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Introduction

S ince the early nineties, interest in fuel efficency and driving comfort has increased
dramatically in the automotive industry to enhance the vehicle commercial success.

Improvements in these two aspects have been achieved thanks to several researches for
the developement of advanced transmision and powertrain systems.

In this context, a remarkable result is represented by the Automated Manual
Transmission (AMT) systems. They offer the Automated Transmission (AT) effi-
cency preserving the Manual Transmission (MT) low fuel consumption. This is because
in the AMT systems, the advantages of traditional torque mechanic transmission are
combined with an automatic clutch actuation performed by a control unit during the
gear shifting operations.

Moreover, the AMT systems are nowadays equipped with the Dual Clutch Trans-
mission (DCT) technology yielding further improvements regarding the driving com-
fort. Indeed, a DCT systems between the engine and the gear transmission is able to
alternate torque demands from one clutch to the other clutch without power interrup-
tion during the shift process. The result is a rapid gear shifting with an efficient fuel
consumption and riding comfort. Furthermore, the use of dry clutches is less expensive
since they are actuated by a low cost electromechanical system.

In such a Dry Dual Clutch Transmission (DDCT) system, the clutch engagement
torque is proportional to the stroke of the actuator. As a consequence, the position
control effectiveness of the clutch servo system determines the overall performance in
relation to the driving behaviour. A mismatch between the command from the trans-
mission control unit and the actual position signal results in an ineffective clutch torque.
Thus, an accurate position control of the clutch actuator is needed for effortless driving
without any torque interruption.
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In this regard, the following thesis proposes a position control strategy for the
even gear actuator (K2 Actuator) of a DDCT system. The aim of the project, de-
veloped in collaboration with Centro Ricerche Fiat (CRF), is to design a controller
to track different position trajectories guaranteeing smoothness during the gear shifting
process with a continue torque transmission.

The thesis is organized as follows.

First of all, a brief overview of the DDCT system and its components, with a focus
on the K2 Actuator structure, is introduced. The physical relationships between the
involved variables are outlined and the control objectives are defined along with the
performance requirements.

In the second Chapter, a Model Predictive Control (MPC) strategy is proposed
for the position control of the K2 Actuator. This decision has been motivated by the
wide versatility of the optimization problem formulation offered by the MPC framework
and by the possibility of explicitly considering physical constraints on the input vari-
ables during the design procedure.
Once provided a compact overview of the MPC main theoretical aspects, a mathemati-
cal model of the K2 Actuator is achieved by means of a system identification procedure.
The obtained results have highlighted a large variability of the K2 Actuator dynamics
with respect to the operating region. For this reason, an Adaptive Model Predictive
controller has been designed on the basis of a real time varying state space representa-
tion of the system. Moreover, it is shown how the MPC cost function and optimization
problem can be suitably customized for the K2 Actuator position control problem. The
tuning procedure of the controller design parameters has been performed by carrying
out extensive simulations until satisfactory performances are obtained. These perfor-
mances have been further improved by means of a real time adjustment of the controller
design parameters on the basis of the working situation.
Finally, simulations results are presented in order to test the effectiveness of the pro-
posed control strategy.

The third Chapter deals with the application of a Linear Quadratic Regulator
(LQR) control technique to the K2 Actuator position control problem. Even if con-
straints on the involved variables are not handled, this approach allows to evaluate the
optimal control action in a static state feedback form so that computational aspects
can be enhanced. Indeed, a possible numerical implementation is proposed in the final
section of this Chapter.
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In this case, the identification methodology has been performed considering an Ham-
merstein model structure for the K2 Actuator plant. As for the MPC, an adaptive
approach and a dynamic tuning of the controller design parameters has been developed
to maintain the same level of control system performances despite the plant model dy-
namics are quickly changing on the basis of the working region.

In the fourth Chapter, the absence of a real position sensor in the described DDCT
system is considered by exploiting a Virtual Sensor based Control architecture.
Two types of virtual sensor are considered to provide the best position estimate on the
basis of the K2 Actuator pressure actual value. Their inclusion in different control ar-
chitectures is discussed by comparing several simulations results in order to decide the
most suitable virtual sensor model structure and control technique.

The last Chapter reports some overall concluding considerations about the whole
thesis work. Possible future developements are suggested in order to improve the ob-
tained results.

3



Chapter 1
The Dry Dual Clutch Transmission
System

This Chapter provides a brief outlook of the Dry Dual Clutch Transmission system
with a particular address to the involved even gear actuator. In regard to the

actuator position control of such a transmission system, the objectives and performance
requirements of the whole thesis work are outlined in the last section.

1.1 Overview of Transmission Systems

The transmission system of an automotive vehicle represents the connection between
the engine and the driver. Indeed, according to the driver’s request, the internal en-
gine power is converted and adapted to the wheels yielding the overall vehicle traction.
Because of their outstanding importance, transmission systems have to be designed en-
suring an efficient trade off between speed, climbing performance, acceleration and fuel
consumption without never overlooking the driving comfort.

Nowadays, passengers vehicles are commonly equipped with Manual Transmis-
sion (MT) or Automated Transmission (AT) systems. Their geographic diffusion
is different with respect to market demands. In particular, European consumers prefer
the low cost and the full driving control offered by the manual transmission whereas in
US and Japan, where comfort and ergonomics are promoted, the automatic transmis-
sion is more popular.

A good compromise between these two technologies is represented by the Auto-
mated Manual Transmission (AMT) systems. Thanks to the fusion between the

4



1 - The Dry Dual Clutch Transmission System

traditional torque mechanic transmission and an automatic clutch actuation, AMT sys-
tems are able to offer the AT efficiency still preserving the MT low fuel consumption.
Nevertheless, one of the most important problem of the AMT systems during the gear
shifting phase, is the presence of torque interruption that affects the driving comfort.
For this reason, the Dual Clutch Transmission (DCT) has been developed to overcome
such a drawback in the AMT systems.

1.1.1 The Dual Clutch Transmission for AMT systems

The Dual Clutch Transmission system was introduced in the first half of the twentieth
century by the french military engineer Adolphe Kgresse. With the aim of providing a
continue torque transmission, two input shafts are employed in the DCT system such
that the torque demand is alternated from one clutch to the other without power inter-
ruption.

The DCT systems are characterized by the following features

• Gear pre-selection: the synchronization of the oncoming gear has been completed
before the actual gear shifting procedure starts.

• Overlapping mechanism: the two clutches are wrinkled each other such that the
needed torque is transferred from the engine to the driving wheels without any
interruption during gear shifting.

The gear shifting process is usually handled in a fully automatic manner but also
the driver manual selection is possible.
Specifically, the traditional torque converter is shelved in favour of a continue torque
transmission with a low fuel consumption. This is because, unlike the disconnection be-
tween the engine and the wheels during the gear change, the DCT maintain a constant
traction yielding excellent power transmission and efficiency.

As for the DCT types, two forms are employed with respect to the gears meshing
method. Wet Dual Clutch Transmissions (WDCT) use oil bathed clutches for
cooling and are able to provide torque values up to 350 Nm. On the contrary, friction
between the clutches is used as meshing strategy in Dry Dual Clutch Transmission
(DDCT) systems. The advantage of employing dry clutches with respect to the wet
DCT is motivated by the capability of reducing pump losses and by the opportunity to
use a low cost actuation system.

The general configuration of a DDCT system is showed in Figure 1.1.

5
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Figure 1.1: General configuration of Dry Dual Clutch Transmission System.

The showed common layout is composed of two independent electromechanical actu-
ators that handle the twin clutches during a gear shift. The clutch engagement pressure
force is related to the longitudinal position of the moveable support between the pre-
stressed spring and the lever ratio.

However, unlike the described general configuration, modern Dry Dual Clutch Trans-
missions are actuated by means of fast electro-hydraulic systems as in the case of the
Fiat Power-train C635 DDCT, presented in the following section.
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1.2 The C635 Dry Dual Clutch Transmission System

In this thesis project, the Dry Dual Clutch Transmission system, developed and released
in 2010 by Fiat Power-train Technologies, is considered. This kind of DDCT system
is part of the the new C635 transmission family. They consist of a range of manual or
transversal DDCT transmissions, characterized by a 6-speed and all wheel drive with a
maximum input torque of 350 Nm and output torque of 4200 Nm.

 

Figure 1.2: C635 MT and DDCT versions.

1.2.1 System Architecture and Features

The C635 DDCT system architecture, showed in Figure 1.3, is composed by three input
shafts and contained in a two piece aluminium structure.
In particular, due to installation constraints, the gear set housing presents a reduced
length of the upper secondary shaft yielding an efficient packaging even in the lower
segment vehicles.

Moreover, it is worth to highlight the different actuation systems involved in the
C635 DCCT. A coaxial pull-rod is adopted for the actuation of the odd-gear Clutch
(K1), while the even-gear Clutch (K2) is actuated by means of a rather conventional
hydraulic Concentric Slave Cylinder (CSC).

In such a C635 DDCT, the torque transmission mechanism is related to the overlap
between the engagement of the on-going clutch and the release of the off-going clutch.
Both the twin clutches are installed on the proper housing by means of a single main

7



1 - The Dry Dual Clutch Transmission System

support bearing. This compact mounting solution is favoured by the low thickness of
the chosen K1 actuation system.

 

Figure 1.3: C635 DDCT cross section.

Another remarkable feature is the fact that a contact-less linear position sensor can
be integrated in the odd gears actuation system, hence allowing the position control
of the K1 clutch. On the contrary, the even gear clutch must be controlled in force
by means of the hydraulic pressure provided by the CSC. The just outlined aspect is
crucial for this thesis work since affects the K2 Actuator position control strategy.

1.2.2 Control Unit

The different algorithms, involved in the C635 DDCT control unit, run in a multitasking
environment so that the Main Micro Controller resources are suitably managed. The
following control problems are considered

• Actuator Control: the aim is to improve the electro-hydraulic clutch actuation.

– Engagement Actuators Control: the desired trajectories are evaluated by
commanding the relevant pressure valves one against the other.

– Shifter Control: the command action is able to push the shifter piston against
the proper spring in order to reach the desired position level.

– Odd Gears Clutch Control: a position closed loop controls the first and the
reverse gears clutch (K1).

– Even Gears Clutch Control: the even gear clutch (K2) is controlled in force
thanks to the pressure feedback provided by the associated sensor.

8
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• Self-Tuning Control: with the aim of guaranteeing the same high-level calibra-
tions to all vehicles, different self tuning control algorithms have been developed
mainly concerning the transmitted torque conversion to the K1 position and K2
pressure.

• Launch and Gear Shift strategies: different shift patterns are considered
and exploited by specific control and calibration strategies both in automatic and
manual driving mode.

1.2.3 Electro-hydraulic Actuation System

A dedicated, sealed, hydraulic oil circuit is responsible for the actuation of the C635
DDCT system components. Such an electro-hydraulic actuation strategy guarantees
good compactness improving, at the same time, the overall DDCT system performances.
The actuation system main components are

• Hydraulic Power Unit: consist of a high pressure accumulator and an electrically-
driven pump (Figure 1.4(a)).

• Actuation Module: includes the sensors, the gear shift actuators and the
solenoid valves (Figure 1.4(b)). It can be divided in

– four distinct double action pistons operating the gear engagement forks;

– one shifter spool which selects the piston to be actuated;

– five solenoid valves composed of four pressure proportional valve (PPV) and
one flow proportional valve (QPV).

 

(a)

  

(b)

Figure 1.4: C635 DDCT Hydraulic Power Unit (a) and Actuation Module (b).

9



1 - The Dry Dual Clutch Transmission System

Specifically, as far as the Actuation Module is concerned, two PPVs are related to
the the gear engagement, while the third commands the spool valve that selects the
associated piston. Finally, the clutches K2 and K1 are, respectively, controlled by the
fourth PPV and the QPV.

Different contact-less position sensor are also included in the C635 Actuation Mod-
ule, one for each engagement piston and one for the shifter pool. One pressure sensor
is related to the K2 clutch control system and one exploits monitoring functions.

The overall hydraulic circuit of the C635 DDCT Actuation System is showed in
Figure 1.5 below.

   

Figure 1.5: C635 DDCT complete actuation circuit.
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1.3 The C635 even gear Actuator

Referring to the whole actuation module described in section 1.2.3, the fourth pro-
portional pressure control valve (PPV), associated with the K2 Clutch, is specially
considered here. The choice is motivated by the aim of this thesis project, that is to
develop a control strategy for the even gear actuator of the C635 DDCT system.

In this regard, the basic physical properties are described along with the PPV general
structure and components. Finally, control objectives and requirements of this thesis
work are presented.

1.3.1 Essential elements of Proportional Pressure Control Valves

As already mentioned in section 1.2.3, the K2 Clutch, associated with the even gear
engagement, is controlled by a proportional control valve. Specifically, these kind of
electro-hydraulic valves can be considered as a trade-off between the cheaper solenoid
valves and the outperforming servo valves in the sense that they preserve low manu-
facturing costs with the only drawback of a slight performance worsening. Anyway,
PPVs provide an economical and satisfactory alternative for many applications and are
therefore commonly employed in transmission systems.

The K2 Actuator working principle is essentially based on the mechanical forces de-
riving from magnetic interactions. That is, a proper solenoid is able to exert an output
force, hence an output pressure, that is related to the current flowing through its wires.
The reason behind the choice of a current based PPV, is to reduce temperature leakages
associated with a voltage control system so that the overall efficiency is preserved.

The general configuration of a PPV is showed in Figure 1.6 below.   

controlled flow

solenoid

supply

control
spring

Figure 1.6: Schematic section of a PPV.
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1 - The Dry Dual Clutch Transmission System

The output pressure is regulated by controlling the flow of the hydraulic fluid through
the orifice of the PPV. More precisely, the valve spool is seated between a compression
spring and a proportional solenoid. In this way, the orifice size is controlled via the
spring deflection by modifying the mechanical force produced by the solenoid and re-
lated to the input current. This strategy leads to an almost proportional relationship
between the valve output pressure and the input current flowing through the solenoid.

Concerning the possible drawbacks associated with these PPVs, overlapped spools
have to be used because of the difficulties in producing a zero lap spool. This means
that no output pressure is obtained until the input current exceeds a proper value that
is required to overcome the spring pre-load and the spool overlap. Figure 1.7 graphically
express this aspect by showing the dead zone that is present between the input current
and the output pressure.

dead zone

Input Current (mA)

O
ut

pu
t

Pr
es

su
re

(b
ar

)

Figure 1.7: Pressure current characteristic of a PPV.

Another important feature of proportional pressure valves is the hysteresis effect.
In fact, depending on whether the current is increasing or decreasing, a considerable
difference in the valve output pressure takes place. This is because the valve relies on
the force exerted by the solenoid acting against the spring to move the spool.

Both the dead zone and the hysteresis are crucial aspects in regard to the even gear
actuator control strategy. The former is specifically accounted by one of the proposed
control strategies (details in section 3.2.1), the latter is treated in [1].

12



1 - The Dry Dual Clutch Transmission System

1.3.2 K2 Actuator position control objectives

With the aim of improving driving comfort and guaranteeing a smooth gear shift process,
a position control strategy for the even gear actuator is proposed in this thesis work.
Different position reference trajectories have been considered and the tracking problem
has been addressed by accounting the following performance requirements, provided by
Centro Ricerche Fiat (CRF).

