POLITECNICO DI TORINO

Faculty of Engineering

Master of Science in Electronic Engineering

Master Thesis

Development of an embedded system for
networking applications

Advisor:
prof. Danilo Demarchi
Candidate:

Francesco Gramazio

Company tutor
Telsy SPA

Ing. Fabrizio Vacca

December 2018

Summary

Nowadays, people in the world get in touch with about 100 embedded systems per day,
that not only have the aim to realize specific functions but also are a way to introduce
innovations. According to the World Trade Statistics, in 2009 the 98% of all programmable
devices were embedded, and if in 2010 there were about 16 billion of embedded systems,
in 2020 it is estimated that this number will increase, astonishingly reaching 40 billion
units. With this capillary spreading of devices, privacy and information are in constant
danger: according to Cybercrime Report 2016, cyber-attacks grow of the 350% every year.
It is of the foremost importance, therefore, to secure communications through embedded
systems, especially for companies (and in particular military companies). National defence
agencies must deal with confidential information, thus they have to develop solid devices
for security: clear data has to be encrypted prior to the transmission and decrypted after
the reception, to ensure that every information that comes out into the external world is
safe, with no possibilities to externally monitor the traffic network and to go back to the
original clear information.

In this work, we propose the design of a cipher IP board called ENA (Embedded Net-
worked Appliance), aimed to ensure a complete security of IP traffic exchanged on strategic
networks for military applications, in order to guarantee a safe exchange of information
from one host to another. The device is intended to be installed both at the transmitter
and the receiver side, to hide information during the transmission. The Encrypting IP box
is available for both optical and copper-based wired Ethernet Interfaces. It is designed for
real time applications; the device can be used for VoIP transmissions and for time-sensitive
applications, for this reason the UDP protocol is used for transmission. The device is com-
posed by two different parts: a carrier board, that contains components to provide power
to the whole system, and the main module, which is a proprietary company board. The
main focus of the study is the design of the specific carrier board, with proper interfaces,
for the realization of the IP cipher, and the development of the microprocessor and mi-
crocontroller software, to execute the different tasks (e.g. download of the FPGA bitfile
into the Flash Memory, configuration of the FPGA and the microprocessor application for
Ethernet frame manipulation and encryption).

At the end of the design the system is tested with an external traffic analyser to analyse
the throughput, and the working conditions are specified. The minimum frame size that
allows a correct encrypting of the information through Ethernet has been discovered to

be 1280byte. Thanks to this work, it has been possible to highlight the limits of the
microprocessor and, although with the current restrictions the ENA could not be suitable
for being an enterprise product, it represents a good proof of concept of how deeply military
companies have to deal with the topic of security and confidentiality.

II

Contents

Summary
1 Introduction

2 System overview
2.1 Embedded Systems
2.1.1 Introduction
2.1.2 Embedded Hardware
2.1.3 Embedded Software
2.1.4 Types of Embedded Systems
2.2 System Architecture of the designed embedded system
2.2.1 Microcontroller STM32F756 IGK6
2.2.2 QSPI-NOR Flash Memory
223 IMX6 e
224 Cyclone IV oo

3 System Architecture
3.1 Carrier Board Design and Custom Module Structure
3.1.1 Carrier Board Design L.
3.1.2 The ENA
3.2 STM Microcontroller Software
3.2.1 Initialization TOKEN
322 LEDs1& 20N
3.2.3 Communication TOKEN
3.3 IMX6 Microprocessor Software
3.3.1 Kernel IP Forwarding
3.3.2 User Space application for IP Forward
3.3.3 Encryption and Decryption of Ethernet Packets

4 Throughput Tests
4.1 Description of the test devices
4.1.1 Ethernet interface hardware architecture of ENA
4.1.2 Ethernet interface hardware architecture of Smarc ROJ
4.1.3 Software comparison oo

22
24
24
31
35
35
36
36
41
41
42
42

4.2 Throughput performance of Kernel IP Forwarding
4.2.1 General Purpose Throughput test
4.2.2 ROJ eNUC Throughput test
4.2.3 ENA Throughput test
4.2.4 Performance Conclusions

4.3 Throughput performance with application IP Forwarding

4.4 Throughput performance with Encrypting and Decrypting application . . .

4.5 Comparison between ENA with IP Forwarding application and Encrypt-
ing/Decrypting Application

Conclusion

A Open System Interconnection/International Standard Organization

IP-Internet Protocol
B.1 Overview and main characteristics
B.2 IPvd packet

C Secure Hash Algorithm
D Networking

References

v

63

68

70

72
72
73

75

76

78

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

4.1
4.2
4.3
4.4
4.5

Global Embedded System Market Revenue in USD Billion [5] 4
General scheme of an Embedded System 7
System Block Diagramo oL 10
Flash memory interface connection inside microcontroller [21] 12
The scheme of the QuadSPI interface in STM microcontroller [21] 13
Complete command that is send to the Flash Memory 13
FMC blocks diagram [21] Lo Lo 15
SRAM asynchronous read access timing in extended mode [21] 16
SRAM asynchronous write access timing in extended mode [21] 17
Synchronous Muxed A/D write access [20] 19
Asynchronous Muxed A/D read access [20] 19
Configuration Cycle Waveform [1] 21
General Design Flow Chart, 23
Carrier Board Schematic: Express Connector Page 26
Carrier Board Schematic: SFP Black Optical Module Page 27
Carrier Board Schematic: SFP Red Optical Module Page 28
Carrier Board Schematic: Main Power Page 29
Block Diagram of the main board 33
Flow Chart of STM software 37
Flow Chart for QSPI writing process Part I 43
Flow Chart for QSPI writing process Part IT 44
Flow Chart for FPGA Configuration Part T 45
Flow Chart for FPGA Configuration Part IT. 46
Flow Chart for FPGA Configuration Part 11T 47
Flow Chart for FPGA Configuration Part IV 48
Flow Chart for FPGA Configuration Part V.. 49
Network configuration of the Devices 50
Ethernet interface architecture of ENA 52
Ethernet interface architecture of Smarc ROJ 53
Test System 54
General Purpose System Throughput Test 55
Packets vs Size Graph of General Purpose System 55

\Y%

4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

4.18

ROJ Smarc Throughput Test 57

Packets vs Size Graph of ROJ Smarc 57
ENA Throughput Test 58
Packets vs Size Graph of ENA 59
Comparison Throughput test 60
Comparison Packets vs Size Graph 61
Throughput Test of ENA with IP forwarding application. 62
Packets vs Size Graph of ENA with IP forwarding application 62
Throughput Test of ENA with Encrypting and Decrypting application . . . 64

Packets vs Size Graph of ENA with Encrypting and Decrypting application 64
Sweep Throughput Test of ENA with Encrypting and Decrypting application 66
Comparison between Throughput test of IP Forwarding Application and

Encrypting Application Lo 67
Zoom of comparison between Throughput test of IP Forwarding Application
and Encrypting Application 67

VI

List of Tables

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10

Embedded Flash memory organization

COM Express A-pins T
COM Express A-pins IT
COM Express B-Pins I
COM Express B-Pins IT
PinOut of the Interface between STM and FPGA
PinOut of the Interface between STM and IMX6
PinOut of STM e
Pinout of FPGA Cyclone IV

Data of Throughput of General Porpose System in Mbps.
Number of frames per second of General Porpose System
Data of Throughput of ROJ Smarcin Mbps
Number of frames per second of ROJ Smarc
Data of Throughput of ENA in Mbps
Number of frames per second of ENA
Data of Throughput of ENA with IP forwarding application in Mbps
Number of frames per second of ENA with IP forwarding application
Data of Throughput of ENA with Encrypting and Decrypting application

in Mbps
Number of frames per second of ENA with encrypting and decrypting ap-

plicationo

VII

Chapter 1

Introduction

The purpose of this thesis is the design of an Ecrypting IP Box. The scope of an Ecrypt-
ing box is to ensure a complete security of IP traffic exchanged on strategic networks for
military applications.

Nowadays the privacy and the informations are in constant danger; according to Cyber-
crime Report 2016 [4], the cyber attacks annually grow of 350%. So it is evident how the
companies and in particular military companies have to develop solid devices for security.

The scope of this device is to guarantee secure exchanging of information from one host
to another host. The clear data before being transmitted has to be encrypted to ensure
that each information that comes out to the external world, is safe with no possibility to
monitor externally the traffic network and to go back to the original clear information. At
the other side another Encrypting IP Box has to be install to decrypt the informations
that arrive. The Encrypting IP box is available both for optical and copper based wire
Ethernet Interfaces. It is designed for real time applications; so the device could be use
for Voip transmissions and for time-sensitive applications; for this reason UDP protocol is
used for the transmissions (appendix D).

The thesis is divided into five chapters: in the first chapter a description is given re-
lated to the problem of security, the use of cipher equipment and the summery of each
chapter. In the second chapter a detail description of the embedded system world is made
and the reason why, nowadays, the embedded systems are dominating the entire consumer
electronics and non-consumer landscape. Moreover, a detailed description of the different
embedded systems that are present today and the main components that form a complete
embedded system is given. A brief overview of the design embedded system (ENA - Em-
bedded Networked appliance) is also present and where it is positioned into the different
functional categories of embedded systems. The third chapter deals with the main project
steps for the design of the Encrypting IP Box and a detailed description of each step is
present. In the fourth chapter, the Ethernet interfaces of the design device and of a simi-
lar commercial device are analysed initially, then theoretical performance and graphs are
described to perform critical analysis on the device. Then performance tests are carried

1 — Introduction

out to measure the throughput of the device; comparisons are performed to comment the
different results. In the fifth chapter a summary of the entire work is performed and con-
clusions are made.

Thanks to this work it has been possible to analyze the performance of the device and it
has been possible to decree the final specifications and if it would be possible a future use
of the device for enterprise realizations.

Chapter 2

System overview

2.1 Embedded Systems

2.1.1 Introduction

Nowadays, most processing systems are not personal computers, but they are devices that
communicate with the external environment; they have a specific function and, in spite of
what we think, in most cases, they don’t require to open programs or to have interfaces
with mouse and keyboard. These systems are called embedded and they dominate the mar-
ket all over the world even if they are not so known as the general purpose systems. At
the moment, it is considered that a person in the world gets in touch daily with about 100
embedded systems. It isn’t a surprise if it is thought that a lot of devices have almost one
microprocessor like smartphone, cash machine, washing machine, dishwasher, credit card,
ink-jet printer, scanner, up to the automotive domain where cars today contain dozens
of embedded systems, such as transmission control, cruise control, etc; any kind of device
that runs on electric power already has a computing system or will soon have a computing
system embedded on it.
The embedded systems not only have the aim to realize specific functions but they are
also a way to introduce new innovations. In history we have witnessed the advent of dif-
ferent industrial revolutions. Starting from the 60s, a second industrial revolution broke
out which led to the development and diffusion of digital technologies. We have moved
from big computers, that occupied entire rooms, to personal computers, to today’s huge
spread of laptops and smartphones, helped by the possibility to connect all over the world
through the network and the internet. Of course this diffusion has a heavy impact on
the embedded system market which has a market share of more than 90% of the total
electronic sector. According to the World Trade Statistics, in 2009 98% of programmable
devices were embedded and if in 2010 there were about 16 billion embedded systems, in
2020 it is estimated that 40 billion units will be reached. [2]
According to an article of Zion Research titled "Embedded Systems Market", the global
demand of embedded systems market was valued USD 159.00 billion in 2015 and is ex-
pected to become 225.34 billion by the end of 2021 (figure 2.1).

This market growth is driven also by the huge demand, in the last years, of medical

3

2 — System overview

Global Embedded System Market Revenue, 2015- 2021 (USD Billion)

8

22534

g 8

2

Revenue (USD Billion)
w P
8 8

8

159.0

g

(=]

2015 2016 2017 2018 2019 2020 2021

M Revenue

Source: Zion Research Analysis 2016

Figure 2.1: Global Embedded System Market Revenue in USD Billion [5]

devices such as ECG embedded systems, heart rate monitors and glucose level monitors.
The exponential growth of embedded systems, the advent of the internet and its enormous
development, has allowed the growth of what is known as the Internet of Things. It is a
new era where not only people are connected to the network through PCs, smartphones
and tablets but also through any kind of object.

A question that could arise spontaneously is why this huge diffusion of embedded systems
compared to that general purpose systems. The answer is easy: the main benefits of em-
bedded systems is the low power consumption, the very small size and low cost per-unit,
due to the possibility to reduce the complexity of the circuits that have to perform few
dedicated functions and the possibility to integrated it in every object that surround us
daily.

An embedded system is a system where different areas work together; it integrates

hardware circuitry with software programming techniques. The software used in embed-
ded system is a set of instructions that perform specific tasks. A general scheme of an
embedded system is represented in figure 2.2.
The core of an embedded system is the electronic hardware that is on the Printed Circuit
Board. Broadly, the typical structure of an embedded system consists of a device that
interacts with the external world through Input/Output interfaces that can be A/D Con-
verters(which convert an analog physical signal sent, for instance, by a sensor to a digital
signal) or UARTS interface or infrared ports. All the information is processed in a Central
Processing Unit and is stored in a memory.

2.1.2 Embedded Hardware

Hardware is fundamental, it is the physical core that contains different particular compo-
nents, depending on the requirement and specification. Some of them are:

4

2 — System overview

e General Purpose Microprocessors: They are single chip devices that contain an Arith-
metic & Logic Unit, a Program Counter, a Stack Pointer(SP), registers, interrupts
circuits, different clocks all integrated on a single chip. It is necessary to add a
memory(ROM and RAM), memory decoder, oscillators, serial and parallel ports ex-
ternally. It is used to perform a huge amount of computations and to provide many
applications and tasks that required a great complexity compared to a microcon-
troller. Summing up it has a high cost, a high power consumption, a large memory
size, flash and cache, external bus interface with a memory management unit to
handle a huge amount of read/write operations and a greater memory usage.

e Microcontrollers: It is a computer system-on-chip; so it contains an integrated pro-
cessor, a memory, a small amount of RAM, peripheral devices(timers, DAC, DAC
and serial communication devices), all on one chip. Preferably used in small appli-
cations with precise calculation. So it is a very compact and low power chip. Of
course, it has physical limits like a limited amount of ram , less flexibility due to its
not expandability, less reliable and low performance. Nevertheless it is low cost, low
power and very small size. A microcontroller also provides a set of pins that allow
the use of sensors, actuators and transfer of data to other devices.

o DSPs/ASIP: An Application Specific Instruction set Processor (ASIP) is used for
specific applications like digital-signal processing, telecommunications and embedded
control. The advantage of the ASIP in an embedded system is the flexibility notwith-
standing good performance, power and size. A Digital-Signal Processor(DSP) is a
class of ASIP; it is a single chip designed to have very high performance, numerically
intensive tasks (like multiply, add, shift).

o ASICs: Application Specific Integrated Circuits are designed for a specific application
for example Digital to Audio Converter or Mpeg2 Decoder. They have a very high
performance but a very high cost and they are not flexible.

o FPGA/CPLDs: Field Programmable Gate Array is a fully programmable customized
chip. The big advantage is the cost and reliability. It is a bidimensional array of
logic blocks and flip-flops that allow the user to configure different interconnections
between blocks. It has the possibility to design a processor, a ROM, a RAM, a DSP
and any kind of block onto a single chip.

There are different types of FPGA according to its physical structure:

— Reprogrammable FPGA(SRAM Based) that can be reprogrammed endlessly
when need. It is very flexible but has a higher cost.

— One time programmable FPGA based on antifuse: it can be reprogrammed only
once. Usually used for particular applications like aerospace, satellite and very
high security app.

