

3
1

.0
8

8

2
.5

8
9

.4
0

8

Ti
m

e
 [

s]

Number of variables

a1
a1000

48

the optimum in a reasonable time by a linear optimizer, so it is not
feasible to run the entire problem at a time.

This considerations encourage to find a way to reduce the dimension of the
problem and/or decompose it in smaller sub-problems that differ for some
characteristics which can be exploited to improve the allocation decision of the
solver. On the other hand, they suggest to consider fester ways of tackling the
problem by means of heuristic algorithms and compare the results of the different
approaches.

5.1. Dimensions and Decomposition of the problem

In chapter 3, the case was presented to be very big and not entirely manageable
with exact solution methodologies. In the performed tests, it was not possible to
reach a solution through the optimization of the MILP model for instances
encompassing more than 75 SKUs over all the stores or more than 10 stores over
all 512 SKUs, keeping the number of slots tariffs equals to 147.

This is justified by the fact that this MILP formulation generates a lot of
variables when the number of stores and/or SKUs in the instance increases. With
the number of variables also the number of lines in the constraints matrix
increases since it is strictly linked to the number of variables due to (3.9) and
(3.10): the dimension of the whole problem is in the order of O(N2∙T) or

O(N2∙S), depending on whether the SKUs number S is less than T, i.e. the
number of slots theoretically applicable for each transfer (if one considers that
there are T slots from 1 to T), with N the total number of stores.

These considerations are valid for the more generic case in which the analyst
does not know the data in details, i.e. she is not able to predict in any way which
tariff slots are not going to be used or to have a finer view of the starting situation
of each SKU in the system. However, when the numbers are known and easily
manageable it is reasonable to exploit some characteristics of the actual data to
reduce the dimension of the entire problem.

49

There are three possible reshaping directions:

 Reducing the number of SKUs

 Reducing the number of stores

 Reducing the number of slots of each tariff

5.1.1. Stores set

Reducing the number of stores implies inevitably reducing the SKUs set to the
codes that can be exchanged between the stores of the predefined subset, thus
excluding all the other items. Therefore, if all the relevant SKUs to be reshuffled
have to be included, no store can be excluded from the stores set of the whole
problem formulation. Indeed, the actual store set has already been filtered during
the instance construction phase, reducing the total number of locations from 116
– the total Retail stores in the raw data set - to 108 relevant Retail stores.

5.1.2. SKUs set

For what concerns the SKUs set, further analysis can be done to remove some
SKUs from the problem, based on the actual situation of the single size at the
moment of the reshuffling. For instance, the data used until now included all the
SKUs which are overstock or understock for at least two stores, without checking
if they could be actually exchanged some way, i.e. if there is at least one
overstock store and one understock store in the system for such SKU. Adding
this filter to the dataset, it has been possible to reduce the overall SKUs set to 390
codes.

Moreover, further analysis found that among this new SKUs set there are some
items whose allocation is obvious, which means that there is exactly one

50

understock store and one overstock one in the system for that size. In the case on
hand, there are only four items belonging to this category; evidently, this fact
only marginally impacts the dimension of the problem since the SKUs number is
reduced just by 1%, however it is relevant because it strongly influences the
allocation of the other items. Indeed, the presence of stores pairs which have to
incur in a positive transportation cost regardless of the other allocation decisions
modify the marginal transportation costs for moving additional units between
these locations. As a matter of fact, in a model starting from scratch the
incremental transportation costs for moving one unit from I to j in the first
instance– for a SKU with weight lower that the first slot bound, which is the case
for all SKUs – equals 8,3 dollars for each pair (i,j); on the contrary, if some pairs
(i*,j*) already bear a transfer cost of 8,3 $ due to the first obvious allocation, the
incremental cost of transferring one unit between these stores will be zero or
slightly larger due to the cost structure, thus making this transfer choice preferred
to the others in first approximation.

5.1.3. Problem decomposition

The remaining 386 SKUs can be divided into two sub-groups based on the units
availability in the system: the ones for which the whole system can be considered
understock and the ones for which the units available in the system are enough to
satisfy the requests of the understock stores. In other words, for the first group of
SKUs the total number of units that can be moved from the overstock stores are
less than the total units needed by the understock stores to reach their target
inventory level, so some stores will remain understock also after the reshuffling
of units. In the second case, instead, the overstock units that can be re-allocated
are enough to cover the understock stores’ requests and fulfill the high service

level target in all these stores.

This distinction is useful because the two sub-problems can be handled in
slightly different ways tailoring the MILP model with small adjustments to
enhance the allocation decisions. Indeed, for the first SKUs set it is known that
all the overstock stores will get rid of their excess units, so the first term of (3.11)

51

is redundant, while the second one remains important since, first of all, the
allocation in non-critical understock stores should be discouraged due to the
scarcity of resources in the system and, secondly, in theory the critical
understock destinations could be weighted in some way to take into account their
different selling probabilities and initial inventory situation.

On the contrary, in the second problem it is known that all the understocks will
receive the units needed to reach the High Service Level quantity so there is no
need to penalize the allocation to non-critical understock stores – i.e. the second
term of (3.11) is redundant - while not all the overstock locations will send all
their excessing units. Therefore for this sub-problem the first term of (3.11) could
be modified introducing weights to discriminate among the possible origin stores
and prefer the more convenient ones. For instance, it is reasonably more
profitable to move units from stores that, after the transfer, would remain with a
positive final inventory (HSL) rather than from overstocks that have a HSL equal
to zero – because the expected demand is very low – and thus would have a
negative change in expected profit after the complete reallocation of its
overstocked units. This adjustment to the MILP objective function has been
proven to be successful by the performed tests, whose results are reported in
Chapter 6 where it is also explained how the weights have been computed.

