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ma che comunque andassero le cose non mi hanno mai abbandonato.
Tra gli amici un ringraziamento speciale va a Vito, il quale mi ha accompagnato per tutto
il periodo universitario, sia nei momenti di confronto che in quelli di svago.
L’ultimo ringraziamento va a me stesso, che ho avuto la forza e la costanza di andare
sempre avanti, cos̀ı da raggiungere questo importante traguardo della mia vita.

II



Contents

List of Figures V

List of Tables IX

Abstract XI

1 Introduction 1

2 Prototype description 5
2.1 FlegX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Mechanical structure . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Actuation system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Electronic components . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 System characterization 13
3.1 Lower-leg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Tendons dimensioning . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Strain gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Flexible link dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.4 Knee torque sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Upper-leg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Hip torque sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Mechanical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Leg support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Physical pendulum equations . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 Upperleg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.4 Lowerleg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Encoder acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Mathematical model 39
4.1 Coordinate reference frames . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Flight phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Lowerleg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Upperleg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Stance phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.1 Lowerleg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.2 Upperleg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

III



4.4 Motor model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5 Closed loop model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Controller design 53
5.1 Gravity compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.1 Flight phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.2 Stance phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Loop shaping controller design . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.1 Flight phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.2 Stance phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Experimental results 65
6.1 Controller tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1.1 Flight phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.1.2 Stance phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Jump planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Conclusions 73

Appendices 77

A Instrumentation used 79

Bibliography 83

IV



List of Figures

1.1 Durus robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Bionickangaroo by Festo, Raptor robot by KAIST . . . . . . . . . . . . . . 3
1.3 Salto-1P robot, Athlete Robot . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 FlegX description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Flexible link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 BLDC motor and gearhead . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Worm gears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Tendon-like system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Strain gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.8 Torque sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.9 Beaglebone Black board . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.10 Signal conditioner shield . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.11 Escon 70/10 Servo Controller . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.12 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Knee joint scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Cantilever beam scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Half Wheatstone bridge scheme . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Strain gauge calibration test bench . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Flexible link test set-up representation . . . . . . . . . . . . . . . . . . . . 18
3.6 Constraint deformation measures . . . . . . . . . . . . . . . . . . . . . . . 18
3.7 Flexible link tip displacement data comparison . . . . . . . . . . . . . . . . 19
3.8 Output error system model . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9 Least squares characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.10 Linear programming characteristic . . . . . . . . . . . . . . . . . . . . . . . 21
3.11 Error in variable system model . . . . . . . . . . . . . . . . . . . . . . . . 21
3.12 Polynomial optimization characteristic . . . . . . . . . . . . . . . . . . . . 21
3.13 Force-Voltage characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.14 Flexible link impulse response (Set 1) . . . . . . . . . . . . . . . . . . . . . 23
3.15 Accelerometer and strain gauge frequency response (Set 1) . . . . . . . . . 23
3.16 Flexible link impulse response (Set 2) . . . . . . . . . . . . . . . . . . . . . 24
3.17 Strain gauge frequency response (Set 2) . . . . . . . . . . . . . . . . . . . . 25
3.18 First modal shape: experimental and theoretical results . . . . . . . . . . . 26
3.19 Second modal shape: experimental and theoretical results . . . . . . . . . . 26
3.20 Third modal shape: experimental and theoretical results . . . . . . . . . . 27
3.21 Knee torque sensor calibration test bench . . . . . . . . . . . . . . . . . . . 27
3.22 Knee torque sensor data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

V



3.23 Knee torque sensor models . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.24 Hip torque sensor calibration test bench . . . . . . . . . . . . . . . . . . . 30
3.25 Hip torque sensor data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.26 Hip torque sensor model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.27 Physical pendulum schematic . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.28 Upperleg free oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.29 Lowerleg free oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.30 Total lowerleg free oscillations . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.31 Encoder signal filter bode diagram . . . . . . . . . . . . . . . . . . . . . . 37
3.32 Encoder signal filter action . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 FlegX reference frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Flight phase lowerleg bond graph model . . . . . . . . . . . . . . . . . . . 40
4.3 Flight phase upperleg bond graph model . . . . . . . . . . . . . . . . . . . 42
4.4 Stance phase lowerleg bond graph model . . . . . . . . . . . . . . . . . . . 46
4.5 Stance phase upperleg bond graph model . . . . . . . . . . . . . . . . . . . 47
4.6 Motor model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7 Motor current response to square wave duty cycle signals . . . . . . . . . . 50
4.8 Motor data simulation compared to acquired motor data . . . . . . . . . . 50
4.9 Closed loop model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Hybrid dynamic system model . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Gravity compensated system model . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Generic closed loop system model . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Lowerleg flight phase closed loop Bode diagram and Nichols chart . . . . . 57
5.5 Modified lowerleg flight phase closed loop Bode diagram and Nichols chart 57
5.6 Upperleg flight phase closed loop Bode diagram and Nichols chart . . . . . 59
5.7 Modified upperleg flight phase closed loop Bode diagram and Nichols chart 59
5.8 Lowerleg stance phase closed loop Bode diagram and Nichols chart . . . . 61
5.9 Modified lowerleg stance phase closed loop Bode diagram and Nichols chart 61
5.10 Upperleg stance phase closed loop Bode diagram and Nichols chart . . . . 62
5.11 Modified upperleg stance phase closed loop Bode diagram and Nichols chart 63

6.1 Lowerleg flight phase response . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2 Upperleg flight phase response . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Lowerleg stance phase response . . . . . . . . . . . . . . . . . . . . . . . . 67
6.4 Upperleg stance phase response . . . . . . . . . . . . . . . . . . . . . . . . 68
6.5 Hip joint trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.6 Knee joint trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.7 Trajectory planning flow chart . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.1 Oscilloscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.2 Laser displacement sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.3 Accelerometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.4 Impact hammer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.5 Impact hammer signal conditioner . . . . . . . . . . . . . . . . . . . . . . . 80
A.6 Load cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.7 Load cell signal conditioner . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.8 Bench scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

VI



A.9 Hanging scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

VII





List of Tables

2.1 EC-45 motor data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 GP-42-C gearhead data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 A53U10 worm gear data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 First three flexible link natural frequencies (Set 1) . . . . . . . . . . . . . . 23
3.2 First three flexible link natural frequencies (Set 2) . . . . . . . . . . . . . . 24
3.3 First three flexible link natural frequencies comparison . . . . . . . . . . . 24

IX





Abstract

The purpose of this Master Thesis is to a study the effects induced by structural elasticity
in robotic systems.

New challenges are oriented towards bioinspired, safe and energy-efficient solutions. For
instance, nowadays advanced robots are not confined anymore to factories and manufac-
turing tasks; rather, they are designed to help humans in a vast variety of daily tasks. The
introduction of elastic components may constitute a viable solution. Robots conceived as
structurally flexible become lighter, this means that they need less energy consumption
to perform the same tasks with respect to their rigid counterparts. In addiction elastic
components can store energy and release it in a later time, leading to an increase of the
efficiency of the whole system. Furthermore, flexible components can be a solution to
problems induced by the interaction with unstructured environment, because they can
handle impulsive forces caused by both desired and/or accidental contact with either the
surroundings or objects.

To reach this achievement a test rig has been used composed by an already-made two
links robotic leg with one of them conceived as flexible. Then, the goal of this work is to
design a suitable controller for its actuation as a first step in designing a new concept of a
jumping humanoid robot as well as industrial robots. First an accurate characterization
of the prototype is made in order to either measure or estimate all its electro-mechanical
properties. Experimental results are compared to the simulations performed during the
mechanical design phase. Afterwards the leg mathematical model is derived through the
bond graph approach for both the flight and the stance phases. Once planned the closed
loop system the friction disturbance effect is examined, then a controller for each phase
is designed through the loop shaping technique and experimentally tuned.
Finally, the achieved results are discussed along with the prototype structural, electronic
and computer problems and limitations and future improvements are proposed.