The Complex Programmable Logic Devices differs from FPGA mainly due to its
architecture. It consists of more programmable sum of product logic arrays with
small numbers of clocked registers. So they are less flexible but have the advantage

5

2 — System overview

of predictable timing delays and have higher logic interconnection ratio. Differently
The FPGA architecture is dominated by different interconnections. A CPLD contains
an embedded flash which stores the configuration, whereas an FPGA has to be
configured each time it is switched on.

o System on Chip (SoC): It contains a CPU, Peripheral devices, Power Management
Circuits, Communicaion interfaces(UART, SPI, I2C') on a single Integrated Circuit.
It can include different programmable processors. For exampe a SoC can contain an
ARM Cortex+ Custom GPU + DSP + FPGA.

e Input Devices: They take input from the outside world and route the signal into the
different blocks. Inputs can be different types of sensors, switches, etc.

e Output Devices: They are the result of the different operations that occur in the
microcontroller. Different examples of outputs can be LED, LCD, Actuators, Mo-
tors,Relays, etc.

e Bus Controllers: They handle all the communications, and the transfers among the
different components inside the embedded system. Some examples of bus controllers
are Serial Buses (SPI, I,Cetc) RS232, RS485 and Universal Serial Buses.

e Memories: They are used to store data. In an embedded system a Non-Volatile RAM,
Volatile RAM, DRAM,etc are usually present.

It is possible to compare the structure in figure 2.2 with the well-known Desktop
Computer. In an embedded system the primary memory, central processing unit, and all
the peripheral components are built on a single chip that is called Microcontrollers. On
the other hand a desktop computer has to handle larger data dimension compared to an
embedded system. Personal computer has to elaborate huge amounts of data and transfer
it faster between CPU and memory, CPU and Input/Output devices. To store such a so
huge amount of information, secondary memories like Hard Disks or CD-Rom are needed
moreover it implements different methods like direct memory access or multi-level cache
that are not necessary in embedded system.

2.1.3 Embedded Software

Software is essential for any type of embedded systems. It provides all the functionality to
the system. Due to the different nature of the tasks that an embedded system has to per-
form, different languages are used; for example one language can be used to obtain a good
and precise control-dominated application but isn’t the best choice for signal processing
applications or for network interfaces applications. Four types of different languages are
employed:

e Software languages: use instructions to describe the sequences to be executed. There
are different types of software languages that depend on the abstract level: assembly
and high level. An assembly language uses a set of instruction written in symbolic
form and perform very simple operations on registers and memories. High level

6

2 — System overview

EMBEDDED SYSTEM

Inputs: Datas,

Qutputs:
Actuators,

User interfaces

Figure 2.2: General scheme of an Embedded System

languages like C, C++, ADA, etc are used to construct more complex functions,
loops, arrays etc.

o Hardware languages: Verilog and VHDL(Very high speed integrated circuits Hard-
ware Description Language) are the most popular hardware languages. They are
used to describe the system with discrete event semantics and structural hierarchy.
They are also used to simulate digital integrated circuits.

e Dataflow languages: They are used to describe systems with processes that run
concurrently and communicate through queues. They are composed by nodes, arcs
and data. Typically they are used for signal processing applications.

e Hybrid languages: this language combines different type of other languages like Es-
terel that combines hardware semantics with software language.
2.1.4 Types of Embedded Systems

Embedded systems can also be classified into different types based on performance of
the microcontroller, functional requirements and performance. They are divided into four
different functional categories:

o Stand alone embedded systems: This type of systems does not require an host like
a PC but they work by themselves. They take the input from analog or digital
sources, they process the information, compute calculation and convert the data; in

7

2 — System overview

the end they give the results (outputs) that are used to control motors, switches or
show information onto the display. Examples of stand alone embedded systems are:
digital cameras, microwave ovens, dish washes, videogame consoles, etc.

¢ Real time embedded systems: Real-time systems are systems that monitor and con-
trol an external environment. Sensors, input interfaces and actuators are used to
connect the environment to the systems. So they have the ability to react when an
event happens; for example vehicle systems for cars, aircrafts, radio communications,
are examples of real time embedded systems.

o Networked embedded systems: These systems handle different networks to access the
resources. They can use LAN or internet to connect. The connection of course can
be wired or wireless. An example of networked embedded systems can be a home
security systems that is connected with protocol TCP/IP or any kind of system that
is connected to a web server and can be controlled by a web browser. The designed
Encrypting IP Box system is a networked embedded system.

e Mobile embedded systems: they are used in smartphones, digital cameras, etc.

2 — System overview

2.2 System Architecture of the designed embedded system

In figure 2.3 a general block diagram of the designed system is represented. The hardware
embedded is composed by:

o A microcontroller(STM Family): It has the main role to download the bitfile of FPGA
from the USB Cik-Token to the Flash Memory and every time the system is switched
on, it sends the bitfile to the FPGA. The microcontroller has also some Status LED.
The user has the possibility to erase the entire internal microcontroller flash memory
and the external memory with a button. It has internal buses to communicate with
the microprocessor and the FPGA. It has also the task to switch on and off the
microprocessor and the FPGA.

o A microprocessor(IMX Family): It handles all the network communications with the
outside world. The packets that arrive through the Ethernet are processed inside
the microprocessor and are sent to the FPGA. It has two Ethernet interfaces that
manage the network traffic; a USB OTG to connect the IMX to an external Computer
and some Status LEDs. The microprocessor is programmed through an internal
connector.

e« An FPGA: It has the task to process the internet packets, if they are not encoded
they are encrypted by the FPGA and viceversa. The FPGA has to be programmed
each time the system is switched on because the chosen FPGA is SRAM based.

o A flash Memory (QSPI): The Bitfile and other informations (like logs) are saved
inside the flash memory.

o Inputs/Outputs devices: The main Inputs are the Cik-Token USB and the two SFP
Ethernet modules that have the role of both Input and Output. The different output
LEDs are used as status indicators that are used to inform the user about the status
of the machine. The system has a reset bottom to reset all the machine.

All the most important components used are analysed and a brief explanation of the
features are given focusing mainly on the most important characteristics that are used to
achieve the technical project specifications.

2.2.1 Microcontroller STM32F756 IGK6

A microcontroller is a self-contained system. The big advantage of which is the flexibility
of use. In fact it is possible to change its work very easily only by programming it again.
It contains peripherals, integrated memories, registers and a processor. In the designed
device the microcontroller is the main component that powers on all the other devices and
manages all the other components. When the device is powered, only the mictrocontroller
is activated and it handles all the principal tasks that involve the other parts.

The used microcontroller STM32F756 is based on ARM 32-bit Cortex -M7 RISC core
with a maximum frequency of 216 MHz. An ARM CPU is a RISC (Reduced Instruction

9

2 — System overview

12-36V Vdc

Reset Button

—— Zeroize

™

ENA- Main Board (Quad Core)

Console

EXTERNAL
INPUT

INTERNALI/O

UsB OTG USB HOST iMX6

Block Diagram Encrypting IP Box

Figure 2.3: System Block Diagram

Set Computing) machine and this is the first big difference from the Intel CPU (CISC);
so the instructions in RISC CPU are smaller and allow to achieve a linear and simpler
architecture compared to the CISC machine. RISC architectures are defined "load-store"
because they allow to access the memory with simple specific instructions that are used
to read and write the data in the registers of the microprocessor.

For its intrinsic simpler architecture, an ARM CPU has a low power consumption and a
better heat dissipation that are the main features required in portable devices like smart-
phones, tablets and embedded systems.

The Cortex-M family are ARM microprocessor cores that are designed for use as dedi-
cated microcontroller chip. The Cortex-M7 core has a single floating point unit (SFPU)
which supports all the data-processing instructions; it also implements a full set of DSP
instructions. It features a six-stage pipeline with branch speculation that tries to guess
which way a branch will go before this is known; it improves the flow in the instruction
pipeline to achieve high effective performance in the microprocessor.

The STM32F756 embeds up to 1MB of Flash memory, 320kB of SRAM and has a

10

2 — System overview

FMC(Flexible External Memory Controller) with up to 32-bit data bus. The FMC in-
cludes three memory controllers: NOR/PSRAM, NAND and Synchronous DRAM. In the
project the SRAM memory controller is used to program the integrated FPGA in the
board. It embeds, also, a Quad SPI memory interface that is used to interface the micro-
controller with a QSPI flash memory that stores the bitfile of FPGA. In low-power, three
different modes can be used: sleep, stop and Standby modes. It offers also a true random
number hardware generator(RNG) and a cryptographic acceleration cell for AES 128, 192,
256, HASH(SHA-1, SHA-2) and HMAC.

In the following subsections the main features that are used in the design of the device
are analized.

Embedded Flash memory(FLASH)

The Flash Memory interface manages Cortex-M7 and TCM accesses to the Flash mem-
ory. The TCM(Tightly-coupled memory) has the purpose to provide low-latency memory
respect the unpredictability of the cache. In fact the Tightly coupled memory has deter-
ministic access time. The accesses through the cache are not deterministic since the data
can be in the cache(hit) or the data must be fetched from the main memory(miss). So the
TCM provides a more efficient memory accesses. The Flash memory interface implements
the erase and program Flash memory operations and it has the capacity up to 1Mbyte.In
figure 2.4 the flash memory interface connection inside the microcontroller is shown. The
embedded flash has three interfaces:

e 64-bits ITCM interface that is connected to the ITCM bus of Cortex and it is used
for instruction and data read access; the write accesses is not supported on ITCM;

e 64-bits AHB interface that is connected th the AXI bus of Cortex through the AHB
matric and is used for code execution, read and write accesses. The AHB interface
supports the DMA data transfer;

e 32-bits of AHB register that is used for control and status register accesses.

It is possible to see that after the flash interface, the flash bus is 256 bits.

The flash memory has a main block that is divided into 4 sectors of 32 Kbytes, 1 sector
of 128 Kbytes and 3 sectors of 256 Kbytes. In table(2.1) all the information about the
memory that is required to write correctly the program code and to place the code in the
right part of the memory is summarized.

11

2 — System overview

ARM Cortex-M7

4KB
I'D Cach

2 S
>
< &
AXlto
multi-AHB

IILT

Chrom-ART
LCD-TFT || Accelerator

(DMA2D)

ITCM Bus (64bits)

=
-

Flash interface

FFlash busl
256 bits

N

AHB 64-bit
data bus

Bus Matrix - S

Flash register
On AHB1

Flash
memory

MSv35952V1

Figure 2.4: Flash memory interface connection inside microcontroller [21]

Table 2.1: Embedded Flash memory organization

Name Block base address Sector size
Sector 0 | 0x0800 0000 - 0x0800 7FFF 32 KB
Sector 1 | 0x0800 8000 - 0x0800 FFFF 32 KB
Sector 2 | 0x0801 0000 - 0x0801 7FFF 32 KB
Sector 3 | 0x0801 8000 - 0x0801 FFFF 32 KB
Sector 4 | 0x0802 0000 - 0x0803 FFFF 128 KB
Sector 5 | 0x0804 0000 - 0x0807 FFFF 256 KB
Sector 6 | 0x0808 0000 - 0x080B FFFF 256 KB
Sector 7 | 0x080C 0000 - 0x080F FFFF 256 KB

Quad SPI Interface

12

The STM microcontroller has a dedicated Quad SPI interface that is specialized to commu-
nicate with Quad SPI Flash memories. The Quad SPI Flash Memories are Serial Memories
that use the SPI(Serial Peripheral Interface) with four wire for data. The main benefit of
using QSPI is higher speed. Compared to the traditional SPI Flash interface that has four

2 — System overview

lines (CLK, CS, MISO, MOSI), the QSPI uses 6 lines. From figure 2.5 the QSPI has:

CLK - the clock output;

DQ[3:0] - the serial I/O bidirectional signals that are used to transfer address, data
and command information;

nCS - the chip select output;

- QUADSPI
‘ Registers / Clock
control management SPI FLASH
| CLK
CLK
BK1_100/SO
AHB < =
< I BK1_101/SI gfgg
FIFO || shift register § gm—:gg Q2P
T BK1 nCS =
. J-I MS35315Vv1

Figure 2.5: The scheme of the QuadSPT interface in STM microcontroller [21]

The QSPI communicates with the Flash memory sending commands. In figure 2.6 the
format of a complete command is represented. Each command is formed at least by one
instruction phase, the address phase, the alternate phase and the data phase.

Instruction phase: an 8-bits of instruction is sent once every clock cycle on DQO line
that specifying the type of operation;

Address phase : 4 bytes are sent to the Flash memory to select the address. The bits
are sent 4 bits every clock cycle using the 4 serial line DQ[0:3];

Alternate phase: 1 to 4 bytes are sent to control the mode of operation.

Data phase: during this phase any number of bytes can be sent or received from the
Flash memory. The data is sent 4 bit every clock cycle using the four I/O pins.

Instruction phase: 8 bits | Address phase : 4 Bytes

Alternate phase:

Data phase: 64 bytes
1-4 bytes

Figure 2.6: Complete command that is send to the Flash Memory

13

2 — System overview

Clock-out Capability

The microcontroller has the possibility to use one Pin(PC9) as special clock output. It is
possible to configure it with the prescaler the frequency clock of the pin. This pin is used
as clock for the FPGA.

14

2 — System overview

Flexible memory controller (FMC)

The STM microcontroller has to write the bitfile, stored in the QSPI, in the FPGA. Before
the read/write operations it is necessary to configure the memory controllers. The FMC
consists of four main blocks as shown in figure 2.7:

« AHB interface
o NOR Flash/PSRAM/SRAM controller
e SDRAM controller

e NAND controller

FMC interrupts to NVIC

FMC_NL (or NADY) b+ NOR/PSRAM
signals
FMC_CLK 4
From clock
controller NOR/PSRAM) ~ NOR/PSRAM / SRAM
HCLK memory FMC_NBL3:0] 2 shared signals
controller
FMC_A[25:0)
-AlRS:0] » Shared signals
FMC_D[31:0] J
Confi ti FMC_NE[4:1]
Orgé?;;aréon FMC_NOE L NOR / PSRAM / SRAM
NAND FMC_NWE shared signals
memory FMC_NWAIT]
\/ controller MG NGE 5
FMC_INT ,> NAND signals
FMC_SDCLK]
FMC_SDNWE
SDRAM FMC_SDCKE[1:0] | .
controller FMC_SDNE[10] ~ SDRAM signals
FMC_NRAS
FMC_NCAS)

MS30443VE

Figure 2.7: FMC blocks diagram [21]

The FPGA contains an SRAM cell where the bitfile have to be stored so it is necessary
to configure one of the four banks of the FMC. It is chosen to use bank 3 to perform the
operations of configuration and bank 0 to perform check write/read operations between

15

2 — System overview

FPGA and microcontroller; this division is chosen to have relaxed timing for configura-
tion(done only once) and better performance in read/write register operations. The FMC
generates the appropriate signal timings to drive the different types of memories and in
the case of SRAM a non-multiplexed mode and normal asynchronous mode is selected.
In this mode, the following parameters that depend on the memory datasheet have to be
computed and set:

e ADDSET: address setup time
e DATAST: data setup time
e ACCMOD: access mode

These parameters give the FMC the flexibility to access static memories. There are four
extended access modes(A,B,C and D) that allow the possibility to change the timing.
With the ADDSET and DATAST it is possible to modify the timing to read and write
operations. The two variables are multiple of the clock core of the micro. In figures 2.8
and 2.9 it is possible to see the timing for read and write operation and how the two
parameters modify the timing.