5.1.4. Tariff slots number

As far as the cost variables are concerned, it is necessary to understand if all the
slots t can be actually used in the solution. To answer this question one can
consider the stores pair which, in principle, can exchange the heaviest lot based
on the starting situation of the relative SKUs; if these stores effectively exchange
such quantity, the transportation cost would be determined by a certain tariff slot
t*, which is the minimum t such that the relative weight bound bt can contain the
lot weight which, as said, is the maximum possible weight transferred between
two stores in the whole problem . Therefore t* can be considered as the highest
possible slot applicable, since all the other stores pairs will exchange a weight
equal or lower than bt*, thus employing at maximum the tariff slot t*.

52

Talking about the actual data on hand, such t* equals 70, which means to cut
down the slots number by roughly 52 %. This remains a high number for the T
parameter, however it can be further reduced for the single sub-instances, as it
strongly depends on the SKUs and stores involved in each sub-problem.

Another way to simplify the modelling of the transportation costs can be the
linearization of the seven costs functions since, as it is apparent in fig. ,in first
approximation they resemble seven upward sloping lines with different slope
coefficients. This approach would permit to get rid of the variables Cijt and write
the costs part of the objective function as a linear 0-intercept function of the lot
weight, with different proportionality coefficients for the different destination
zones.

This approximation works quite well for large weight lots, but it strongly distorts
the results when lower weighted lots are employed, which is the most frequent
case. Indeed, the approach was tried out with very scarce results in terms of
quality of the solution. The issue lies in the presence of a base cost of 8,3 $ for
the first slots, that should be modeled differently from a linear function.
Theoretically, one should be able to design a model that takes into account if a
lot moved between two stores is “large” or not relatively to the zone tariff: if the

lot weight is “small” the transportation cost should equal the base cost plus a

correction factor to account for the extra costs of carrying a weight over the bt0 –
i.e. the maximum weight bound to apply the base slot cost-; if the lot weight is
“large”, instead, the linear approximation is acceptable. Implementing this kind

of reasoning would likely mean introducing new variables to classify the transfer
lot from store i to destination j , thus reducing the benefits of the linearization
itself – i.e. eliminating the transportation cost variables and speeding up the
linear programming model resolution.

For this reason and for the fact that the model already approximate the exact
problem formulation, it has been decided to opt for the first strategy, i.e. the
evaluation of the maximum number of tariffs through exact computation of t*.

As a matter of fact, the MILP model is itself an approximation of the real
problem, because it misses the information about the expected revenues of the
various alternatives. However, it is perfectly able to determine in each moment

53

the transfer with minimum cost. Therefore, the linear approximation of costs
would further weaken the ability of the model to make decisions that converge
toward the optimum of the original problem. Moreover, the cost structure - made
of seven stepwise functions with constant weight pace but highly irregular
incremental costs, in addition to a starting tariff which is constant only for the
very first slots - is one of the characteristics that make this problem “hard” to

solve and neglecting this complexity would likely bring to a misrepresentation of
it.

5.2. Greedy Algorithm for the problem

As highlighted in the previous section, the problem is too big and the number of
possible alternatives so high that it is unthinkable to apply whatever algorithm
that enumerates and evaluates all possible solutions to reach the optimum,
because it would take practically an infinite time to run. Indeed, for each origin
store it is necessary not only to establish to which destination the surplus of items
should be moved, but also how many units of each SKU to transfer to each
destination store, without forgetting the impact of each of such choices on the
transportation costs for every origin- destination pair. Each variations of these
possibilities creates a new alternative that should be evaluated in order to obtain a
solution proved optimal, generating, with the increase of the stores/SKUs
number, a so called combinatorial explosion.

In these cases the strategy that is usually implemented is a constructive heuristic,
which normally allows to reach a good solution in reasonable times, but that is
not able to guarantee the optimality of the solution neither to give an estimate of
the distance of such solution from the optimum.

5.2.1. Greedy logic

54

A greedy algorithm builds the solution taking one choice at a time, maximizing
at every moment the small portion of problem it can envision.

In the greedy logic for the present case, at each time the algorithm considers a
single SKU and the related sets of origin and destination stores and allocates one
unit at a time selecting the alternative which presents a higher expected profit at
the moment of the decision. Clearly, at each iteration, the transfer lots weights
are updated as well, modifying the costs increments of the future alternatives that
will be evaluated.

Since the SKUs are processed one after the other and the lots’ weights are
updated at every decision made, the order according to which the SKUs are
processed is not irrelevant since the choices made upstream drive the allocation
choices downstream, due to the modified incremental costs, and thus affect the
overall solution. Therefore, it has been chosen to give priority to the most valued
SKUs, i.e. the products with the highest price8 because they will likely contribute
more to the final overall expected profit and thus optimizing their allocation is
most important. As a consequence, the SKUs have been sorted by decreasing
price and sequenced following such order. As the tables results in Chapter 6
show, this choice emerged to be beneficial with respect to a random sequencing
both in the application of the greedy and in the generation of the initial solution
for the matheuristics, that will be explained in the relative paragraph in the next
section. In any case, the algorithm starts from the results of the pre-allocated
“obvious” SKUs discussed in the previous section.

In paragraph 5.1. the whole problem was divided into two sub-problems with
different features. Therefore, it is reasonable to apply a slightly different greedy
algorithm to the two problems to exploit each case’s features and enhance the

results, both in terms of expected profit and running time.