• Position Overshoot: ŝ ≤ 5%

• Rise Time: 50 ≤ tr ≤ 120 ms

• Steady State Error for step reference: |e∞r | ∼= 0

• Input Current: 0 ≤ Icmd ≤ 1000 mA

• Pressure: 0 ≤ p ≤ 40 bar

In the following Chapters, different control architectures and model identification
approaches are proposed to develop an efficient position controller for the K2 Actuator.
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Chapter 2
Adaptive Model Predictive Control for
K2 Actuator

T he main purpose of this chapter is to provide a compact overview of the essential
elements of model predictive control (MPC) along with its application to the K2

Actuator Control problem.

2.1 MPC Overview

Control systems based on the MPC concept have gained popularity in a wide range of
applications in different engineering fields due to their ability to yield high performance
control systems together with the facility of flexible constraints handling.
These peculiarities are conditioned by explicitly considering the model of the system to
obtain the control action as a result of a constrained optimization problem. A numerical
optimization problem has to be solved at each sampling time and the computational
effort is consequently quite high. For this reason, originally, MPC was mainly employed
for systems with slow dynamics and large computational resources such as chemical or
aerospace processes. However, in the last years, significant improvements of micropro-
cessors and computer power allowed Model predictive control to be applied in faster
system like mechatronic and automotive applications.

Model predictive control has its roots in optimal control. The key idea of MPC is
to use a mathematical model to forecast the system behavior, in order to determine the
best control actions to apply over some period as a result of a constrained optimization
problem [10], [8].
The MPC architecture is composed of (see Figure 2.1)
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2 - Adaptive Model Predictive Control for K2 Actuator

• the prediction model;

• the cost function and the constraints;

• the optimizer;

• the controlled system.

All these aspects will be discussed in the following sections of this chapter.

Optimizer System

Model

Prediction

Cost Function Constraints

MPC

Figure 2.1: General Scheme of Model Predictive Control

The most relevant benefits of exploiting MPC strategy can be outlined in

• The opportunity to explicitly include both control input and state variables con-
straints;

• The capacity to manage multi-variable control problems;

• The possibility to trade off between different control objectives by tuning some
critical parameters.
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2 - Adaptive Model Predictive Control for K2 Actuator

2.1.1 Prediction Model

Discrete time prediction models are often suitable if the considered system is sampled
at discrete times. If the sampling rate is properly chosen, the behaviour between the
samples can be safely ignored and the model describes exclusively the behaviour at the
sample times.

The more general representation for the prediction model is a non linear, time in-
variant state space system of the following form

x(k + 1) = f
(
x(k), u(k)

)
f ∈ C1

y(k) = g
(
x(k), u(k)

)
g ∈ C1

(2.1)

where x(k) ∈ Rn is the state variable, y(k) ∈ Rp is the system output, u(k) ∈ Rm is the
control input.

Assuming that all the system state variables x(k) are measurable, the prediction of
the model expressed in (2.1) consists in considering the states evolution from a time
instant k over a certain number of time steps in the future.
The length Hp of the finite optimization horizon is referred as prediction horizon.

In order to easily approximate and analyse physical systems, the prediction model
(2.1) often consists in a Linear Time Invariant (LTI) discrete time system, described by
the following state space representation

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
(2.2)

where A ∈ Rn,n, B ∈ Rn,m, C ∈ Rn,p.

For such a LTI System the ith step ahead state prediction x(k+i|k) can be expressed
as

x(k + i|k) = Aix(k|k) +Ai−1Bu(k|k) +Ai−2Bu(k + 1|k) + · · ·+Bu(k + i− 1|k)

= Aix(k|k) +
i−1∑
j=0

Ai−j−1Bu(k + j|k).

(2.3)

Therefore, the prediction model (2.2) depends only on the current state x(k|k) and on
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2 - Adaptive Model Predictive Control for K2 Actuator

the control sequence U(k) = [u(k|k) u(k + 1|k) ... u(k +Hp − 1|k)].

2.1.2 Cost Function and Optimization Problem

The MPC strategy is related to the minimization, over a specified finite prediction
horizon Hp, of a cost function whose general expression is

J(x(k|k), U(k)) = Φ
(
x(k +Hp|k)

)
+

Hp−1∑
i=0

L
(
x(k + i|k), u(k + i|k)

)
(2.4)

where

- x(k|k) is the state measurement at current time k.

- x(k + i|k) is the ith step ahead state prediction.

- U(k) = [u(k|k) u(k + 1|k) ... u(k +Hp − 1|k)] is the command input sequence to
be optimized.

- L(·) is the per-stage weighting function.

- Φ(·) is the terminal state weighting function.

The weighting functions L(·) and Φ(·) are assumed to be continuous in their ar-
guments and are considered as design parameters to be suitably chosen according to
the desired control performances.

Therefore, considering the generic non linear system expressed in (2.1), the con-
strained finite time optimization problem assumes the following form

U∗ = argmin
U

J(x(k|k), U(k))

subject to
x(k + 1) = f

(
x(k), u(k)

)
x(k + i|k) ∈ X , i = 1...Hp − 1

u(k + i|k) ∈ U , i = 1...Hp − 1

x(k +Hp|k) ∈ Xf

(2.5)

where

- X ∈ Rn and U ∈ Rm are polyhedra representing respectively the states and the
input constraints invariant sets (details in [10]).
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- Xf is the terminal polyhedral region introduced in the optimization problem to
ensure asymptotic stability (details in [19]).

- U∗(k) = [u∗(k|k) u∗(k + 1|k) ... u∗(k + Hp − 1|k)] is the optimal input control
sequence.

2.1.3 Control Input and State Constraints

The possibility to handle input and state constraints is the main quality that distin-
guishes MPC from the standard linear quadratic (LQ) control.

For systems subject to external inputs such as (2.1) and (2.2), the two regions X ∈ Rn

and U ∈ Rm are referred as control invariant sets ( [10], [20], [3]). These two convex
regions are useful to answer questions such as: Find the set of initial states for which
there exists a controller such that the system constraints are never violated. For the sake
of simplicity, in the following it will be assumed that both X and U are reachable poly-
tope containing the origin in their interior so they will be modeled as sets of inequalities.

Regarding control input constraints, the set U is usually chosen to take care of the
actuator devices physical limitations. For this reason, input actuator saturation
and slew rate constraints can be managed with the following formulation

Umin ≤ u(k + i|k) ≤ Umax, i = 1...Hp − 1

∆Umin ≤ u(k + i|k) ≤ ∆Umax, i = 1...Hp − 1
(2.6)

where

- Umin and Umax are respectively the constraint vector associated with the mini-
mum and maximum control input value.

- ∆Umin and ∆Umax are respectively the constraint vector associated with the
minimum and maximum control input variation rate.

In order to clarify this aspect, a prediction horizon Hp = 2 is considered and the
control input vector becomes simply U(k) = [u(k|k) u(k + 1|k)]. The set of constraints
on the control input value can be rewritten as
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2 - Adaptive Model Predictive Control for K2 Actuator

umin ≤ u(k|k) ≤ umax

umin ≤ u(k + 1|k) ≤ umax
⇒

[
1 0

0 1

][
u(k|k)

u(k + 1|k)

]
≤

[
umax

umax

]
[
−1 0

0 −1

][
u(k|k)

u(k + 1|k)

]
≤

[
umin

umin

]

⇒

[
I

−I

]
| {z }
LUv

[
u(k|k)

u(k + 1|k)

]
≤


umax

umax

umin

umin


| {z }

WUv

⇒ LUvU(k) ≤ WUv (2.7)

In a similar way the matrix inequalities for the slew rate constraints are obtained in
the following form

LUsrU(k) ≤ WUsr (2.8)

Therefore, combining (2.7) and (2.8) the overall input actuator constraints of the
form (2.6) can be rearranged as

LUU(k) ≤ WU (2.9)

As to the state constraints, the set X is often related to the performance require-
ments. More precisely state constraints are useful to impose limitations on output
variables e.g. to mitigate overshoots or inverse behaviour in the system response. State
constraints can be managed with the same above formulation

xmin ≤ x(k + i|k) ≤ xmax, i = k...Hp (2.10)

where xmin and xmax are respectively the constraint vector associated with the mini-
mum and maximum value of each state.

Considering the LTI prediction model (2.2) the state constraints can be expressed
as linear constraints in U(k). In fact, choosing again a prediction horizon Hp = 2, the
state boundaries are

Lx1x(k + 1|k) ≤ Wx1

Lx2x(k + 2|k) ≤ Wx2

⇒
Lx1

(
Ax(k|k) +Bu(k|k)

)
≤ Wx1

Lx2

(
A2x(k|k) +ABu(k|k) +Bu(k + 1|k)

)
≤ Wx1
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where the step ahead prediction state expression (2.3) has been applied. Further, the
above expression of the state constraints can be written as a linear matrix inequality in
U(k)

LxU(k) ≤ Wx (2.11)

where

Lx =

[
Lx1 0

0 Lx2

][
B 0

AB B

]

Wx =

[
−Lx1 0

0 −Lx2

][
A

A2

]
x(k|k) +

[
Wx1

Wx2

] (2.12)

2.1.4 Quadratic Programming

As discussed in section 2.1 Model Predictive Control strategy is based on solving a con-
strained optimization problem related to the minimization of a cost function. Therefore,
a suitable choice for the weighting functions L(·) and Φ(·) expressed in (2.4) guarantee
an efficient set up for the MPC control problem.
For instance, for output or states regulations, the following quadratic form is commonly
chosen

L(·) = x(k + i|k)TQx(k + i|k) + u(k + i|k)TRu(k + i|k), i = 0...Hp − 1

Φ(·) = x(k +Hp|k)TPx(k +Hp|k)

where Q ⪰ 0, P ⪰ 0 and R ≻ 0 are symmetric weighting matrices to consider as
tunable design parameters to reach the control objectives.

By substituting the above weighting functions in (2.4), the cost function to be min-
imized in the MPC optimization problem can be rewritten as

J(x(k|k), U(k)) = x(k +Hp|k)TPx(k +Hp|k) +
Hp−1∑
i=0

(
x(k + i|k)TQx(k + i|k)

+ u(k + i|k)TRu(k + i|k)
) (2.13)

An optimization problem is called quadratic program (QP) if the constraint functions
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are affine and the cost function is a convex quadratic function ([10], [13]).

In order to show that the just presented cost function (2.13) is quadratic with re-
spect to the optimization variable U(k), the LTI System (2.2) is considered as predic-
tion model. Recalling the equation (2.3), the vector of the predicted states X(k) =

[x(k|k) x(k + 1|k) ... x(k +Hp − 1|k)] can be written as

X(k) = AX(k) + BU(k) (2.14)

where

A =


A

A2

...
AHp

 ∈ Rn·Hp×n, B =


B 0 · · · 0

AB
. . . . . . ...

... . . . . . . ...
AHp−1B · · · · · · B

 ∈ Rn·Hp×Hp

and by defining also the weighting matrices

Q =


Q 0 · · · 0

0
. . . . . . ...

... . . . Q
...

0 · · · 0 P

 ∈ Rn·Hp×n·Hp , R =


R 0 · · · 0

0
. . . . . . ...

... . . . R
...

0 · · · 0 R

 ∈ Rm·Hp×m·Hp

the cost function (2.13) assumes the following compact matrix form

J(x(k|k), U(k)) = X(k)TQX(k) + U(k)TRU(k) (2.15)

After some mathematical manipulations and substituting the (2.14) in (2.15), such
a quadratic form of the cost function is obtained

J(x(k|k), U(k)) =
1

2
U(k)THU(k) + x(k)TFU(k) + J (2.16)

where

- H = 2(BTQB +R) ≻ 0 is the Hessian of the quadratic form.

- F = 2ATQB is the mixed term of the quadratic form.
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- J = x(k)TATQAx(k) is the vertical offset of the quadratic form.

Regarding the affinity of the constraint function, the expression (2.6) of the input
constraints and (2.11) of the state constraints can be combined in the following single
set of linear constraints

LU(k) ≤ W (2.17)

where L = [LxLU ] and W = [WxWU ].

In conclusion, the MPC constrained optimization problem (2.5) can be expressed as
a QP.

U∗ = argmin
U

(1
2
U(k)THU(k) + x(k)TFU(k) + J

)
subject to LU(k) ≤ W

(2.18)

The just expressed formulation ensure the convexity of the QP problem, therefore the
unique optimal solution can be efficiently computed by different numerical algorithms
such as

- "active" set algorithms [4], [11], [22].

- "primal-dual" interior point algorithms [4], [22].

Moreover, new algorithms have been recently introduced improving the MPC online
computation. Some of these method are

- the partial enumerator methodology [4], [19].

- the modified active set method [11].

- the approximate primal barrier method [28].

2.1.5 Receding Horizon Control

The solution of the finite horizon QP (2.18) results in an optimal control move U∗(k) =

[u∗(k|k)... u∗(k+Hp−1|k)] which starts at current time t = k and ends at t = k+Hp−1.
The application of this sequence over the time interval [t, t+Hp] gives rise to an open loop
control strategy. However, it is well known that modeling errors, parameter uncertain-
ties or disturbances may lead to poor control performances with an open loop technique.
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To overcome such a drawback, a feedback control action can be obtained through the
Receding Horizon (RH) principle. An infinite horizon sub-optimal controller is designed
by repeatedly solving finite time optimal control problems in a receding horizon fashion
as described next.

t t+ 1 t+Hc t+Hp

reference

u(t+ k)

predicted outputs y(t+ k|t)

t+ 1 t+ 2 t+ 1 +Hc t+ 1 +Hp

predicted outputs y(t+ k + 1|t+ 1)

u(t+ k + 1)

Figure 2.2: Receding Horizon Principle

Starting at current time t = k, the following open-loop optimal control problem is
solved over a finite horizon (top graph in Figure 2.2)

minUt→t+Hc|t
Jt(x(t), Ut→t+Hc|t)

subject to LUt→t+Hc|t ≤ W
(2.19)

where Ut→t+Hc|t = [ut|t, · · · , ut+Hc−1|t] is the reduced number of input sequence. The
chosen Hc ≤ Hp, referred as Control Horizon, is often used to reduce the number
of variables involved in the optimization problem in order to tone down the com-
putational effort. In case Hc < Hp, the remaining Hp − Hc control input sequence
[ut+Hc|t, · · · , ut+Hp−1|t], needed to evaluate the state prediction until the time t = Hp,
can be chosen as

- u(k + i|k) = 0 with Hc ≤ i ≤ Hp − 1.

- u(k + i|k) = u(k +Hc|k) with Hc ≤ i ≤ Hp − 1.

Let U∗
t→t+Hc|t = [u∗t|t, · · · , u

∗
t+Hc−1|t] be the optimal solution of (2.19) at time t. Then,

the Receding Horizon strategy can be explained by the following iterative procedure
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I) only the first element u∗t|t is applied as control action to the system during the
sampling interval [t, t+ 1].

II) At the next time step t + 1 a new optimal control problem (2.19) based on new
measurements of the state x(t+1) is solved over a shifted horizon (bottom graph
in Figure 2.2).