Memory transaction

A[25:0]

NBL[3:0]

NEx

LY UL

NOE \ /

I ;

I I }

NWE ——— 1 ‘

High } } }

I | I

1 1 |

. \ | [ala driven

D[31:0] ! / ; by memory |
| |

I ADDSET | DATAST N

b HCLK cycles -~ HCLK cycles o

MS30454V1

Figure 2.8: SRAM asynchronous read access timing in extended mode [21]

16

2 — System overview

Memory transaction

)

A[25:0]

NBL[3:0]

NEx

NOE

NWE

D[31:0] _D—(data driven by FSMC >_
ADDSET | (DATAST+1)
HCLK cycles ah HCLK cycles

M530455V1

Figure 2.9: SRAM asynchronous write access timing in extended mode [21]

Universal asynchronous receiver transmitter (UART)

An embedded system often communicates with the external world. It could be to send and
receive commands, or for debugging purposes or to transfer data to another device. One
of the most used interfaces is the UART. It is used for different purposes, one of them is
to get the debug console functional and to receive information after a command is sent. It
supports synchronous and asynchronous half-duplex and full-duplex communications; it’s
also possible to use DMA (direct memory access) for multibuffer cofiguration. A bidirec-
tional communication requires two pins minimum: Receive data (RX) and Transmit data
(TX).
The serial data that are transmitted and received through the pins are composed by:

e An Idle Line prior for the priority;

e A start bit;

o A data word(7 or 8 or 9 bits) with the least significant bit first;

e 1 or 2 stop bits;

o A status register;

o Data registers(receive and transmit)

o A baud rate register

17

2 — System overview

2.2.2 QSPI - NOR Flash Memory

The MT25Q is a multiple input/output serial Nor Flash memory device manifactured
in 45nm. It has a security protection where each sector can be locked independently.
To access the full memory storage, the device includes an extended address register; the
base address is 3-Byte address and can only access 128MB of memory; with the extended
address register (3 bits [2:0]) it is possible to select one of the eight 128MB segments of
the memory. In the device, this mode is enabled to store all the bitfile of FPGA and to
have enough space for the audit file.

2.2.3 IMX6

The iMX 6Quad is a 32-bit processor that feature implementation of the quad ARM Cor-
tex -A9 core, which operates at speed up to 800MHz. The Cortex-A family compared
to the Cortex-M family (used in STM microcontroller) is the only that includes a mem-
ory management unit(MMU); the MMU is harware component that handles all memory
operations associated with the processor. So in other words it is responsable for all the
memory management and its main feature is to perform the translation of virtual memory
addresses to physical adresses. It includes a General Interrupt Controller(GIC), 32kB of
L1 Instruction cache, 32kB of L1 Data cache and 1MB L2 cache, shared by four cores.
The IMXG6 is the core of the device; it handles the communications through the Ethernet.
The received data are sent to the FPGA with a 16 bit protocol communication.

External Interface Module(EIM)

The External Interface Module manages the interface to the external devices. It includes
the generation of the chip select, clock, and the control of all the external signals. It is
possible to use asynchronnous communication to access device in SRAM-like mode and
synchronous access. The interface with the FPGA is a multiplexed Address/Data mode ,
so address and data bits are sent on the same pin. This reduces the number of wires but
the speed is lower. The pins used are EIM__DA[15:0]. The writing operation is performed
in syhchronous access; when the address is on the line, the Chip Select enable, write enable
and LBA are pulled down, so at the next rising edge of the clock the address is sampled,
then the LBA is pulled up and the Data are written. For the reading operation, instead,
an asynchronous access is performed. The Chip select is pulled down, then the LBA is
pulled down when the Address is ready on the line and when the Output enable has a
transition from high to low, the data can be read. After one data is read, the chip select
is released. In figures 2.10 and 2.11the timing of the operations in details are present.

MAC-NET

The MAC-NET core handles the process of the different networking protocols, such as
IP protocol(Appendix B) and TCP. It also implements a hardware acceleration block
to optimize the performace of network controllers. The IMX6 supports different speed
configurations (10/100-Mbit/s) and gigabit full-duplex operations. The Ethernet interface

18

2 — System overview

EIM_BCLK

EIM_ADDRxx/

EIM_ADxx Last Valid Address,

EIM_CSx_B

EIM_WE_B

EIM_LBA_B

EIM_OE_B

EIM_EBx_B

r
EE—

WE4

—

]

‘

Write Data }

WE®&

WE8—|

WE‘I4—'L

—-

WET7—

WE9—

WE11 —

Figure 2.10: Synchronous Muxed A/D write access [20]

start of

acc

ess

end of
access

|

NTOLK /T
MAXCSO
EIM_CSx_B)—
EIM_ADDRxx/ WES!—~ = -~ MASD\Lr
EM_ADx > ~ddr. V1 (V1))P
[T WE32A— — WE44
EIM_WE_B —
WE39—+| : H
EIM_LBA_B
- WE3BA—| o lewess
EIM_CE_B
WE37—+ [-— —-1 -—\WE38
EIM_EBx_B j
— MAXCO—|

Figure 2.11: Asynchronous Muxed A/D read access [20]

used is a SFP transceiver. The small form-factor pluggable is a compact transceiver that
is used both for telecommunication and data communications applications. It interfaces
a network device to a fiber optic. It is also compatible with different communication
starndards and has a transmission rate ranging from 100Mbps up to 10 Gbit/s. All the
communications needed a standard model to transmit informations, so different standards

were born.

One of the most famous technologies to connect computers, routers, printers all over
the world is Ethernet. In Ethernet, devices wait for a free time slot to communicate in the
network and the waiting device transmits when there is no transmitting data. The medium
though the data travel, can be a coaxial cable, a twisted pair cable, or a fiber optics(like in

19

2 — System overview

this device). Ethernet technology defines technical specifications at the physical lever and
at the MAC level of the ISO/OSI model network (Appendix A). The system divides the
data into shorter pieces called frames. The basic structure of an Ethernet packet(frame)
is recived by the datalink layer. The main elements of a frame are:

o Preamble: The starter is a sequence of 7 bytes of alternating 1 and 0. This sequence
of bits is used to "wake up" the receiver, to synchronize the clocks of the transmitter
and receiver.

o Start Frame Delimiter(SFD): The eight byte indicates the beginning of the ethernet
frame.It is immediately followed by the MAC address.

e Destination MAC address: It is an uniquely number that contains the LAN address
of the destination and it is composed by 6 bytes.

o Source MAC address: It is the address of the source.

o EtherType: It is composed by 2 bytes and indicates the type of protocols or the
length of the data.

e Payload: It contains the real data that are transmitted. It has a minimum lentgh of
48 bytes and if the minimum length is not achieved a padding is added. If the length
is above the maximum value, the data are split into different packets.

o Frame Check Sequence(FCS): It is a CRC(Cyclic redundancy check) that allows to
check the presence of transmission errors. The receiver computes the CRC with an
algorithm and compares it with the CRC that is received.

2.2.4 Cyclone IV

A Field Programmable Gate Array (FPGA) is an integrated circuit that has the possi-
bility to be configured by a designer after manufacturing. In fact, it contains an array of
programmable logic blocks. It is possible to realize complex logic functions with a very
high scalability.It also includes memory elements, that can be simple flip-flop or more
complex block memory like SRAM. Altera Cyclone IV is a low power FPGA. It features
6K to 150K logic elements, up to 6.3Mb of embedded memory, up to 360 18x18 multi-
pliers for DSP processing applicatons and data rates up to 3.125 Gbps. It includes up to
30 global clock (GCLK) networks and up to eight PLLs with five outputs. It is possible
to dinamically reconfigure the PLLs. It also supports SDR, DDR, DDR2, SDRAM and
QDRII SRAM interfaces and supports the use of error correction coding bits on DDR and
DDR2 SDRAM interfaces.

The Cyclone IV uses SRAM cells to store the configuration data. Due to the volatile type
of memory, the configuration data must be download in the FPGA each time the device
powers up. There are different way to configure the device: AS, Ap, FPP and JTAG con-
figuration schemes. In this device a fast passive parallel(FPP) configuration is performed
using the STM32F756 microcontroller. The configuration data that is stored in the QSPI
is transferred to the FPGA on the DATA/[7..0] pins. The configuration data is transferred

20

2 — System overview

one byte per clock cycle. After the configuration , the registers and I/O pins must be
initialized, then the device enters in user mode. To perform the configuration a Cycle
State Machine is to be designed following the cycle waveform shown in the data sheet. A
fast passive parallel(FPP) configuration is performed; in this way 8 bits are latched into
the FPGA on every rising edge clock. In figure 2.12 it is shown the configuration cycle
waveform. After the device is configured, its registers, I/O pins have to be initialized.
The configuration phase consists of 3 stages: reset, configuration and initialization. When
nCONFIG is low, the device is in reset mode, with the transition low-to-high of nCONFIG,
the FPGA starts the configuration. When the nCONFIG goes from 0 to 1, it releases the
open-drain nSTATUS pin, so it is pulled high by the pull-up resistor and now it is possible
to configure the FPGA. After the FPGA has recived all the configuration data, it release
the CONF DONE pin and a transition low-to-high is performed. When the initialization
is done and the FPGA is in user mode, the INIT DONE pin is pulled up. Now the FPGA
is ready to perform its operations.

D(N-1)
nCONFIG ||,
nSTATUS]
CONF_DONE | A
pek — TLT L L wee WL LY LI L e N
DATA __ HighZ /" D0 N\ D1/D2\ D3/ =+ DN __High-Z
User1/0s High-Z e e X User [/0
INIT_DONE r
MODE Reset X Configuration <+« Confiquration X Initialization e+ Y User- Mode

Figure 2.12: Configuration Cycle Waveform [1]

21

Chapter 3

System Architecture

In this chapter a detailed description of the system architecture and all the design steps
is done. In the figure 2.3 a general block diagram of the designed system is represented.
The system is composed mainly by two big subsystems:

e the carrier board that contains the components that provide power to the whole
system and the interfaces to the external world like USB TOKEN, LEDs,reset but-
ton,Zeroize button, USB OTG and SFP connectors.

e the main module that contains all the active components that manage the informa-
tions that arrive from the external world like the microcontroller, the microprocessor,
memories, buses,ecc.The main module is called ENA (Embedded Networked Appli-
ance)

The ENA is put in contact with the carrier board through an Express Connector.

The used carrier board is a developer carrier board that was designed by Telsy with
different modules that can be used for development of different applications. The main
scope of this thesis is the design of the system and the evaluation and measurement of
the performance of the ENA. At the end, if the performance are satisfactory a custom
designed carrier board will be produced and in the section 3.1.1, the custom carrier board
details are analysed. A flow chart of the general designed steps is made in figure 3.1 and
in the following sections all the steps are described in details. It is possible to notice from
the general block scheme (2.3) that the microcontroller has the rule to manage all the
other components so when the ENA is switched on, the STM is turned on; all the other
components are still off. For this reason, first, the STM software is developed to perform
all the tasks needed for the correct download of the bitfile into the FPGA and to handle
the correct reading of the USB Token. After that,if the FPGA works correctly, it is turned
on the microprocessor IMX6 and the network transmission can be handled; a detailed
description is in section 3.1.2. The last step is related to the tests and measurements to
provide a good precise features and to establish performance; the details are discussed in
the chapter 4.

22

3 — System Architecture

Carrier Board Design

STM Microcontroller Software

IMX Microprocessor Software

Tests and measurements

NO YES

Y

No enterprise
product

Good performance?

Figure 3.1: General Design Flow Chart

23

A 4

Possible
Production

3 — System Architecture

3.1 Carrier Board Design and Custom Module Structure

In this section it is analysed the custom designed carrier board with its schematic pages
and the pins of the express connector. The ENA, instead, has already been realized for
other applications and it is covered by copyright, so only a brief description of the hardware
and pins is made.

3.1.1 Carrier Board Design

The main play role of the carrier board is to provide power supply to the different parts of
the system. The main power source is the 230V electric power that is reduced to the range
(12-36)V with an external power supply. The system includes also a Li-Ion Battery with
a charger, so that, when there is a blackout, the device continues to work. The external
inputs/outputs integrated into the carrier board are the following:

e Plug for 12-36V Vdc;
o 2 LEDs Battery;
e 2 SFP Optical Connector
e 2 LEDs for Lossy in SFP Connection
o Zeroize Button
e Red LED for Antitampering
o Reset Button
« USB Token
e OTG Micro-USB
e 3 LEDs for IMX6 information
e 2 LEDs for STM information
A list with the used components with the relative explanation is done in the following:

e Dual Input Li-Ion Battery Charger LTC4078. It is a linear charger that is able
to charging a single-cell Li-Ion battery from wall adapter. It has a maximum 22V
rating for wall adapter and the charging stops if the power source exceeds the over-
voltage limit. To avoid high increasing of temperature the LTC4078 has an internal
feedback regulator that maintains a constant die temperature also during high power
operations. Two pins of the charger battery provide charge informations. They are
connected to two leds. The pin CHRG is activated(pulled down) when the device
is charging, and when the cycle is completed, the LED turns off. The PWR pin is
pulled down, so the LED turns on when there is a valid input charging(i.e. when the
input supply is greater than the undervoltage and less then the overvoltage) and it
turns off when the wall adapter is removed.

24

3 — System Architecture

o Stand-Alone Fuel Gauge IC. The DS2782G+ is an integrated circuit that can mea-
sure voltage, temperature, current and can estimate the capacity of the rechargable
lithium battery. It gives also information of capacity estimation remaining and the
percentage. The calculations are stored into an EEPROM chip. It is used to under-
stand if there is a voltage onto the battery, the temperature, if the current passes
and charges the battery correctly. It is possible to program it with an I2C. Due to
the fact that the voltage of I?C from the STM is too low (1.8V) a voltage level
translator is used;

« Voltage-Level Translator TCA9406 is a 2-bits bidirectional I2C' voltage-level trans-
lator. This allows the device to interface between higher logic signal levels(The
DS2782G+ needs 3.3V) and lower logic levels(1.8V of STM);

e LT8614 is a Synchronous Step-Down Switcher regulator. The LT8614 is used to
mantain a very stable voltage also at high frequency. It minimizes the EMI emissions
and mantains a very stable voltage up to 2MHZ. It has also a very low quiescent
current to have high efficiency with smal load current. The device is used to deliver
3.3V to the other components and to provide independent voltage 3.3V to the two
SFP connector.

e LD1117. It is a Low drop-out voltage regulator needed to provide a fixed and stable
voltage output 1.8V.

o A single inverter buffer/Driver with open-Drain output is used to connect the switch
button to the microcontroller. A "standard" switch is normally open and when it is
pushed, it closes, but the Zeroize button is normally closed and when it is pushed
has to be opened. To do this, an inverter is used.

e Two SRVO05 integreted circuits are used. They are a 10A diode array to protect the
USBs connector against ESD and high surge events;

o Noise suppression filters that are applied to all the USB connectors to suppress noise
for differential signal line without distortion in high speed transmission due to the
high coupling.

e LEDs. The anode of the LEDs is connected to the main board through the COM-
Express and the cathode is connected to the ground. So when a high logic level is
asserted, the Led switches on.

In the following, it is included the schematic of the custom carrier board with some notes for
the PCB Designer. Some components are not used in this project but a space for a possible
welding of the chip is considered for future company applications. This components are
marked into the schematics with NF.

25

3 — System Architecture

100,.] xoddi

mumom Ssa1dx3 WOD

ey
N LSO T577

Q2150 05 8577 LAY
N 20 Z577

U ¥ N 5577
WO, ¥
MLAIUS LSO 77

(IWSTUT STT T

ao
N

|

|

S R R

|

IQ\%.“\\%\N

Figure 3.2: Carrier Board Schematic: Express Connector Page

26

3 — System Architecture

SFP BLACK Side

V-
SHP Comreclonr
LLACA S/

Figure 3.3: Carrier Board Schematic: SFP Black Optical Module Page

27

3 — System Architecture

SFP RED Side

S

NS
A3
N

3

e
SGMILTXT N 1]
TOORF

o
High when there i loss of
‘modulated signal

Figure 3.4: Carrier Board Schematic: SFP Red Optical Module Page

28

3 — System Architecture

AN
JaMmod Uley wwancs | o |
a
o[| wo| T o con
HUS THY T | vt
LS N 75 S,
10110AU0D) UMO(-daIS ZHING'T VF @ SAE TN Mo[en) o
oo
V8 (TI81) 1019TT6LTPL HSAN -AM
HONVO AJHLLVE
121 ANo HLNYE
1013 01’ AN1Adooot
6710 T N
821D B
P
AV ALY ASTULXANOL ASTULXANLY N [
£ 1 oo]
03] T o] wd] i 01 T —
ATl K
dIN -IM 001d oola
X%
.
8 L s 14 €

Figure 3.5: Carrier Board Schematic: Main Power Page

29

3 — System Architecture

Express Connector

The motherboard integrated a COM-Express female type TYCO_3-63184916 with 220pins
but not all the pins are used. A list with the used pins is done in the tables 3.1, 3.2, 3.3 and
3.4. The COM Express provides to the main board the 12V, the Voltage battery (3.6V)

and the physical ground.