As far as the first problem is concerned, i.e. the one including the SKUs which
are overall understock in the system, it is known that all the overstock units in the
relative stores will be reallocated to understocked destinations, which in turn will

8 In practice, it would be better to use the contribution margin but , above from the numbers, the
logic remains unchanged.

55

not be all served fully. Thus, the question is to identify the destinations that are
more worthy to be chosen and the number of units allocated to each of them.

At every step, the decision where to move a unit is taken computing, for each
destination, the expected increase in profit (EP) after the allocation of one
additional unit to the store stock. Such expected change in profit equals the
difference among the expected revenues - in the scenario in which the unit is
allocated to the store - and the present expected revenues of the SKU in the
destination, minus the difference in transportation costs in the two scenarios.
Hence, for each SKU, for each origin store and for each unit to be moved from it,
all the possible destinations are ranked according to the expected profit and the
unit is allocated to the most promising one. In synthesis, the procedure for the
first problem can be stated in the following pseudo-code:

1. FOR s in SKUs set of the first problem

a) FOR i in origin stores for the SKU

 WHILE there are overstock units in the origin store

o FOR j in destination stores that are still understock for the
SKU

- Compute the EP= (expected revenues of the actual
quantity + 1) - (expected revenues of the actual quantity)
– (cost of moving one additional unit from i to j –
present transportation cost from i to j)

o j* = destination with max EP

o Allocate one unit to the most promising destination j*

o Update the inventory state for store j*

o Update the lot weight between the origin store i and the
chosen destination j*

56

o Update the inventory state for store i and thus the
remaining overstocked units

For the second problem, the logic is equivalent but the starting point are the
understock stores, because it is known that they all will receive the units needed
and thus will be destination of some transfer. The question is to understand
which origin store will serve each understock store, which quantity will be
transferred and, eventually, which overstock stores will remain overstocked and
of what amount. The expected profit (EP) for each origin to be selected is
computed in similar way as before and the store with higher benefits will be
chosen to transfer the unit. Thus the pseudo-code reported before can be
modified as follows:

1. FOR s in SKUs set of the second problem

a) FOR j in destination stores for the SKU

 WHILE there are understock stores

o FOR i in origin stores that are still overstock for the SKU

- Compute the EP= (expected revenues of the actual
quantity - 1) - (expected revenues of the actual quantity)
– (cost of moving one additional unit from i to j –
present transportation cost from i to j)

o i* = origin with max EP

o Allocate one unit from the most promising origin i*

o Update the inventory state for store i* and store j

o Update the lot weight between the origin store i* and the
destination j

5.2.2. Computational complexity

57

The computational complexity of a generic algorithm can be computed as the
number of iterations made times the complexity of each single iteration, i.e. the
number of elementary operations that are executed at each step.

As said, the algorithm starts acting on a set of SKUs, thus the complexity is
firstly dependent on the number of SKUs. Secondly, the procedure run until all
the units that can be transferred are actually allocated, so the second determining
factor is the number of exchangeable units in the problem. Obviously, also the
number of stores in the origin and destination sets matter to determine the
computational complexity of the algorithm.

Basically, the number of iterations coincides with the number of SKUs. Then, for
each origin/destination, for each unit to be allocated from/to the each
origin/destination, an expected profit has to be computed for each
destination/origin store. The computation of this number takes constant time.
Subsequently, the maximum EP should be found in the destination/origin set; the
sorting algorithm takes O(nlogn) operations, where n coincides with the number
of destinations per SKU (D) in one problem or the number of origins per SKU
(O) in the other. All the he next updating operations in the cycle take constant
time.

Therefore, the overall running time of the greedy algorithm – for instance, for the
first problem – is estimated as S*O*D*u*DlogD = S*O*u*D2*logD , where S is
the number of SKUs in the problem, O the number of origin stores for SKU (on
average), D the number of destination stores for SKU (on average) and u the
number of moveable units for SKU (on average). Hence, in the worst case the
complexity is O(S∙N

3
∙u∙logN) where S and N are respectively the total number of

SKUs and stores in the whole problem.

Actually, in practice, the inner loop of the algorithm, that allocates one unit to a
destination, does not run over all the destination set every time since, as soon as
the units are allocated allocated, the status of each store is updated and then the
stores that are fully replenished are progressively removed from the list of
destinations. Vice versa, in the second problem the overstock stores that have
moved all their excessing units are gradually excluded from the origins list of the

58

loop. This process, together with the fact that it is unlikely that all the SKUs are
present in the majority of stores - and thus the total store number in the
destination/origin set is much lower than the maximum number N-, in practice
reduces the running time with respect to the worst case of complexity
O(S∙N

3
∙u∙logN).

Indeed, from the data on hand it has been calculated that the average number of
overstock stores per SKU is 4,2 for the first SKUs set and 24,88 for the second
one, with a maximum of, respectively, 24 and 91 stores. As far as the number of
understock stores are concerned, the average number per SKU is 17,65 for the
first sub-problem and 5,09 for the second with a maximum of, respectively, 55
and 27 stores.

These numbers justify the choice to cycle on the overstock stores list in the first
problem and on the understock ones on the second, to contain the overall number
of operations made by the procedure.

The greedy algorithms presented in this section are a good method to obtain a
solution to the problem in short times. Like all the constructive procedures, this
heuristics does not give any information about the goodness of the results as
well. However, given the dimension and the difficulty of the problem, it is
reasonable to think that such solution is not the best possible and thus it is
possible to obtain better results employing more sophisticated techniques .