XI





Chapter 1

Introduction

Robots are artificial devices designed to perform different tasks, typically devoted to the
man’s assistance or, in some cases, its replacements. Some examples are the manufacture,
construction, handling of heavy and hazardous materials, or in prohibitive environments
or non-compatible with the human condition ones.
The first robots were used for simple tasks as transfer objects from one point to another,
since they had no external sensing. The first industrial robot industry born in 1956 from
the meeting of George Devol, who two years earlier had written a patent on a machine
called a Programmed Transfer Article, and Joseph Engelberger. The company, called
Unimation, installed the first robot in General Motor’s (GM) factory in Trenton to serve
a die casting machine. [1]
Those robots replaced humans in monotonous, repetitive, heavy and dangerous tasks.
When the robots could manage both a more complex motion, but also had external sen-
sor capacity, more complex applications followed, like welding, grinding, deburring and
assembly. Nowadays advanced robots are not confined anymore to factories and manufac-
turing tasks, they are spreading into the medical, agricultural, exploration, maintenance
and assistance fields.

Up to now, most of the robots are designed totally rigid, this allows them to be moved at
high speed with high precision and repeatability. However, rigid bodies are necessary big
and, above all, heavy. This means that to reach high performances those robots require
an high energy consumption. Moreover, if those robots have to interact with people, they
have to be moved very slowly in order to avoid injuring someone. This leads to a strong
reduction of their performance possibilities.
The introduction of elastic components in the robots structure may constitute a viable so-
lution. If the deformations are taken into account during the mechanical design phase, it
is possible to choose smaller components, resulting in a lightening of the structure. In ad-
diction, elastic components can store energy and release it in a later time. Furthermore, it
is possible to amplify the actuators effort by exploiting the resonance phenomenon. These
brings to an increase of the hole system efficiency and to an improve of their performance
in terms of energy consumption. In addiction, an elastic structure is able to absorb part of
the shock produced by the robot interaction with both desired and/or accidental contact
with either the surroundings or objects. This makes the interaction with both people and
unstructured environment safer avoiding damaging both the robot and the surroundings.

Among all the robot categories, legged robots are particular interesting thanks to their
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1 - Introduction

Figure 1.1: Durus robot, image: AMBER Lab/Georgia Tech

ability to move on uneven terrains with respect to wheeled ones.
One of the difficulties in the legged robot control is the transition management between
the two phases, flight and stance. Legged robots can be modelled following the hybrid
system theory, in particular it is necessary to derive different models for describing the leg
dynamics either standing on the ground or lifted. The transition between the two models
introduces a discontinuity into the system states, this can leads to instability. Moreover,
from the mechanical point of view, the impulsive forces generated from the impact of the
leg with the ground can damage the structural components.
The introduction of flexible elements can reduce the discontinuity introduced by the im-
pact with the ground since its deformation smooths the impulsive torques transmitted to
the joints. This filtering action brings benefits also to the structure since, reducing the
strain to witch it is subject, its integrity is preserved.
Last the introduction of flexible structural elements allows the robot to store energy with-
out adding further components, letting the structure as light as possible and increasing
the overall efficiency of the system.

In the last years, thanks to the advent of high-performance computers, the development of
flexible robotic structures arose. Focusing on bipedal robots, it is possible to date several
examples of both academic and commercial robots that has some kind of elasticity.
The elasticity has been studied for years, starting from the Series Elastic Actuation. Some
application examples are Spring Flamingo [2], KURMET Bipedal Robot [3], Hume robot
[4] and also from the IIT with iCub [5, 6].
The humanoid robot DURUS [7], shown in Figure 1.1, revealed to the public at the
DARPA Robotics Challenge (DRC) in June 2015, uses passive springs in the ankles in
order to damp the shocks and to save energy. The main key of this research is to analyze
the walk efficiency.

A different approach has been followed by the Festo company and by the Korea Advanced
Institute of Science and Technology (KAIST). They designed respectively Bionickangaroo
the first and Raptor robot the second with elastic tendons aimed to save energy during
their movements. The two robots are shon in Figure in Figure 1.2. Bionickangaroo is able
to emulate the jumping behaviour of real kangaroos, which means that it can efficiently
recover energy from one jump to help it make the successive one. It is able to jump 40 cm
vertically and 80 cm horizontally. Raptor robot [8] is a sprinting robot with two nimble
legs and a mechanism that mimics a tail. It is able to reach a speed of 46 km/h on a

2



1 - Introduction

Figure 1.2: (a): Bionickangaroo by Festo, image: www.festo.com; (b): Raptor robot by
KAIST, image: KAIST Mechatronics, Systems, and Control Lab

treadmill.

Another project is called Salto-1P [9], a jumping robot able to perform a standing vertical
leap of 1.25m. This result has been achieved thanks to the introduction of a torsional
spring that makes the dynamics of the robot like a ”spring-loaded inverted pendulum”.
Salto-1P is shown in Figure 1.3.

Despite the high dynamic performances and the complex architecture of the aforemen-
tioned robots, none of the cited examples has a flexible structure.
Flexible links in bipedal robots are first introduced in Athlete Robot [10], a bipedal robot
that runs on legs powered by pneumatic muscles. Athlete uses air-motors that mimic hu-
man muscles in order to study ‘artificial’ muscle-skeletal system for the robot. The flexible
lower-legs are composed by prosthetic blades, of the type that double amputees use to run.

To deepen the effects induced by the structural elasticity in robotic systems, the Italian
Institute of Technology (IIT) started a project called FlegX (FLEXible LEG) as a first
step in the design of a jumping humanoid robot with flexible limbs.
In the end of the 2017 the first prototype was built, this is fully described in chapter 2.
The aim of this Thesis is to validate the extended numerical simulation campaign carried
out during the mechanical design phase. In order to achieve this result, it is necessary to
analyze the physical system and to design a suitable controller for its actuation.
In the first part of this work an accurate characterization of the prototype is made in
order to either measure or estimate all its electro-mechanical properties. The main goal

Figure 1.3: (a): Salto-1P robot, image: Biomimetic Millisystems Lab/UC Berkeley; (b)
Athlete Robot, image: http://www.isi.imi.i.u-tokyo.ac.jp
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1 - Introduction

of this process is to acquire all the data necessary for the computation of a model of the
leg that can be used during the control design phase. To study the strain gauge, three
different methods are proposed: the Least Squares approach for the output error model,
the Linear Programming one for the output error model in the Set Membership Identi-
fication framework, and the Polynomial Optimization Problem for the error in variable
model. Further, the dynamical properties of the flexible link are analyzed through the
Fourier analysis of its impulse response. The two torque sensors are characterised through
the Least Squares approach. After, the mechanical properties like masses, inertias around
the two revolute joints and bearings friction are either measured or estimated through the
physical pendulum approach.
Once all the needed electro-mechanical properties are computed, a mathematical model
of the leg is derived through the Bond-Graph modelling technique. Describing the dy-
namics of the leg through an hybrid dynamic system model, it is necessary to compute
four different models, one for each actuated subsystem in each jump configuration (flight
or stance). In order to derive the closed loop model for the control design phase, the
motor model is derived through system identification.
Finally, four different controllers, one for each derived model, are designed. The proposed
controller is based on a phase-lead network with a feed-forward term used to compensate
the gravity effect.
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Chapter 2

Prototype description

FlegX is a novel robotic mechanism whose main characteristic is to have one link flexible.
The actual configuration shown in Figure 2.1 comes from an extended numerical simula-
tion campaign carried out during the design process described in [12, 13].

Actuation system

Hip joint &

Floating worm wheel

UPPERLEG

(rigid link)

LOWERLEG

(flexible link)

Linear 

guide
Tendons

Knee

joint

Figure 2.1: FlegX description

The prototype has also been introduced in [11, 14].

2.1 FlegX

FlegX is a 3 DoF underactuated mechanism in witch the two revolute joints, namely
hip and knee in Figure 2.1, are actuated, while the third one, the translational joint
corresponding to the vertical slider, is not actuated.
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2 - Prototype description

2.1.1 Mechanical structure

The upperleg features a biologically inspired mechanical configuration and was conceived
as rigid. To minimize the masses, the rigid link was designed as light as possible. It
consists of a commercial round thin-wall aluminium tube that features several holes with
the purpose of lightening the structure. The tube has an outer diameter of 75mm, an
inner diameter of 71mm and a length of 180mm.

The lowerleg, instead, is a flexible link made by stainless steal AISI 304 - X5CrNi18-10 -
EN1.4301 of dimensions 250mm x 70mm x 3mm.

Figure 2.2: Flexible link

2.1.2 Actuation system

From the simulations made during the design phase, it came out that, in order to obtain
a jump of 5cm, it is necessary to provide to each joint of the leg a torque greater than
70Nm and a speed greater than 40rpm. Taking into account these constraints, it was
selected the brushless DC motor EC45 produced by ”Maxon motor Spa” with a two-stage
planetary gearhead GP-42-C with a reduction ratio of 26 : 1. Since the reduction was not
sufficient to obtain the desired torque, a further reduction stage of 9.67 : 1 was introduced
through a worm gear system.