Table 3.1: COM Express A-pins |

PIN Signal Note
Al GND Ground
All GND Ground
A18 ZEROIZE It connects the Zeroize botton to the STM
A19 ATD_LED_A Antitampering Led
A20 ATD_BEEP_A Antitampering Beeper
A21 GND Ground
A22 RS485- DS-101 Data -
A23 RS485+ DS-101 Data+
A24 | WAKE-UP DS-101 Wake up
A47 V_BATT(3V6) Voltage from the Li-Battery
A51 GND Ground
A57 GND Ground
A60 GND Ground
A61 SGMII TX2+ SGMII Tx Line connects to the Red Switch SFP
AG2 SGMII TX2- SGMII Tx Line connects to the Red Switch SFP

30

3 — System Architecture

Table 3.2: COM Express A-pins I1

PIN Signal Note
A63 GPIO(1V8) It connects a LED to the IMX
A64 SGMII TX1+ Connected to the A61
A65 SGMII TX1- Connected to the A62
A66 GND Ground
A67 GPIO2(1V8) It connects a LED to the IMX
A68 SGMII_TX0+ SGMII Tx Line connects to the Black Switch SFP
A69 SGMII TXO0- SGMII Tx Line connects to the Black Switch SFP
A70 GND Ground
A85 POWER_ ON(1V8) Connected to 1.8V
A93 GPIO4(1V8) It connects a LED to the IMX
A98 SERO_TX(1V8) UART Transmitter IMX
A99 SER0_RX(1V8) UART Reciver IMX
A100 GND Ground
A101 SER1_TX(1V8) UART 1 Transmitter IMX
A102 SER1_RX(1V8) UART 1 Reciver IMX
A103 GND Ground
A104-A109 VCC Power Input (+5V or +12V) default value=12V
A110 GND Ground

3.1.2 The ENA

The Main custom module is the core of the device; it contains the principal components:
the FPGA, the microcontroller, the microprocessor, the QSPI and all the used buses. In the
figure 3.6 a Block Diagram of the main board is shown. For each main component a brief
description of the pins and their functions is made for the explanation of the schematic.

STM32F756

In this subsection the pinout of the STM is done, focusing the attention on the main used
pins. The pins are divided into different ports. In the tables 3.5,3.6 and 3.7,the pinouts
and the pin descriptions are present. The STM is connected to the FPGA with a Bus of
16 bits; the FPGA stores the configuration data in SRAM cells, so the Bus is composed
by a Data Bus of 16 bits where the data travel, a 10 bit Address bus where the address
of the registers is passed to the FPGA during the read and write operations and the
signal control pins (write enable, output enable, chip select). The STM has also the task
to power on/off the FPGA and to manage the interrupt from FPGA with the Power On
control Signal and Interrupt signal. It powers on/off the microprocessor IMX6 and sends
the BOOT parameters. The STM uses an UART to communicate with the IMX6 receiving
informations and sending command. Lastly, it shares a bus with the QSPI memory to read
and write data. The JTAG Interface is used to program the STM.

31

3 — System Architecture

Table 3.3: COM Express B-Pins I

PIN Signal Note
B1 GND Ground
B11 GND Ground
B18 | USB_CR_VCC(5V) USB Power +5V
B19 USB_CR+ USB Differential Line+
B20 USB_CR- USB Differential Line-
B21 GND Ground
B31 GND Ground
B33 12C_CK(1V8) 12C IMX CLK for Battery Managment Chip
B34 12C_DAT(1V8) 12C IMX DAT for Battery Managment Chip
B39 USB3 VCC Micro USB OTG IMX6 Power 5V
B40 USB3_1ID Micro USB OTG IMX6 ID
B41 GND Ground
B42 USB3- Micro USB OTG IMXG6 -
B43 USB3+ Micro USB OTG IMX6+
B44 USB1_VCC USB Host IMX6 Power (internal to the device)
B45 USB1- USB Host IMXG6 - (internal to the device)
B46 USB1+ USB Host IMX6 + (internal to the device)
B49 | SYS RESET(1V8) Reset Button
Table 3.4: COM Express B-Pins 11
PIN Signal Note
B51 GND Ground
B54 GPIO1(1V8) LED1 STM
B57 GPIO2(1V8) LED2 STM
B60 GND Ground
B61 SGMII RX2+ | SGMII Rx Line connects to the Red Switch SFP
B62 SGMII RX2- SGMII Rx Line connects to the Red Switch SFP
B64 SGMII RX1+ Connected to B61
B65 SGMII RX1- Connected to B62
B68 SGMII RXO0+ | SGMII Rx Line connects to the Black Switch SFP
B69 SGMII_RXO0- | SGMII Rx Line connects to the Black Switch SFP
B70 GND Ground
B&0 GND Ground
B100 GND Ground
B103 GND Ground
B104-B109 VCC Power Input (+5V or +12V) default value=12V
B110 GND Ground

32

3 — System Architecture

Black
Legend i
Final Debug/
User Develop

uController STM32F756
————— cveLone
BUS 8/16

DDR3

uProcessor IMX6 Quad Core

Console |CTRL

3V3ior

UART UART UART i
TTL |Rs485 | USB TTL TTL LAN
1v8 1v8 (LAN)

Figure 3.6: Block Diagram of the main board

FPGA-Cyclone IV

The FPGA is interfaced with the STM microcontroller and with the IMX6 microprocessor
with two different buses. The STM is interfaced with the FPGA with a Bus of 16 bits of
data and 10-bits address. Instead, the IMX6 is connected with a multiplexed Data/Address
of 16-bit.The Pinout of FPGA is in table 3.8.

33

3 — System Architecture

Table 3.5: PinOut of the Interface between STM and FPGA

SIGNAL Function/Description | Connection | Direction
nEMC_BLO0 Memory (Data Low) FPGA Out
nEMC_BL1 Memory(Data High) FPGA Out

EMC_OE Memory(Output Enable) FPGA Out

EMC_WE Memory(Write Enable) FPGA Out

EMC_CS1 Chip Select for FPGA FPGA Out
nINT_ FPGA Interrupt from FPGA FPGA, Int=0; | In

nRST FPGA Reset FPGA FPGA, Rst=0; | Out
EMC__A0-EMC__A5 Memory(Add 0-5) FPGA Out
EMC A12-EMC_A15 Memory(Add 6-9) FPGA Out
EMC_ DO-EMC D1 Memory(Data 0-1) FPGA I/0
EMC_D2-EMC_D3 Memory(Data 2-3) FPGA I/0
EMC_D4-EMC_ D12 Memory(Data 4-12) FPGA I/0
EMC_DI13-EMC_D15 Memory(Data 13-15) FPGA I/0
FPGA_CLK FPGA Clock FPGA Out
FPGA_CRC_ERROR Crc Error from FPGA FPGA In
FPGA_ INIT DONE Init. Signal from FPGA FPGA In
FPGA_CONFIG_DONE | Conf. Signal from FPGA FPGA In
FPGA_nSTATUS FPGA Signal Status FPGA In
FPGA_nCONFIG FPGA Config Signal FPGA Out
FPGA_PWRON Power On Control Signal | FPGA, Off=0 | Out
nFMC_NE4 CS for FPGA registers FPGA Out

Table 3.6: PinOut of the Interface between STM and IMX6

SIGNAL Function/Description | Connection | Direction
IMX BOOT CTRLO0-1 Control Signal IMX6 Out
IMX BOOT CTRL2 Control Signal IMX6 Out
IMX_BOOT_CTRL3 Control Signal IMX6 Out
IMX BOOT CTRIL4 Control Signal IMX6 Out
IMX BOOT CTRL5-7 Control Signal IMX6 Out
IMX_ BOOT_ CTRLS-9 Control Signal IMX6 Out
IMX_ BOOT_CTRL10 Control Signal IMX6 Out
IMX_BOOT_SELO-1 Sel. 0 and 1 IMX6 Out
nUCC IMX6 RST 3V3 Reset for IMX6 IMX6; Out
UCC_IMX6_ _PWRON _ 3V3 Power On IMX6 IMX6; Out
UCC_IMX6_PW_EN Pw Enable for IMX6 IMX6; Out
UCC_IMX6_RXD_3V3 Rx UART from IMX6 IMX6 Out
UCC_IMX6_TXD_3V3 Tx UART to IMX6 IMX6 In

34

3 — System Architecture

Table 3.7: PinOut of STM

SIGNAL Function/Description Connection | Direction
PWR_GOOD Power Supply GOOD ERR=0; In
ATD _ALARM Alarm of Antitampering ALARM=0; | In

QSPI_CLK Interface QSPI(Clock) QSPI Out
QSPI_NCS1 Interface QSPI(Chip Select) QSPI Out
QSPI_Do-1 Interface QSPI(DO0-1) QSPI I/0

QSPI_Ds3 Interface QSPI(D3) QSPI I/0

QSPI_D2 Interface QSPI(D2) QSPI I/0
TMS/SWDIO JTAG Interface PC In
TCK/SWCLK JTAG Interface PC In

TDI JTAG Interface PC In
TDO/SWO JTAG Interface PC In
TRST JTAG Interface PC In
STM32_LED1_A_ 3V3 LED1 STM32F 756 ON=1; Out
STM32_LED1_A_ 3V3 LED1 STM32F 756 ON=1; Out
UART7_RX 3V3 Rx UART from PC PC In
UART7_TX_3V3 Tx UART to PC PC Out
USB_FS_N USB- Interface USB TOKEN | I/O
USB FS P USB+ Interface USB TOKEN | I/O

3.2 STM Microcontroller Software

In this section the role of the STM, its behaviour and the different functions of the code
are analized. In figure 3.7, the flow chart of the STM set up is represented. After the power
on of the ENA (so the power on of STM), the STM has to be configured to open in a right
way the USB Token. Then, two STM Leds are switched on to communicate that the USB
configuration is done and it is possible to plug in the USB Token. The USB Token has to
be identify; after that the bitfile is write into the flash memory. If the process ends without
errors, it is possible to configure the FPGA. At the end of the FPGA configuration, the
microprocessor IMX6 is switched on.

3.2.1 Initialization TOKEN

After the power on of the STM, it is necessary to configure the USB host. A USB Token is
used to download the FPGA bitfile into the board. The Token is a USB pen-drive with a
dedicated chip and the possibility to plug in a micro SD and a SDCard. It contains two file
systems: one is the Virtual System USB and the second is a FatFs folder called DISC_ 1.
The DISC__1 is the folder of the microSD. In DISC_1 a folder is present named with the
serial number of the device. Each device has an unique serial number, so in this way, every
single USB token is associated to its device.

35

3 — System Architecture

Table 3.8: Pinout of FPGA Cyclone IV

SIGNAL Function/Description | Connection | Direction
EMC_BL0(IO/-BLE) Memory(Data Low) STM In
EMC_BL1(I0/-BLE) Memory(Data High) STM In

EMC_OE Memory(Output Enable) | STM In

EMC_WE Memory(Write Enable) | STM In

FPGA CS1 Memory(Chip Select) STM In
FPGA_INT Interrupt to STM STM Out
RTS_ FPGA Reset of FPGA STM In
EMC_ A0-A9 Memory(Address 0-9) STM I/0
EMC_D0-D15 Memory(Data 0-15) STM I/0
FPGA_CLK FPGA Clock STM In
FPGA__CONFIG Configuration Signal STM I/0
FPGA CONFIG DONE Configuration Done STM Out
FPGA CRC ERROR CRC Error Signal STM Out
FPGA INIT DONE Init. Done Signal STM Out
FPGA_PWRON Power On Controll STM In
FPGA_STATUS Status Signal STM Out
EIM__BCLK Clock from IMX6 IMX In
EIM__CSN Chip Select IMX In
EIM_DAO0-15 Data/Address 0-15 IMX I/0
EIM_EBO0-1 Enable Signal IMX In

EIM_LBA Load Signal IMX In

EIM_ OE Output Enable IMX In

EIM_RW Read Signal IMX In

EIM__WAIT Wait Signal IMX Out

If a different token is plugged in, it is no possibility to open the folder and to perform
all the next operations. In the folder is present the bitfile of the FPGA named "fpga.rbf".

From now on, if a Token USB is plugged in, an interrupt is sent to the STM.

3.2.2 LEDs1 & 2 ON

After the Token Initialization, two LEDs are switched on. Before do this, the PIN 1/0
have to be configured. LEDs are output pin and they not require a high output maximum

frequency. If one of the two leds remains off, some problems occur.

3.2.3 Communication TOKEN

It handles all the functions to communicate with the token, to write the Bitfile into the
FPGA and to communicate with the FPGA. The STM waits until a USB is plugged in.

36

3 — System Architecture

STM Initialization

All the pins are set, and the
initialization procedure is completed

LEDs 1 & 2 ON

LEDs 1 and 2 of STM are initialized
and are switched on to communicate
that the microcontroller is ready

A

Communication TOKEN

When the TOKEN is put in,
identification of the token is
performed, the writing of the

configuration file of FPGA into the

QSPI is performed, and the

configuration of FPGA is made.

Write QSPI . .
Identification TOKEN FPGA Configuration
The Configuration file of the FPGA from . . L
The Token is Identify, and if the Token is the USB is written into the Flash The FPGA is configured and the bitfile is
N e " o : y downloaded into the FPGA SRAM. If the
Right, it is possible to write its content Memory. If the write operations are configuration is completed without

into the QSPI completed successfully, the FPGA is 9 " plete

errors, the microprocessor is turned on.
programmed

IMX6 Power On

All the configurations are done and
the IMX6 is turned on to start che
network communication

Figure 3.7: Flow Chart of STM software

37

3 — System Architecture

When a USB is put in, an interrupt is sent to the STM, so the machine passes from
a Disconnected state to a Connected state. After that, it is necessary to verify that the
token has the correct serial number of the device. It is a function into an infinite loop;
after that the FPGA is configured, and the IMX6 is switched on, STM does nothing.
First of all, it is needed to process in loop the USB host Backgroud task, in this way
when the USB TOKEN is plugged in, an interrupt is sent to the STM and the USB Class
passes from DISCONNECT to HOST USER,_ CLASS ACTIVE so the application state
is : APPLICATION_READY. So when the USB is put in, it is possible to verify the
correctness of the Token. Then it is written the Bitfile into the QSPI. After that, even if
the STM is turned off, the bitfile still remains into the Flash Memory but to configure
the FPGA the TOKEN must be plugged in. Then the FPGA is configured and the bitfile
is write into the SRAM of FPGA. Details of the functions are reported in the following
subsections.

Identification Token

When a Token is plugged in, it is necessary to perform an identification to understand
if the token is a valid token. Every single [P BOX has a serial number written into the
Flash Memory of the STM. So a TOKEN has a unique identify serial number that has
to correspond to the serial number of the machine. The serial number is the name of a
directory into the pSD DISC_ 1 CARD. If the path with the serial number is correct and
the directory is correctly opened, it is possible to written the bitfile contained into the
directory.

Write QSPI

The Bitfile is in the folder that has the Serial Number as name, so the first thing to do is
to open the folder and read the file "fpga.rbf". After that it is possible to compute the total
length of the file. In the QSPI, it is not included only the bitfile but, before it, an Header
is written and at the end of the bitfile a footer is included. So it is computed the total
size taking into account of the total length. The QSPI Flash memory can be eresed only
512 Bytes every time, so the total number of blocks is computed. Then, all the blocks are
erased. The Header contain a number called "Magic", the length of the bitfile and number
of blocks. So the computed Header file is written into the QSPI. Every time a block of
512Bytes is read and write, it is verified the correctness of the operations; if there are
some errors or differences between what it is written and what is read, the operation is
stop immediately. Then it is verified the correctness of the written data. A reading cycle is
performed and the two data are compared. During the operations a SHA-256 is computed
to verify in any time the corruption of the file. At the and of all writing cycles, the final
Sha-256 is computed and it is written at the end of the Bitfile into the Flash memory. A
flow chart of the Download of the bitfile into the FPGA is in figures 3.8 and 3.9.