5.3. Matheuristic approaches

As anticipated in Chapter 3, the resolution techniques for the combinatorial
optimization problems are basically divided into two big categories: the exact
ones, which can find the best possible solution and demonstrate its optimality but
with an higher computational complexity, and the heuristics, which are able to
get a good solution within a short time limit.

Recently, a new family of algorithms based on the hybridization of the two
approaches is rapidly rising among the communities of researchers. These are

59

the so called “matheuristics”, which will be first described in the next

introduction paragraph and then used to deal with the present problem.

5.3.1. Introduction to Matheuristics

Typically combinatorial optimization problems can be modelled as Mixed
Integer Programming (MIP) problems and the exact resolution methods are
therefore applied to the relative formulations of the MIP models.

However, exact methods show a certain number of disadvantages. First of all, for
several problems the dimension of the instances that can be actually solved is
limited: indeed, the variance of the CPU time is normally very high even when
applied to different instances with the same dimension for a certain problem, and
often it grows extremely as the instances’ dimension increases. Hence If the

optimal solution cannot be computed in an efficient way in practice, often the
efficiency is preferred to the guarantee of optimality. In other terms, the certainty
of finding an optimal solution is overlooked in favor of a good solution found
through heuristic methods within reasonable times. With regard to this,
neighborhood search based methods are likely the most effective class; indeed,
when integrated in higher level mechanisms like in the metaheuristics, these
approaches have been proven to be definitely effective to reach solutions close to
the optimal one in a large number of difficult problems. However, there no exist
modelling frameworks which are able to handle definitions and representations
of heuristics problems, i.e. there are no general-purpose metaheuristics solvers
available on the market.

Based on what stated above, it is not surprising that traditionally exact methods
and heuristic ones have been considered strongly different and separated, but it is
likely not completely true. Metaheuristic algorithms and MIP both have their
pros and cons, but they soul dot be considered incompatibles. Actually, due to
the complementarities of their features it seems more reasonable to combine
these two techniques in even more effective algorithms, able to exploit the

60

advantages of both approaches, trying to avoid their disadvantages as much as
possible.

The hybridization of different techniques is already common and consolidated
practice in the field of metaheuristics, but in the last years the same process has
been applied also to exact methods and methaheuristics, giving birth to a new
class of resolution techniques called “Matheuristics”. Matheuristics are generally
based on the idea of taking advantage of the strong points of both approaches, but
there does not exist an unique classification or a consolidated methology in such
field to give a more precise definition. A distinctive feature common to all the
matheruristics is the use of a mathematical model, or some tool derived from it,
in some way in a heuristic type structure, that is why these techniques are often
called “model-based metaheuristics”; but the structures used or the degree to
which the model tools are employed can be totally different from an approach to
another. For instance, there are cases in which the metaheuristics are used
directly within the linear programming procedures that use search trees, where
efficient metaheuristics are often used to get good solutions that permit to prune
the possibilities tree faster. Other cases use the opposite process in which exact
methodologies are used within the metaheuristic algorithm for the resolution of
sub-problems or for an optimal exploration of neighborhoods.

So, most of the cases can be grouped into two big categories:

1. Matheuristics in which heuristics methods intervene within an exact
method. This case requires that the optimization algorithms can be
modified integrating heuristics strategies able to speed them up and
allow them to handle bigger instances.

2. Matheuristics in which exact methods are used within an heuristic
algorithm. This second case is simpler to be realized since the base
components, i.e. the (meta)heuristic framework and the mathematical
model, have already been implemented.

The matheuristic algorithm that is being discussed in the next paragraphs used
the last approach.

61

5.3.2. A Matheuristic for the reactive allocation problem

In chapter 4 a Mixed-Integer linear programming model for the present problem
has been presented to solve the allocation problem, in place of the non-linear
original model. This MILP model however, given the complexity of the problem
and the resulting impossibility to produce a more efficient formulation (for
instance, eliminating the binary variables to model the transportation costs) , is
solvable only for instances of limited size. Actually, this limitation exists only in
the case one wants to reach the best solution. Indeed, if the optimality is ignored,
for instance setting a time limit, the solvers can handle problem of larger
dimensions and normally they are able to get feasible solution of good quality. In
the extreme case, it is possible to get at least an information on the lower bound
of the problem, solving the continuous relaxation9 of the MILP problem, which
can be done by the linear optimizers (LP solver) in a small amount of time even
for big sized problems.

However, solving the linear relaxation of the present MILP model is quite
senseless: allowing both variables, xijs and Cijt to be real would induce the model
to set most of the x variables to the maximum integer value they can get to
maximize the transferred units in the objective function, while the values of the
Cs, which in principle should drive the decision on which transfer to activate at
what cost, would be arbitrary set to the lowest real number possible to minimize
costs. So, the two kind of variables would lose their interconnection, which is the
real core of the problem, and thus the resulting solution would be comparable to
a random generated one which respect all the constraints. A more sensible
approach to the relaxation could be the partial relaxation, i.e. the relaxation of

9 A relaxation of a problem is a version of the problem with some requirements or constraints
removed (“relaxed”). This approach is used in branch-and-bound algorithms, for instance,
relaxing the constraints on the integer nature of variables (continuous relaxation); the solution
found by these methods is not necessarily a solution of the original problem, but a solution of
the original problem is a solution to the relaxation. It follows that in the case of a minimization
problem, the value of the optimal solution to the relaxation is a lower bound on the optimal
solution to the original problem, even if this bound is a not-necessarily-tight lower bound.

62

only the variables x, to preserve the information and consequent decision on the
transportation costs; however some trials have shown that, although this last
approach frequently gets to the optimal solution (i.e. the lower bound is tight
with respect to the optimum), it is not convenient in terms of time, since the
partial relaxed version of the model takes the same time or even more with
respect to the original version, in which the x variables can assume limited
integer values because of the constraints (3.3) and (3.2) instead of infinite real
values in the same range.