Figure 2.3: Maxon brushless DC motor EC-45 and planetary gearhead GP-42-C
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2 - Prototype description

Tables 2.1 and 2.2 summarize the main characteristics stated on the datasheets of the
motor and the gearhead.

Table 2.1: EC-45 motor data
Motor data

Nominal Voltage 48V
No load speed 10700rpm
No load current 656mA
Nominal speed 10000rmp
Nominal torque (max. continuous torque) 316mNm
Nominal current (max. continuous current) 7.94A
Stall torque 6110mNm
Stall current 143A
Maximum efficiency 87%
Terminal resistance phase to phase 0.336Ω
Terminal inductance phase to phase 0.149mH
Torque constant 42.7mNm/A
Speed constant 224rpm/V
Speed/torque gradient 1.76rpm/mNm
Mechanical time constant 3.85ms
Rotor inertia 209gcm2

Table 2.2: GP-42-C gearhead data
Gearhead data

Reduction 26 : 1
Number of stages 2
Maximum continuous torque 7.5Nm%
Maximum intermittent torque 11.3Nm
Maximum continuous input speed 8000rpm
Maximum intermittent input speed 8000rpm
Maximum efficiency 81%
Mass inertia 9.1gcm2

The worm gear system prevents the actuators failure produced by the impulsive torques
generated when the leg lands on the ground because the direction of the power transmis-
sion is not reversible. The torque applied on the output shaft is balanced by the friction
between the worm screw and the coupled gear. The major drawback of this system is its
low efficiency.
The worm gears used are the A53U10 produced by ”A.T.T.I. srl”, Table 2.3 summarize
their characteristics.
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2 - Prototype description

Figure 2.4: A53U10 worm gears

Table 2.3: A53U10 worm gear data
Worm gear data

Reduction 9.67 : 1
Lead angle 13◦51′

Module 2.5
Number of threads 3
Pitch diameter (worm) 31.29mm
Tip diameter (worm) 36.29mm
Number of teeth 29
Pitch diameter (gear) 74.71mm
Maximum diameter (gear) 82mm
Inertia (worm) 3.00 10−5kg m2

Inertia (gear) 4.81 10−4kg m2

To reduce the leg inertia, the actuation system was located on the linear guide supporting
plate.

The motion of the hip and knee joints is decoupled thanks to a floating worm wheel: the
hole of the wheel is coupled with a deep groove double row ball bearing that, in turn, has
the inner ring constrained to the hip joint shaft.
In order to transmit the motion at the lowerleg, a tendon-like system links the floating
worm wheel to the knee joint as shown in Figure 2.5.
As tendons two 280mm-long M4 screws are are used. The tendons are linked to the worm
gear and to the knee joint flange by means of spherical bearings.

Figure 2.5: Tendon-like system
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2 - Prototype description

2.1.3 Sensors

Encoders

The angle of each revolute joint is measured by two magnetic absolute encoders. One is
located on the shaft that links the worm gear system to the rigid link, and the other on
the shaft that connects the tendon system to the flexible link.
The encoders are the AS5047D produced by ”Austrian Micro Systems”. They have 14 bit
precision and SPI interface. Figure 2.6 shows one of the encoders on top of its support
shield and its magnet.

Figure 2.6: Absolute encoder AS5047D

Strain gauge

In order to measure the deflection and the force applied to the flexible link, two strain
gauges in half Wheatstone bridge are used. Such a configuration compensates for the
effects induced by any axial stress on the element. The sensors are placed on the most
stressed part of the flexible link: next to the extreme fixed to the lower revolute joint.
The strain gauges used are produced by ”Vishay”. They have a grid resistance equal to
120.0± 0.3%Ω and a gage factor equal to 2.080± 0.5%. Figure 2.6 shows one of this two
sensors glued on the leg.

Figure 2.7: Strain gauge

Torque sensors

The leg is equipped with two torque sensors. They measure the torque transmitted from
the worm gear system to the upperleg and to the lowerleg. Since the sensors deformation
is by far smaller than the flexible link one and to have a linear electrical characteristic,
they are composed by four strain gauges in full bridge configuration. Figure 2.8 shows
the two sensors used.
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2 - Prototype description

Figure 2.8: Torque sensor

2.1.4 Electronic components

Beaglebone Black

The software devoted to the data acquisition and to the execution of the control algorithm
is implemented in SimulinkR©. By means of the model based software design technique, it
is loaded on a Beaglebone Black board (shown in Figure 2.9). The board is produced by
”Texas Instrument” and it runs Debian 7.9 operating system.

Figure 2.9: Beaglebone Black board

Signal conditioner shield

In order to acquire the sensors’ signals, a custom PCB is used. It has the amplifier and
filter for the analog sensors and an SPI bus to communicate with the main board.
The shield is shown in Figure 2.10. It has three analog input ports devoted to the encoders
and four analog input ports for the strain gauges: ports from number 0 to 2 are devoted
to torque sensors (full Wheatstone bridges), while port number 3 is devoted to the flexible
link strain gauges (in half bridge configuration). The shield has two trimmers devoted to
the bridges tuning for each strain gauge sensor input port.
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2 - Prototype description

Figure 2.10: Signal conditioner shield

ESCON 70/10 Servo Controller

To drive the motors the Escon 70/10 servo controller is used. It is a 4-quadrant PWM
servo controller that has three different operating modes: speed control (closed loop),
speed control (open loop), and current control. It is commanded by an analog input
signal and features analog and digital I/O functionality. The device is configured via
USB using the graphical user interface ”ESCON Studio”.

Figure 2.11: Escon 70/10 Servo Controller

2.2 Structure

The leg is constrained to move only along the vertical direction thanks to an aluminium
profile structure fixed to the ground. The actuators supporting plate is coupled to this
structure by means of two linear guides.
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2 - Prototype description

Figure 2.12: Structure
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Chapter 3

System characterization

The main goal of the characterization process is to create a model of the leg that can be
used during the control design phase.

The analysis of the FlegX starts from the lowerleg subsystem. First, the tendons are re-
dimensioned since they were subject to a buckling effect. Then, the flexible link is studied
both in statics and in dynamics. The last component of the lower subsystem analyzed
is the knee torque sensor. Then, the focus moves on the upperleg and the hip torque
sensor is analyzed. Next the leg mechanical properties are either measured or estimated.
Finally, the encoders are acquired and calibrated.

3.1 Lower-leg

The lowerleg subsystem is composed by the flexible link, two coupled strain gauges aimed
to measure the link deformation, and a torque sensor to measure the torque transmitted
from the worm gear system to the knee joint. The motion from the gear to the lowerleg
is transmitted by means of a tendon-like system as shown in section 2.1.2.

3.1.1 Tendons dimensioning

Since applying to the knee joint a torque lower than the maximum one found through the
jump simulations the tendons were subject to a buckling effect, it has been necessary to
re-dimension them.
The tendons are subject only to axial forces because they are linked to the leg through
spherical bearings. Starting from the scheme shown in Figure 3.1, it is possible to compute
those forces through a torque equilibrium at the center of the joint.

T − F1
1

2
b cos θ − F2

1

2
b cos θ = 0 (3.1)

Assuming |F1| = |F2| = F , the joint angle variation between −60◦ and 60◦ and the
maximum torque applied to the joint around 70Nm (derived from the jump simulations),
the maximum force the tendons should withstand is computed as follows.

F =
T

b cos θ
→ Fmax =

Tmax
b cos θmax

= 2.5kN (3.2)
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3 - System characterization

Figure 3.1: Knee joint scheme

The maximum force that can be applied to a bar in order to avoid the buckling effect is
computed through the Euler column formula.

Fcrit =
nπ2EI

L2
(3.3)

With:

n = 1 for column pivoted in both ends

E: column elasticity module: 200GPa

I: moment of inertia of the smallest cross section

L: column length: L = 300mm (including the terminals)

Since the tendons have circular cross section, their inertia is written as

I =
π

4
r4 (3.4)

By combining the result obtained in 3.2, equation 3.3 and the relation 3.4 with a proper
factor of safety (CFS = 1.8), the minimum radius (or diameter) the tendons should have
in order to avoid the buckling effect is computed.

π3Er4min
4L2

= CFSFmax → rmin =
4

√
4CFSFmaxL

2

π3E
' 4.0mm (3.5)

The tendons are then substituted with two 8mm diameter steal bars.