38

3 — System Architecture

FPGA Configuration

Before the FPGA Configuration, it is necessary to power on the FPGA and set pins in
properly way. All the output pins are put in default mode, in this way no conflicts are
possible. The FPGA requires an external clock to perform the configuration and read the
data, so with the STM it is possible to set a special pin (PC9), that is used as clock pin.
A clock of 108 M H z is selected.

Then, the bus that connects the STM with the FPGA has to be initialized and configure.
The FPGA pins are placed in different STM ports, so it is necessary to configure different
Port GPIO (D, E, F, G). The FPGA has an SRAM that stores the bitfile, so the FMC
(subsection 2.2.1) of the STM has to be configured. It is choosen to use two configuration
banks to perform different tasks. The bank 3 is used for configure the FPGA and has a
relaxed time to reduce configuration errors. So it is choosen as Setup Time a value equal to
2, that is a multiple of the core clock frorx = 216 M Hz so a period of Tyopx = 4.63ns.
So the Setup time it is choosen to be ADDSET = 4.63ns * 2 = 9.26ns. From the figure
2.8, the setup time is the time needed from when the address is on the bus and the output
enable is pulled down. From figure 2.9 the setup time is the time from when the address is
on the bus and the write enable is acivated. The Data setup time is choosen equal to 10.
In this way DATAST = 4.63ns *x 10 = 46.3ns; during the reading process, it indicates the
time duration of the output enable; so, it is the time during which it is possible to read the
data on the bus. During the writing process , DATAST indicates the time during which
the data is writing, so during the Configuration with long time, the FPGA has much time
to save the data correctly in the SRAM, reducing this time, the FPGA has to read the
data faster. The bank 0 is used for interface the STM with the registers of FPGA. They
are used for perform a test to verify the correctness of the bitfile into the FPGA. After
the initialization of FPGA, the configuration procedure can start.

The configuration of the FPGA is performed; after the power on of the FPGA, it is tested
the integrity of the FPGA; then it is tested if the FPGA is in stand-by state. So it is set
to 1 the pin nCONFIG, after a small delay, it is read the pin nSTATUS; if the pin is
up, the FPGA is in STAND-BY state, otherwise there is an error ed it is not possible
to perform the configuration, so the Exit Config process is performed. After that, a flag
called program__done is set to 0; only if the configuration is correctly completed, it is as-
serted. Then all the errors are setted to 0; during the process, the errors are removed; this
procedure guarantees the correctness of the process. At the end of the process, if one of
this flag remains zero, there is some problem. During the configuration, it is possible that
some errors could occur, so a reprogramming process is taken into account. The configura-
tion, in case of error, is performed maximum twice, after that, if errors continue to occur,
the FPGA is switched off. All the possible errors that can occur during the programming
process are reported; on every reading cycle or writing cycle, if error occur,the FPGA is
switched off. Before the writing of the bitfile into the FPGA, it is verified that the file
stored into the the QSPI contains a right HEADER BITFILE.(3.10) After the reading of
the header from the QSPI, the magic number contained into the QSPI is compared with
the Magic number written into the memory of the STM, if the two magic number are the
same, it means that it is a secure file. Then the length contained into the header is analized

39

3 — System Architecture

and if the file has a length equal to zero,error is returned and the process is stopped. Into
the Header file is contained also the number of 512byte blocks. If this number is equal to
zero an error is returned. If the HEADER,_BITFILE is correct, it is possible to start the
configuration 3.11. The process configuration ends when the flag program_ done is set to
1 or if the counter goes to zero.

During the process, the SHA256 is computed to guarantee that the data are not cor-
rupted. So, the SHA is initialized then the total number of byte it is set to zero. The
FPGA starts the process configuration if a transition from 1 to 0 and then from 0 to 1
has to be performed from pin n. CONFIG as indicated in figure 2.12 and the FPGA
"responds” moving the pin n_ STATUS. If the FPGA pulls down and then up the pin,
the reading and writing operations start.

An iterative process is performed for every block of 512Bytes (figure 3.12). The block is
first read from the QSPI, the SHA256 is updated and an iterative cycle is done; one byte
per time is write into the FPGA (figure 3.14); when all blocks are read, the pin n_ STATUS
is read and if it is at one the flag program_ done is set to 1; else the program_ done still
remains zero and the exit_loop is performed (figure 3.13). When the exit_loop is per-
formed with program_done = 0, the counter is decreased and the programming process
is retried, because all the blocks are written into the FPGA but it doesn’t pull down
the nSTATUS flag for some errors. Every writing process of 512 bytes is concluded, the
pins CONF_DONE, INIT _DONE and CRC_ERROR are checked and if one of this is
pulled up, the error flag CONF_DONE_ ok is removed (figure 3.14). After that all blocks
are written correctly, the final SHA256 is computed. If the computed SHA256 is different
from the SHA256 written at the end of the QSPI file, the bitfile written into the FPGA
is corrupted, so the exit_ config is performed and the FPGA is switched off. If the two
SHA are equal, the bitfile is not corrupted (figure 3.13); so the program_ done is check
and if during configuration the nSTATUS pin is pulled down, the flag is set, then the
Conf_DONE_ ok is check and if it is equal to zero, means that the configuration is com-
pleted but contains some errors so the FPGA is switched off. If the CONF_DONE ok
is equal to 1, the configuration doesn’t contain errors. So, at this point, the initialization
procedure is performed and a dummy cycles for INIT CYCLE is done. At the end if
the initialization is correctly completed, both n_ STATUS pin and CONF_DONFE pin
are moved by the FPGA. If one of this is at 1, the initialization is finished but contains
errors. If it is correct, other dummy cycles are performed. Then the check of the FPGA is
performed, writing one register and after a delay, the same register is read; the result must
be congruent with the operations written into the FPGA with the bitfile. If everything is
completed correctly, the n_ CON FIG pin is disabled and the configuration of FPGA is
successful.

Power on of IMX6

After that the configuration of the FPGA and the tests, the IMX6 can be switched on and
the application can start.

40

3 — System Architecture

3.3 IMXG6 Microprocessor Software

The microprocessor IMX6 is the core of the ENA; it handles all the traffic network.
The scope of the board is to encrypt IP packets and decrypt them. So the IMX has
to manipulates packets that arrives from one Ethernet interface, send them to the FPGA,
then read them from the FPGA and forward them to the second Ethernet interface. The
ENA (Embedded Networked Appliance) board is never used for this scope, so deep analysis
are performed to verify the performance of the board. Different steps are done before to
perform the complete task of the IMXG6 in order to report all the data.

3.3.1 Kernel IP Forwarding

The IMX6 has two Ethernet interfaces one is named eth0O and the second is ethl. The first
step is the verification of the correctness work of single ethernet. For this reason two PC are
connected to the board with two copper ethernet wires. The two Ethernet interfaces have to
be configured. The IMX6 has a USB console, so using a microUSB cable is possible to open
the console of IMX6 on a PC. On the PC it is required a Linux Operating system. After the
connection of the IMXG6, the console is opened. In this condition the Ethernet interfaces
can be configured. The network setup can be done via the inter faces configuration file
that is at etc/network/inter faces. So editing this file it is possible to set-up the network.
Here it is possible to give the network card an IP address (or use the DHCP), set up the
routing information, configure the IP mask, set the default routes and other options. The
board has two network interfaces that have to be configured. In figure 3.15 is present the
network interfaces that is created. The first interface has a Net-ID different from the other
interface. The two PCs are configured with its own net ID and a gateway; through the
gateway it is possible to know how to reach the destination. From the PC 1 it is sent a ping
to the Board and it is verified if it works, the same think is done with the PC 2. So the two
Pc are connected respectively to own network. Until now the Two PC are connected with
the board but are not connected together: the two networks are different, so in order to
connect one host to the other host it is needed that the board "connect" the two network;
in this way each packet that arrives from the PC1 is forwarded and can be received from
the PC2. To do this the IP forwarding is used. IP forwarding (or IP routing) is a process
used to transfer IP packets from one network to another. So the next step is to enable the
IP forwarding on the Board and verify the correct work. It is possible to enable the IP
forwarding writing in the IMX6 console : echo 0 > /proc/sys/net/ipvd/ip_ forward. In
this way if the configuration of the hosts and of the board is done correctly, it is possible to
send a ping from the PC 1 to the PC2 and all the packets that arrives to the Board and are
directed to the PC 2 are forward. It is possible in this situation to verify the performance
and the throughput of the connections. Those results are the maximum throughput that
the ENA can be achieve. The values are used as references for the next experimental tests.

41

3 — System Architecture

3.3.2 User Space application for IP Forward

The second step is the design of an application at User space that handles the traffic
network, manipulates every IP packet and forward it from the first Ethernet interface to
the second interface. So an IP forward application is designed. There are some different
possibilities to perform this task. One of this is the use of Socket Raw. A networking socket
is an abstractive software that is an applicative endpoint to access to a communicative
channel through a port. So a bidirectional network communication between two physical
machine that are separating each other. From a software point of view, a socket is an
object that has the possibility to read data or transmit data. A raw socket is a particular
socket that has the possibility to read, write IP(v4) datagrams with protocols that are
not handle from the kernel and it is possible to determine every section of the packet,
like header and payload. Its is possible to categorize raw socket into Network Socket
(L3 Socket) and Data-Link Socket(L2 Socket). In L3 socket it is possible to determine
header, payload of the packet in th network layer; in L2 socket instead it is possible to set
Header and payload of packet at datalink layer, so it is possible to modify and manipulate
everything in packet. In the design application, the sockets are first opened, one for eth0
and the second for ethl. After that, the application waits until something arrives on the
two interfaces. If the receiver of the ethO or ethl receives datas, all the bytes are saved into
a buffer. Then the destination IP address(32 bits) is extracted from the Ethernet Frame
and if the destination address isn’t the IP address of the current interface, the packet is
forward and it is sent to the other interface. In this way, every packets that arrives from
one side, are forwarded and sent from the other interface. So sending a ping from PC1 to
PC2, the IP packets arrive from the other side and a connection between the two hostes
is established. In this situations the tests and the performances are computed and in the
chapter 4 are discussed.

3.3.3 Encryption and Decryption of Ethernet Packets

The last step is to include in the application the FPGA scope. The packets that arrive
from one channel are saved into a buffer; then are sent to the FPGA and after a number of
clock cycles (that depends on the length of the Ethernet frame), if the data were clear, they
are crypted from the FPGA and are read; the crypted informations are sent to the second
interface. The same think happens when the ethernet data that arrives are crypted; they
are sent to the FPGA and are encrypted. Those operation take time, so the throughput
of the ENA decreases. So an analysis is performed in the chapter 4. Those performance
are the real throughput.

42

3 — System Architecture

Open File "fpga.rbf"

False

True

Compute Length
File

True

False

Compute n_blocks to
erese

Open File Error

Void Bitfile

Number of processed True

blocks is less then the >—————»

number of blocks.

False

Y

Compute Header and
Write Header

True

False

Read Header

Erese QSPI Block

Error Write Fail

Erase Fail?

Error Erase Fail

Figure 3.8: Flow Chart for QSPI writing process Part 1

43

3 — System Architecture

Read Header

Read Fail? Error Read Fail

ompare read and writte
Header

Error Compare Fail

A 4

Error Compare Fail

Sha2
Initialization

True

ompare read and writte
block

A

i+

False
Write in QSPI one Read the written
Block block

i=0; i<n_blocks

True

Sha2 Finish and
write at the end
of QSPI Error Write Fail

Error Write Fail

Finish. Bitfile is in the QSPI

Figure 3.9: Flow Chart for QSPI writing process Part 11

44

3 — System Architecture

FPGA Power

Faulty FPGA

return error

FPGA_nCONFIG =1

ERROR -2

4

FPGA_nSTATUS?

goto: Exit Config

program_done=0
Set all the errors

ERROR -3
goto: Exit Config

Compare read ERROR -4

Magic Number

goto: Exit Config

ERROR -5

goto: Exit Config

ERROR -6
goto: Exit Config

Number of
Blocks == 0?

Start Configuration

Figure 3.10: Flow Chart for FPGA Configuration Part 1

45

3 — System Architecture

Start Configuration

continue

While False

program_done =0
and count>0 /
< Break
Try to Configure Test FPGA
FPGA
count --
ERROR -14

goto: Exit Config

Exit Config

Disable FPGA
Programming

Some type of
errors?

Figure 3.11: Flow Chart for FPGA Configuration Part II

46

3 — System Architecture

Try to Configure
FPGA

count --

Y

Total bytes =0
FPGA_nCONFIG=0

2

FPGA_nSTATUS?

ERROR -7
goto: Exit Config

FPGA_nCONFIG=1

+ ERROR -8

FPGA_nSTATUS?

goto: Exit Config

Y

Write Blocks
i++

Compute Final Sha256,
Read Sha from QSPI

ERROR -11
goto: Exit Config

Compare read ERROR -12

sha256 goto: Exit Config

Exit_loop_n

Figure 3.12: Flow Chart for FPGA Configuration Part 11

47

3 — System Architecture

Exit_loop_n

False

Retry!

rogram_done==1?
prog - Continue

True Completed /

configuration but Break
contains error

CONF_DONE_ok==1?

Dummy cycle for
initialization

True Initialization is ended

but contains error
count=0,

program_done=0

FPGA_nSTATUS==1 or
FPGA_CONF_DONE==1 ?

A

Break

Figure 3.13: Flow Chart for FPGA Configuration Part IV

48

3 — System Architecture

Write Blocks

Y

Read one block

ERROR -10

goto: Exit Config

for n=0; n<512
bytes

FPGA_CONF_DONE ==1? FPGA_INIT_DONE ==1? FPGA_CRC_ERROR ==1?

conf_done=1 conf_done=1 conf_done=1
Write one byte
into the FPGA
v v >
True
i >=number_blocks FPGA_nSTATUS == 0? program done=0 | gy 60p n
goto: exit_loop_n

Not yet finished
n++

Program_done =1

Loop

Figure 3.14: Flow Chart for FPGA Configuration Part V

49

3 — System Architecture

Eth0

10.9.9.x/24
.10

IP Address: 10.9.9.30
Gateway : 10.9.9.10

\

Board

192.168.0.x/24 A—
o[l
/

[=

A

IP Address: 192.168.0.20
Gateway : 192.168.0.6

Figure 3.15: Network configuration of the Devices

50

Chapter 4

Throughput Tests

4.1 Description of the test devices

Before the execution of the throughput tests, a detailed description focusing the attention
on the Ethernet interface architectures is performed, in order to compare in the section
4.2 devices with similar architecture. In this way, consistent tests can be performed and
conclusion can be made. The throughput tests are performed on a commercial board of
ROJ company called SMARC Enuc ROJ board. It is an embedded board with the same
microprocessor IMX6. A deeper analysis on the hardware architecture is performed to
understand if the two machine can be compared.

4.1.1 Ethernet interface hardware architecture of ENA

In figure 4.1 is present the block diagram of the ethernet interface connections between
the physical connector and the IMX6 on the ENA board. The ENA Ethernet Interface
is composed by two SFP Connectors used to connect Optical Fiber or RJ-45 wire (with
a Converter). The Two SFP connectors are interfaced with the IMX6 with two different
chips. The Intel WGI210AS is a Gigabit Ethernet Controller that offers Physical Layer
Port and SGMII/SerDes port that can be connected to an external PHY. It also supports
the PCI Express. So in this case it is used to connect SFP port to the Microprocessor
IMX6 through PCI express. The second interface (red) is connected to a Marvell 88E1512.
The Marvell Gigabit Ethernet transceiver is a physical layer device that containing a single
transceiver. It supports RGMII to SGMII/Fiber, SGMII to Copper. In this case it convert
a SGMII to RGMII and vice-versa. In this way it is possible to interface both SFP module
with the microprocessor.