Initial Solution

In the previous paragraph it has been noted that the continuous relaxation
technique is not useful in this case to get a good initial solution with considerable
savings in running time.

On the contrary the first method, i.e. setting a time limit in the solver, is fully
applicable to get a decent initial solution to start with and its results are reported
in the results table at the end of the Chapter.

However, a different method to generate the initial solution has been chosen,
simply because it has shown to produce better results than time-limited
optimization with the same total running. In particular, the whole problem has
been subdivided in the two sub-problems stated in paragraph 5.1; the SKUs of
each sub-problem have been ordered by decreasing price as done in the greedy
algorithm of 5.2.

The initial solution has been built starting from the sub-problem in which
overstocked units for the SKUs are scarce in the system. The SKUs has been
divided into smaller subsets containing between 5 and 25 SKUs per instance –
according of the relative difficulty of each sub-problem, approximated with the
total number of units to be moved, which works as a proxy for the allocation
choices number – following the decreasing price order. For each SKUs subset the
relevant store subset has been identified to be part of the instance and the
maximum slot number t has been computed in order to contain the overall
dimension of each instance. Indeed, each instance size should be small enough to
be solved quickly, but as high as possible to enhance the allocation choices of the

63

solver, overcoming the myopic ones of the greedy, which only considers one
SKU at a time.

Then, the solution is created in a constructive way: starting from the highest
priced SKUs set the first instance is solved taking into account the initial lots
weights – the ones derived from the allocation of the “obvious” SKUs - and the
resulting new lots weights are saved; then the second instance inherits the
starting lots weights from the first one, optimize the allocation based on this
information and saves the lots solution to be inherited by the following instance
and so on. Basically, each instance is linked to the previous one by the
information about the lot weights that are already being transferred from an
origin to a destination, which influences the incremental costs of the stores pairs
which already exchange units and thus the allocation decisions of the subsequent
instances. This approach can be seen as an extension of the greedy logic reported
in 5.2. with the difference that in this case more than one SKU is considered ad a
time and that the information about the probabilities/expected revenues
variations is not present in the linear model.

Such procedure is then extended to the second sub-problem, the one in which the
units in excess in the overstocked stores are abundant with respect to the request
of the understock stores, in the same way starting from the lots weights generated
at the end of the first problem. For simplicity the following discussion will focus
mainly on the first sub-problem, mentioning the second one when necessary.

Heuristic Structure

In the previous paragraph it is described how to get a good initial solution of the
problem, however there is no guarantee of optimality for this current solution. It
is likely that such solution can be improved perturbing it and re-optimizing
selected subsets of variables. This means optimizing the problem fixing some
variables to a value, for instance the one of the initial solution, and let the solver
runs and explores the solution space to optimize the portion of the solution
variables left “free”. The resolution of this simplified model can bring to a

solution which is better than the previous one.

The matheuristic implemented here is based exactly on this procedure, iterated
several times in a local search framework. The neighborhood is represented by

64

the non-fixed variables, while the exploration and evaluation of the goodness of
each neighbor is done by the solver itself which, evaluating all the possibilities
and returning the best one of the possible solutions, is basically acting like a best
improvement type local search.

The window of non-fixed variable should be large enough to allow a relevant
search and escape the local optimum, but quite circumscribed such to avoid every
simplified model to run for long time. In the extreme case that also the simplified
MILP requires too much resolution time it is possible to set a time limit, hence
turning the search strategy into a first improvement like local search. However
the first approach, i.e. the limitation of the window dimension rather than the
running time, has been preferred.

The heuristic procedure can be summarized as follows:

1. Initalization:

a. Construction of an initial solution sol (through the
constructive approach explained in the initial solution
paragraph)

2. REPEAT

a. Using the solution sol some variables of the MILP model of
the problem are fixed

b. The MILP model is solved by the solver obtaining a new
solution sol_new.

c. Since the objective function of the MILP does not coincide
with the real objective function of the problem , through
which the goodness of the solutions is actually evaluate,
sol_new is not necessarily an improved solution. However, if
this new solution is effectively an improved solution, the
current best solution is updated setting sol = sol_new.

UNTIL all the predefined neighborhoods have been explored

65

Neighborhoods

The procedure just outlined in the previous paragraph is itself simple and easily
to be implemented, but is yet necessary to define a critical point for its
effectiveness: the strategy of selection of the variables to be fixed. Basically,
these variables represent the neighborhood of the local search and thus have a
strong influence on the algorithm results.

As mentioned in the previous paragraph, since an exact method is employed, the
neighborhood cannot be too large otherwise the resolution duration would be
again problematic. On the other side, it should contain as many feasible solutions
differing from the starting one as possible, such that the algorithm can explore
them, choose the best one and, this way, obtain an improvement.

The chosen formulation contains a large number of integer and binary variables,
part of which have to be fixed. Basically, the variables on which the strategy can
theoretically operate belong to two groups: the integer variables xijs and the
binary ones Cijt. As it was explained in the Chapter concerning the MILP model,
the variables of the second group are logically linked to the ones of the first type
through logical implication links. This means that, once the values of the
variables xijs are determined, it is possible to derive the values of the variables Cijt
by only using such logical constraints and the fact that , for each pair (i,j) of
stores, the solver will always choose to “activate” the slot with the lower t to

minimize transportation costs.