3.1.2 Strain gauge

In order to measure the flexible link deformation, two strain gauges in an half Wheatstone
bridge configuration are used. This layout compensates for the effects induced by any axial
stress on the sensors.
The strain gauges are placed on the most stressed part of the flexible link: the area next
to the extreme screwed to the rest of the leg.
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3 - System characterization

A-priori information

First, it is necessary to analyze the relations that link the sensors deformation, the tip
displacement and the applied force. This is needed to have some a-priori information
about their relations and to properly design the identification experiments.
The system is modelled as a cantilever beam as shown in Figure 3.2.

Figure 3.2: Cantilever beam scheme

In statics the displacement of a point placed at a distance x from the fixed joint is
computed as

δ(x) =
Fx2

6EI
(3L− x) (3.6)

With:

F : magnitude of the orthogonal force applied on the tip of the beam

L: beam length

E: beam elasticity module

I: cross section moment of inertia

The maximum displacement is performed by the tip of the beam and it is equal to

δmax =
FL3

3EI
(3.7)

Since the link section is rectangular, the moment of inertia is computed as

I =
bh3

12
(3.8)

with b and h the base and height of the beam’s section.

Taking into account 3.8 it is possible to rewrite 3.7 as

δmax =
4FL3

bh3E
(3.9)

Since only the tip force F is applied, the shear force is constant along the beam. The link
is subject to the maximum bending moment at the fixed joint, this is equal to

Mfmax = FL (3.10)
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Taking into account 3.8, being the two strain gauges placed next to the fixed joint, the
area on with they are placed is subjected to a stress equal to

σmax =
Mfmax

I

h

2
=

6FL

bh2
(3.11)

The surface deformation measured by the sensors is computed starting from 3.11 as

εmax =
σmax
E

=
6FL

bh2E
(3.12)

By combining equations 3.11 and 3.12, it is possible to find a relation between the surface
deformation read by the strain gauge and the maximum beam deformation.

δmax =
2

3

L2

h
εmax (3.13)

Equation 3.13 shows that there is a linear relation between the two deformations.

The strain gauges are made by a metallic grid that varies the electrical resistance if
stretched or compressed. The relation between the resistance variation ∆R and the de-
formation ε is described as

∆R

R
= Ksε (3.14)

With Ks the sensibility constant of the selected strain gauge and R the proper resistance
without deformation induced.
The resistance variation produced by the surface deformation is extremely small. In order
to convert it in a voltage variation a Wheatstone bridge circuit is used.
The half Wheatstone bridge configuration consists in two strain gauges. One is applied
on the top face and the other on the bottom face of the beam. The two deformations are
equal but opposite. If the sensors are connected as in Figure 3.3, the signal is doubled
with respect to the case of quarter bridge (single strain gauge).

Figure 3.3: Half Wheatstone bridge scheme

Referring to Figure 3.3, the bridge consists in two strain gauges (R2 and R4) and two
fixed resistors (R1 and R3), it is powered by a voltage Vin and the output voltage is e0.

e0 =
R1R4 −R2R3

(R1 +R3)(R2 +R4)
E (3.15)
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Taking into account the strain gauge characteristic stated in relation 3.14, the equation
3.15 can be rewritten as

e0 =
R1(R4 + ∆R)− (R2 −∆R)R3

(R1 +R3)((R2 −∆R) + (R4 + ∆R))
E (3.16)

If the bridge is compensated R1 = R2 = R3 = R4 = R, recalling the relation 3.14, the
output signal becomes

e0 =
R(R + ∆R)− (R−∆R)R

2R((R−∆R) + (R + ∆R))
E =

1

2

∆R

R
E =

1

2
KsεE (3.17)

Equation 3.17 shows that there is a linear relation between the surface deformation and
the output signal.

Taking into account the relations 3.13 and 3.17, the relation between the tip displacement
and the output signal comes out to be linear. Such a characteristic can be found by means
of an identification process.
Furthermore, since during the calibration phase the force F is known and since, as demon-
strated by equation 3.12, there is a constant relation between the maximum beam defor-
mation and the load applied to its tip, it is also possible to determine the relation between
the sensor readings and the force F .

Test bench realization

In order to properly calibrate the strain gauge, it is necessary to apply to the flexible
element a fully known force, measure the tip displacement and read the corresponding
sensor output.
It has been decided to use Bosch profiles to build the test bench because of the modularity
and the easy assembly. This allows to reshape the bench for each experiment quickly and
without the need of designing new pieces.
With the structure shown in Figure 3.4, it is possible to fix the flexible element horizontally
as in the analysis of the cantilever beam and, on top of it, the laser sensor devoted to the
displacement measurements.

Figure 3.4: Strain gauge calibration test bench
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Strain gauge characteristic identification

As shown in Figure 3.5, the force is applied by hanging different weights to the tip of the
flexible element, at 243mm from the fixed face. The displacement is measured next to
the force application point, at 238.5mm from the fixed face, through the laser sensor. Its
output voltage along with the strain gauge signal is acquired through the oscilloscope.

Figure 3.5: Flexible link test set-up representation

Even if the test bench has been built as rigid as possible, subject to such forces, its defor-
mation can not be neglected. To evaluate the constraint deformation order of magnitude,
some weights are hanged to the tip of the beam and the displacement of different points
of the fixed face are measured through the laser sensor as shown in Figure 3.6.

Figure 3.6: Constraint deformation measures: (a) vertical displacement, (b) and (c) hor-
izontal displacement

Referring to Figure 3.6, applying to the tip of the link 95.16N the displacement is about
0.11mm for case (a), −8.75 10−2mm for case (b) and −2.5 10−2mm (equal to the laser
sensitivity) for case (c). Taking into account the geometrical dimensions and the ob-
tained measures, graphically, the constraint deformation has been estimated to be around
1.10 10−4rad/N .

Considering the constraint deformation, it is possible to compare the measure of the link
displacement with the FEM analysis performed during the mechanical design phase. The
simulation data is provided by dott. Cristiano Pizzamiglio.
The linear characteristic describing the relation between the tip displacement and the
applied force is derived using the least squares identification method both for the experi-
mental and numerical case. The results are shown in Figure 3.7.
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Figure 3.7: Flexible link tip displacement data comparison

The difference between the two characteristics is of 3.48% with respect to the experimen-
tal one.

The Force-Voltage relation is analyzed by following three different approaches.
The first approach considers the output error model, which consists in summing the error
as a random variable with zero mean value directly to the system output, as shown in
Figure 3.8. The system output y is computed as y = Φθ0 + e, with Φ the input data
matrix and θ0 the G system parameters array.

Figure 3.8: Output error system model

The parameter estimate is derived through the least squares approach, the simplest one
from the computational point of view.

θ̂LS =
[
ΦTΦ

]−1
ΦTy (3.18)

By applying the least squares algorithm to the collected data, the system model results
to be y(t) = 17.86 u(t)− 0.05. Such a characteristic is compared with the collected data
in Figure 3.9.
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Figure 3.9: Least squares characteristic

The second method considers the output error model in the set membership identifica-
tion framework. Since the noise derives from physical sensors, the error is assumed to be
componentwise bounded: |e(t)| ≤ e0. The system model is the same depicted in Figure
3.8 and the mathematical model is y = Φθ0 + e, with Φ the input data matrix and θ0 the
G system parameters array. The parameter uncertainty interval (PUI) of such a problem
is computed through the linear programming solver available in MATLAB. The linear
characteristic is found as the Chebyshev center of the PUI. The resulting system model is
y(t) = 17.92 u(t)− 0.07. The characteristic is compared with the collected data in Figure
3.10.

The third and last approach is the most complete one because it considers the error in
variable model. This model takes into account not only the output error introduced by
the acquisition system but also the one due to the uncertainty on the applied input. The
model of the considered system is shown in Figure 3.11.

Both the input and the output errors are assumed to be componentwise bounded: |ε(t)| ≤
ε0 and |µ(t)| ≤ µ0. Since them enter the problem in a non-linear way the method turns
into a polynomial optimization problem. Its parameter uncertainty interval (PUI) is
computed through the SparsePOP software. The characteristic parameters is derived as
the Chebyshev center of the PUI and it turns out to be y(t) = 17.92 u(t) − 0.07. The
characteristic is compared with the collected data in Figure 3.12.
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Figure 3.10: Linear programming characteristic

Figure 3.11: Error in variable system model
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Figure 3.12: Polynomial optimization characteristic
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The three characteristics are compared in Figure 3.13. The difference of the first two
methods is computed with respect to the the polynomial optimization model: 0.33% for
the least squares one and 0.01% for the linear programming one.
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Figure 3.13: Force-Voltage characteristic

Seen the minimal differences between the results and the extreme simplicity from the
computational point of view of the first approach with respect to the other two, for the
linear characteristic identifications the least squares method is used.