The resulting Receding Horizon Controller (RHC) evaluates, at each sampling time, an
optimal control input which depends only on the current state x(k). The computed
control input at time t = k can be expressed as

u∗(k) = u∗(k|k) = u∗
(
x(k|k)

)
= u∗

(
x(k)

)
(2.20)

Moreover, since in the considered optimization problem (2.19) either the system ei-
ther the constraints and the cost function are time invariant, also the solution (2.20) is
a time invariant function of the state. That is, the RHC implicitly defines a non-linear
time invariant static state feedback control law of the form u(k) = K

(
x(k)

)
.

xk+1 = Axk +Buk

K
(
x(k)

)

QP[I 0 · · · 0]

x(k)

xk|kuk|k

 u∗
k|k
...

u∗
k+Hc−1|k]



u(k)

K
(
x(k)

)

Figure 2.3: General Scheme of RH controller as a solution of the QP

In conclusion, a receding horizon controller where the finite time optimal control law
is computed by solving a QP problem on-line is usually referred as Model Predictive
Control (MPC). Figure 2.3 resumes the MPC strategy.

24



2 - Adaptive Model Predictive Control for K2 Actuator

2.2 Adaptive MPC Principles

In the previous section 2.1 the general set up of the MPC strategy has been discussed.
In particular, it has been highlighted how the optimal control law is strongly related to
the model parameters as well as to the imposed constraints.

Adaptive Control covers a set of techniques based on a real time adjustment of
the controller parameters, in order to maintain a desired level of control system
performance despite the plant dynamic model parameters are changing in time.
At each sampling time, a suitable on-line estimator updates the model parameters on
the basis of the collected data and the MPC control law is consequently adjusted in real
time yielding a closed loop tuning procedure [17].

MPC Controller Plant

Online Estimator

θ̂

u y

Figure 2.4: General Scheme of an Adaptive MPC Control System

The Adaptive MPC idea, as generally displayed in the Figure 2.4 above, is based on
the following procedure

I) Collect the Plant input u(k) and output y(k) measurements.

II) Estimate the plant dynamic model parameters θ̂(k) in real time using a suitable
estimator algorithm.

III) Adjust the MPC optimal control law by updating, with the real time estimate
θ̂(k), the state space representation of the plant prediction model.

The effectiveness of the just presented Adaptive MPC control strategy occurs in a
particular way when dealing with non-linear systems or with systems whose behaviour
is strongly influenced by the working point.
Recursive least square (RLS) is a common estimator to be employed for estimating
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the system parameters in real time. The RLS is fundamentally based on solving a
Least Square estimation problem in a recursive fashion. For this reason, in the next
paragraphs the main conceptual aspects of the Least Square criterion will be highlighted
and the RLS estimation algorithms will be presented.

2.2.1 Least Square Method

The Least Square method has its roots in the linear regression problem i.e.the problem
of finding the values of n real parameters θ1, ..., θn such that the sum of the squares of
the differences between the output y(k) of the plant and the output ŷ(k) of the predic-
tion model is minimized [27].

Considering for the Plant model the equation error or ARX model structure, the
input-output relationship can be described by the following difference equation

y(k) + a1y(k − 1) + ...+ anay(k − na) =b0u(k + na − nb) + b1u(k + na − nb − 1)+

...+ bnb
u(k − nb) + e(k)

where

- y(k)...y(k − na) are the collected output measurements for k = 1, 2 ...N .

- u(k + na − nb)...u(k − nb) are the collected input measurements for k = 1, 2 ...N .

- e(k) is a white noise term entering the process for k = 1, 2 ...N .

In discrete-time domain

Y (z) =
B(z)

A(z)
+H(z)E(z) (2.21)

where

B(z) = b0 + b1z
−1 + b2z

−2 + ...+ bnb
z−nb

A(z) = 1 + a1z
−1 + a2z

−2 + ...+ anaz
−na

H(z) =
1

A(z)

In order to evaluate the prediction error norm ∥y(k)− ŷ(k)∥2 the ARX model ex-
pression (2.21) need to be written in prediction form

Ŷ (z) =

(
1− 1

H(z)

)
Y (z) +

G(z)

H(z)
U(z) =

(
1−A(z)

)
Y (z) +B(z)U(z) (2.22)
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which leads to the following difference equation for the predicted output

ŷ(k) = −a1y(k− 1)− ...− anay(k−na)+ b0u(k+na −nb)+ ...+ bnb
u(k−nb) = φT (k)θ

(2.23)
where

- φT (k) = [−y(k− 1) ... − y(k− na) u(k+ na − nb) ... u(k− nb)] is the regression
vector.

- θ = [a1 a2 ... ana b0 b1 ... bnb
] are the model parameters to be identified.

Finally, the quadratic optimality criterion related to the Least Square problem can
be written as

JN (θ) =
1

N

N∑
k=1

(
y(k)− φT (k)θ

)2 (2.24)

and the unique optimal parameter vector θ̂LS is given by

θ̂LS = arg min
θ∈Rna+nb

(
JN (θ)

)
=

N∑
k=1

(
φ(k)φT (k)

)−1

·
N∑
k=1

φ(k)y(k) (2.25)

2.2.2 Recursive Least Square

The Recursive Least Square estimation method is based on minimizing the one-step pre-
diction error in a recursive fashion on the basis of the previously acquired input-output
data [25].

The least square estimate solution (2.25) at a generic time instant t is considered

θ̂t =
t∑

k=1

(
φ(k)φT (k)

)−1

| {z }
S(t)−1

·
t∑

k=1

φ(k)y(k) = S(t)−1
t∑

k=1

φ(k)y(k)

where

S(t) =
t∑

k=1

φ(k)φT (k) = S(t− 1) + φ(t)φT (t)
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After some manipulations the general structure of the RLS algorithm can be written
as

θ̂t = θ̂t−1 + S(t)−1φ(t)| {z }
K(t)

(
y(t)− φT (t)θ̂t−1

)| {z }
ϵ(t)

= θ̂t−1 +K(t)ϵ(t) (2.26)

where

- θ̂t−1 is the old parameter vector.

- K(t) is a gain term related to the new parameters sensitivity with respect to the
old parameters estimate.

- ϵ(t) is the prediction error.

As highlighted by the above equation (2.26), the RLS procedure is mainly performed
by updating the old parameter vector estimate θ̂t−1 with a correction term related to
the actual prediction error ϵ(t). In this sense, the gain term K(t) can be seen as a
weighting function which decides how much the new parameters are influenced either
by the previous parameters estimate or by the new measurements.

Different forms of the gain term K(t) are associated with the following estimation
algorithms

- Unnormalized and Normalized Gradient.

- Forgetting Factor.

- Kalman Filter.

Among the just exposed procedures the most commonly used is the Normalized
Gradient Algorithm. This method is capable of guaranteeing good performances in
terms of parameters estimation preserving the system stability thanks to the normal-
ization term.

More precisely, the gain term K(t) is evaluated through the ratio between an adap-
tation factor γ and the norm of the regression vector φ(t), as expressed by the following
equation

K(t) =
γ

∥φ(t)∥2 + ε
φ(t) (2.27)

where
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- 0 ≤ γ ≤ 1 is the adaptation factor related to the parameters sensitivity with
respect to the variations of the plant dynamics.

- ∥φ(t)∥2 is the normalization term that maintains the system stability.

- ε is a small bias term that prevents sudden jumps in the gain term value when
the normalization term is almost null.

In conclusion, collecting the expressions (2.26) and (2.27), the RLS iterative proce-
dure can be resumed as

I) Collect the Plant input u(k) and output y(k) measurements.

II) Build the regression vector φ(t).

III) Evaluate the gain term K(t) according to (2.27).

IV) Evaluate the prediction error ϵ(t).

V) Update the old parameter vector θ̂t−1 according to (2.26).
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2.3 Adaptive MPC for K2 Actuator

In the previous sections 2.1 and 2.2 the main conceptual aspects of the Adaptive Model
Predictive control technique have been discussed. In the following, the practical appli-
cation to the K2 Actuator position control will be exploited.

The goal of the project is to control the proportional pressure valve (PPV) that
actuates the K2 Clutch for the even gears. As long as the K2 Actuator is concerned,
the output variables are the pressure valve p and the clutch position Xcsc whereas the
only control input variable is the actuation current Icmd that should be provided by the
controller in such a way that the position tracking error is minimized.

MPC Controller K2 Actuator
Icmd

Xref
csc

Xcsc

p

Figure 2.5: General Overview of the MPC position control for the K2 Actuator

Assuming that an ideal position measurement is available, a model predictive control
architecture has been developed (general scheme in Figure 2.5).

MPC is a particularly suitable control strategy to handle such a problem because it
is capable to manage different objectives even taking into account the physical limits of
the K2 Actuator, including its saturation constraint in the control computation.

2.3.1 K2 Actuator linear model Identification

As discussed in section 2.1, the chosen MPC strategy needs a mathematical model of
the plant to control, so the K2 Actuator dynamics has been identified on the basis of
the measured data provided by Centro Ricerche Fiat (CRF).

The relationship between the input current Icmd and the output position Xcsc is
represented by a first order model described by the following LTI discrete time transfer
function

G(z) =
β

z + α
=

Y (z)

U(z)
(2.28)
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where Y = Xcsc and U = Icmd.

The identification of the model parameters α and β has been performed through
MATLAB System Identification Toolbox. Different strategies have been adopted as
described next.

Single linear model

The K2 Actuator dynamics has been preliminarily considered as a single linear model
of the form (2.28).
A single data set, composed by eighteen different ascending position steps, has been
used both for identifying the K2 Actuator and for validating the identified model.

From now on, the presented Figures, as well as the physical variables numerical data,
will be normalized with respect to their maximum value.
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Figure 2.6: Validation data set for single single linear model identification strategy.

Such an identification strategy shows the following results for the model parameters

α = −0.9828

β = 1.8208 · 10−4

As highlighted by Figure 2.6 above, it is quite evident that the estimated output is
not able to track the measured output data for the whole working conditions. This is
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because the Plant position responses are so variable in their static and dynamic proper-
ties, with respect to the different working regions, that a single identified model is not
enough to catch these variations.

For this reason, a local multiple identification has been exploited as described next.

Multiple linear model

On the basis of the K2 Actuator static and dynamic properties, the whole provided
data set, composed of eighteen ascending set points, has been previously divided in 4
different position ranges as highlighted by Figure 2.7 below.
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Figure 2.7: Different position ranges highlighted on the given data set.

- Low Position Range: [8 - 21] %

- Medium - Low Position Range: [21 - 57] %

- Medium - High Position Range: [57 - 85] %

- High Position Range: [85 - 100] %

For each of the chosen position region, a single linear model of the form (2.28) has
been identified. More precisely, the local identification has been performed considering
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as output data the corresponding position responses when the K2 Actuator Plant re-
ceives as input a suitable input current.

The static and dynamic properties in the different position ranges are resumed in
the following table.

Range (%) DC Gain
(mm

A
)

β α

8 to 21 0.73 ≤ KDC ≤ 5 2.6962 · 10−6 −0.9997
21 to 57 6.2 ≤ KDC ≤ 7.96 4.6775 · 10−5 −0.9964
57 to 85 8.29 ≤ KDC ≤ 8.64 1.1522 · 10−4 −0.9865
85 to 100 7.23 ≤ KDC ≤ 8.05 2.3719 · 10−4 −0.9740

Table 2.1: System parameters in the different working regions.

As highlighted in Table 2.1, high position ranges are related to fast position re-
sponses whereas small position ranges correspond to slow system dynamics. That is,
the model behaviour is highly variable with respect to the operating range.

For the above considerations, a recursive estimation strategy has been exploited in
order to have an adaptive Model Predictive Controller designed on the basis of a real
time varying state representation of the system.

Recursive Estimation

The parameters α and β, related to the first order model describing the K2 Actuator
dynamics, are estimated in real time through a recursive Least Square method on the
basis of the collected current Icmd and position Xcsc measurements.

Recalling the expression (2.21) for the ARX model structure, the K2 Actuator input
output relationship can be written in the following form

G(z−1) =
βz−1

1 + αz−1
=

Y (z−1)

U(z−1)
(2.29)

where Y = Xcsc and U = Icmd.

In time domain

Xcsc(t) = −αXcsc(t− 1) + βIcmd(t− 1) = φT (t) θ
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where

- φT (t) = [−Xcsc(t− 1) Icmd(t− 1)] is the regression vector.

- θ = [α β] are the model parameters to be identified.

As previously discussed in section 2.2.2, the parameters recursive estimation is based
on the normalized gradient algorithm. The overall recursive equation can be written as

θ̂t = θ̂t−1 +
γ

∥φ(t)∥2 + ε
φ(t)ϵ(t) (2.30)

Tuning and implementation details are discussed in section 2.4.

2.3.2 Observer for non measurable disturbance

The identification results, discussed in section 2.3.1, have brought out some important
aspects related to the K2 Actuator system dynamics.

Especially in the low position ranges, when the system response is much slower, a
static non-linear effect takes places due to the dead-zone relating the input current and
the position of the clutch. This non-linearity, together with other internal physical effect
inducing a mismatch from the nominal linear model (2.28), can be taken into account
with a non measurable disturbance seen by the controller as an extra state variable.
In the MPC control architecture this can be exploited by means of a state Observer able
of providing the controller the disturbance estimate needed for the prediction yielding
an implicit feed-forward action in the control architecture.

The main idea of the state Observer is to use the actual position Xcsc and current
Icmd measurements in order to provide the state estimate x̂ = [X̂csc d̂]. The observer
general structure is resumed in Figure 2.8 below.

K2 Actuator

State Observer
x̂

Icmd Xcsc

Figure 2.8: General Scheme of the State Observer.
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The state observer dynamics can be associated to a MISO system according to the
following state equations

x̂(k + 1) = Aobsx̂(k) +Bobsu(k)

ŷ(k) = Cobsx̂(k)
(2.31)

where

- u(k) = [Xcsc(k) Icmd(k)] is the is the Observer input vector.

- Bobs = [Bred L], Aobs = Ared − LCred and Cobs = [1 0] are the observer state
matrices.

The matrix L, referred as the Observer Gain, has been suitably chosen in order to
ensure the matrix Aobs asymptotic stability.

In particular, the Luenberger Observer has been adopted as state estimation
strategy and a suitable tuning for the observer convergence speed has been exploited
by means of a reasonable allocation of the gain matrix L eigenvalues.
According to the dominant dynamics of the model (2.28) associated to the K2 Actuator,
the following eigenvalues have been assigned

λobs1 = 0.5

λobs2 = 0.05
(2.32)

2.3.3 Augmented prediction model

As discussed in section 2.1.1, the Model Predictive Control architecture is related to the
state-space representation of the system. In this case, the following LTI discrete time
form is adopted

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
(2.33)

where x = Xcsc, u = Icmd, and A = −α, B = β, C = 1.
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Explicit integral Action

A standard approach to improve tracking performance for a constant reference and to
reduce tracking errors even in presence of constant disturbances, is to use an explicit
integral action in the control architecture.

For the considered MPC strategy, the explicit integral action can be taken into con-
sideration by adding in the prediction model (2.33) the integral of the tracking error
q(k) as an extra state variable.
Therefore, the new state variable becomes x̃ = [Xcsc Xref

csc q] and the augmented pre-
diction model can be described by the following state equations

x(k + 1) = Ax(k) +Bu(k)

Xref
csc (k + 1) = Xref

csc (k)

q(k + 1) = q(k)− TsCx(k) + TsX
ref
csc (k)

(2.34)

where Ts = 0.002 s.

In matrix form

x̃(k + 1) =

 A 0 0

0 1 0

−TsC Ts 1

 x̃(k) +

B0
0

u(k)

y(k) =
[
C 0 0

]
x̃(k)

(2.35)

Implicit integral Action

In the MPC architecture the control input variation ∆u can be considered as optimiza-
tion variable for the QP problem. This is another method to include an integral action
in the control formulation and it can even give further improvements to the System
response. In particular, by tightening the control input variations the transient oscilla-
tions can be reduced by means of a smooth control action.