At this point, it is reasonable to adopt a similar behavior in the construction of
the neighborhood: the strategy of variables selection will only consider the xijs
variables to be fixed, while the variables Cijt will be left free or fixed depending
on the decisions made for the first type variables.

Indeed, if one decides to leave some variables Cijt free in a complete random way,
it is likely that these will refer to different constraints and thus the solver, in the
attempt to modify their value, would probably obtain unfeasible solutions and
thus would return a solution which is identical to the previous one.

The strategy should aim at selecting variables which are someway related one to
another, so that the software has maneuver margin to obtain solutions which

66

differ from the original one. The relation to allow an effective exploration of
other possibilities can be basically defined along two dimensions: the stores set
and the SKUs set. For instance, one can decide to free all the variables
concerning a specific stores subset or a specific group of SKUs. Alternatively, it
can be decided to contemporarily free some SKUs and some stores and re-
optimize the simplified problem. However it is difficult to arbitrary define
subsets of stores which are connected enough to create alternative feasible
solutions to be explored in the neighborhood. For instance, once one choses two
stores to be part of a subset, then she should consider, for each SKU that can
theoretically be exchanged between the two stores, at least a third store that is
exchanging such SKU with one of the two locations such to assure the presence
of at least an alternative allocation of the relative units. Although it is a laborious
process and it is difficult to contemporary keep the dimension of the window
under control and to make the exploration as complete as possible. That is why it
is preferable to define the neighborhoods as subsets of SKUs whose related
variables are set free.

Selection of the perturbation zone

Once the neighborhood structure has been defined, it is necessary to decide
which zone of the solution is more convenient to be unsettled, i.e. which regions
of the solution space have a higher potential to be improved. Indeed, given an
initial solution, there are regions able to generate improvements when unsettled
and others that are too bounded by the constraints to actually produce further
interesting solutions.

One of the simplest ways to choose such areas is to randomize the choice, even if
it means often looking over “useless” neighborhoods. As far as the present case

is concerned, the problem is so bounded and the interconnections among the
stores-SKU pairs so complex that a random approach is likely to produce poor
results. As a matter of fact, in the tests performed randomly no improving
solution was found and thus these approach has been discarded in favor of a
more effective one.

A different method, which has more chances to supply improving
neighborhoods, consists in selecting the SKUs to be set free starting from the
ones that are present in the highest number of stores and/or have an unbalanced

67

number of overstock and understock stores, in particular when the number of
source stores is much lower than the number of possible destinations. This choice
is justified by the fact that for these SKUs the number of understock stores which
are excluded from the allocation for scarcity of resources is potentially large.
Therefore it is expected that a release of the related variables can bring to the
identification of a better distributions of the units among the understocks,
excluding less profitable destinations - both in terms of expected revenues and
cost savings - in the light of the transfers of all the other SKUs of the whole
problem that, as usual, influence the marginal transportation cost for each origin -
destination store pair.

In practice, this reasoning has been implemented in two slightly different
subsequent ways, essentially dividing the procedure in two phases which differs
by the criterion of choice of the perturbation region.

In the first phase, at each iteration the SKU which is present in the highest
number of stores and that has an unbalanced number of overstock and understock
stores – with more understocks than overstocks - has been selected. Then, it has
been checked if there were other SKUs which are sold in the same stores or in a
subset of the them; the idea behind this last choice is to enlarge the window of
released variables to allow the solver to explore a wider portion of the solution
space which is someway connected – in this case the SKUs share part of the
stores set - and improve the solution, for instance pooling the transfers among
store into bigger batches thus reducing costs. Afterwards, all the x variables
relative to the just defined SKUs set have been left unestablished along with all
the variables Cijt (for the reasons explained before), and the model have been
optimized by the solver to get a new solution and go ahead with the heuristic
procedure.

Once the whole set of unbalanced SKUs have been examined, the definition of
the region to be re-optimized has been slightly changed to explore further
possibilities to improve the solution. During the first phase the neighborhoods,
i.e. the relative released SKUs, that have produced an improvement with respect
to the initial solution have been saved in a list of improved_SKUs, because for
these SKUs the initial allocation have shown to be not optimal and thus it is
sensible to challenge it in different ways, also combining one with another in the

68

release. This is the incipit of the second phase which starts from the best solution
of the previous stage and define the initial zone to be released as the first SKU of
the improved_SKUs list; if this perturbation results to be effective, the current
released SKUs set (released_SKUs) is maintained and another SKU of the list is
added to it, otherwise the last SKU added before the unsuccessful perturbation is
removed and a new one is added from the improved_SKUs list. The logic for the
determination of these new reshuffling zones is summarized below:

Initialization:

 The released_SKUs is set initially equal to the first SKU of the
improved_SKUs list. i=1 (the index i represents the number of the
iteration and, consequently, the index of the last SKU added to
released_SKUs from the improved_SKUs list at that iteration)

 The best current solution , best_sol, is set equal to the best solution
found at the end of the previous phase

REPEAT

 If the solution found with the i-th perturbation, soli , is better that the
current best solution best_sol, this last is updated setting best_sol =
soli ; else the last SKU added to the released_SKUs set before the i-th
iteration is removed, i.e. released_SKUs = released_SKUs -
improved_SKUs[i];

 In any case a new SKU is added to released_SKUs from the
improved_SKUs list: released_SKUs = released_SKUs U
improved_SKUs[i+1];

 i = i + 1

UNTIL all the improved_SKUs list has been visited.

Therefore, at each iteration the subset of SKUs that are released is expanded if
the latest solution improve the current best one or modified if this does not occur.
This is done to limit the dimension of the re-optimization window which

69

potentially can grow until it encompasses the whole improved_SKUs set, even if
it is unlikely that all the SKUs will become part of the final released set since, as
the window dimension grows, also the probability to escape the local minimum
and incur in a worse solution increases.