3.1.3 Flexible link dynamics

To evaluate the flexible link dynamical properties, different vibrational responses to im-
pulsive forces are collected and examined. Where possible the results are compared to the
theoretical ones computed through the FEM analysis performed during the mechanical
development phase. The FEM data shown in this chapter is provided by dott. Cristiano
Pizzamiglio.
While the amplitude of the tip displacement due to the oscillations decreases quickly as
the frequency increases, the detection of the natural frequencies higher than the first cou-
ple are difficult. To check the strain gauge measurements an accelerometer is used since
the acceleration measurement has an higher frequency range content.
The test bench configuration shown in Figure 3.4 has been modified, the laser sensor is
removed and an accelerometer is placed on the tip of the beam.
To be sure to urge all the first natural modes of vibrating the link is divided in five sec-
tions and it is hit at each division with an impact hammer. An example of the collected
data is shown in Figure 3.14.
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Figure 3.14: Flexible link impulse response (Set 1)

Through the Fourier analysis of the acquired signals, the impulse frequency response of
the flexible link is derived for both the tip acceleration measured by the accelerometer
and the displacement acquired through the strain gauge. The resulting plot is shown in
Figure 3.15.
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Figure 3.15: Accelerometer and strain gauge frequency response (Set 1)

From the frequency analysis, the first three natural frequencies associated to non-planar
modes of vibrating are derived.

Table 3.1: First three flexible link natural frequencies (Set 1)
Vibration mode Accelerometer measure Strain gauge measure
I 30 Hz 30 Hz
II 195 Hz 195 Hz
III 565 Hz 565 Hz

The accelerometer senses also a low-frequency signal, this can be caused by the non-ideal
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test bench used during the measurements.

Since the accelerometer has a not-null mass, the frequencies are affected by the added
weight. To evaluate the real ones the sensor is removed and the analysis is repeated with
only the measures of the strain gauge.
The flexible link is divided in eight sections in order to have more detailed information
about the modal shapes. An example of the collected data is shown in Figure 3.16.
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Figure 3.16: Flexible link impulse response (Set 2)

Again through the Fourier analysis of the acquired signals, the impulse frequency response
of the flexible link is derived only for the displacement acquired through the strain gauge,
the resulting plot is shown in Figure 3.17.

From the frequency analysis, the firs three natural frequencies associated to non-planar
modes of vibrating are derived.

Table 3.2: First three flexible link natural frequencies (Set 2)
Vibration mode Strain gauge measure
I 35 Hz
II 210 Hz
III 585 Hz

The derived frequencies are compared to the theoretical ones computed through FEM
analysis performed during the mechanical design phase in Table 3.3.

Table 3.3: First three flexible link natural frequencies comparison
Vibration mode Measure Set 1 Measure Set 2 FEM analysis
I 30 Hz 35 Hz 39 Hz
II 195 Hz 210 Hz 241 Hz
III 565 Hz 585 Hz 676 Hz
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Figure 3.17: Strain gauge frequency response (Set 2)

The difference between the frequencies obtained through the two sets derives from the
presence of the accelerometer on the tip of the link during the first measurement campaign.
Taking into account the approximate formulas for natural frequencies of systems having
both concentrated and distributed mass stated in [15], the effect of the accelerometer
mass is analyzed.
The natural frequency of a uniform cantilever beam with a mass on the end is computed
as:

fn =
1

2π

√
k

M + 0.23m

k =
3EI

L3

(3.19)

With:

M : the concentrated mass on the tip of the beam

m : the link mass

E : the Young modulus

I : the beam inertia I =
bh3

12

L : the link length

b : the link width

h : the link thickness

The formula stated in (3.19) can be used also to compute the expected first natural
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frequency without a concentrated mass:

f1, expected =
1

2π

√
k

0.23m
= 37.26 Hz (3.20)

The obtained value is in between the experimental one (second set) and the FEM one.
In order to evaluate the effect of the added concentrated mass, first, the experimen-
tal equivalent mass (meq = 0.23m) is computed from the frequency measure as meq =

k

(2πf1)2
= 0.13kg. Then, the formula (3.19) is applied taking into account the accelerom-

eter mass and the corrected first natural frequency is computed:

f1, corrected = 30.19 Hz (3.21)

The result shown in (3.21) is very close to the experimental one (f1 = 30Hz), this shows
that the obtained difference is due to the presence of the accelerometer on the tip of the
beam during the first set of measurements.

Analysing the frequency response of the beam excited at each division, the modal shapes
for the three natural frequencies are reconstructed. The obtained results are compared
with the theoretical ones obtained from the FEM analysis performed during the mechan-
ical design phase.

Figure 3.18: First modal shape: experimental and theoretical results

Figure 3.19: Second modal shape: experimental and theoretical results
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Figure 3.20: Third modal shape: experimental and theoretical results

3.1.4 Knee torque sensor

Experiment set-up

To calibrate the knee torque sensor, it is necessary to apply to it a known torque and
measure its corresponding output.
The previously used test bench has been modified, the leg support has been clamped to
it and the lowerleg tip has been fixed in order to prevent any movement, as shown in
Figure 3.21. The torque is applied by the knee joint motor driven with a current control
(torque control). Since between the motor and the considered sensor there is the worm
gear system whose characteristic is not known, the transmitted torque is not computable
a-priori, then it is measured through the already calibrated strain gauge.

Figure 3.21: Knee torque sensor calibration test bench

Characteristic identification

By setting different current reference values to the knee joint motor, the corresponding
force readings provided by the strain gauge and torque sensor voltages are collected. The
applied torque is computed starting from the measured force and taking into account the
lower link length.
The acquired data is shown in Figure 3.22.

27



3 - System characterization

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Torque sensor voltage [V]

-100

-80

-60

-40

-20

0

20

40

60

80

100
Fl

ex
ib

le
 li

nk
 ti

p 
fo

rc
e 

[N
]

Knee torque sensor data

Figure 3.22: Knee torque sensor data

The simplest model that describes the collected data is a single linear characteristic.
This is computed through the least squares method upon all the data points. By taking
into account the sensor voltage as input (u) and the applied torque as output (y) the
characteristic is computed.

y = 47.69 u− 1.56 (3.22)

Since from Figure (3.22) it is evident that the sensor is affected by hysteresis, a more
complex but more accurate model is computed. Dividing the increasing-torque data from
the decreasing-torque one, two separate characteristics are computed for the two cases.
Depending on the input derivative sign the output yi is used for increasing voltages and
yd for decreasing ones.

yi = 48.03 u− 2.46
yd = 47.79 u− 0.60

(3.23)

The two computed models are compared upon the collected data in Figure 3.23 .Depending
on the accuracy of the measures needed by the sensor usage one of them will be chosen
at the expense of computational simplicity.
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Figure 3.23: Knee torque sensor models

3.2 Upper-leg

The upperleg subsystem is composed by the rigid link and a torque sensor devoted to the
measurement of the torque transmitted from the worm gear system to the hip joint.

3.2.1 Hip torque sensor

Experiment set-up

To calibrate the hip torque sensor, it is necessary to apply to it a known torque and
measure its corresponding output.
The test bench has been modified, the leg support has been clamped to it and the lowerleg
subsystem has been removed. To fix the upperleg rotation and to measure the transmitted
torque, a load cell has been connected between the knee joint and the bench as shown in
Figure 3.24. In order to acquire at the same time both the torque sensor voltage and the
force sensed by the load cell, the last one has been connected to the acquisition shield
(BeagleBone Black) through a voltage follower. This has been powered with V −s = 0V
and V +

s = 3.3V in order to avoid extra-voltages that could damage the board.

The torque is applied by the hip joint motor driven with a current control (torque control).