In this context, implicit integral action is exploited by considering the previous
control input value u(k−1) as an extra state variable. Therefore, the new state variable
becomes x̃ = [Xcsc Icmd(k − 1)] and the augmented prediction model can be described
by the following state equations
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x(k + 1) = Ax(k) +Bu(k)

∆u(k) = u(k)− u(k − 1)
(2.36)

In matrix form

x̃(k + 1) =

[
A B

0 1

]
x̃(k) +

[
B

1

]
∆u(k)

y(k) =
[
C 0

]
x̃(k)

(2.37)

In conclusion, taking into account the equations (2.34) and (2.36), and considering,
for the sake of simplicity, a constant additive disturbance d(k + 1) = d(k), the overall
augmented prediction model for the K2 Actuator is described by the following state
equations

x(k + 1) = Ax(k) +Bu(k) +Bdd(k)

u(k) = u(k − 1) + ∆u(k)

d(k + 1) = d(k)

Xref
csc (k + 1) = Xref

csc (k)

q(k + 1) = q(k)− TsCx(k) + TsX
ref
csc (k)

(2.38)

where x = Xcsc, u = Icmd, and A = −α, Bd = B = β, C = 1.

In matrix form


x(k + 1)

u(k)

d(k + 1)

Xref
csc (k + 1)

q(k + 1)

 =


A B Bd 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

−TsC 0 0 Ts 1


| {z }

Ã


x(k)

u(k − 1)

d(k)

Xref
csc (k)

q(k)


| {z }

x̃

+


B

1

0

0

0


| {z }

B̃

∆u(k)

y(k) =
[
C 0 0 0 0

]
| {z }

C̃

x̃(k)

(2.39)
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where

- x̃(k) is the augmented state variable.

- Ã, B̃ and C̃ are the augmented state matrices.

The general control architecture of the adaptive MPC position control for the K2 Ac-
tuator is resumed in Figure 2.9 below.

∑ MPC
Controller

∑
K2 Actuator

Observer

Recursive Parameters
Estimation

z−1

Xref
csc

Xcsc(k)

Icmd(k)θ̂(k)

d̂

Icmd(k)

Icmd(k − 1)

q(k) ∆Icmd

p

Xcsc

Xcsc

−

Figure 2.9: Adaptive MPC position control architecture for K2 Actuator.

2.3.4 Cost Function and Optimization Problem for K2 Actuator

As already mentioned in section 2.1.5, the MPC optimal control law is computed by
solving the QP problem (2.18) on-line and by applying the Receding Horizon Principle.
For this reason, the choice of a suitable cost function is crucial for the MPC set up.
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In particular, the quadratic form (2.13) is selected and a proper weights and con-
straints design has been performed in order to guarantee the position reference Xref

csc

tracking without any steady state offset and the input current Icmd oscillations attenu-
ation in the K2 Actuator.
Therefore, considering the K2 Actuator augmented prediction model (2.39), the just
mentioned control objectives can be fulfilled by expressing the cost function in the fol-
lowing tracking form

J(x̃(k|k),∆Icmd(k)) =

Hp−1∑
i=0

Qy(Xcsc(k + i|k)−Xref
csc (k + i|k)

)2
+R∆I2cmd(k + i|k)+

+Qqq
2(k + i|k)

(2.40)

where

- Qy is the scalar weight for the position tracking.

- R is the scalar weight for the command input variation ∆Icmd.

- Qq is the scalar weight for the integral state q(k) .

Such a tracking problem has been treated as a regulation problem through the cost
function below

JK2(x̃(k|k),∆Icmd(k)) =

Hp−1∑
i=0

(
x̃(k + i|k)T Q̃ x̃(k + i|k) + R∆I2cmd(k + i|k)

)
(2.41)

where

Q̃ =


Qy 0 0 −Qy 0

0 0 0 0 0

0 0 0 0 0

−Qy 0 0 Qy 0

0 0 0 0 Qq


Note that, in order to regulate the tracking error to zero and to add an explicit

integral action in the control formulation, the weights Qy and Qq are introduced in the
proper positions with respect to the augmented state vector x̃(k) = [Xcsc(k) Icmd(k −
1) d(k) Xref

csc (k) q(k)].
The just mentioned weighting factors Qy, Qq and R are MPC project parameters that
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have to be suitably chosen in order to perform the desired control action. Tuning and
implementation details are discussed in section 2.4.

Once defined the proper cost function, the complete MPC optimization problem
formulation can be obtained by considering the control input and state constraints. In
this context, only the input constraint due to the K2 Actuator physical limitation has
to be included.
More precisely, the actuation current must remain inside the following range

0 ≤ Icmd ≤ 1000 mA (2.42)

Besides, the control input variation rate ∆Icmd has been bounded as well in order
to avoid sudden jumps in the control action.

− 800 ≤ ∆Icmd ≤ 800
mA
Ts

(2.43)

In conclusion, considering the just expressed linear inequalities, the augmented pre-
diction model (2.39) and the cost function (2.41), the final expression of the QP problem
for the K2 Actuator is given by

∆I∗cmd = arg min
∆Icmd

JK2(x̃(k|k),∆Icmd(k)),∆Icmd)

subject to
x̃(k + 1) = Ãx̃(k) + B̃u(k)

− Icmd(k + i|k) ≤ 0, i = 1...Hp − 1

Icmd(k + i|k) ≤ 1000, i = 1...Hp − 1

−∆Icmd(k + i|k) ≤ 800, i = 1...Hp − 1

∆Icmd(k + i|k) ≤ 800, i = 1...Hp − 1

(2.44)
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2.4 MPC tuning and simulations results

The following section covers the MPC tuning procedure exploited to reach the best
performance in the position control for the K2 Actuator.

Several simulation results using different position reference profiles will be presented
in order to show the effectiveness of the proposed MPC control strategy. In particular,
the following position profiles, provided by CRF, reasonably represent the K2 Actuator
in different situations

- Slow Gear Change profile.

- Gear Change profile.

- Slow Ramp profile.

- Ramp profile.

- Stairs profile.

The tuning procedure of the Adaptive MPC controller is related to the choice of
the prediction horizon Hp and the scalar weights Qy, Qq and R of the quadratic cost
function (2.40) reminded below

J(x̃(k|k),∆Icmd(k)) =

Hp−1∑
i=0

Qy(Xcsc(k + i|k)−Xref
csc (k + i|k)

)2
+R∆I2cmd(k + i|k)+

+Qqq
2(k + i|k)

Moreover, since in the proposed control architecture a recursive estimator (section
2.2.2) provides a real time estimate of the model parameters, the adaptation gain γ can
be considered as tuning parameters as well.

In a preliminary design procedure, the prediction horizon Hp is selected to be suf-
ficiently long with respect to the K2 Actuator dominant dynamics, while the control
horizon Hc is assumed to be equal to Hp. The scalar weights Qy, Qq and R are orig-
inally chosen in order to equally weight each term of the cost function. Afterwards,
each coefficient has been properly tuned by means of a trial and error procedure until
satisfactory control performances have been achieved.
Such a trial and error procedure involves extensive simulation tests developed through
the Multi-Parametric Toolbox 3.0 (MPT) [15]. The just named Toolbox guarantees a
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wide versatility in the MPC optimization problem formulation as well as a fully cus-
tomizable way of handling input and state constraints.

The following design parameters values have been chosen to guarantee a satisfactory
trade-off between the performance requirements

R = 1

Qy = 1.3 · 103

Qq = 1

Hp = 31

γ = 0.005

θ(0) = [−0.9865 1.1522 · 10−4]

(2.45)

where θ(0) = [α0 β0] is the initial model parameters vector assumed to be inside the
medium - high position range identified in section 2.3.1.

The proper values of the just expressed design parameters have been achieved
through a suitable tuning procedure as described next.

2.4.1 Tuning of the MPC Prediction Horizon

From a computational point of view short prediction horizons are desirable, since the
number of decision variables of the optimization problem is reduced. However, choos-
ing a long prediction horizon induce intrinsic robustness in the control system and is
required to achieve the desired closed-loop performances and to maintain the system
stability.

Figure 2.10 clarifies the above considerations by showing the influence of the pre-
diction horizon variation in the position response when the other design parameters are
kept constant as in (2.45).
In the reported plot the value of the prediction horizon Hp is changed from Hp = 25 to
Hp = 40 in one between the different reference profiles. It is evident that a too small
prediction horizon is not able to handle the K2 Actuator dominant dynamics leading to
position oscillations in the system response. On the contrary, a long prediction horizon
guarantees the system stability but also affects the response speed and the computa-
tional effort as a side effect. Therefore, a prediction horizon Hp = 31 is selected.

42



2 - Adaptive Model Predictive Control for K2 Actuator

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.14

0.28

0.42

0.57

0.71

0.85

1

1.14

0.8 0.85 0.9 0.95 1 1.05
1.2

1.4

1.6

1.8

2

2.2

2.4

2.4 2.5 2.6 2.7 2.8 2.9 3

6.96

6.97

6.98

6.99

7

7.01

7.02

7.03

7.04

Figure 2.10: Position response with Gear shift reference profile adopting Adaptive MPC for different
values of Hp.

2.4.2 Tuning of the MPC Cost Function Weights

The tuning procedure of the cost function weighting matrices is a crucial aspect in the
MPC control design since it allows to find a suitable trade-off between performances
and command activity.

Referring to the cost function (2.40), the scalar weights Qy, Qq and R have to be
considered.

- The weight Qy is related to the tracking error minimization.

- The weight Qq gives penalty to the explicit integral action.

- The weight R is related to the command effort minimization.

Extensive simulations have been performed in which each of the three weights has
been individually changed while the other two are kept fixed . These tests have brought
out some important considerations about the MPC control law sensitiveness with re-
spect to the single weight variation.

In practice, the MPC control action mainly depends on the ratio between the
weights. More precisely, a scaling factor that affects all the weighting factor results
in the same control action computed without scaling the weights.

43



2 - Adaptive Model Predictive Control for K2 Actuator

For the above considerations, both the input weight R and the integral action weight
Qq are chosen to be equal as in (2.45). However, the tuning procedure for the tracking
weight Qy is reported in Figure 2.11 below.
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Figure 2.11: Position response with slow Gear shift reference profile adopting Adaptive MPC for
different values of Qy.

It is evident that small values of the output weight Qy cause a slight worsening of the
position tracking performances. On the other hand a too high value increases excessively
the system reactivity inducing oscillations in the transient. The value Qy = 1.3 · 103

has been chosen as a reasonable trade off between the control objectives.

2.4.3 Tuning of the RLS adaptation gain

As discussed in section 2.2.2, for the chosen adaptive MPC control strategy the adapta-
tion gain γ of the recursive estimator is an important parameter that has to be accounted
in the design procedure.
The adaptation gain tuning allows to regulate the algorithm convergence speed but at
the same time it affects the output behaviour.

The optimal suggested approach to estimate in real time the K2 Actuator model
parameters is to use γ = 1 so that, whatever are the chosen initial conditions, the
algorithm converges to the actual system dynamics as soon as possible.
However, several simulations results pointed out that the K2 Actuator system is really

44



2 - Adaptive Model Predictive Control for K2 Actuator

sensitive with respect to the model parameters variation so a small adaptation gain
γ = 0.05, 0.005, 0.0005 should be chosen.
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Figure 2.12: (Top) Position response and model parameters variation (Bottom) with Stairs reference
profile adopting Adaptive MPC for different values of γ.

Figure 2.12 shows the effects of the adaptation gain γ variation on the position re-
sponse and on the model parameters α and β. According to the above considerations,
the value γ = 0.005 has been selected as adaptation gain of the recursive algorithm.
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In conclusion, an overall review of the adaptive MPC tuning procedure can be made.
The most important project parameter is the prediction horizon Hp. In fact, choosing
a short prediction horizon leads to system instability whereas a too long horizon cause
a significant performance worsening in terms of rise time. Instead, as long as the cost
function weighting matrices are concerned, they have been changed in order to have
a more precise and finer tuning. In this sense, the fact that an excessive increase of
the tracking weight Qy and of the integral action weight Qq makes the system more
aggressive, has been taken into account.

For the just discussed MPC controller (2.45) some transient and steady-state track-
ing indices have been evaluated in the presence of different position reference profiles.
Table 2.2 below resumes the obtained results.

Range (%) Overshoot (%) Rise Time (ms) Steady State Error (mm)

8 to 21 ŝ ≤ 17 tr ≤ 70 ∼= 1 · 10−2

21 to 57 ŝ ≤ 10 tr ≤ 60 ∼= 1 · 10−2

57 to 85 ŝ ≤ 4 tr ≤ 60 ∼= 5 · 10−3

85 to 100 ŝ ≤ 4 tr ≤ 80 ∼= 2 · 10−3

Table 2.2: Adaptive MPC controller performance resume with different reference profiles.

The chosen MPC parameters setting ensures quite satisfactory performance in terms
of steady state tracking and rise time for all the identified position ranges. However, it
is quite evident that the system response is characterized by a still too high overshoot,
especially in low position ranges.

In order to improve the performance of the just described predictive controller, the
design parameters have been dynamically tuned by means of a scheduling algorithm
based on the actual value of the position reference and the tracking error.

2.4.4 Scheduling Algorithm

As discussed in section 2.3.1, the K2 Actuator dynamics is strongly variable with respect
to the position range. In such a non-linear system it is a reasonable approach to design
a specific controller on the basis of the working point in order to maintain a desired
level of control system performance in all the tracking situations.
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The Gain Scheduling control strategy consists in a real time adjustment of the con-
troller design parameters on the basis of the measurements of some relevant system
variables. In this context, the Gain scheduling approach is exploited by a suitable
scheduling algorithm.

The position reference Xref
csc and the tracking error ecsc = Xref

csc − Xcsc have been
considered as input measurements whereas the prediction horizon Hp, the output weight
Qy and the control input variation rate ∆Icmd as the adjustable controller design pa-
rameters. In the following the operations computed by the scheduling algorithm are
described (detailed MATLAB code in appendix)

1. MEASURE the reference Xref
csc (k) and the tracking error ecsc(k) actual values.

2. CHECK the position range on the basis of Xref
csc (k).

3. IF
(
ecsc(k) ≤ ēcsc

)
3.1 SET the prediction horizon Hp on the basis of the position range.

3.2 IF
(
ecsc(k) ≤ emin

csc

)
INCREASE the output weight Qy and DECREASE the control input
variation rate ∆Icmd.

3.3 ELSE

SET the output weight Qy and the control input variation rate ∆Icmd

on the basis of the position range.

4. IF
(
ecsc(k) > ēcsc

)
4.1 SET the prediction horizon Hp on the basis of the position range.

4.2 SET the output weight Qy = Qmin
y .

4.3 SET the control input variation rate ∆Icmd = ∆Imax
cmd .

where ēcsc is a suitable threshold adopted to handle sudden variations in the position
references.