As far as the computational complexity is concerned, it is evident that number of
iterations is strictly defined by the number improving SKUs in the
improved_SKUs list, which in turn depends on the initial set of “unbalanced”

SKUs chosen in the initialization of the first phase. This implies that the whole
procedure will run for O(S) times and thus the whole matheruristic will take a
time roughly equal to O(S)*average resolution time of the simplified model.

Chapter 6

6. Results of the tests

The present Chapter reports the results on the tests made on the heuristic
procedures explained in Chapter 5. After an introduction about the data gathering
process and how the instances for the tests have been constructed, the tables
showing the comparative results of the different methods are presented and
commented.

6.1. Data gathering and instances construction

In order to compare the performances of the proposed models we real data from
an international Fashion Company which works with hundreds of franchising and
direct operated mono-brand stores were used. The data collected from the above-

70

mentioned company concern the North American market, in particular the United
States. Data used for the experiments and instance construction were limited to
the Fashion clothing items and to the Retail stores.

The sales reports of the past year, which are records that demonstrate
information on how the articles performed in terms of sales at the colorway level,
were the key source in the empirical data gathering. To split the colorway
quantity sold into single SKU’s sales the Size distribution report , which records

the statistical frequency of each SKU sales in the colorway assortment, was used.
To simulate a real situation, only the colorways that are intended to sell – i.e.
which are planned to be allocated in the stores in a given period – in the current
season, corresponding to the whole Spring/Summer (from February to August),
where considered. The current date, at which the reshuffling operation is
simulated to occur, was arbitrarily selected to be the 22 June of the current year;
such date is far enough from the beginning of the season to justify the
reallocation – due to a likely scarcity of resources in the warehouses - but quite
far from the end of the season to allow the operation to produce significant
effects, considering also that the transportation lead times can be relevant. For the
SKUs related to the intended-to-sell colorways, the expected sales and the high
service level quantity were computed as well as the inventory level at the current
date.

As far as the sales probability is concerned, the lambda of the Poisson
distribution for each SKU was calculated as the mean of the quantity sold of the
SKU from the starting of the current season to the current date (all days were
considered in the calculation, since the American stores never close). The choice
to focus only on the present season data is legitimate by the fact that several
Fashion product, being strictly seasonal and linked to the current fashion trends,
have never been sold before the current season. Clearly, this is not the most
sophisticated and precise way to estimate the mean of the distribution and indeed,
in reality, it is done through scenarios simulation and sampling; however, for
testing the goodness of the models there was no need to have a precise estimation
but just a realistic one. Once the lambdas for each SKU have been found, the
corresponding high service level quantities were calculated as the quantity
corresponding to the 95-th quantiles of the Poisson distribution having the λ of

the SKU as parameter.

71

For what concerns the inventory data, the stock position at the current date for
every SKU in the locations was drawn from Inventory reports of the stores; these
datasets record the inventory changes in the store’s stock by SKU code.

In the created instance, the weight of the articles is defined at the class level, i.e.
all SKUs belonging to the same class are considered to weight the same, while
the price extracted from the sales reports is considered constant for the single
code over all stores. Obviously, in reality the price of a single SKU can vary
across the stores, for instance because of promotions, however the mark down
amount is usually limited in the Retail channel and, in any case, this
approximation does not affect the model performance evaluation.

Lastly, the tariffs and zones information were provided by the logistic carrier in
charge for the transfer.

All that said, the SKUs which were in-stock ,and thus have no need to be
reshuffled, were removed from the input data to avoid creating uselessly big
datasets and only the codes for which all the required data (class, colorway, sales,
inventory…etc.) were available were included in the final version of the instance
inputs.

6.2. Experimental results

In this section the results of computational experiments conducted to compare the
performances of the various approaches explained in the previous chapters are
presented.

Most of the procedures were tested on an AsusTek PC with a Dual Core 2.16
GHz processor and 3 GB of RAM. The most memory consuming processes,
including the MILP run on the whole problem with time limit and the
matheuristic, run on an Acer computer equipped with a Quad Core 3.40 GHz
processor and 8 GB of RAM. The MILP models were coded in Mosel language
and solved by using the ILP solver Xpress IVE 1.24.22 while the constructive

72

algorithms were written in R language using the RStudio software version
1.1.423.

Table 2 Results of the tests made on the set of SKUs for which the total units in the system are
insufficient to cover all the understock needs.

Expected
Revenues

[$]

Costs [$] Expected
Profit [$]

∆ER
[%]

∆EP
[%]

Time
[s]

Greedy
(random order) 26018,71 4070,41 21948,30 78,46 50,54 59,15

Greedy (price
order) 26073,45 3863,92 22209,53 78,84 52,34 62,67

MILP with
time limit 25.338,87 2571,51 22767,36 73,80 56,16 127*

Initial solution
(random order) 25333,05 2750,08 22582,97 73,76 54,90 133

Initial solution
(price order) 25672,86 2688,85 22984,01 76,09 57,65 126,6

Matheuristic
(first phase) 25.854,47 2645,95 23208,52 77,34 59,19 295,8*

Matheuristic
(second phase) 25865,17 2645,95 23219,22 77,41 59,26 111,9*

73

7. CONCLUSIONS

Bibliography
Aarts , E. & Lenstra , J., 1997. Local Search in Combinatorial Optimization.
s.l.:John Wiley & Sons.

Anderson, E. W. & Sullivan, M., 1993. The antecedents and consequences of
customer-‐satisfaction for firms.. Marketing Science, p. 125–143..