Characteristic identification

By setting different current reference values to the hip joint motor, the corresponding
force readings provided by the load cell and torque sensor voltages are collected. The
applied torque is computed starting from the measured force and taking into account the
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Figure 3.24: Hip torque sensor calibration test bench

upper link length.
A first set of collected data showed that the hip torque sensor is affected by an hysteretic
behaviour more pronounced with respect to the knee one. In order to identify a good
model for the sensor, it is necessary to acquire a lot of data. For this, an automatic
process was created through a Simulink model. This brings to a faster and more pre-
cise data acquisition. The motor is actuated through a ramp reference signal between a
maximum and a minimum values. Different data sets have different extreme values in
order to analyze the hysteretic effect. The collected data is shown in Figure 3.25 where
the different data sets are represented in different colors to evidence the sensor behaviour.

By analysing the collected data, a good model that can describe the sensor behaviour
is composed by two different linear characteristics, one for the increasing torque data
and another one for the decreasing one. The transition between the two is performed
in an interval of Vtr = 0.2V following a moving characteristic with constant gain. The
data is subdivided by extracting the first values inside a range of 0.2V after a change
of voltage trend and grouping them as transition points. Then, the increasing voltage
data is divided from the decreasing one. Each group is processed with the least squares
identification method to find the three different characteristic: yi for increasing voltages,
yd for decreasing ones and ytr for the transition points.

yi = −44.37 u− 1.74
yd = −42.16 u+ 1.96
ytr = −54 u+ c

(3.24)

The transition characteristic offset c is computed by imposing its passage for the last
monotone point of a set.

The three characteristics are compared upon the collected data in Figure 3.26, the tran-
sition characteristic offset c is set as example to zero.
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Figure 3.25: Hip torque sensor data
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Figure 3.26: Hip torque sensor model
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3.3 Mechanical properties

Since the leg can not be totally disassembled, the masses and inertias identification process
focused on three main subsystems: the leg support, the upperleg and the lowerleg.
The last two refer to the components that are connected after the respective torque
sensors. The first subsystem is composed by the linear guide supporting plate, the hip
shaft supports, the two worm gears, the power system and the electronic components.
The second one includes the rigid link, the hip and knee shafts, the tendon-like system
and the hip and knee torque sensors. The last one is composed by the flexible link, the
knee shaft, the small link between the two and the knee torque sensor.

3.3.1 Leg support

Since the leg support is constrained to move only along the vertical axis, the only physical
dimension of interest is its mass. This, measured with a weight scale, results to be around
6.6kg.

3.3.2 Physical pendulum equations

For the two rotating subsystems, the inertia can be measured removing the worm gears
and considering them as physical pendulums.
The torque equilibrium referred to the rotation axis of the physical pendulum, as shown
in Figure 3.27, taking into account also the joint friction, is:

mgLcm sin θ(t) + cθ̇(t) + Iθ̈(t) = T (t) (3.25)

With m the pendulum mass, Lcm the distance of the center of mass from the rotation
axis, c the joint friction and I the pendulum inertia around the rotation axis.

Figure 3.27: Physical pendulum schematic

With the small oscillation theory assumptions, it is possible to approximate linearly the
non-linear functions by replacing them with their second order Taylor series around the
working point. In equation (3.25) sin θ(t) is replaced with θ(t).
By applying the Laplace transform the torque equilibrium becomes:

mgLcmθ(s) + scθ(s) + s2Iθ(s) = T (s) (3.26)
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The second order transfer function between the applied torque T and the angle θ is:

T (s)

θ(s)
=

k

s2 + 2ζωns+ ω2
n

=
1/I

s2 +
c

I
s+

gmLcm
I

(3.27)

From equation (3.27), the relations between the inertia I, the friction coefficient c and
measurable quantities is derived.

I =
mgLcm
ω2
n

(3.28)

c = 2ζωnI (3.29)

The natural frequency ωn and the damping factor ζ are derived from the free oscillations
as stated by [16], by measuring the pick amplitude of the i-th period ai, the oscillations
frequency f and computing:

δ =
1

n
log

ai
ai+n

(3.30)

ωn =
√

4π2 + δ2f (3.31)

ζ =
δ2√

4π2 + δ2
(3.32)

3.3.3 Upperleg

Since the two gears are not removable and their mechanical properties are known from the
producer datasheet, the subsystem mass and inertia are measured with them connected.
Then, thanks to the superposition of the effects, their contribution can be removed.
The total mass is measured by means of a weight scale and it results to be mtot,upperleg =
2.97kg. The upperleg mass is computed removing the gear masses and it is muppeleg =
1.93kg.
The center of mass is derived by measuring the torque applied to the hip torque sensor.
The upperleg is placed horizontally and the measured torque is divided by the subsystem
weight force. The measured torque is Tupperleg = 2.48Nm and the center of mass results

to be Lcm,upperleg =
Tupperleg
mupperleg g

= 0.13m.

Through the superposition of the effects the total center of mass is computed as:

Lcm,totmtot,upperleg = Lcm,upperleg mupperleg + 2Lcm,gears mgear (3.33)

Since the distance of the gears center of mass from the hip shaft is null, the relation

becomes Lcm,tot =
Lcm,upperleg mupperleg

mtot,upperleg

= 8.40 · 10−2m.

From the free oscillations shown in Figure 3.28, the parameter δ is computed accordingly
to equation (3.30) and the frequency f is measured. The resulting values are δ = 0.37 and
f = 1.01Hz. Therefore, the natural frequency and and the damping factor are derived as
stated in equations (3.31-3.32): wn = 6.38rad/s and ζ = 2.18 · 10−2.
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Figure 3.28: Upperleg free oscillations

By means of equation (3.28), the total subsystem inertia is computed: Itot,upperleg =
6.02 · 10−2kg m2. Through the superposition of the effects the upperleg inertia is derived
as: Iupperleg = Itot,upperleg − 2Igear = 5.93 · 10−2kg m2.

From equation (3.29), the hip shaft bearings friction coefficient chip is computed: chip =
1.67 · 10−2Nm s.

3.3.4 Lowerleg

The lowerleg mass is measured with a weight scale, it results to be mlowleg = 0.61kg.
The center of mass is computed measuring the knee torque. The lowerleg is placed hori-
zontally and the measured torque is divided by the subsystem weight force. The torque

is Tlowerleg = 0.6Nm and the center of mass is Lcm,lowerleg =
Tlowerleg
mlowerleg g

= 0.10m.

From the free oscillations shown in Figure 3.29, the parameter δ is computed accordingly
to equation (3.30) and the frequency f is measured. The resulting values are δ = 0.13 and
f = 1.13Hz. Therefore, the natural frequency and and the damping factor are derived as
stated in equations (3.31-3.32): wn = 7.08rad/s and ζ = 2.50 · 10−3.

By means of equation (3.28), the lowerleg inertia is computed: Ilowerleg = 1.20 ·10−2kg m2.

From equation (3.29), the knee shaft bearings friction coefficient cknee is computed: cknee =
4.23 · 10−4Nm s.

The lowerleg gear bearings friction coefficient is computed connecting the tendons to the
lowerleg and removing the worm gear in order to let the total system oscillate freely. The
total mass is computed as mtot,lowerleg = mlowerleg +mtendons +mgear = 1.38kg.
The new center of mass is computed through the superposition of the effects similarly to
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Figure 3.29: Lowerleg free oscillations

equation (3.33): Lcm,tot =
Lcm,lowerleg mlowerleg

mtot,lowerleg

= 4.43 · 10−2.

Again, from the free oscillations shown in Figure 3.30, the parameter δ is computed
accordingly to equation (3.30) and the frequency f is measured. The resulting values are
δ = 0.27 and f = 1.10Hz. Therefore, the natural frequency and and the damping factor
are derived as stated in equations (3.31-3.32): wn = 6.91rad/s and ζ = 1.20 · 10−2.

Figure 3.30: Total lowerleg free oscillations

By means of equation (3.28), the total subsystem inertia is computed: Itot,lowerleg =
1.26 · 10−2kg m2. As expected, the difference of inertia between the lowerleg and the
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total lowerleg subsystems corresponds to the gear one and to the contribution due to the
tendons moving: ∆I = Igear + 2mtendon rtendon. With rtendon the projection of the fixing
point of the tendons to the knee shaft along the flexible link plane.

From equation (3.29), the total friction coefficient ctot, corresponding to the sum of the
contributions of the knee shaft bearings and the gear bearings friction, is computed:
ctot = 2.08 · 10−3Nm s. The gear bearings friction coefficient is derived as cgear = ctot −
cknee = 1.66 · 10−3Nm s.

3.4 Encoder acquisition

The encoders provide the absolute angle position as PWM-encoded output signal. In the
producer datasheet it is stated that one PWM clock period represents 0.088 degree and
it has a typical duration of 444 ns. The output signal consists of a frame of 4119 PWM
clock periods. The output signal frequency results to be around fPWM = 547Hz. This
leads to a constraint on the sampling frequency of the control system code: fs < fPWM .