Referring to the above pseudo-code, the main aspects of the adopted scheduling al-
gorithm can be clarified. The basic idea is to perform different tuning procedures on the
controller design parameters with respect to the working region. More precisely, a larger
prediction horizon Hp is needed when the system dynamics are slower, on the contrary,
it can be decreased in the high position ranges where the system is characterized by
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a faster dynamics. Furthermore, in the neighbourhood of tracking error minima emin
csc ,

the output weight Qy is increased and the constraint on ∆Icmd is tightened in order
to mitigate oscillations and guarantee good tracking performances without significantly
decreasing the response speed. The effectiveness of the just presented control strategy
has been tested by carrying out several simulations with different position reference
profiles as illustrated in Figures 2.13, 2.14, 2.15, 2.16 and 2.17.
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Figure 2.13: (Top) Position response and Input Current (Bottom) with Gear Change profile adopting
Adaptive MPC and Adaptive scheduled MPC.

A final comparison between the Adaptive MPC and the Adaptive scheduled MPC
control strategies can be made by evaluating both tracking and steady-state perfor-
mances. Table 2.3 resumes the obtained results.
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Figure 2.14: (Top) Position response and Input Current (Bottom) with slow Gear Change reference
profile adopting Adaptive MPC and Adaptive scheduled MPC.
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Figure 2.15: (Top) Position response and Input Current (Bottom) with ramp reference profile adopting
Adaptive MPC and Adaptive scheduled MPC.
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Figure 2.16: (Top) Position response and Input Current (Bottom) with slow ramp reference profile
adopting Adaptive MPC and Adaptive scheduled MPC.
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Figure 2.17: (Top) Position response and Input Current (Bottom) with stairs reference profile adopt-
ing Adaptive MPC and Adaptive scheduled MPC.
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Range (%)
Overshoot (%) Rise Time (ms) Steady State Error (mm)

MPC 1st MPC 2nd MPC 1st MPC 2nd MPC 1st MPC 2nd

8 to 21 ŝ ≤ 20 ŝ ≤ 4 tr ≤ 70 tr ≤ 140 ∼= 1 · 10−2 ∼= 2 · 10−3

21 to 57 ŝ ≤ 10 ŝ ≤ 8 tr ≤ 60 tr ≤ 100 ∼= 1 · 10−2 ∼= 1 · 10−2

57 to 85 ŝ ≤ 4 ŝ ≤ 5 tr ≤ 60 tr ≤ 80 ∼= 5 · 10−3 ∼= 4 · 10−3

85 to 100 ŝ ≤ 4 ŝ ≤ 3 tr ≤ 80 tr ≤ 95 ∼= 2 · 10−3 ∼= 2 · 10−3

Table 2.3: Adaptive MPC (MPC 1st) and Adaptive scheduled MPC (MPC 2nd) controller performance
resume with different reference profiles.

Referring the above table, significant performance improvements, especially in low
position ranges, are visible. The adopted Adaptive scheduled MPC control strategy is
able to guarantee a smooth transient behaviour still maintaining the almost equal re-
sponse speed. Besides, input current oscillations have been mitigated and a satisfactory
steady state tracking has been assured thanks to the dynamic tuning of the controller
design parameters.

As long as the computational effort is concerned, such design parameters (2.45) need
quite high resources to compute in real time the optimal control action. This is mainly
because a long prediction horizon is necessary to properly handle the K2 Actuator
dominant dynamics.
For this reason, a LQR control strategy has been considered in order to enhance the
computational aspects. This approach allows to evaluate the optimal control action in
a static state feedback form as the solution of an unconstrained optimization problem.
In the following Chapter the detailed implementation of the LQR control strategy is
explained.
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Chapter 3
Adaptive Linear Quadratic Control for
K2 Actuator

T his chapter will cover the main theoretical aspects of the Linear Quadratic Reg-
ulator (LQR) control pointing out some relevant differences and similarities with

respect to the MPC technique discussed in Chapter 1. The LQR application to the K2
Actuator position control problem will be exploited together with several simulations
results. Moreover, a final section is devoted to the numerical implementation of the
proposed LQ control strategy.

3.1 LQR Overview

Linear optimal control is a particular branch of optimal control. The plant to control is
assumed to be modelled by a LTI transfer function while the controller that generates
the optimal control move is constrained to be linear. Moreover, in linear optimal con-
trol, the cost function adopted as performance index is quadratic either in the control
action ether in the optimization variable. However, with this strategy, constraints on the
involved variables are not accounted so an explicit saturation has to be exploited off-line.

Some advantages of the just presented linear optimal control can be outlined [2].

• In practice, all linear optimal control problems have readily computable solutions
whereas, on the contrary, many generic optimal control problems require high
computational effort to obtain a usable solution.

• Linear optimal control may be also applied to non-linear systems operating in a
restricted working region.
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• Linear optimal controller yield to possess some attractive properties such as good
gain margin,good phase margins and good tolerance of non-linearities.

• Linear optimal control is related to the same framework of the control problems
studied via classical methods.

As previously mentioned, the LQR control architecture is related to the mathemati-
cal description of the plant to control. For such a linear case, the following LTI discrete
time model is considered

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
(3.1)

where A ∈ Rn,n, B ∈ Rn,m, C ∈ Rn,p.

The associated performance index is the quadratic function defined over a finite
horizon of Hp steps

J(x(k), U(k)) = x(k +Hp)
TPx(k +Hp) +

Hp−1∑
i=0

(
x(k + i)TQx(k + i)

+ u(k + i)TRu(k + i)
) (3.2)

where Q ⪰ 0 and P ⪰ 0 are respectively the state and terminal state penalties while
R ≻ 0 is the input penalty. The LQR optimal control action U∗(k) = [u∗(k) u∗(k +

1) ... u∗(k +Hp − 1)] is obtained as the solution of the following optimization problem

U∗ = argmin
U

(
J(x(k), U(k))

)
subject to x(k + 1) = Ax(k) +Bu(k)

(3.3)

Once described the general framework, two different LQR approaches are presented.

3.1.1 Finite Horizon LQR

The finite horizon LQR can be considered as a QP problem with the absence of con-
straints. Therefore, recalling section 2.1.4, the states vector X(k) = [x(k) ... x(k+Hp−
1)] are expressed in a compact matrix form

X(k) = AX(k) + BU(k)
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where

A =


A

A2

...
AHp

 ∈ Rn·Hp×n, B =


B 0 · · · 0

AB
. . . . . . ...

... . . . . . . ...
AHp−1B · · · · · · B

 ∈ Rn·Hp×Hp

and the cost function (3.2) can be written in a suitable quadratic form

J(x(k), U(k)) =
1

2
U(k)THU(k) + x(k)TFU(k) + J (3.4)

where

- H = 2(BTQB +R) ≻ 0 is the Hessian of the quadratic form.

- F = 2ATQB is the mixed term of the quadratic form.

- J = x(k)TATQAx(k) is the vertical offset of the quadratic form.

with the following weighting matrices

Q =


Q 0 · · · 0

0
. . . . . . ...

... . . . Q
...

0 · · · 0 P

 ∈ Rn·Hp×n·Hp , R =


R 0 · · · 0

0
. . . . . . ...

... . . . R
...

0 · · · 0 R

 ∈ Rm·Hp×m·Hp

Since the just presented cost function (3.4) is quadratic with respect to the opti-
mization variable, the minimizer vector U∗(k) = [u∗(k)... u∗(k +Hp − 1)] can be found
by computing its gradient and setting it to zero. This Batch Approach yields the
following closed form for the optimal vector of control input

U∗(k) = −
(
BTQB +R

)−1(ATQB
)T

x(k) = −H−1FTx(k) (3.5)

As this expression implies, the finite horizon LQR optimal control law is a linear
function of the measured state x(k). More precisely, the optimal control move at the
generic time instant t = k + i depends on the ith step ahead predicted state x(k + i)

obtained starting from the measured state x(k). Hence, as a matter of fact, it does not
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depends on the actual state x(k + i).

As a consequence, it can be said that the finite horizon LQR optimal control law
(3.5) is provided in an open-loop fashion leading to a quite weak control action. This is
because the model (3.1) for predicting the system states may be inaccurate and subject
to not accounted disturbances [10], [2].

The LQR control strategy can be improved by considering the optimization problem
(3.3) operating over a long time period as described next.

3.1.2 Infinite Horizon LQR

The LQR optimization problem (3.2) is carried out to infinity leading to the following
cost function

J(x(k), U(k)) =

∞∑
i=0

(
x(k + i)TQx(k + i) + u(k + i)TRu(k + i)

)
(3.6)

In this case the Batch approach can not be applied and the optimal solution has to
be found with a Recursive Method [10], [12].
Starting from the previously described finite horizon LQR, the Hamiltonian function
can be defined as

H(k) =
1

2

(
x(k)TQx(k) + u(k)TRu(k)

)
+ λ(k + 1)T

(
Ax(k) +Bu(k)

)
(3.7)

where λ(k) are the Lagrange multiplier vectors associated with the LQR performance
index.

The optimality and stationary conditions can be written as

∂H(k)

∂λ(k + 1)
= Ax(k) +Bu(k) = x(k + 1)

∂H(k)

∂x(k)
= Qx(k) +ATλ(k + 1) = λ(k)

∂H(k)

∂u(k)
= Ru(k) +BTλ(k + 1) = 0

(3.8)
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These lead to the following expression for the control input sequence

u(k) = −R−1BTλ(k + 1) (3.9)

As this expression implies, the optimal control input is determined only if the co-
state sequence λ(k+1) is known. Therefore, it is necessary to find a relationship between
the co-states λ(k) and the states x(k) of the System.

The final state weighting function is Φ = 1
2x(k + Hp)

TPHpx(k + Hp). Hence, the
boundary condition implies that

∂Φ

∂x(k +Hp)
= PHpx(k +Hp) = λ(k +Hp)

Using the sweep method [12], the above linear relation is supposed to hold for all
k ≤ Hp so that

λ(k) = Pkx(k) (3.10)

Using (3.10) in (3.9) and then in (3.8) the dependencies from the co-states sequence
can be eliminated. After some manipulations, the following time-variant expression for
the optimal control sequence is obtained

u∗(k) = −(R+BTPk+1B)−1 ·BTPk+1Ax(k), for k = 0...Hp − 1 (3.11)

where

Pk = ATPk+1A+Q−ATPk+1B · (R+BTPk+1B)−1 ·BTPk+1A (3.12)

referred as Riccati Difference Equation (RDE), is a recursive equation initialized
with PHp = Q and solved backwards.
In case of the infinite horizon LQR strategy, the following conditions are sufficient for
the RDE to converge [10], [12]

• the pair (A,B) is stabilizable.

• the pair (Q1/2, B) is observable.

Assuming that Pk→∞ = P , the (3.12) becomes the Discrete-time Algebraic Ric-
cati Equation (DARE)
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P = ATPA+Q−ATPB · (R+BTPB)−1 ·BTPA (3.13)

As a consequence, the time-variant control law (3.11) assumes the following time-
invariant form

u∗(k) = − (R+BTPB)−1 ·BTPA| {z }
K

x(k) = −Kx(k) (3.14)

where the constant matrix K is referred as steady-state Kalman Gain [12].

The equation (3.14) is a static state feedback control law, which express the
optimal control sequence u∗(k) as a linear function of the measured state x(k) at the
current time t = k. Therefore, in the infinite horizon LQR, or asymptotic LQR, the
optimal control move is applied in a closed loop manner resulting in a more robust
control action.
Moreover, since the Kalman Gain K is expressed in terms of the DARE solution P and
the system and weighting matrices, it can be computed off-line and stored in memory
before the control action is ever applied to the system.
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3.2 Adaptive LQ for K2 Actuator

The previous section 3.1.2 has highlighted the advantages, from the control action ro-
bustness point of view, of the infinite horizon LQR control law (3.14) with respect to
the classical LQR approach.
The application of the just presented LQR design technique to the K2 Actuator position
control problem will be exploited in the following section.

Assuming that the K2 Actuator position measurement is available, a LQR control
architecture has been developed.

LQR Controller K2 Actuator
Icmd

Xref
csc

Xcsc

p

Figure 3.1: General Overview of the LQR position control for the K2 Actuator

As Figure 3.1 shows, an explicit saturation of the actuation current Icmd has to
be performed. This is to handle the K2 Actuator physical limitations that cannot be
managed by the chosen LQR control strategy.

3.2.1 K2 Actuator Hammerstein model identification

As for the MPC, also in the LQR control architecture a mathematical model for the K2
Actuator is needed.
However, a preliminary design and simulation study showed that the disturbance com-
pensation strategy (section 2.3.2) employed in MPC does not introduce significant per-
formance improvements for LQ controller. As a consequence, plant non-linearity have
been explicitly included in the model through an Hammerstein structure as described
next.

The same four different position ranges presented in section 2.3.1 have been consid-
ered

- Low Position Range: [8 - 21] %

- Medium - Low Position Range: [21 - 57] %

- Medium - High Position Range: [57 - 85] %
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- High Position Range: [85 - 100] %

For each position range, the relationship between the input current Icmd and the
output position Xcsc has been represented by a static non-linear function N(·) followed
by a discrete-time LTI System as shown in the below Figure 3.2.

N(·) G(z)
w(k)Icmd(k) Xcsc(k)

Figure 3.2: Hammerstein System block diagram representation for the K2 Actuator.

where the intermediate variable w(k) is the output of the non-linear function such that
w(k) = N(Icmd(k)) has the same dimensions of Icmd(k).
More precisely, the static non linear part has been associated to a current dead zone D

(see Figure 3.3), while the LTI part is assumed to be represented by the following first
order discrete time transfer function

G(z) =
β

z + α
=

Y (z)

U(z)
(3.15)

where Y = Xcsc and U = Icmd.
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Figure 3.3: Static non-linear function N(·) represented as a dead zone of amplitude D.

MATLAB System Identification Toolbox has been employed to identify the model
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(3.15) parameters α and β. Table 3.1 below resumes the model characteristics in the
different position ranges

Range (%) Deadzone β α

8 to 21 [0; 0.39] 9.1452 · 10−6 −0.99998
21 to 57 [0; 0.28] 5.8677 · 10−5 −0.99996
57 to 85 [0; 0.26] 7.0651 · 10−5 −0.9969
85 to 100 [0; 0.2] 4.7817 · 10−4 −0.9837

Table 3.1: System parameters in the different working regions.

As confirmed by the above Table, the model dynamic properties as well as the dead
zone amplitude are strongly variable with respect to the operating working region. For
this reason, an adaptive LQR controller has been designed on the basis of a real time
varying state representation of the system.
More precisely, similarly as for the MPC (section 2.3.1), the Normalized Gradient tech-
nique has been employed to estimate the model (3.15) parameters.

θ̂t = θ̂t−1 +
γ

∥φ(t)∥2 + ε
φ(t)ϵ(t)

where

- φT (t) = [−Xcsc(t− 1) Icmd(t− 1)] is the regression vector.

- θ = [α β] are the model parameters to be identified.

- ϵ(t) = y(t)− φT (t)θ̂t−1 is the estimation error.

Tuning and implementation details are discussed in section 3.3.

3.2.2 Adaptive LQ control architecture

As already pointed out in section 3.1, the Linear Quadratic control architecture is based
on the state space representation of the plant to control. In this context, the linear part
(3.15) of the Hammerstein system, representing the K2 Actuator model, is represented
by the following LTI discrete time form

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
(3.16)
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where x = Xcsc, u = w = N(Icmd), and A = −α, B = β, C = 1.

Integral Action

As for the MPC, in the LQ control architecture an explicit integral action is necessary to
improve the steady state tracking performances in the presence of constant references.
This can be accounted by considering the integral term q(k) as an extra state variable.