Barnes, L., 2009. Fast fashion in the retail store environment.. Internationa
Journal of Retail and Distribution Management, pp. 760-772.

Boatwright, P. & Nunes, J., 2001. Reducing Assortment: An Attribute-Based
Approach.. Journal of Marketing, p. 50–63.

Broniarczyk, S., Hoyer, L. & Hoyer, E., 1998. Consumers’ Perceptions of the

Assortment Offered in a Grocery Category: The Impact of Item Reduction..
Journal of Marketing Research, 2(35), p. 166–176.

Bruce, M., Daly, L. & Towers, N., 2007. Lean or agile - a solution for supply
chain management in the textiles and clothing industry?. International Journal of
Operations and Production Management, pp. 151-170.

Campo, K., Nisol, P. & Gijsbrechts, E., 2000. Towards Understanding Consumer
Response to Stock-Outs.. Journal of Retailing, p. 219–242.

Chu, C., 1992. A branch-and-bound algorithm to minimize total flow time with
anequal release dates.. Naval Research Logistic.

Coraggia, A., 2009. Il supply chain management come strumento di marketing: il
caso inditex-zara. [Online]
Available at: http://tesi.eprints.luiss.it/5795/

74

Davis-Sramek , B., Stank, T. P. & Mentzer, J. T., 2007. Creating consumer
durable retailer customer loyalty through order fulfillment service operations..
Journal of Operations Management, p. 781–797.

De Carlo, F., Borgia, O. & Tucci, M., 2013. Bucket brigades to increase
productivity in a luxury assembly line.. International Journal of Engineering and
Business Management.

De Felice, F., Gnoni, M. G. & Petrillo, A., 2012. A multi-criteria approach for
sustainable mass customisation in the fashion supply chain.. International
Journal of Mass Customisation, Issue 4.

Ek, M. & Karlsson Steijffert, A., 2015. Optimization of sales in fashion retail by
warehouse integration in multichannels.

Giese, J. L., Johnson, J. L. & Wallace , D. W., 2004. Customer Retailer Loyalty
in the Context of Multiple Channel Strategies. Journal of Retailing, Issue 80, pp.
249-63.

Iannone, R. et al., 2013. Merchandise and replenishment planning optimization
for fashion retail.. International Journal of Engineering Business Management,
Issue 5.

Iannone, R., Martino, G., Miranda, S. & Riemma, S., s.d. Modeling fashion retail
supply chain through causal loop diagram. 2015 May, Volume 48, p. 1290–
1295.

Lam, J. K. C. & Postle, R., 2006. Textile and apparel supply chain management
in Hong Kong. International Journal og Clothing Science and Technology, Issue
18, pp. 265-277.

Lanzilotto, A., Martino, G., Gnoni, M. G. & Iannone, R., 2014. Impact analysis
of a cross-channel strategy in the fashion retail industry: a conceptual
ramework.. Senigallia (AN) - Italy, s.n.

75

Lanzilotto, A., Martino, G., Gnoni, M. G. & Iannone, R., 2015. Impact analysis
of a cross-channel retailing system in the fashion industry by a simulation
approach. s.l., s.n.

Lin, M.-H.et al., 2013. A Review of Piecewise Linearization Methods.
Mathematical Problems in Engineering, p. 8.

Martìnez-de Albèniz, V. & Boada Collado, P., 2014. Estimating and optimizing
the impact of inventory on consumer choices in a fashion retail setting.. IESE
Business School.

Martino, G., 2015. Supply Chain Management in the Fashion Retail Industry: a
multi-method approach fot the optimisation of performances, s.l.: s.n.

Munson, I., 2014. Economics Explained: Complements, Substitutes, and
Elasticity of Demand. [Online]
Available at: http://www.econogist.com/home/complements-and-substitutes
[Consultato il giorno 21 October 2018].

Radasanu, A., 2016. Inventory management, service level and safety stock.
Journal of Public Administration, Finance and Law, pp. 145 - 153.

Sen, A., 2008. The US fashion industry: A supply chain review. International
Journal of Production economics, 11 February, pp. 571-593.

Sloot, L. & Verhoef, P., 2005. The Impact of Brand Equity and the Hedonic
Level of a Product on Consumer Stock Out Reactions. Journal of Retailing, p.
15–34.

Tadei, R., Della Croce, F. & Grosso, A., 2005. Fondamenti di Ottimizzazione.
s.l.: Esculapio.

Thomassey, S. & Hapiette., M., 2007. Neural clustering and classification system
for sales forecasting of new apparel items. Applied Soft Computing, Issue 7, pp.
1177-1187.

76

Vaagen, H. & Wallace, W., 2008. Product variety arising from hedging in the
fashion supply chains.. International Journal of Production Economics, Issue
114, pp. 431-455.

Voss, S., Stutzle , T. & Maniezzo , V., 2009. Matheuristics: Hybridizing
Metaheuristics and Mathematical Programming. Annals of Information Systems,
Volume 10, pp. 1-270.

Wang, X., Chan, H. K., Yee, R. & Diaz-Rainey, I., 2012. A two-stage fuzzy-ahp
model for risk assessment of implementing green initiatives in the fashion supply
chain.. International Journal of Production Economics, pp. 595-606.

Fig. 6 The clothing and textile supply chain

Fig. 7 Feasibility polytope and optimum point position with respect to the objective function
direction.

Fig. 8 Local vs global optima in a non-convex function

Fig. 9 Poisson probability density function with different lambdas

Fig. 10 Initial inventory states with respect to the Poisson distribution and its parameters