Since the encoder voltage signal is proportional to the joint angle, the scale factor was
identified by rotating each joint of a known angle and measuring the resulting voltage
variation.
The output signal is affected by a noise of 0.2rad of pick to pick amplitude and about

fnoise =
1

3
fs of frequency. This makes the angle readings too noisy to be used in a control

loop. Therefore a low pass filter is designed and added after the signal reading.
Chosen a sampling frequency of fs = 400Hz, the noise frequency results to be around
fnoise = 133Hz.
In order to attenuate the noise magnitude of 60 dB and to get a usable signal for a
control action, a fourth order low pass filter is designed. It is composed by two second
order Butterworth low pass filters with cut-off frequency of 25Hz.
The encoder signal filter transfer function is:

Gfilter(s) =

 1

1 +
1.414s

25
+
( s

25

)2


2

(3.34)

The bode diagram of the encoder signal filter is shown in Figure 3.31.

The cleaning action of the filter is shown in Figure 3.32 where a joint is moved of 0.3rad
at different frequencies and the raw angle measure is plotted against the filtered one.
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Figure 3.31: Encoder signal filter bode diagram

Figure 3.32: Encoder signal filter action
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Chapter 4

Mathematical model

The mathematical model of the leg, described in [17], can be written as in equation 4.1.

M (q) q̈ + h (q , q̇) +G (q) = τ (4.1)

This model is highly non-linear and coupled, this makes hard the control algorithm design.
However, under the assumptions that the joint velocity is slow and that the mass is
concentrated mostly on the linear guide, the term containing Coriolis and centrifugal
forces h (q , q̇) can be neglected and the mass matrix can be considered constant. In
addition, the gravity force can be compensated in feed-forward, so that the Eq.4.1 can be
decoupled.
Another approximation, that can be done in order to derive a first model for the joint
angle control design, is that both the links are rigid, since the lowerleg deformation is
negligible with respect to its movement due to the motors action.
Taking into account these assumptions, it is possible to derive the transfer functions
describing the motion of the upper and lower link both in the flying and the stance
phases.
After the system characterization procedure, the only parameter which remains uncertain
is the friction proper of the wormgear system. This because the mechanical structure
prevents to perform meaningful measurements.
In order to derive the transfer function of lower and upper link in both the phases, the
bond graph technique is used.

4.1 Coordinate reference frames

With the coordinate reference frames depicted in Figure 4.1, the joint angles are defined
as:

θ1 : hip joint angle, the rotation around the z axis of the hip joint reference frame <1

with respect to the world reference frame <0. This is the angle measured by the hip
encoder and actuated by the hip motor.

θ2 : knee joint angle, the rotation around the z axis of the knee joint reference frame <2

with respect to the hip joint reference frame <1. This is the angle measured by the
knee encoder.

θ2 + θ1 : absolute knee joint angle, the rotation around the z axis of the knee joint ref-
erence frame <2 with respect to the world reference frame <0. This is the angle
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actuated by the knee motor.
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Figure 4.1: FlegX reference frames

4.2 Flight phase

4.2.1 Lowerleg

In flight phase, the bond graph model shown in Figure 4.2 is used for modelling the
lowerleg subsystem.
Since the motor is driven in torque control, it can be considered as source of effort.

Figure 4.2: Flight phase lowerleg bond graph model

With:

Tmotor : the torque produced by the motor

Imotor : the motor shaft inertia with respect to its rotation axis

Igearbox : the gearbox inertia with respect to its rotation axis

Kgearbox : the gearbox transform ratio
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Iworm : the worm gear inertia with respect to its rotation axis

Kworm gear : the worm gear transform ratio

cfriction : the lowerleg friction coefficient

Igear, tendons : the gear and the tendons inertia with respect to the gear rotation axis

Ilowerleg : the lowerleg inertia with respect to the joint axis

The speed of the shaft on which the knee encoder is placed is the f11. Therefore the
measured angle is

θ(t) =
∫
f11(t)dt

f11 =
1

Ilowerleg

∫
e11(t)dt

(4.2)

The equations for each component are derived according to the scheme depicted in Figure
4.2.

e1 = Tm f1 = f4

e2 = Imotor
df2
dt

f2 = f4

e3 = Igearbox
df3
dt

f3 = f4

e4 = e1 − e2 − e3 f4 = Kgearboxf5
e5 = Kgearboxe4 f5 = f7

e6 = Iworm
df6
dt

f6 = f7

e7 = e5 − e6 f7 = Kworm gearf8
e8 = Kworm geare7 f8 = f11
e9 = cfrictionf9 f9 = f11

e10 = Igear, tendons
df10
dt

f10 = f11

e11 = e8 − e9 − e10
df11
dt

=
1

Ilowerleg
e11

Defining

Keq motor =
Imotor + Igearbox

Ilowerleg
(KgearboxKworm gear)

2

Keq worm =
Iworm
Ilowerleg

K2
worm gear

Keq gear =
Igear, tendons
Ilowerleg

(4.3)

The effort e11 results to be

e11(t) =
KgearboxKworm gear

1 +Keq motor +Keq worm +Keq gear

Tmotor(t)−
cfriction
Ilowerleg

∫
e11(t)dt (4.4)

By applying to equation (4.4) the Laplace transform, the transfer function between the
torque e11 and the input torque Tmotor is computed.

e11(s)

Tmotor(s)
=

KgearboxKworm gear

1 +Keq motor +Keq worm +Keq gear

1 +
cfriction
Ilowerleg

1

s

(4.5)
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Taking into account the relation (4.2), from equation (4.5), the transfer function between
the measured angle θ and the input torque Tmotor is derived.

θ(s)

Tmotor(s)
=

1

s

KgearboxKworm gear

1 +Keq motor +Keq worm +Keq gear

Ilowerleg

s+
cfriction
Ilowerleg

(4.6)

The transfer function between the absolute knee joint angle (θ2 +θ1) and the input torque
is computed taking into account the lowerleg subsystem parameters.

θ2(s) + θ1(s)

Tmotor(s)
=

1

s

176.76

s+
cknee friction
1.20 10−2

(4.7)

In the derived transfer function the friction parameter is only in part known, during the
control design phase its contribution is studied.

4.2.2 Upperleg

The upperleg subsystem in flight mode is derived taking into account as lowerleg a fixed

link positioned in a medium operating angle θknee =
π

4
. The model shown in Figure 4.3

is used for modelling the upperleg subsystem.
As for the previously analyzed case, since the motor is driven in torque control, it can be
considered as source of effort.

Figure 4.3: Flight phase upperleg bond graph model

With:

cfriction : the upperleg friction coefficient

Igear : the gear inertia with respect to its rotation axis

Iupperleg : the upperleg inertia with respect to the joint axis, taking into account the low-
erleg as a point mass positioned in its center of mass

The speed of the shaft on which the knee encoder is placed is the f11. Therefore the
measured angle is

θ(t) =
∫
f11(t)dt

f11 =
1

Iupperleg

∫
e11(t)dt

(4.8)
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The equations for each component are derived according to the scheme depicted in Figure
4.3.

e1 = Tm f1 = f4

e2 = Imotor
df2
dt

f2 = f4

e3 = Igearbox
df3
dt

f3 = f4

e4 = e1 − e2 − e3 f4 = Kgearboxf5
e5 = Kgearboxe4 f5 = f7

e6 = Iworm
df6
dt

f6 = f7

e7 = e5 − e6 f7 = Kworm gearf8
e8 = Kworm geare7 f8 = f11
e9 = cfrictionf9 f9 = f11

e10 = Igear
df10
dt

f10 = f11

e11 = e8 − e9 − e10
df11
dt

=
1

Iupperleg
e11

Defining

Keq motor =
Imotor + Igearbox

Iupperleg
(KgearboxKworm gear)

2

Keq worm =
Iworm
Iupperleg

K2
worm gear

Keq gear =
Igear

Iupperleg

(4.9)

The effort e11 results to be

e11(t) =
KgearboxKworm gear

1 +Keq motor +Keq worm +Keq gear

Tmotor(t)−
cfriction
Iupperleg

∫
e11(t)dt (4.10)

By applying the Laplace transform to the effort equation and by exploiting the angle-
torque relation described in (4.8), the transfer function between the measured angle (θ)
and the input torque is derived.