The augmented model is described by the following state equations

x(k + 1) = Ax(k) +Bu(k)

q(k + 1) = q(k)− TsCx(k) + TsX
ref
csc (k)

(3.17)

where Ts = 0.002 s.

In matrix form

x̃(k + 1) =

[
A 0

−TsC Ts

]
x̃(k) +

[
B

0

]
u(k)

y(k) =
[
C 0

]
x̃(k)

(3.18)

Dead zone compensation

Since the K2 Actuator has been represented by a Hammerstein system (section 3.2.1),
a two stage approach is needed to provide the correct LQ control action. Due to its
particular structure, the LQ controller is firstly designed taking only into account the
linear model, and then the non-linearity is removed by inverting the non-linear static
block N(·).

In this case, the static non-linear function N(·), represented by a dead zone D, can
be described by he following piecewise linear relationship

N(Icmd) : w =

{
mIcmd − q Icmd ≥ D

0 Icmd ≤ D
(3.19)
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where m = 1 and q = D is the dead zone amplitude.

Therefore, the inversion of such a function has been performed by adopting the
following piecewise linear expression

N−1(w) : Icmd =

{
q
m + w

m w ≥ 0

D w ≤ 0
(3.20)

In practice, the dead zone compensation in the control architecture is performed, at
each sampling time, by a static map that associates the command input Icmd(k) with
the intermediate variable w(k) produced by the controller. Figure 3.4 below graphically
shows the just presented inverting function N−1(w).
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Figure 3.4: Static map N−1(·) for dead zone compensation.

Cost function and LQ control Law

As discussed in section 3.1, the infinite horizon LQR control strategy is related to
the minimization of a quadratic performance index. In this context, the K2 Actua-
tor augmented model (3.18) is considered and the infinite horizon LQR unconstrained
optimization problem can be written as
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w∗ = arg min
Wk, k∈[0, ∞)

(
J(x̃(k),W k)

)
subject to x̃(k + 1) = Ãx̃(k) + B̃u(k)

(3.21)

with the associated quadratic cost function

JK2(x̃(k),W
k) =

∞∑
i=0

(
x̃(k + i)T Q̃x̃(k + i) +Rw2(k + i)

)
(3.22)

where

Q̃ =

[
Qy 0

0 Qq

]

The scalar terms Qy and Qq are, respectively, weighting factors for position Xcsc

tracking and for the integral state q(k). These have to be considered as LQR project
parameters whose choice is related to the control action effectiveness. Tuning and im-
plementation details are discussed in section 3.3.

Referring to section 3.1.2, such a tracking problem is exploited by the infinite horizon
LQR control strategy through the following static state feedback control law

w∗(k) = N(I∗cmd(k)) = −KxXcsc(k)−Kqq(k) +KrX
ref
csc (k) (3.23)

where

K̃ = [Kx Kq] = (R+ B̃TPB̃)−1 · B̃TPÃ

Kr =
(
C ·

(
1− (A−BKx)

)−1 ·B
)−1

Note that the expression (3.23) is on the form of an affine state feedback control
law whose gains depends on the solution P of the DARE (3.13). More precisely, the
feedforward gain Kr has been included in the control formulation in order to guarantee
the position reference Xref

csc tracking without any steady state offset.

The general control architecture of the adaptive LQR position control for the K2
Actuator is resumed in Figure 3.5 below.
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∑ LQ
Controller
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Figure 3.5: Adaptive LQ position control architecture for K2 Actuator.
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3.3 Adaptive LQ tuning and simulations results

This section will describe the tuning procedure of the adaptive LQ controller design
parameters. Numerical simulations results will be presented in order to evaluate the
effectiveness of the adopted control strategy. In particular, a wider spectrum of work-
ing situations has been considered. That is, some other position trajectories have been
accounted in addition to the position reference profiles previously expressed in section
2.4.

The infinite horizon LQ controller design parameters are the weighting scalar factors
Qy, Qq and R of the quadratic performance index (3.22) reminded below in tracking
form

JK2(x̃(k),W
k) =

∞∑
i=0

Qy

(
Xcsc(k + i)−Xref

csc (k + i)
)2

+Rw2(k + i) +Qqq(k + i)2

Note that, in the chosen LQ control architecture, an adaptive approach has been
developed (section 3.2.1) and an explicit compensation of the static non-linearity has
been performed (section 3.2.2) through the dead zone inverting function. As a conse-
quence, the adaptation gain γ and the dead zone amplitude D can be considered as
tuning parameters as well.
Similarly as for the MPC, a trial and error procedure has been necessary to ensure a
satisfactory trade off between the control performances.

The following settings have been considered for the adaptive LQ controller design

R = 1

Qy = 2 · 105

Qq = 1

Dead zone = [0; 37] %

γ = 0.012

θ(0) = [−0.9969 7.0651 · 10−5]

(3.24)

where θ(0) = [α0 β0] is the initial model parameters vector assumed to be inside the
medium - high position range identified in section 3.2.1.

The just expressed design parameters values have been achieved by means of a
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suitable tuning procedure as described in the following paragraphs.

3.3.1 Tuning of the LQ Cost Function Weights

For the same considerations expressed in section 2.4.2,both the input weight R and the
integral action weight Qq are chosen to be equal as in (3.24). About the output weight
Qy, several simulations have been performed keeping fixed the other design parameters.
These have pointed out that a high value of the output weight is responsible for a steady
state tracking error reduction especially in high position ranges whereas it induces small
oscillations in low position tracking situations. On the contrary, a too small value for
Qy causes a slight worsening of the position tracking performances.
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Figure 3.6: Position response with 3rd Gear shift reference profile adopting Adaptive LQ for different
values of Qy.

In Figure 3.6 the output weight Qy is changed from Qy = 1 ·105 to Qy = 9 ·105 when
one of the difference position trajectories is adopted as reference profile. A suitable trade
off between the control objectives has been assured selecting the value Qy = 2 · 105 for
the output weight.

3.3.2 Tuning of the dead zone amplitude

In section 3.2.2, the Hammerstein model representation of the K2 Actuator has pointed
out the need for a two stage control approach. That is, an explicit inversion of the
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static non linear function, represented as a dead zone, has to be performed before the
command input is applied to the plant.
For this reason, the proper choice of the dead zone amplitude D becomes crucial in the
adopted control architecture.

On the basis of the local identification results discussed in section 3.2.1, it is evident
that the more the system is demanded to track high values of position references Xref

csc ,
the less is the dead zone between the command input Icmd and the output position Xcsc.
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Figure 3.7: Position response with 2nd Gear shift reference profile adopting Adaptive LQ for different
values of dead zone amplitude D.

Figure 3.7 confirms the above discussion by showing the influence of the dead zone
amplitude variation in the position response when the other design parameters are kept
constant as in (3.24).
According to the obtained results, the value D = 37 % has been considered as dead
zone amplitude in order to ensure satisfactory performances in all the position ranges.

3.3.3 Tuning of the RLS adaptation gain

Similarly as for the adaptive MPC, the recursive algorithm adaptation gain γ plays a
key role in the adopted LQ control architecture. This is because the plant parameters
estimation speed is related to the adaptive LQ control action, hence, it affects the system
response, too.
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Figure 3.8: (Top) Position response and model parameters variation (Bottom) with 4th Gear shift
reference profile adopting Adaptive LQ for different values of γ.

Figure 3.8 above outlines how an high adaptation gain implies a too reactive position
response, whereas a small adaptation gain leads to a significant steady state tracking
error.

For the same considerations expressed in section 2.4.3, the K2 Actuator high sensi-
tivity with respect to the model parameters variation has been properly handled with
a small adaptation gain γ = 0.012.
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The just presented tuning procedure can be resumed with a more general consid-
eration. A crucial role is assumed by the proper choice of the dead zone amplitude D

between the command input Icmd and the position output Xcsc of the K2 Actuator. This
is because a biased compensation of the static non linear function leads to an ineffective
control action.
The cost function weights and the RLS adaptation gain tuning has been necessary in
order to refine the obtained control action.

On the basis of the obtained results, the LQ controller performances have been
outlined in the following Table

Range (%) Overshoot (%) Rise Time (ms) Steady State Error (mm)

8 to 21 ŝ ≤ 8 tr ≤ 32 ∼= 5 · 10−3

21 to 57 ŝ ≤ 15 tr ≤ 34 ∼= 2 · 10−2

57 to 85 ŝ ≤ 3 tr ≤ 38 ∼= 8 · 10−3

85 to 100 ŝ ≤ 1 tr ≤ 45 ∼= 6 · 10−3

Table 3.2: Adaptive LQ controller performance resume with different reference profiles.

Referring Table 3.2, the proposed LQ controller design (3.24) is able to guarantee
a fast position response with a small steady state tracking error. However, as for the
MPC, significant performance improvements, especially in terms of position overshoots,
can be obtained by means of a suitable scheduling algorithm as described in the next
paragraph.

3.3.4 Scheduling Algorithm

A suitable trade off between a non oscillating input current and a fast position response
with small overshoots has been obtained by dynamically tuning the LQ controller pa-
rameters on the basis of the working situations.
More precisely, the developed scheduling algorithm exploits a real time adjustment of
the dead zone amplitude D and the output weight Qy considering as input measurement
the position reference Xref

csc and the tracking error ecsc = Xref
csc −Xcsc actual values. The

generic strategy is resumed in the following steps (detailed MATLAB code in appendix)

1. MEASURE the reference Xref
csc (k) and the tracking error ecsc(k) actual values.
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2. CHECK the position range on the basis of Xref
csc (k).

3. SET the dead zone amplitude D on the basis of the position range.

4. IF
(
ecsc(k) ≤ ēcsc

)
4.1 INCREASE the output weight Qy.

5. IF
(
ecsc(k) > ēcsc

)
5.1 SET the output weight Qy = Qmin

y .

where ēcsc is a suitable threshold adopted to handle position references characterized
by fast variations in their set point amplitudes.

The just presented pseudo code can be further clarified. Different dead zone ampli-
tudes are adopted in order to assure an efficient non linearity compensation in all the
working regions guaranteeing a fast position response. Moreover, a significant steady
state error reduction is achieved by increasing the output weight when the position is
approaching the set point.

Several simulations have been carried out to test the effectiveness of the adopted
scheduled LQ controller and to evaluate some transient and steady-state tracking indices
in the presence of different position trajectories. Figures from 3.9 to 3.17 and Table 3.3
resume the obtained results.

Range (%)
Overshoot (%) Rise Time (ms) Steady State Error (mm)

LQ 1st LQ 2nd LQ 1st LQ 2nd LQ 1st LQ 2nd

8 to 21 ŝ ≤ 8 ŝ ≤ 5 tr ≤ 32 tr ≤ 38 ∼= 5 · 10−3 ∼= 3 · 10−3

21 to 57 ŝ ≤ 15 ŝ ≤ 7 tr ≤ 34 tr ≤ 40 ∼= 2 · 10−2 ∼= 2 · 10−2

57 to 85 ŝ ≤ 3 ŝ ≤ 2 tr ≤ 38 tr ≤ 42 ∼= 8 · 10−3 ∼= 5 · 10−3

85 to 100 ŝ ≤ 1 ŝ ≤ 1 tr ≤ 45 tr ≤ 51 ∼= 6 · 10−3 ∼= 5 · 10−3

Table 3.3: Adaptive LQ (LQ 1st) and Adaptive scheduled LQ (LQ 2nd) controller performance resume
with different reference profiles.

Referring the above Table, significant performance improvements have been obtained
thanks to the adopted scheduling technique. In fact, the proposed adaptive LQ con-
troller guarantees a slight reduction of the steady state tracking error and an evident
position overshoots mitigation. Besides, the almost equal response speed has been pre-
served.
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Figure 3.9: (Top) Position response and Input Current (Bottom) with Gear Change profile adopting
Adaptive LQ and Adaptive scheduled LQ.
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Figure 3.10: (Top) Position response and Input Current (Bottom) with slow Gear Change reference
profile adopting Adaptive LQ and Adaptive scheduled LQ.
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Figure 3.11: (Top) Position response and Input Current (Bottom) with ramp reference profile adopting
Adaptive LQ and Adaptive scheduled LQ.
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Figure 3.12: (Top) Position response and Input Current (Bottom) with slow ramp reference profile
adopting Adaptive LQ and Adaptive scheduled LQ.
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Figure 3.13: (Top) Position response and Input Current (Bottom) with 2nd Gear Change reference
profile adopting Adaptive LQ and Adaptive scheduled LQ.
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Figure 3.14: (Top) Position response and Input Current (Bottom) with 3rd Gear Change reference
profile adopting Adaptive LQ and Adaptive scheduled LQ.
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Figure 3.15: (Top) Position response and Input Current (Bottom) with 4th Gear Change reference
profile adopting Adaptive LQ and Adaptive scheduled LQ.
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Figure 3.16: (Top) Position response and Input Current (Bottom) with 5th Gear Change reference
profile adopting Adaptive LQ and Adaptive scheduled LQ.
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Figure 3.17: (Top) Position response and Input Current (Bottom) with stairs reference profile adopt-
ing Adaptive LQ and Adaptive scheduled LQ.

Considering the implementation of the proposed LQ control strategy in a real time
platform, the problem of solving a infinite horizon DARE at each sampling time has
been overcome by performing an analytic iterative method. That is, the DARE problem
has been rearranged in a suitable matrix form so that a structured doubling algorithm
(SDA) can be applied. The detailed numerical procedure is explained in the following
section.
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3.4 Numerical implementation of the infinite horizon DARE

Solving discrete time algebraic Riccati equations (DARE) is essential in many compu-
tational problems for different engineering applications. However, a detailed analysis of
the DARE mathematical properties is needed in order to find more effective algorithms.
The following section is focused on the DARE application to the infinite horizon LQ
problem related to the position control of the K2 Actuator. The needed mathemat-
ical structures will be briefly presented together with the chosen structured doubling
algorithm adopted to find the DARE analytical solution.

3.4.1 DARE and matrix pencils

As discussed in section 3.1.2, the infinite horizon LQ controller, adopted for the K2
Actuator position control problem, is related to the DARE solution X. The following
general form is considered

ÃTXÃ+ Q̃− (N + B̃TXÃ)T · (R+ B̃TXB̃)−1 · (N + B̃TXÃ)− ETXE = 0

where Ã, B̃ are the system augmented state matrices, Q̃ is the cost function augmented
weighting matrix, R is the control input weighting factor. In this context, it can be
assumed that E = I and N = 0 since no mixed term is present in the adopted cost
function (3.6). Hence, the DARE can be written as

X = ÃTXÃ+Q− ÃTXB̃ · (R+ B̃TXB̃)−1 · B̃TXÃ (3.25)

According to [7] and [5], the above DARE solution P can be expressed in terms of
deflating subspaces of a suitable matrix pencil (definitions in appendix) L− zK. Ã 0 B̃

−Q̃ I 0

0 0 R

− z

I 0 0

0 −ÃT 0

0 −B̃T 0

 (3.26)

Hence, the (almost) d-stabilizing solution P is such that Ã 0 B̃

−Q̃ I 0

0 0 R


 I

X

Z

 =

I 0 0

0 −ÃT 0

0 −B̃T 0


I

P

Z

Φ (3.27)

where ρ(Φ) ≤ 1 and Z is associated with the solution of the dual DARE.
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According to [7] and [5], if W is a Hermitian matrix such that R̂ = R+RTWB̃ is non
singular, the above equation (3.27) can be rearranged as E0 0 0

−P0 I 0

BTWÃ 0 R̂


 I

X −W

Z

 =

I −G0 0

0 ET
0 0

0 −B̃T 0


 I

P −W

Z

Φ (3.28)

where

P0 = Q̃−W + ÃTWE0

G0 = −B̃R̂−1B̃T

E0 = (I +G0W )Ã

(3.29)

The result (3.28) is useful to define the new matrix pencil N̂ − zK̂[
E0 0

−P0 I

]
− z

[
I −G0

0 ET
0

]
(3.30)

whose form is referred as to standard structured form-I (SSF-I) [7]. Therefore, the
following equation holds[

E0 0

−P0 I

][
I

X −W

]
=

[
I −G0

0 ET
0

][
I

X −W

]
Φ (3.31)

and a special structured doubling algorithm can be applied in order to find an analytical
expression for the DARE solution X.