4.1.2 Ethernet interface hardware architecture of Smarc ROJ

In figure 4.2 the block diagram of the Ethernet interface architecture of the Smarc is
represented. The SMARC ROJ Ethernet Interface is composed by two RJ-45 Connectors
used to connect copper wires. The Two RJ-45 connectors are interfaced with the IMX6
with two different chips. The Intel WGI210AT is a Gigabit Ethernet Controller that offers

51

4 — Throughput Tests

COM Express

PETH—

PET- — —
SGMII_TX0+
sMie | o pEE
SFP == PER+———————————
B|ack PECLK+ oo
SGMII_RX0+
it VT PECLK-
SGMI_RX0- e -
SRTn
Intel WGI210AS Folesaion
Carrier Board ENA-Main Board
RGMIl section
L ——
semILTX+ | S
semiiXi- | San L —
SFP
RX_CTRL ooy
Red SGMII_RX1+ . RX_CLK
SGMILRXL- | Sl Tx_CTRL
,,,,,,,,,,, s_in-
TXCK oo
Marvell 881512 MCIMX6D7CVTO8AC

Figure 4.1: Ethernet interface architecture of ENA

Physical Layer Port and SGMII/SerDes port that can be connected to an external PHY.
It also supports the PCI Express. So in this case it is used to connect the RJ-45 port to
the Microprocessor IMX6 through PCI express. The second interface (red) is connected
to a KSZ 9031RNXIA. The KSZ is a gigabit Ethernet Transceiver that support RGMIL.It
is possible to connect the RJ-45 Port to the RGMII IMX6 interface. The two boards
share the same architecture interface from/to the IMX6. So, to continue the comparison
is necessary to analyse the differences into the software.

4.1.3 Software comparison

The SMARC ROJ is an enterprise product and the kernel is designed and installed by
the ROJ Company. The ENA kernel is designed by another external company. The first
software analysis is performed writing in the console of both devices: uname -a. The two
kernel version are shown:

ENA: 4.1.29 armv7l

Smarc ROJ: 4.9.11 armv7l

It is possible to compare the two kernel versions. Devices have two different kernel version
4.1 and 4.19 . Due to the fact that they share the same microprocessor the version of
the arm is v7l. Other information can be collected from the Ispci command that shows
all the PCI devices. Writing: Ispci -nnk it is possible to compare the drivers of the two
Intel Gigabit controller. The two devices share the same family chip (Intel 1210); they
have two different codes (1533 for the SMARC and 1537 for the ENA) but has the same
driver. So, no difference between the two PCI interfaces are present. The drivers of the
RGMII interfaces are write into the kernels; so because of the two kernels are different, the

52

4 — Throughput Tests

TD1+

MDI_0+ PET#—
JD1- MID_0- FELT
TD2+
TD2-

RJ-45 MP-t- PER
03¢ MDI_2+

ETH2 TD3- MID_2-
T0a+ MDI_3+
T04- MID_3-

MDI_1+ PE Rt

PECLK+
PECLK-

SRTn
Intel WGI210AT PCle section

SMARC ROJ

RGMI section

TD1+ TxRx+_A TxD[0-3] <
TD1-
TXRX-_A
RI-45 Izlzo TxRx+_B RxD[0-3][
TxRx-_B

ETH1 Rx_CTRL

TD3+
s TxRx+_C RY_CLK
TXRx-_C e
IDd+ TXRX+D M
04- TXRx-_D Tx_CLK

A4

KSZ 9031RNXIA MCIMX6S7CVMO8AC

Figure 4.2: Ethernet interface architecture of Smarc ROJ

drivers of the ethernet interface connected through RGMII are different. So, in conclusion,
the drivers of the two devices cannot be compared. They share the same microprocessor,
the same hardware structure and the same drivers for the chip intel 1210, but different
drivers for the other two ethernet interfaces. Nevertheless, it is possible to compare the
performances of the two devices.

4.2 Throughput performance of Kernel IP Forwarding

One of the way to determine if a device can be used as network handling machine is to
perform measures of its performance. There are different indicators to measure network
performances like the latency and the throughput. In the examined cases, it is performed
a UDP measuring network throughput. The UDP protocol is used to carry data over IP
networks; it is not influenced by the time required to deliver the packets (the latency)
because the sender will send a given number of packets per second. A network traffic
analyser Optiview XG is used to perform throughput analysis. The throughput is the
maximum rate at which IP packets can be processed. It is measured as the number of
bits that can be processed in the unit of time (bps). In UDP throughput measures, the
maximum transmission rate must be chosen. In those tests a speed of 100Mbps is set; so,
the local tester sends 100 million of bits in one second. The test system is composed of two
test machine and a DUT (device under test). The DUT has to perform an IP forwarding,
so it has to forward the packets that arrive from one port and send them through the
second port. Three different devices are analysed: a general-purpose system, teh Smarc
ROJ Board and the designed board (ENA). During the test different sizes of packets are

53

4 — Throughput Tests

sent. With a maximum fixed throughput and fixed size, it is possible to compute the
number of packets that are sent in one second. The number of theoretical frames per
second are computed in equation 4.1:

100M bps

fps= ———7— 4.1
8bit * size (4.1)
The test system is in the figure 4.3
Tx local Rx Remote
. T .
Optiview XG tester: DUT Optiview XG tester:
Local machine Ip Forwarding 1\Remote machiny
< +—

—_— Rx Local TX Remote

Figure 4.3: Test System

4.2.1 General Purpose Throughput test

The figure 4.4 represents the throughput rate. The local transmitter sends packet at
100Mbps; the receiver of the remote tester receives the packets at different speed rate.
Then the remote transmitter sends packets at 100Mbps and the local Rx receives the
packets at different rate. In the ideal case the data are sent and received at 100Mbps. The
two testers theoretically send and receive at the same rate. Two aspects have to be taken
into account: the symmetry and the rate. A good device for IP forwarding should have a
perfect symmetry, so the received data from one side has to be the same of the received
data from the other side, and it should have the maximum throughput (100Mbps in this
case). Not all the devices have the same performance, so it is necessary to test the different
devices. A general purpose system is the best device for perform IP forwarding so it is
used as reference for the different tests. In the second graph is represented the number of
packets that are sent and received. This value is strictly related to the size of the packets.
Fixed the frequency, the number of packets is inversely proportional to the size of the
packet. In fact if the packet is small, at 100 Mbps, it is sent higher number of packets.
Also in this case an ideal device has to be symmetrical and has to send and receive the
maximum number of packets. In the case of a general purpose system, the graph shows
that all the curves are superimposed, so it sends packets and receives approximately the
same number of packets. Data are in tables 4.1 and 4.2.From the table 4.2, smaller is the
size of the packet, much packets have to be sent at the same rate, so the device has to
be receive a higher value of packets in one seconds; for this reason with small packets the
probability that some packets are lost is higher than the case with high dimension packets.

54

4 — Throughput Tests

100.5

64 128

100

99.5

Mbps

97.5

97

Throughput rate(Mbps)

256 512 1024 1280 1518

—@— Theoretical Rate
—®— Local Tx
—&— Remote Rx

Local Rx

200 400 600 800 1200 1400 1600

Size (Bytes)

1000

Figure 4.4: General Purpose System Throughput Test

160000

140000

120000

100000

80000

60000

Frames per seconds

40000

20000

0

Frames per seconds

64

8 —@— Local Tx

—@— Remote Rx
Remote Tx
Local Rx

—@— Theoretical Curve
512

1024 1280 1518

O e

0 200 400 600 800 1000 1200 1400 1600

Size(Bytes)

Figure 4.5: Packets vs Size Graph of General Purpose System

4.2.2 ROJ eNUC Throughput test

With the eNUC device, the throughput rate with small packets(64,128,256 Bytes) is lower
respect the maximum rate; another problem is related to the symmetry of the two lines;
in fact the remote device receives at higher rate respect the local receiver (figure 4.6). It is
possible to analyse also the frames that are sent and received. In light blue is represented

59

4 — Throughput Tests

Table 4.1: Data of Throughput of General Porpose System in Mbps

Size(Bytes) Local Tx | Remote Rx | Remote Tx | Local Rx
(Mbps) (Mbps) (Mpbs) (Mbps)

64 100.00 99.94 100.00 97.44

128 100.00 100.00 100.00 100.00

256 100.00 100.00 100.00 100.00

512 100.00 100.00 100.00 100.00

1024 100.00 100.00 100.00 100.00

1280 100.00 100.00 100.00 100.00

1518 99.99 99.99 99.99 99.99

Table 4.2: Number of frames per second of General Porpose System

Size(Bytes) | Local Tx | Remote Rx | Remote Tx | Local Rx
64 148808 148714 148810 144998

128 84458 84485 84459 84459

256 45289 45289 45289 45289

512 23496 23496 23496 23496

1024 11973 11973 11973 11973

1280 9615 9615 9615 9615

1518 8127 8127 8127 8127

the ideal curve(figure 4.7); so it is noticed that with small size packets the device is not able
to receive high number of packets, so it lost a lot of packets (higher then 50%). Data are
present in the tables 4.3 and 4.4. From the data is possible to notice that the performance
with small size packets are very poor; packets of 64Bytes are received from the Local
RX at 190 Kbps, a very low rate compared of the maximum rate. So in conclusion, the
commercialized ROJ eNUC cannot be used as IP forwarder device with packets less then
512 bytes.

Table 4.3: Data of Throughput of ROJ Smarc in Mbps

Size(Bytes) Local Tx | Remote Rx | Remote Tx | Local Rx
(Mbps) (Mbps) (Mpbs) (Mbps)

64 100.00 22.14 100.00 0.19

128 100.00 43.66 100.00 1.63

256 100.00 79.07 99.99 3.88

512 100.00 99.98 100.00 97.17

1024 100.00 100.00 99.99 99.99

1280 100.00 100.00 99.99 99.99

1518 100.00 100.00 100.00 100.00

56

4 — Throughput Tests

Throughput rate(Mbps)
120
100 o—o o 2
80
v
Q.
-§ 60 —@— Theoretical Rate
—@— Remote Rx
40
Local Rx
20
0
0 200 400 600 800 1000 1200 1400 1600
Size (Bytes)
Figure 4.6: ROJ Smarc Throughput Test
Frames per seconds
160000 64
140000
» 120000
©
c
S 100000
a 8 —@— Local Tx
ag_ 80000 —&— Remote Rx
8 Remote Tx
£ 60000
© 56 Local Rx
fre
40000 —@— Theoretical Curve
512
20000 1024 1280 1518
hd —o0
0
0 200 400 600 800 1000 1200 1400 1600

Size(Bytes)

Figure 4.7: Packets vs Size Graph of ROJ Smarc

4.2.3 ENA Throughput test

The ENA device shows a very poor performance with packet dimension lower than 1024
Bytes.(figure 4.8) The device is very slow with those packets and also shows a not good
symmetry. The number of packets that are received are very few respect the theoretical
curve (figure 4.9). The data are in the tables 4.5 and 4.6. It is possible to notice that the
ENA with packets less than 1024 , has a very poor performance; the data are received

57

4 — Throughput Tests

Table 4.4: Number of frames per second of ROJ Smarc

Size(Bytes) | Local Tx | Remote Rx | Remote Tx | Local Rx
64 148813 32954 148806 290

128 84462 36877 84457 1378

256 45291 35812 45287 1759

512 23496 23492 23496 22830

1024 11973 11973 11972 11972

1280 9615 9615 9615 9615

1518 8127 8127 8127 8127

with throughput rate of Kilobit order, that is 3 order of magnitude less then the ideal
performance.

Throughput rate(Mbps)

120

64 128 256 512 1024 1280 1518
100

80

—@— Theoretical Rate
60

Mbps

—®— Local Tx
40 —@—Remote Rx
Local Rx

20

0 200 400 600 800 1000 1200 1400 1600
Size (Bytes)

Figure 4.8: ENA Throughput Test

4.2.4 Performance Conclusions

The tests have shown different trends and performance using different devices. In the fol-
lowing graph, a comparison between the three devices is performed. A worst-case analysis
is done to consider the worst performance.In conclusion the ENA is the worst device to
perform IP forwarding operations because it shows the worst trend respect of the ideal
curve. The performance of the ENA are in line with the general purpose device only with
packets larger than 1280 bytes. At 1024 bytes the performance are acceptable (throughput:
76 Mbps). A similar but better trend is shown in the eNUC device. So, the causes of these
performance are probably due to some bugs into the microprocessor IMX6 kernel present

58

4 — Throughput Tests

160000 | g4

140000

120000

100000

80000

60000

Frames per seconds

40000

20000

0
0

200 400

Frames per seconds

600 800

Size(Bytes)

1024

—@— Local Tx
Remote Rx
Remote Tx
Local Rx

—@— Theoretical Curve

1518

1000 1200

Figure 4.9: Packets vs Size Graph of ENA

—9

1400 1600

Table 4.5: Data of Throughput of ENA in Mbps

Size(Bytes) Local Tx | Remote Rx | Remote Tx | Local Rx
(Mbps) (Mbps) (Mpbs) (Mbps)

64 100.00 0.80 60.03 0.0603

128 100.00 4.56 80.05 0.1407

256 100.00 28.93 100.00 0.3425

512 100.00 51.50 100.00 0.3520

1024 100.00 100.00 99.99 76.0800

1280 100.00 100.00 99.99 99.99

1518 99.99 99.99 99.99 99.99

Table 4.6: Number of frames per second of ENA

Size(Bytes) | Local Tx | Remote Rx | Remote Tx | Local Rx
64 148814 1191 89328 90

128 84460 3849 67609 119

256 45290 13104 45289 155

512 23496 12100 23496 83

1024 11973 11973 11973 9110

1280 9615 9615 9615 9615

1518 8127 8127 8127 8127

59

4 — Throughput Tests

in both devices (ENA and eNUC). So from now on, it is considered to work only with
packets of big size (1024,1280,1518) and relative considerations are done in this situation.

Comparison of Throughput Rates

120.00
128 Bytes 256 Bytes
64 Bytes 512 Bytes 1024 Bytes 1280 Bytes = 1518 Bytes
100.00 :70 < @ L o
97.17 Mbps 99.99 Mbps 100.00 Mbps
99.99 Mbps
% 80.00
S 76,08 Mbps
2
- —@&— PC worst Rate
3 60.00
< Enunc Worst Rate
o 60,33 Kbps
2 —@— ENA Worst Rate
e
= 4000 1.63 Mbps —@— Theoretical Rate
3.88 Mbps
20.00 140,7 Kbps
352 Kbps
0.00 «Q
0 200 400 600 800 1000 1200 1400 1600
194,8 Kbps Size (Bytes)

Figure 4.10: Comparison Throughput test

4.3 Throughput performance with application IP Forward-
ing

In this section, throughput performance are done with the user space application. The
application performs an Ip Forwarding at higher level respect the Kernel level. The ap-
plication open sockets at user space level and forward the packets that arrive from one
interface to the other. For a consistent analysis, it is performed tests in these conditions,
before adding the write and reading operations on the FPGA(for encrypt and decrypt
the packets). From figure 4.12 it is possible to notice the throughput, with packet size that
changes and the maximum throughput that is fixed at 100Mbps. It is possible to notice
a not uniform trend. One of the cause of this trend is due to the fact that each packet
that arrives has to be collected from the kernel and has to be sent to the user space level
where the packet is managed and is forwarded to the second interface. These operations
takes time and reduce consistently the throughput. Smaller is the packet, at 100Mbps,
higher is the number of packets that the CPU has to process; in fact a better performance

60

4 — Throughput Tests

Comparison of Throughput Frames

160000 64 Bytes

140000
120000
-]
S
1
bl 00000 128Bytes
e —@— PC Worst Case
2 80000
» —@—Enunc Worst Case
]
g 60000 Bytes ENA Worst Case
S
= 40000 —@—Theoretical Values
20000 1024 Bytes 1380 Bytes 1518 Bytes
0
0 200 400 600 800 1000 1200 1400 1600

Size (Bytes)

Figure 4.11: Comparison Packets vs Size Graph

are achieved when the packets are bigger. So if packets with size higher than 1024 byte
are considered, a maximum throughput of 68Mbps is achieved. This means that the real
throughput of the ENA cannot overcome this value, so with the FPGA that encrypts and
decrypts packets, lower values are expected. From the figure 4.13 it is possible to analyse
the number of packets that are received. With small packets, the number of packets that
the CPU has to be handle is so high that it is not able to manage all packets , so the
number of packets per second that the second interface receives, respect the number of
packets that are sent, dramatically drops. Better performance are achieved with bigger
packets. Here due to the dimension of packets, that is higher, the number of packets that
the CPU has to be handled is lower, so the number of received packets per second is higher.
In tables 4.7 and 4.8 values of the test performance are represented.

4.4 Throughput performance with Encrypting and Decrypt-
ing application

In this section the throughput of the ENA with the Encrypting and Decrypting function
enabled is performed. When a packet arrives, it is collected by the kernel, it is sent to the
user space level and it is encrypted by the FPGA. The FPGA has a 16 bits bus connected
to the IMX so to perform all the operation a consistent number of operations the CPU
and the FPGA have to perform, so, this takes time. The throughput is high influenced by
this required time. In figure 4.14 is present the test throughput of the machine. With small

61

4 — Throughput Tests

Throughput rate(Mbps)
120
64 128 256 512 1024 1280 1518
100 *—@ L g L g L & \
80
—@—Theoretical Rate
w
_g' 60 —@— Local Tx
= —@— Remote Rx
40 Local Rx
20
0
0 200 400 600 800 1000 1200 1400 1600
Size (Bytes)

Figure 4.12: Throughput Test of ENA with IP forwarding application

Frames per seconds

1000000
64
128
100000
» 1280 1518
2 10000 -
—e
8)
] e
w
@ 1000
S', —— Local Tx
(]
€ —&— Remote Rx
o 100
w —&— Remote Tx
10 Local Rx
—@— Theoretical Curve
1
0 200 400 600 800 1000 1200 1400 1600

Size(Bytes)

Figure 4.13: Packets vs Size Graph of ENA with IP forwarding application

62

4 — Throughput Tests

Table 4.7: Data of Throughput of ENA with IP forwarding application in Mbps

Size(Bytes) Local Tx | Remote Rx | Remote Tx | Local Rx
(Mbps) (Mbps) (Mpbs) (Mbps)

64 100.00 0.0086 100.00 0.0074

128 100.00 0.0150 100.00 0.0126

256 100.00 0.0244 100.00 0.0230

512 100.00 0.0243 100.00 0.0183

1024 100.00 69.6300 100.00 79.2100

1280 100.00 36.5600 100.00 38.4900

1518 100.00 67.4500 100.00 59.3900

Table 4.8: Number of frames per second of ENA with IP forwarding application

Size(Bytes) | Local Tx | Remote Rx | Remote Tx | Local Rx
64 148813 13 148806 11

128 84477 13 84454 11

256 45292 11 45288 10

512 23497 6 23495 4

1024 11973 8337 9615 3701

1280 9615 3515 9615 3701

1518 8128 5482 8126 4827

size packets, the CPU has to handle high number of packets so the throughput drops 6
order of magnitude lower that the maximum throughput (100Mbps). If it is considered the
maximum speed that is reached with 1518 byte packets, it is lower than the throughput,
in the same condition, of the application without the Encrypting function. A reduction of
about 88% is reached; this is caused mainly due to the high time to perform the encryption
of big size packets. From the figure 4.15 it is possible to notice that the number of packets
that the machine is able to process is very low respect the theoretical value(equal to
the Local Tx sent packets). In tables 4.9 and 4.10 the test throughput performance are
represented.

4.5 Comparison between ENA with IP Forwarding applica-
tion and Encrypting/Decrypting Application

In this section a deeper analysis of the performance of the ENA is performed. Until now, it
is imposed a fixed maximum throughput of 100Mbps; so the packets are sent to the ENA
at 100Mbps. Now, the maximum throughput is sweeped. So changing the Throughput, it
is possible to draw a graph and some final considerations can be done. For each packet
size it is sweeped the throughput starting from small value (1 Mbps). A fixed throughput
is selected and the received throughput is computed. The small packet size are present in

63

4 — Throughput Tests

Throughput rate(Mbps)

9.0000
7.8630
8.0000
7.0000
6.0000

5.0000

Mbps

4.0000 Remote Rx

—@— Local Rx
3.0000

2.0000

0.0132

1.0000
0.0075 0.0240 0.0192
0.0000 *—0 L g &
0 200 400 600 800 1000 1200 1400 1600

Size (Bytes)

Figure 4.14: Throughput Test of ENA with Encrypting and Decrypting application

Frames per seconds

1000000

100000
10000
1000 ~@— Local Tx

—@— Remote Rx

100 - Local Rx
[— RPN
10

0 200 400 600 800 1000 1200 1400 1600
Size(Bytes)

Frames per seconds

Figure 4.15: Packets vs Size Graph of ENA with Encrypting and Decrypting application

table for completeness but due to the fact that with those packet sizes the results are very
poor, the analysis is deeper focused on bigger sizes (1024, 1280, 1518)bytes. When the
throughput is low, the machine is able to encrypt and decrypt correctly the informations,
so applying for instance, 2 Mbps the encrypted data are received at 2Mbps. So a theory line
is a straight line that in a xy axis has the function y = . But increasing the throughput

64

4 — Throughput Tests

Table 4.9: Data of Throughput of ENA with Encrypting and Decrypting application in

Mbps
Size(Bytes) Local Tx | Remote Rx | Remote Tx | Local Rx
(Mbps) (Mbps) (Mpbs) (Mbps)

64 100.00 0.0100 100.00 0.0075

128 100.00 0.0163 100.00 0.0132

256 100.00 0.0256 100.00 0.0240

512 100.00 0.0238 100.00 0.0192

1024 100.00 2.0880 100.00 2.1030

1280 100.00 4.8120 99.99 4.8170

1518 100.00 7.8670 99.99 7.8630

Table 4.10: Number of frames per second of ENA with encrypting and decrypting appli-

cation

Size(Bytes) | Local Tx | Remote Rx | Remote Tx | Local Rx

64 4465975 448 4464142 334

128 2533847 412 2533677 335

256 1358749 348 1358657 326

012 704924 168 74876 135

1024 359211 7499 359192 7553

1280 288459 13880 288451 13894

1518 243817 19181 243799 19171

the number of packets that are sent (fixing the size) increasing too; furthermore, with
small packet dimension, the number of packets that has to be processed, is higher respect
the number of packets of bigger packet size. So the performances of small packet is very
poor. Considering for instance, a size of 128 Bytes from the figure 4.16 is possible to notice
that at very low throughput the system is able to encrypt the data but above 4Mbps, the
performance start to drop and after about linear decrease, the system is able to receive very
small packets per second(in order of units). Increasing the size of packets, the situation
gets better. With the biggest packet size (1518 byte) the maximum throughput peak is at
about 15Mbps but the maximum throughput is 20Mbps, so a loss of 22.3% of packets is
shown. This loss is too high so the maximum acceptable throughput is at about 15Mbps
where the losses are less then 2.5%. After a peak, each curve drops; in theory, after the
peak, the curve has to saturate at the peak value because even if the throughput increases,
the CPU of IMXG6 is able to handle only packets with the maximum peak throughput, but
this doesn’t happen. The causes are different and other analysis and graphs are realized.

One of the possible causes of this decreasing trend, can be attributed to the necessary
time to perform the Encrypting operation through the FPGA, so an analysis with the
sweep of throughput also with the IP Forwarding application without the Encrypting and
Decrypting application is performed and a comparison is made. In figure 4.17 the Sweep

65

4 — Throughput Tests

Throughput Graph with Encrypting and Decrypting application

—e— 64 Byte
—8— 128 Byte
256 Byte
512 Byte
—8— 1024 Byte
—o— 1280 byte

—8— 1518 byte

Received Throughput(Mbps)

0 2'0 40 60 80 100 120
Max Throughput (Mbps)

Figure 4.16: Sweep Throughput Test of ENA with Encrypting and Decrypting application

throughput test of the ENA with the IP forwarding application and with the Encrypting
application is represented. Some considerations can be done considering the trends. With
low throughputs, the system is able to process all informations and encrypt the data; in
this case the speed for encrypting the data is not the limiter. Increasing the throughput,
the number of packets that have to manage, increases, so the FPGA has to manage a lot
of packets in small time, for this reason after a throughput value of 15Mbps , the machine
is not able to perform the encryption process faster so, comparing the trend of the IP
Forwarding application is possible to notice that after 15Mbps the FPGA computation
is the "bottleneck" of the system.It is possible to see in figure 4.18 a zoom that better
explains the trend. In fact the IP forwarding application reaches higher performance also
above 15 Mbps. However both applications has a similar trend, in fact, after their peak,
the throughput drops down. This cause is because the CPU is not able to manage so high
packets and due to limits in internal buffer dimension, interrupt kernel management, and
other types of process that cannot be managed at user space level.

66

4 — Throughput Tests

Throughput comparison ENA App and Encrypting App
70

60

—8— 1518 Byte IP Forwarding
App

[
o

—&— 1518 Byte Encrypting and
Decrypting App

N
S

Received Throughput (Mbps)
8

[N}
o

10

0 50 100 150 200 250
Max Throughput (Mbps)

Figure 4.17: Comparison between Throughput test of IP Forwarding Application and
Encrypting Application

Throughput Comparison ENA App and Encrypting App

25

N
[S]

-
@

—@— 1518 Byte Encrypting and Decrypting App

-
o

—@— 1518 Bye IP Forwarding App

Received Throughput (Mbps)

0 5 10 15 20 25
Maximum Throughput (Mbps)

Figure 4.18: Zoom of comparison between Throughput test of IP Forwarding Application
and Encrypting Application

67

Chapter 5

Conclusion

Thanks to the throughput tests, it is possible, in conclusion, to analyse the results and
the final specification of the product, so, it is possible to highlight the limits of the mi-
croprocessor and all the restrictions. All the results are summarized and discussed in this
section. The final goal of the system is reached after some intermediate steps. The first
step is performed to declare and find the maximum physical throughput that the ENA can
reach. So a throughput test with IP forwarding is performed and a comparison with other
commercial system is done. Before this, a comparison is made between the ENA and the
commercial ROJ Smarc to perform consistent tests. It is discovered that the two machines
are similar and have the same hardware network interfaces but two different Linux Kernel.
So, the IP forwarding is performed and throughput tests are executed.

It is discovered that a general purpose system is the best machine to perform network op-
erations related to IP communication protocols and it is the best way to handle Ethernet
frames and forward them. In fact, with a maximum throughput of 100 Mbps, it is able to
forward all packets, without losses, and the packets are received from the Test machine at
100 Mbps.

After that, it is performed throughput tests on a commercial embedded system called ROJ
Enuc Smarc. The performance of ROJ Enuc are lower than the general purpose system.
The number of small packets(up to 256byte) at 100Mbps are higher respect bigger packet
size, so the system has to handle higher number of frames, for this reason the system is not
able to forward all the packets and at the receiver the number of packets are less. So the
performance are very poor, with a losses higher than 96% with packet size less than 256
byte. The 100 Mbps are reached with packets size equal and higher than 512byte. With
packets of 512 byte all the packets are received without losses.Thanks to this results, it is
possible to understand and forecast the trends of the ENA due to the similarity with the
ROJ device.

The last test with Kernel IP forwarding is performed on the ENA device. The 100 Mbps
of maximum throughput is reached only with packets equal and higher than 1024 byte. In
this condition all the packets are received and there are no losses, but a not symmetrical
trend is shown. In fact, the receiver of the local machine test, receives lower packets, and
consistent losses are found (24% of losses). So acceptable performance are reached only

68

5 — Conclusion

with packets higher than 1280byte where the two receivers are symmetrical and there are
no transmission losses. In conclusion, with the first throughput test step, it is possible to
fix the minimum frame size that the system is able to handle. So the next tests are focused
mainly on packets with size higher than 1280byte.

The second step is the introduction of the application at user space that handles the
Ethernet frames. In this situation the CPU has to manage packets that arrives and from
the kernel level has to send them at user space level. These operations take time and the
performance consistently reduces. With 1024 byte packet size, a maximum throughput of
68 Mbps is achieved. This value fixed the maximum throughput that the ENA with IP
forwarding application is able to manage. So it is expected that the maximum throughput
with the Encryption and the decryption of the packets is less than this value.

The last step is the final application that allows to encrypt or decrypt the Ethernet frames
that arrive. The packets are collected from the kernel, after the opening of the socket, they
are saved into a buffer and send into the FPGA. Due to the 16-bit bus between the micro-
processor and the FPGA, the frame have to be sent 16-bit at time; this operation requires
time that lowers the maximum throughput. With small packets, despite of their size, so
less number of read/write operations in the FPGA for one complete frame, the number of
packets is higher, so the performance are very lower, not sufficient. The maximum through-
put reachable is 7.8 Mbps. So this is the real received throughput that the system reaches.
In this condition, however, the losses are very high, due to the fact that the packets are
sent at 100 Mbps and are received at 7.8 Mbps. So a final analysis is performed.

In this last tests, the packets are sent not at fixed frequency of 100 Mpbs but at variable
throughput. In this way it is possible to understand the maximum throughput where there
are no losses. A sweep test is performed starting from 1 Mbps. With low throughput, the
machine is able to encrypt and decrypt correctly the information. For instance, with 2
Mbps the data are received at 2 Mbps without losses. So a theory trend is a straight line.
However, increasing the throughput, the number of frame increases and with small pack-
ets(so, high number of packets), the performance starts to drop. A better trend is shown
with big size packets, but, at a certain throughput point, the performance dramatically
drops. The maximum throughput with no losses is 15Mbps, after this value the losses start
to begin consistent and the performance drops. The same tests are performed on the ENA
with IP forwarding application without the encryption and it is possible to notice that
the maximum peak is at about 60M bps;so, the system has better performance. Thanks
to this measurements, it is possible to understand that the FPGA computation is the
"bottleneck" of the system. However after a peak, both trends start to drop. In theory,
after the peak, the curve saturates at that value, but this no happens, because with high
throughput the number of packet frames is so high that the CPU is not able to manage
all these informations and drops.

So, at the end, it is possible to assert that the maximum throughput that the machine
is able to manage is 15 Mbps with 1518 byte packet size. Thanks to this work, it has
been possible to highlight the limits of the microprocessor and, although with the current
restriction of the ENA could not be suitable for being an enterprise product, it represents
a good proof of the concept of how deeply military companies have to deal with the topic
of encryption of information for security applications.

69

Appendix A

Open System
Interconnection/International
Standard Organization

Open System Interconnection/International Standard Organization(OSI/ISO) is a model
that standardizes the communication functions to ensure a compatible national and world-
wide data communication. In this model, there are several partitions called abstraction
layers. It is a seven layer architecture that defines a complete system. The different levels

are:

1.

2.

Physical Layer

Datalink Layer

. Network Layer
. Transport Layer
. Session Layer

. Presentation Layer

Application Layer

The Physical Layer is the lowest layer of the model, in fact, it defines the electrical,
optical and all the physical specifications. So it includes medium(optical fiber,coaxial
cable), pins, voltages, line impedence, signal timing, frequency,ecc. The transmission
can be simplex, half duplex or full duplex(allows communications in both directions).