3.4.2 DARE solution by means of a structured doubling algorithm

The structured doubling algorithm (SDA) is a recent and advanced technique whose
framework is independent from the the DARE application. SDA can be seen as an
iterative method for generating a sequence of matrix pencils belonging to the same de-
flating subspaces and such that their eigenvalues are squared at each step [16], [7].

The application of this class of algorithm to the DARE problem is based of the fact
that, there is a one-to-one correlation between the graph invariant deflating subspaces
of a matrix pencil and the solutions of the corresponding DARE.
More precisely, the (3.30) is assumed to be the starting matrix pencil with initial values
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(3.29). Then, according to [7] and [5], the following sequence N̂k−zK̂k can be generated[
Ek 0

−Pk I

]
− z

[
I −Gk

0 ET
k

]
(3.32)

with

Pk+1 = Pk + ET
k (I − PkGk)

−1PkEk

Gk+1 = Gk + Ek(I − PkGk)
−1GkE

T
k

Ek+1 = Ek(I − PkGk)
−1Ek

(3.33)

Therefore, assuming that limk→∞ Pk = P , the analytical expression for the DARE
solution X can be evaluated in the following way

X = P +W (3.34)

where W is simply chosen as W = σI, with σ a real small positive number such that
det(R+ B̃TσIB̃) ̸= 0.

For the sake of clarity, a simple pseudo code of the adopted SDA algorithm is
reported below (detailed MATLAB code in appendix)

1. BUILT the matrices W = σI and R̂ = R+RTWB̃.

2. SET the initial matrices P0, E0 and G0 as in (3.29).

3. FIX the iterative algorithm exit conditions

3.1 SET the minimum error tolerance emin and the error initial value estart = 1.

3.2 SET the maximum number of iterations kmax.

4. WHILE
(
(ek > emin)&(k < kmax)

)
4.1 UPDATE the matrices Pk, Ek and Gk as in (3.33).

4.2 EVALUATE the error actual value ek = ∥Ek∥1.

4.3 CHECK the exit conditions.

5. EVALUATE the DARE solution X = P +W .
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Figure 3.18: Converging trend of the SDA error related to the DARE solution analytical evaluation.

Considering kmax = 30 as maximum number of iterations and emin = 10−13 as error
tolerance, the SDA algorithm takes approximately 24 iterations to converge. Figure
3.18 above shows one of the possible error trend when the sub-routine is stopped during
the program execution.
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Chapter 4
Virtual Sensor based Control for K2
Actuator

I n this Chapter, the absence of a real position sensor in the described DDCT system
is considered. A Virtual Sensor is employed such that the needed clutch position

estimate can be obtained on the basis of available measurements.
The last section presents several simulation results in order to decide the most suitable
virtual sensor model structure and control architecture.

4.1 Virtual sensor Overview

A virtual sensing system uses information available from other measurements and pro-
cess parameters to calculate an estimate of the quantity of interest. Empirical methods
base the calculus of the needed estimate on historical measurements of the same quan-
tity, and on its correlation with other available measurements or parameters [21], [26].

In this context, the K2 Actuator virtual sensor to be modelled is considered as a
SISO black box model that transforms, in real time, the actual measure of the output
pressure p in the clutch position estimate X̂csc.

A preliminary analysis of the data sets, provided by Centro Ricerche Fiat, showed the
presence of a dead zone between the pressure and the position. The relationship between
the involved variables is showed in Figure 4.2.

As highlighted by the above curve shape, the K2 Actuator position values are related
to the output pressure in a non linear manner. For this reason, in the following section
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K2 Actuator Virtual Sensor
p(k)

Xcsc(k)

Icmd(k) X̂csc(k)

Figure 4.1: Black box model of the Virtual Sensor for the K2 Actuator.
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Figure 4.2: Pressure-Position curve shape for the given data set.

different non linear model structures are proposed to represent the Virtual Sensor.
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4.2 Virtual Sensor Modelling

The non linear characteristic between the K2 Actuator output pressure and the clutch
position value has been reproduced by considering two different strategies to develop a
Virtual Sensor.
The first method, whose description can be found in section 4.2.1, involves the use of
Multilayer Feedforward Neural Networks to describe the static relationship between the
pressure p(k) and the position Xcsc(k) [1].
The second approach, presented in section 4.2.2, tries to simplify such a Neural Network
based Virtual Sensor by means of a block-structured model design. The Hammerstein-
Wiener has been demonstrated to be the most suitable model and the Set-Membership
identification methodology has been exploited to determine the proper parameters val-
ues [9].

4.2.1 Static feedforward Neural Network model structure

The chosen class of Neural Network is based on a layer-by-layer forward propagation
of the pressure input signal. The training procedure, exploited through the MAT-
LAB Neural Network Toolbox, is based on the error back-propagation algorithm and
implemented in a supervised manner following the Levenberg-Marquardt optimization
method (for more details see [1], [14], [24], [18]).

The following network anatomy, showed in Figure 4.3, has been selected

• Input Layer: acquires the input pt at each sampling time Ts = 2 ms.

• Hidden Layer: in each neuron the input pt is weighted by the term wj and biased
by bj . Then, the Hyperbolic Tangent Function is chosen as activation function to
obtain the output vector y = [y1 ... y10] as reported in the equation below.

yj =
2

1 + e−2φj
− 1 for j = 1...10

where φj = wj · pt + bj

• Output Layer: produces the Neural Network output by adjusting the Hidden
Layer output vector [y1 ... y10] with the weighting terms [wx1 ... wx10 ] and the bias
term bx. The resulting Virtual Sensor’s position estimate X̂csc is given by
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X̂csc(t) = f(pt) =
[
wx1 · · · wx10

] y1
...

y10

+ bx (4.1)

Note that, the use of the hidden layer allows the network to learn more complex tasks
or, in this context, to perform a more accurate identification of the K2 Actuator non
linear dynamics. Indeed, this kind of Neural Network, referred as Multilayer Percep-
trons (MLPs), is able to extract more meaningful features from the input patterns [14].

pt X̂csc

Hidden
layer

y

Input
layer

Output
layer

Figure 4.3: Neural Network Anatomy for the K2 Actuator Virtual Sensor.

The Neural Network parameters values are resumed in Table 4.1.
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Hidden Layer Output Layer

Neuron Weights wj Bias bj Weights wxj
Bias bx

1 10.833 -11.631 0.03

2 11.826 -10.641 0.023

3 10.47 -7.141 0.039

4 -10.569 4.553 -0.05

0.019
5 -223.276 2.895 -0.048

6 4.755 0.959 0.123

7 37.33 14.2855 0.046

8 22.656 12.156 0.054

9 10.122 7.688 0.751

10 237.94 198.521 -0.133

Table 4.1: Neural Network parameters values.

The validation procedure, performed on the given data set and portrayed in Figure
4.4, shows a quite good tracking of the measured output position. Therefore, it can
be stated that the developed Virtual Sensor, represented by a static Neural Network,
is able to provide an accurate position estimate X̂csc on the basis of the K2 Actuator
output pressure actual value.
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Figure 4.4: Neural Network based Virtual Sensor validation.
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However, despite of the good tracking performances, such a developed Virtual Sensor
is not easy to be deployed in a real time platform because of the complexity related
to the Neural Networks inherent estimation approach. For this reason, in the following
paragraph, a simplified Virtual Sensor has been developed to obtain the needed position
estimate by means of manageable block structures.

4.2.2 Robust Hammerstein-Wiener model structure

The aim of this strategy is to build a Virtual Sensor by considering an uncertain system
identified through a robust identification method. That is, the given experimental mea-
surements are assumed to be affected by unknown but bounded (UBB) error so that
the Set-membership identification technique can be applied to evaluate the Parameters
Uncertainty Intervals (PUIs) of the pre-defined model structures.
Once computed the proper bounding sets, the central estimate has been considered as
the most suitable parameter value for all the chosen model structures.

According to [9], the following Hammerstein-Wiener model has been chosen

NDZ(·) Gvs(z) Npoly(·)
λ(k)pD(k)p(k) X̂csc(k)

Figure 4.5: Hammerstein-Wiener block diagram representation for the K2 Actuator Virtual Sensor.

where NDZ(·) and Npoly(·) are, respectively, the input non liner block represented by a
dead zone and the output non linear block modelled by a finite polynomial. Moreover,
the dynamic part between the dead zone processed pressure pD(k) and the inner signal
λ(k) is represented by the discrete time transfer function Gvs(z).

The identification procedure has been formulated in terms of optimization problems
as asserted by the Set-membership methodology. Linear programming methods as well
as convex relaxation techniques have been applied in order to handle such a diverse
optimization framework. More precisely, linear programming and convex optimization
problems have been solved by MATLAB routines whereas the global optima of the non
convex polynomial optimization problems have been evaluated through the SparsePOP
MATLAB toolbox.

Referring to Figure 4.5, the adopted Hammerstein-Wiener Virtual Sensor settings
can be resumed in the following way (details are explained in [9])
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• Input non linear block NDZ(·): as already mentioned, data analysis has confirmed
the presence of a pressure dead zone according to which positive pressure values
result in null position response. The identified range is found to be

Dead Zone = [0− 3.89] bar (4.2)

• Output non linear block Npoly(·): under the assumption of invertible non linearity,
the polynomial coefficients have been evaluated by considering the inverse identi-
fication problem. That is, the experimental steady state operating conditions pssD
and Xss

csc have been exploited yielding the following fourth degree polynomial

pssD = N−1(Xss
csc) = 0.5766 ·Xss

csc − 0.6147 · (Xss
csc)

3 + 0.02174 · (Xss
csc)

4 (4.3)

• Linear dynamic Model Gvs(z): the identification procedure has been carried out
in the output error model framework considering the known input samples pD(k)

and the uncertain output signal λ(k). Additional constraints have been included
in the optimization problem in order to ensure the system BIBO stability and
unitary steady-state gain. The identified transfer function is characterized by a
first order dynamics expressed as

Gvs(z) =
0.3132

z − 0.6868
(4.4)

Figure 4.6 illustrates the validation procedure performed on the given data set.
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Figure 4.6: Hammerstein-Wiener model based Virtual Sensor validation.
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As can be seen from the above image, this Virtual Sensor modelling strategy represents
a trade off between the tracking accuracy and the ease of implementation. However,
the reduction of the position estimate oscillations is a considerable achievement for our
final control purpose since the estimated position is directly fed back to track a given
reference trajectory.
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4.3 Virtual sensor based Control Architectures

The previous section has dealt with two different modelling strategies to obtain the
proper clutch position estimate by means of the available K2 Actuator output pressure.
In the following, both the developed Virtual Sensors are included in different architec-
tures that are based on single or nested feedback loops control techniques.
Several simulations results are presented with the aim of comparing and testing each
control strategies in terms of different performance criteria such as the real position
tracking behaviour, the command input oscillations reduction, the smoothness of the
position estimate.

Specifically, an Up shift manoeuvre is considered as the typical working situation.
This is to properly test the effectiveness of the control techniques when a congenial po-
sition reference, and hence pressure trajectory, is involved in the Virtual Sensor based
architecture.

Moreover, such a Virtual Sensor based control strategy causes the need to adopt the
following adjustments

- the plant model, needed for the controller design, has been re-identified by forcing
the K2 Actuator with a suitable input sequence and collecting as output the
corresponding position estimate X̂csc provided by the Virtual Sensor.

- the command input Icmd and output position Xcsc closed loop data have been
acquired and considered as training data set for the Neural Network based Virtual
Sensor.

A more appropriate initial model parameters vector improves the recursive algorithm
accuracy. Besides, a more consistent training data set enhances the accuracy of the
Virtual Sensor position estimation thanks to the inherent auto-learning capability that
distinguishes the Neural Networks.

4.3.1 Single feedback Loop Control

A Virtual Sensor based control technique using a single feedback loop is treated in the
following paragraph. That is, a position control strategy , based on the position esti-
mate X̂csc provided by the Virtual Sensor, has been exploited such that the real K2
Actuator output position Xcsc follows a suitable reference profile.

The general control architecture is showed in Figure 4.7.
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Controller Virtual SensorK2 Actuator
Icmd

Xref
csc

p

Xcsc
X̂csc

Figure 4.7: General block scheme of the single feedback loop Virtual Sensor based control architecture
for the K2 Actuator.

As to the Controller, both the MPC and the LQR control methods have been
employed while, as to the Virtual Sensor, either the Neural Network or the Robust
Hammerstein-Wiener modelling procedures have been considered.

LQ position Control

The LQ controller design strategy is the same discussed in Chapter 3.
However, since the position estimate provided by the Virtual Sensor is characterized
by sudden jumps in low position ranges, some modifications have been necessary. A
fine tuning of the weighting matrices, as well as the other involved design parameters,
has been exploited until satisfactory control performances are achieved. The tracking
weight Qy has been dynamically adjusted on the basis of the working region so that
sudden jumps of the position estimate values are properly reduced.

The chosen parameters settings are

R = 1

Qy = [0.5÷ 9] · 105

Qq = 1

Dead zone = [0; 37] %

γ = 0.0065

θ(0) = [−0.9872 1.1069 · 10−4]

(4.5)

where θ(0) = [α0 β0] is the initial model parameters vector re-identified considering the
Virtual Sensor.

Figure 4.8 depicts the K2 Actuator position response, the Virtual sensor position
estimate, the output pressure and the LQ controller command action when the position
estimate X̂csc is provided by three types of different modelled Virtual Sensors.

89



4 - Virtual Sensor based Control for K2 Actuator

0 0.5 1 1.5 2 2.5 3 3.5
0

0.28

0.57

0.85

1.14
Reference
Open Loop trained Neural Network
Closed Loop trained Neural Network
Robust Hammerstein-Wiener model

0 0.5 1 1.5 2 2.5 3 3.5
0

0.28

0.57

0.85

1.14

1.6 1.7 1.8 1.9 2
5.4

5.5

5.6

3 3.1 3.2 3.3
6.9

6.95

7

1.6 1.8 2

5.45

5.5

5.55

2.8 3 3.2
6.9

6.95

7

7.05

0 0.5 1 1.5 2 2.5 3 3.5
0

0.25

0.5

0.75

1

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

Figure 4.8: Position response, position estimate, output pressure, command input with Up shift
reference profile adopting a Virtual Sensor based LQ control.

90



4 - Virtual Sensor based Control for K2 Actuator

From the reported image it is evident that, adopting such a LQ position control
strategy, satisfactory trade off results are obtained when the closed loop trained Neural
Network is adopted as Virtual Sensor. A significant ripple attenuation is achieved to-
gether with an appreciable steady state tracking behaviour indeed.

However, it is worth to highlight that the best results in terms of smoothness are
obtained by means of the robust Hammerstein-Wiener Virtual Sensor. This can be
related to the dynamic part of the adopted model structure that, acting as a filter, is
able to reduce the output oscillations.

MPC position Control

The same approach described in Chapter 2 is adopted to design the MPC position
controller.
On the other hand, the fact that the Virtual Sensor position estimate is directly fed
back to the controller has caused the need to adjust the involved design parameters,
and to exploit a dynamic tuning of the tracking weight Qy and the prediction horizon
Hp yielding the following settings

R = 1

Qy = [1÷ 25] · 102

Qq = 1

Hp = [28÷ 36]

|∆Imax
cmd | = 500 mA

Ts

γ = 0.01

θ(0) = [−0.9872 1.1069 · 10−4]

(4.6)

where θ(0) = [α0 β0] is the initial model parameters vector re-identified considering the
Virtual Sensor.

Figure 4.9 confirms the considerations made in the previous paragraph. The filtering
properties associated with the Hammerstein-Wiener Virtual Sensor lead to a remarkable
ripple mitigation. Moreover, the inclusion of state and input constraints in the control
problem formulation has given further benefits in terms of smoothness with respect to
the previously presented Virtual Sensor based LQ control strategy.

However, the best compromise between the response speed and the steady state error
minimization is still obtained by means of the closed loop trained Neural Network.
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Figure 4.9: Position response, position estimate, output pressure, command input with Up shift
reference profile adopting a Virtual Sensor based MPC control.
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For the sake of completeness, in the next section a Virtual Sensor based nested loop
control approach is described. The intent is to study if an inner loop that controls the
K2 Actuator output pressure can give benefits in terms of the position estimation, hence
improving the overall control performances.

4.3.2 Nested feedback Loops Control

For nested feedback loops control it is intended a control architecture in which two
cascade controllers are implemented. More precisely, they are functionally wired in the
sense that the outer loop literally commands the inner loop by adjusting its set point.

In this context, a secondary pressure control is nested inside a primary position con-
trol which is designed on the basis of the position estimate X̂csc provided by the Virtual
Sensor. The aim is to improve the control action effectiveness by refining the position
estimate by means of a controlled pressure response.

Figure 4.10 shows the general control architecture.

Position
Controller

Virtual
Sensor

Pressure
Controller K2 Actuator

Icmdpcmd

Xref
csc

p

Xcsc
X̂csc

Figure 4.10: General block scheme of the nested feedback loops Virtual Sensor based control archi-
tecture for the K2 Actuator.

As to the outer position loop, only the Virtual Sensor based LQ control strategy
has been implemented. This decision is motivated by the fact that, as presented in
the previous paragraph, the explicit feed forward action, provided by the LQ control
law, guarantees a fast position response without significantly increasing overshoots and
steady state errors.
On the contrary, two different strategies are proposed for the inner pressure loop as
described in the following paragraphs.
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Outer LQ position Control

The LQ position control has been designed observing the same principles described in
Chapter 3. However, since the relationship between the clutch position and the output
pressure can be well represented by a linear first order model with gain β and pole α

(details in [1]), an explicit dead zone compensation is not needed any more. Besides,
the tracking weight has to be adjusted on the basis of the working point to guarantee a
smooth behaviour.

A suitable trade off between a non oscillating command pressure and a satisfac-
tory position reference tracking has been achieved by setting the following controller
parameters values.

R = 1

Qy = [0.5÷ 9] · 102

Qq = 1

γ = 0.03

θ(0) = [−0.7489 0.098]

(4.7)

where θ(0) = [α0 β0] is the initial model parameters vector as in [1].

Inner pressure Control using Pole Placement techniques

The key idea of this approach is to design a controller for the K2 Actuator such that
the closed loop poles lays in assigned positions on the complex plane.
In this regard, since the linear model that relates the command input with the output
pressure is represented by a first order transfer function GIp(details in [1]), a one de-
gree of freedom (1dof) controller is needed. Figure 4.11 shows the adopted 1dof control
architecture.

According to [6] and [23], the associated diophantine equation leads to the following
structure for the 1dof controller with built-in integrator

C(z) =
s0 (z + σ)

z − 1
=

U(z)

E(z)

where U = Icmd, E = pcmd − p is the tracking error, σ = −9.83 · 10−3 is the pole of the
plant model GIp.
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C(z) K2 Actuator

Recursive Parameters
Estimation

pref

σ̂, ρ̂

p

Icmd

e(k) Icmd(k)
Xcsc

p
−

Figure 4.11: Adaptive 1dof inner pressure control architecture for K2 Actuator.

Specifically, on the basis of the plant model GIp dominant dynamics, the closed loop
characteristic polynomial is chosen to be

Am(z) = z + λCL = z − 0.96 (4.8)

Hence, the controller design parameter is fixed according to

s0 =
1 + λCL

ρ

where ρ = 5.3 · 10−2 is the gain of the plant model GIp.

Moreover, an adaptive approach has been exploited so that the plant model param-
eters σ̂, ρ̂ and, consequently, the controller design parameter ŝ0, are adjusted in real
time on the basis of the command input Icmd and output pressure p actual values.

The resulting control action that guarantees an adaptive pole cancellation is

Icmd(k) = Icmd(k − 1) + ŝ0
(
e(k) + σ̂ e(k − 1)

)
(4.9)

Finally, employing the LQ position controller 4.7 and the Virtual Sensor in the outer
loop, the just described nested control strategy has been adopted to track an Up shift
position reference profile. Figure 4.12 shows the K2 Actuator position response Xcsc,
the position estimate X̂csc, the output pressure p and the command input Icmd in the
presence of three different Virtual Sensor modelling approaches.
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Figure 4.12: Position response, position estimate, output pressure, command input with Up shift
reference profile adopting a Virtual Sensor based nested control (LQ outer loop - 1dof inner loop).
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As confirmed by the reported simulation results, the inclusion of the 1dof inner pres-
sure loop gives particular benefits in terms of position estimate smoothness for all the
Virtual Sensor models employed in the outer position loop.
Secondly, in comparison with the feedback position control discussed in the previous sec-
tion, a faster response is achieved without significantly increasing the position overshoot.

Improvements are proposed in the next paragraph by enhancing the internal pressure
control loop with a MPC control architecture.

Inner pressure Control using MPC techniques

On the basis of the same procedures described in Chapter 2, an adaptive Model Pre-
dictive Control architecture has been exploited for the inner pressure loop of the K2
Actuator.

Figure 4.13 resumes the general MPC layout.

∑ MPC
Controller

∑
K2 Actuator

Observer

Recursive Parameters
Estimation

z−1

pref

p(k)

Icmd(k)σ̂, ρ̂

d̂

Icmd(k)

Icmd(k − 1)

q(k) ∆Icmd

Xcsc

p

p

−

Figure 4.13: Adaptive MPC inner pressure control architecture for K2 Actuator.

In this different scenario and according to [1], the relationship between the com-
mand input and the output pressure is assumed to be modelled by a first order transfer
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function GIp with pole σ and gain ρ. Again, a non linearity model compensation is ex-
ploited by performing a state observer based feed forward action. The current variation
rate ∆Icmd has been adopted as optimization variable and a suitable variation rate con-
straint has been imposed. The chosen controller parameters settings are listed in (4.10).

Once designed the pressure inner loop, the LQ controller 4.7 and the Virtual Sensor
have been included in the outer loop of the overall nested control architecture.
Simulations results, in the presence of an Up shift position reference profile, are illus-
trated in Figure 4.14.

R = 1

Qy = 1.2 · 102

Qq = 1

Hp = 10

|∆Imax
cmd | =500 mA

Ts

γ = 0.01

θ(0) = [−9.83 · 10−3 5.3 · 10−2]

(4.10)

where θ(0) = [σ0 ρ0] is the initial model parameters vector as in [1].

The reported plots highlight the effectiveness of the just presented nested control
architecture. In comparison with the previous approaches, each of the three Virtual
Sensor modelling strategies presents quite good results. More precisely, a smoother
behaviour of the real output position along with significant improvements in terms of
response speed have been obtained, especially when the Hammerstein-Wiener Virtual
Sensor is included in the outer loop.

However, as long as the Virtual Sensor based control is concerned, and with the
aim of providing a general consideration on the proposed control strategies, an overall
performance resume is presented in the following section.
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Figure 4.14: Position response, position estimate, output pressure, command input with Up shift
reference profile adopting a Virtual Sensor based nested control (LQ outer loop - MPC inner loop).
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4.4 Final Comparisons and Results

In the previous section two modelling strategies for the Virtual Sensor development have
been described. Their inclusion in different control architectures has been analysed by
means of simulations results. Besides, control performances have been discussed for each
of the adopted methodologies by taking into account not only the real position response
behaviour, but also the position estimate accuracy along with the output pressure and
command input signals.

In the following, dealing with the Virtual Sensor based approaches, and considering
both the MPC and LQR position controllers developed in Chapter 2 and Chapter 3,
the K2 Actuator position response is studied. This is to investigate and compare the
achievable control performances when a Virtual Sensor, and not a real position sensor,
provides the controller the needed samples of the K2 Actuator output position.
Specifically, regarding the previous section results, only the control architectures, and
the associated Virtual Sensor, that provide satisfactory performances in terms of real
position output behaviour, are selected to be compared.

The first plot, reported in Figure 4.15, shows the command input and the position
output behaviours when either a real position sensor or a Virtual Sensor is employed in
both the single and nested control architectures. The LQ approach is here investigated
and the closed loop trained Neural Network is assumed to be the best Virtual Sensor
modelling strategy for this position control purpose.
These simulation results outline the fact that an inner 1dof pressure controller guar-
antees an effortless control action and a good tracking behaviour of the K2 Actuator
output position. Nevertheless, these improvements in terms of smoothness are obtained
at the cost of slowing down the system response.

In Figure 4.16 the same scenarios as before are considered but, in this case, MPC
techniques are inspected and the Hammerstein-Wiener Virtual Sensor is chosen to be
the more performing one with the nested control architecture.
As confirmed by the reported plots, if the K2 Actuator output pressure is controlled by
a MPC internal loop, significant advancements of the response speed as well as of the
input current smoothness are appreciable with the only drawback of a slightly larger
position overshoot.

Generally speaking, and with reference to the just discussed simulation results, it
is evident that the inclusion of the Virtual Sensor in the control architecture entails
some oscillations in the command input. These are responsible, particularly with ramp
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Figure 4.15: Position response and Input Current with an Up shift reference profile adopting Adaptive
LQ techniques when either a real position sensor or a Virtual Sensor are employed.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.14

0.28

0.42

0.57

0.71

0.85

1

1.14

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.8 1.9 2
5.46

5.48

5.5

5.52

5.54

3.2 3.25 3.3 3.35 3.4

6.98

7

7.02

Figure 4.16: Position response and Input Current with an Up shift reference profile adopting Adaptive
MPC techniques when either a real position sensor or a Virtual Sensor are employed.
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position trajectories, of a delayed or slightly biased reference tracking.
Enhancements about these aspects are proposed by means of different nested approaches
that, however, represent a trade-off between the overall control objectives.

However, as expected and confirmed by the above plots, when the DDCT system
can be equipped with a real sensor, the position control of the even gear actuator is
naturally far more effective.
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Chapter 5
Conclusions

T his thesis has dealt with the even gear actuator control of a dry dual clutch transmis-
sion system. More precisely, the aim of the project has been to design a controller

that, using the clutch position measurement, is able to guarantee a smooth reference
tracking and a continue torque transmission.

With the purpose of improving driving comfort, different control architectures, re-
lated to the optimal control methodologies, have been exploited. Moreover, due to the
lack of an a priory model for the considered K2 Actuator, identification procedures,
performed on the basis of the given experimental data, have been necessary to evaluate
a mathematical relationship between the involved variables.

Specifically, identification results have shown that the system dynamic and steady
state properties are strictly related to the working region. For this reason, a recursive
least square estimation algorithm has been developed so that all the proposed control
strategies are designed on the basis of a real time varying state space model represen-
tation.

First of all, an Adaptive Model Predictive Control approach has been considered.
Physical constraints and multiple control objectives have been handled through a con-
venient customization of the cost function and the control problem formulation. A non
linear effect has caused the need to perform an implicit feed forward action by including,
among the state variables, an unmeasurable disturbance whose estimate is provided by
a suitable state observer.

Different position reference profiles, that reasonably represent the K2 Actuator work-
ing situations, have been considered.
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The Adaptive MPC controller parameters setting, whose choice has been reasoned by
extensive tuning simulations results, ensures quite satisfactory performances in terms
of steady state tracking and rise time. The proposed MPC control action is able to
guarantee an accurate tracking even if the reference profile is characterized by sudden
set point variations. More precisely, the minimum tracking error is obtained in the
presence of constant references while, with ramp trajectories, a small offset occurs in
the position response.
Motivated by the huge variability of the system behaviour with respect to the working
point, a real time adjustment of the controller design parameters have been proposed by
means of a scheduling algorithm. Thanks to this approach, significant improvements,
especially in terms of position overshoots, have been achieved.
However, due to the long prediction horizon, such an Adaptive MPC method need quite
high resources to compute in real time the optimal control action.

Therefore, with the aim of improving computational aspects, an Adaptive Linear
Quadratic Control strategy has been exploited. An analytic iterative method has been
developed to overcame the problem of solving, at each sampling time, the infinite hori-
zon Discrete Time Riccati equation that is related to the proposed LQ approach.
As for the MPC, a wide spectrum of working situations has been considered to test the
effectiveness of the developed control architecture and a suitable scheduling algorithm
has been proposed to ensure the same level of control performances in all the position
regions.

Simulations results have shown that also an adaptive LQ control action, result-
ing from an unconstrained optimization problem, is able to guarantee a fast position
response without significantly increasing position overshoots and steady state errors.
This is due to the affine static state feedback form of the LQ control action that, thanks
to the explicit feed forward loop, ensures satisfactory performances in terms of rise time
and reference tracking.

It is worth to highlight that, both the MPC and the LQ controllers have been de-
veloped assuming the availability of a real position sensor in the considered Dry Dual
Clutch Transmission System.
In this regard, the last Chapter of this thesis work deals with the lack of a real sensor
by including a Virtual Sensor into the control architecture. Extensive simulations and
several comparisons have proved that the best trade-off between a smooth input cur-
rent and a fast position response is obtained by means of a nested control architecture
designed with an inner MPC pressure loop and an outer LQ position loop.
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5 - Conclusions

In conclusion, considering the overall DDCT system, the clutch torque effectiveness
is strictly related to the gear actuator control accuracy, especially in high position ranges.
Therefore, the position response smoothness is of paramount importance in regard to
the driving comfort.
With this in mind, among the different proposed approaches for the position control
of the K2 Actuator, the adaptive LQ showed outstanding results in terms of achieved
performances and computational effort. Besides, it offers the possibility of an effective
deployment in a real time platform thanks to the closed form of the LQ control action.

Future Work

Starting from the results presented in this thesis project, further investigations can be
carried out.

The position estimate accuracy can be improved by designing the Hammerstein-
Wiener Virtual Sensor on the basis of the proper closed loop data. Hence, the proposed
LQ controller can be implemented on the transmission control unit in order to test the
achievable performances on the real vehicle.

Another interesting aspect that deserves a more thorough study, is to develop a
Virtual Sensor based MPC controller by accounting at first the inclusion of the Virtual
Sensor into the control problem formulation.
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