The Datalink Layer synchronizes the information. So its main function is to make
sure that there aren’t errors in the physical layer. The data frames that are trans-
mitted and received are managed by this layer. It is divided in two sublayers:

70

A — Open System Interconnection/International Standard Organization

— Logical link control(LLC) layer, that is the upper sublayer. It provides a mech-
anism in order that different protocols can exist together and to transport the
information onto the same medium. It also provides the flow control and the
request errors. The LLC is also an interface between the Media Access Con-
trol(MAC) and the Network upper layer.

— Medium access control(MAC) layer: In this layer, the MAC provides channel
access control; so it ensures that signals sent from different points across the
same channel don’t collide. To do this, MAC protocol is used; it assigns a unique
identifier number that is assigned to all ports on a switch. The MAC address is
an hexadecimal number(6 byte) that is divided into different parts in specific
formats.

The Network Layer provides the procedure to transfer different data sequences from
one node to another; it acts as a network, managing the traffic. It also divides
the messages into packets. It chooses the best path for each message to arrive at
destination.

Transport Layer provides services for the transport of data. It has the task to open
and close the communications, to split the messages in smaller units that pas on the
network layer, decides if the data transmission should be on parallel or single and
handles the multiple connections.

The Session layer controls and manages the conversation between computers. It
ensures that the messages are not cut or data are not lost. So its main task is to
carry out a session.

Presentation Layer takes care that the information is sent in a "good way", so that
the receiver will understand the information and is able to use it. So it is able to
provide independent data compared to different representation by translating the
information.

Application Layer is the topmost layer. It interacts with the software applications
that implement the communication for example an email service software.

71

Appendix B

IP-Internet Protocol

B.1 Overview and main characteristics

The Internet Protocol (IP) is a network protocol included into the TCP/IP protocol
Suite;so it is a set of rules to exchanging messages across a series of interconnected net-
works. It is the main Inter-Networking Protocol of the layer 3 of the ISO/OSI model. It
is a simple protocol based on connectionless packets and best-effort type. It is not reli-
able so it doesn’t ensure any type of communication reliability in terms of error checking
and flow control. The packet sent can be lost, duplicated or delayed but the IP protocol
doesn’t inform both receiver and transmitter. It is connectionless, this means that every
packet is processed independently by other packets. So for example different packets with
the same transmitter and receiver can proceed with different path and can be received or
not. The first major protocol is the IPv4; there is also a new version, IPv6 that tries to
solve the principal limitations of the IPv4 protocol like the number of IP address, that
are almost not-sufficient but the IPv6 reaches nowadays 20% of the internet traffic, so the
IPv4 remains the most used. The most important functions that the IP protocol performs
are:

o It distinguishes every host that is a network card with an identifier, called IP address.
A single (unicast) IP address identifies a single host, but a single host can have many
unicast IP, according to the number of network cards. For example a router has many
addresses because it is a sorting centre with different network cards.

o It receives the data (in form of PDU-Protocol Data Unit) from the Transport Layer
(layer 4).

e It encapsulates each PDU in different packets with a maximum dimension and adds
an header.

o It splits the packets during the transport to insert them into layer 2.
e It routes the packets on the network.

e It identifies the errors, but it doesn’t correct them.

72

B — IP-Internet Protocol

It extracts the data (PDU) from the Transport Layer.

It delivers the data to the transport layer in the order in which they arrived at
destination, that can be different from the departure order.

B.2 1IPv4 packet

Every IP packet is composed by a header and a data section that is the portion of data
to be sent. An IP packet(IPv4) has:

a fixed part of 20 bytes;

a second optional part with variable length, but it must be a multiple of 4 byte.

It is structured as follows:

Version: it is the first header field of 4 bits and it indicates the version of the protocol
IP that has generated the packet. It is used by the receiver to understand the type
of format of the packet.

HLEN (4 bits): it indicates the length of the header IP in a word of 4 bytes. The
header fields have a fixed length, except for the Options field that can vary.

Type of Service (8 bit): it indicates the type of the transport that is needed to the
router by decide a priority.

Total Length (16 bits): it indicates the total length of the packet expressed in byte.
Often the routers don’t use this field.

Identification (16 bits): it is used to identify the fragments of a single IP datagram.
This happens when a packet is split into different packets.

Flags (3 bits): it is used to control and identify the fragments.

Fragment Offset (13 bits): it indicates the number of bytes of data that are present
in the previous packet. If the fragment is the first the field is 0.

Time to Live (8 bits): it is a time that indicates the living time of a packet, after
that time, the packet can be rejected. The value is initialized at 255 from the sender
host. Every time that the packet is processed by a router, time is decremented by 1
unit. It avoids an infinity loop inside a network.

Protocol (8 bits): it indicates the type of the transported data, that is the type of
protocol of layer 4.

Header Checksum (16 bits): it verifies the integrity of the header when it arrives to
destination.

Source IP (32 bits): it contains the IP address of the source

73

B — IP-Internet Protocol

o Destination IP (32 bits): it contains the IP address of the final destination of the IP
datagram.

e Options: it is not often used. It is a variable length field and due to the fact that the
field must have a fixed multiple length of 4 bytes, it is used to complete the packet
with the padding.

74

Appendix C

Secure Hash Algorithm

The term SHA is the acronym of Secure Hash Algorithm and it is a family of five different
cryptographic hash functions. The SHA produces a digest message that is a sort of digital
print of the message, that has a fixed length even if the message is not fixed. The main
feature is that it is a non reversible function. So, it is not possible to know the original
message knowing only this data. It has also the feature that it is no possible to generate two
different message with the same digest. The algorithms are SHA-1, SHA-224, SHA-256,
SHA-384 and SHA-512. The last four algorithms are indicated as SHA-2. The difference
between the different SHA is in the number of bits of the digest. A message is processed
by blocks of 512 and it requires 64 rounds to be compute. The SHA is used mainly to
discover if a data was corrupted.

75

Appendix D

Networking

Internetworking is "the concept of interconnecting different types of networks to build a
large, global network'[19], in this way any pair of host can exchange packets and can
communicate. Internet is a set of networks connected by routers that are configured in
such that the traffic pass among any computers that are attached to the network. Today
millions of computers are connected world-wide. To create a network: a stardard scheme
is needed to address the packets to any host; then a standardized protocol that defines the
format and handles the transimitted packets is needed and a components that routes the
packets to their destination. The smallest network is formed by two LANs of computers
that are connected to each other via router. A Local area network(LAN) is a network that
interconnects computer in a limited area. The internet protocol is designed to provide
a not guaranteed packet service. To transfer the data, the applications must utilize an
appropriate protocol such as the TCP(Transmission Control Protocol) that is a reliable
protocol(so guaranteed transmission) or the use of UDP(User Datagram Protocol) that
is a connection-less transport protocol, used principally for data that require real-time
service like voice or video streaming. Each host and router is defined through address
with fixed length, that are grouped in IP network. An IP address has a fixed length of 32
bit. They are written in sequence of four decimal number with values from 0 to 255 and
separated by a dot. The address identifies the interconnection point of one host with a
net. But with an address it is possible to identify not an host but one of its interface. so
One host can have more than one IP address like in the designed board. The IP address
is subdivided in two parts:

- Network ID : it is a prefix that identifies the network;

-Host ID : it identifies the host interface.

The Network ID occupies the left part of the address and te Host ID the right part. The
Net-ID can have different dimensions and Classes are defined to differentiate the networks.
Different classes of addresses are present:

o A class : The Net-ID that identifies an IP network has the first decimal number
fixed. So it is possible to index numbers from 0.0.0.0 to 127.255.255.255.

e B class : Addresses from 128.0.0.0 to 191.255.255.255

76

D — Networking

e C class: From 192.0.0.0 to 223.255.255.255
e D class: From 224.0.0.0 to 239.255.255.255
e E class: From 240.0.0.0 to 255.255.255.255

It is possible to decide locally a sub-ripartition of the NET /Host ID. So it is possible to
fragment the Host ID in two parts:

- The first part identifies the subnet;

- The second part identifies each interface host of the subnet;

For th subdivision it is necessary to use the Netmask; it must be configured to route the
IP address correctly. For example if it is used a network of B class (ex: 192.168.0.0) it
is possible to use the first byte of the Host-Id as subnet index ; in this way from the
network of B class it is possible to extract 254 network of C Class dimension. To do this
a netmask of 255.255.255.0 is used. The netmask is used to identify its own NET-ID from
the IP address. The subnetting is identifies using a specific notation: IP Address/(Net-ID
dimension + Subnet-ID). For example 192.168.5.0/24. Each packet that travels has to be
route, so the routers create a structure: in this way a datagram passes from one to another
router until it reaches the destination.

7

Bibliography

[
[\

—
w

[
(@)

(=) IS
A2 AL A AL A

.—..—..:..—..—.r—.

ALTERA. Cyclone 1V Device Handbook, Volume 1. Version Rev 2.0. 2016. URL:
https://www.altera.com/en_US/pdfs/literature/hb/cyclone-iv/cycloned-
handbook.pdf (cit. on p. 21).

William Fornaciari Carlo Brandolese. “Sistemi Embedded - Caratteristiche, tec-
nologie e mercato”. In: Mondo Digitale 3 (2009), pp. 3-10. URL: https://home.
deib.polimi.it/fornacia/lib/exe/fetch.php?media=papers:2009:2009 _
mondodigitale_embedded_p_3_10.pdf (cit. on p. 3).

Micron. Micron Serial NOR Flash Memory Reference manual. Version Rev B. 2014.
URL: https://www.micron.com/resource-details/2dd46e97-8a6c-4ed2-81c8-
7d77528076c2.

[Online|. URL: https://www.ic3.gov/media/annualreports.aspx (cit. on p. 1).

[Online|. URL: https://www.zionmarketresearch. com/news/embedded-systems-
market (cit. on p. 4).

[Online|. URL: https://en.wikipedia.org/wiki/ARM_architecture.

[Online|. URL: http://www.st.com/en/microcontrollers/stm32f7x6 . html?
querycriteria=productId=LN1902.

[Online]. URL: https://developer . arm. com/products/processors/cortex-
m/cortex-m7.

[Online|. URL: https://en.wikipedia.org/wiki/ARM_Cortex-A.

[Online]. URL: https://en.wikipedia.org/wiki/Small_form-factor_pluggable_
transceiver.

[Online]. URL: https://en.wikipedia.org/wiki/Ethernet#Frame_structure.
. URL: https://en.wikipedia.org/wiki/0SI_model.

. URL: https://en.wikipedia.org/wiki/IPv4.

. URL: https://en.wikipedia.org/wiki/Microcontroller.

. URL: https://www.eleccircuit.com/why-use-microcontroller/.

Online]. URL: https://www . elprocus . com/embedded - systems - real - time -
applications/.

[Online]. URL: https://en.wikipedia.org/wiki/Internet_Protocol.

78

https://www.altera.com/en_US/pdfs/literature/hb/cyclone-iv/cyclone4-handbook.pdf
https://www.altera.com/en_US/pdfs/literature/hb/cyclone-iv/cyclone4-handbook.pdf
https://home.deib.polimi.it/fornacia/lib/exe/fetch.php?media=papers:2009:2009_mondodigitale_embedded_p_3_10.pdf
https://home.deib.polimi.it/fornacia/lib/exe/fetch.php?media=papers:2009:2009_mondodigitale_embedded_p_3_10.pdf
https://home.deib.polimi.it/fornacia/lib/exe/fetch.php?media=papers:2009:2009_mondodigitale_embedded_p_3_10.pdf
https://www.micron.com/resource-details/2dd46e97-8a6c-4ed2-81c8-7d77528076c2
https://www.micron.com/resource-details/2dd46e97-8a6c-4ed2-81c8-7d77528076c2
https://www.ic3.gov/media/annualreports.aspx
https://www.zionmarketresearch.com/news/embedded-systems-market
https://www.zionmarketresearch.com/news/embedded-systems-market
https://en.wikipedia.org/wiki/ARM_architecture
http://www.st.com/en/microcontrollers/stm32f7x6.html?querycriteria=productId=LN1902
http://www.st.com/en/microcontrollers/stm32f7x6.html?querycriteria=productId=LN1902
https://developer.arm.com/products/processors/cortex-m/cortex-m7
https://developer.arm.com/products/processors/cortex-m/cortex-m7
https://en.wikipedia.org/wiki/ARM_Cortex-A
https://en.wikipedia.org/wiki/Small_form-factor_pluggable_transceiver
https://en.wikipedia.org/wiki/Small_form-factor_pluggable_transceiver
https://en.wikipedia.org/wiki/Ethernet#Frame_structure
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/IPv4
https://en.wikipedia.org/wiki/Microcontroller
https://www.eleccircuit.com/why-use-microcontroller/
https://www.elprocus.com/embedded-systems-real-time-applications/
https://www.elprocus.com/embedded-systems-real-time-applications/
https://en.wikipedia.org/wiki/Internet_Protocol

BIBLIOGRAPHY

[18]
[19]

[20]

[21]

[Online|. URL: https://en.wikipedia.org/wiki/Internetworking.

Bruce S. Peterson Larry L.; Davie. Computer Networks: a systems approach. Ed. by
Anche Leggoo. Elsevier, Inc., 2012 (cit. on p. 76).

NXP Semiconductors. .Mz 6Quad applications Processors for Industial Products.

Version Rev 5.0. 2017. URL: https://www.nxp.com/products/processors-and-

microcontrollers/applications-processors/i.mx-applications-processors/
i.mx-6-processors/i.mx-6quad-processors-high-performance-3d-graphics-
hd-video-arm-cortex-a9-core:i.MX6Q (cit. on p. 19).

STMicroelectronics. STM32F756zxx Reference manual. Version Rev 1. URL: https:
//www.st.com (cit. on pp. 12, 13, 15-17).

79

https://en.wikipedia.org/wiki/Internetworking
https://www.nxp.com/products/processors-and-microcontrollers/applications-processors/i.mx-applications-processors/i.mx-6-processors/i.mx-6quad-processors-high-performance-3d-graphics-hd-video-arm-cortex-a9-core:i.MX6Q
https://www.nxp.com/products/processors-and-microcontrollers/applications-processors/i.mx-applications-processors/i.mx-6-processors/i.mx-6quad-processors-high-performance-3d-graphics-hd-video-arm-cortex-a9-core:i.MX6Q
https://www.nxp.com/products/processors-and-microcontrollers/applications-processors/i.mx-applications-processors/i.mx-6-processors/i.mx-6quad-processors-high-performance-3d-graphics-hd-video-arm-cortex-a9-core:i.MX6Q
https://www.nxp.com/products/processors-and-microcontrollers/applications-processors/i.mx-applications-processors/i.mx-6-processors/i.mx-6quad-processors-high-performance-3d-graphics-hd-video-arm-cortex-a9-core:i.MX6Q
https://www.st.com
https://www.st.com

	Summary
	Introduction
	System overview
	Embedded Systems
	Introduction
	Embedded Hardware
	Embedded Software
	Types of Embedded Systems

	System Architecture of the designed embedded system
	 Microcontroller STM32F756 IGK6
	QSPI - NOR Flash Memory
	IMX6
	Cyclone IV

	System Architecture
	Carrier Board Design and Custom Module Structure
	Carrier Board Design
	The ENA

	STM Microcontroller Software
	Initialization TOKEN
	LEDs 1 & 2 ON
	Communication TOKEN

	IMX6 Microprocessor Software
	Kernel IP Forwarding
	User Space application for IP Forward
	Encryption and Decryption of Ethernet Packets

	Throughput Tests
	Description of the test devices
	Ethernet interface hardware architecture of ENA
	Ethernet interface hardware architecture of Smarc ROJ
	Software comparison

	Throughput performance of Kernel IP Forwarding
	General Purpose Throughput test
	ROJ eNUC Throughput test
	ENA Throughput test
	Performance Conclusions

	Throughput performance with application IP Forwarding
	Throughput performance with Encrypting and Decrypting application
	Comparison between ENA with IP Forwarding application and Encrypting/Decrypting Application

	Conclusion
	Open System Interconnection/International Standard Organization
	IP-Internet Protocol
	Overview and main characteristics
	IPv4 packet

	Secure Hash Algorithm
	Networking
	References