θ(s)

Tmotor(s)
=

1

s

KgearboxKworm gear

1 +Keq motor +Keq worm +Keq gear

Iupperleg

s+
cfriction
Iupperleg

(4.11)

Therefore, the transfer function between the hip joint angle (θ1) and the input torque is
computed.

θ1(s)

Tmotor(s)
=

1

s

162.12

s+
cknee friction
1.43 10−1

(4.12)

As for the lowerleg subsystem, in the upperleg transfer function, the friction parameter
is only in part known, during the control design phase its contribution is studied.
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4.3 Stance phase

In order to take into account the motors and the support inertia, it is necessary to find
the relation between their speed and the joint velocities.

From the reference frame scheme depicted in Figure 4.1, the motors and support center
of mass G1 pose is computed as function of the joint angles.

pG1 =

 −kx
L cos(θ2 + θ1) + L cos θ1 + ky

0

 (4.13)

With

L : the upperleg and the lowerleg length (equal by construction)

kx : the horizontal distance between the motors and support center of mass from the
linear guide

ky : the vertical distance between the motors and support center of mass and the hip
joint (<1)

The motors and support speed is computed by deriving (4.13).

ṗG1 =

 0
−L sin(θ2 + θ1)

0

(θ̇2 + θ̇1

)
+

 0
−L sin(θ1)

0

(θ̇1) (4.14)

The joint speeds must have a precise relation so that the leg does not slip on the floor.
Such a constraint is found by computing the lowerleg tip pose and, deriving it, imposing
the horizontal speed equal to zero.
As for the motors and support center of mass, the tip pose is computed as function of the
joint angles.

ptip =

−k′x + L sin θ1 + L sin(θ2 + θ1)
0
0

 (4.15)

With k′x the horizontal distance of the hip joint from the linear guide.

In order to generate at the hip shaft only a vertical force and to avoid undesired torques,
the leg is constrained to touch the ground at the vertical projection of the hip rotation
axis: ptip, x = −k′x + L sin θ1 + L sin(θ2 + θ1) = −k′x.
This leads to a simple relation between the joint angles.

θ2 = −2θ1 (4.16)

The tip speed is computed by deriving (4.15).

ṗtip =

L cos θ1θ̇1 + L cos(θ2 + θ1)
(
θ̇2 + θ̇1

)
0
0

 (4.17)
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Imposing the horizontal speed equal to zero and taking into account (4.16), the relation
between the joint velocities is found.

θ̇2 = −2θ̇1 (4.18)

If the joints perform small movements, it is possible to linearise the speed stated in (4.14)
around θ1 = −θ0 and θ2 = 2θ0.

ṗG1 = −L sin θ0θ̇2 (4.19)

Equation (4.19) shows a relation between the motors and support center of mass vertical
speed and the knee joint velocity. Taking into account (4.18) and the symmetry of the sin
function (sin θ = sin(−θ)), the relation between the motors and support center of mass
vertical speed and the hip joint velocity is found.

ṗG1 = 2L sin θ0θ̇1 (4.20)

Combining the results (4.20) and (4.19), the relation between the motors and support
center of mass vertical speed and the absolute knee joint velocity (θ̇2 + θ̇1) is found.

ṗG1 = −2L sin θ0(θ̇2 + θ̇1) (4.21)

By means of the superposition of the effects, taking into account one torque at a time, the
relation between the inertia force of the motors and support plate and the joint torques
is computed.
Starting from the hip joint torque (considering the knee joint torque null), the lowerleg
can transmit only an axial force generated by the the motors and support inertia subject
to an acceleration a. The joints are considered in the linearisation angles position.

Flowerleg =
mmotors supporta

cos θ0
(4.22)

The hip torque can therefore be computed as

T1 = Flowerleg cos
(π

2
− 2θ0

)
= 2L sin θ0mmotors supporta (4.23)

While the knee torque is computed considering the hip joint torque null, the only force
the the upperleg can transmit is an axial one, it is computed again as in (4.22). Therefore,
the knee torque is computed as in (4.23) but with the negative sign.

T2 = −2L sin θ0mmotors supporta (4.24)

The relations stated in (4.20, 4.23) and (4.21, 4.24) are modelled in the bond graph
environment as transformers with a ratio of ±2L sin θ0.

4.3.1 Lowerleg

The bond graph model shown in Figure 4.4 is used for modelling the lowerleg subsystems.
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Figure 4.4: Stance phase lowerleg bond graph model

With, in addiction to the flight case model, the following parameters:

K−2L sin θ0:1 : the transformer ratio between the motor and support speed and the absolute
knee joint velocity (θ̇2 + θ̇1)

mmotors, support : the mass of the motor and support plate

mlowerleg : the sum of the lowerleg and upperleg masses

The speed of the shaft on which the encoder is placed is, as in the flight phase, the f11.
Therefore the measured angle is

θ(t) =
∫
f11(t)dt

f11 =
1

Ilowerleg

∫
e11(t)dt

(4.25)

The equations for each component are derived according to the scheme depicted in Figure
4.4.

e1 = Tm f1 = f4

e2 = Imotor
df2
dt

f2 = f4

e3 = Igearbox
df3
dt

f3 = f4

e4 = e1 − e2 − e3 f4 = Kgearboxf5
e5 = Kgearboxe4 f5 = f7

e6 = Iworm
df6
dt

f6 = f7

e7 = e5 − e6 f7 = Kworm gearf8
e8 = Kworm geare7 f8 = f11
e9 = cfrictionf9 f9 = f11

e10 = Igear, tendons
df10
dt

f10 = f11

e11 = e8 − e9 − e10
df11
dt

=
1

Ilowerleg
e11

e12 = −2L sin θ0e13 f12 = f11

e14 = mmotors, support
df14
dt

f14 = −2L sin θ0f12

e15 = mlowerleg
df15
dt

f15 = f14

Adding to the definitions stated in (4.3)

Keq support =
mmotors, support +mlowerleg

Ilowerleg
(−2L sin θ0)

2 (4.26)
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The effort e11 results to be

e11(t) =
KgearboxKworm gear

1 +Keq motor +Keq worm +Keq gear +Keq support

Tmotor(t)−
cfriction
Ilowerleg

∫
e11(t)dt

(4.27)
By applying to equation (4.27) the Laplace transform, the transfer function between the
torque e11 and the input torque Tmotor is computed.

e11(s)

Tmotor(s)
=

KgearboxKworm gear

1 +Keq motor +Keq worm +Keq gear +Keq support

1 +
cfriction
Ilowerleg

1

s

(4.28)

Taking into account the relation (4.25), from equation (4.28), the transfer function be-
tween the measured angle θ and the input torque Tmotor is derived.

θ(s)

Tmotor(s)
=

1

s

KgearboxKworm gear

1 +Keq motor +Keq worm +Keq gear +Keq support

Ilowerleg

s+
cfriction
Ilowerleg

(4.29)

As example, the transfer function between the absolute knee joint angle (θ2 + θ1) and the

input torque is computed with a linearisation angle θ0 =
π

6
.

θ2(s) + θ1(s)

Tmotor(s)
=

1

s

108.36

s+
cknee friction
1.20 10−2

(4.30)

As for the flight phase, the friction parameter is only in part known. Its contribution is
studied during the control design phase.

4.3.2 Upperleg

The upperleg subsystem is modelled with the bond graph model shown in Figure 4.4.

Figure 4.5: Stance phase upperleg bond graph model

With, in addiction to the upperleg flight phase model, the following parameters:

K2L sin θ0:1 : the transformer ratio between the motor and support speed and the hip joint
velocity (θ̇1)

mupperleg : the upperleg mass
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The speed of the shaft on which the encoder is placed is, as in the flight phase, the f11.
Therefore the measured angle is

θ(t) =
∫
f11(t)dt

f11 =
1

Ilowerleg

∫
e11(t)dt

(4.31)

The equations for each component are derived according to the scheme depicted in Figure
4.4.

e1 = Tm f1 = f4

e2 = Imotor
df2
dt

f2 = f4

e3 = Igearbox
df3
dt

f3 = f4

e4 = e1 − e2 − e3 f4 = Kgearboxf5
e5 = Kgearboxe4 f5 = f7

e6 = Iworm
df6
dt

f6 = f7

e7 = e5 − e6 f7 = Kworm gearf8
e8 = Kworm geare7 f8 = f11
e9 = cfrictionf9 f9 = f11

e10 = Igear
df10
dt

f10 = f11

e11 = e8 − e9 − e10
df11
dt

=
1

Iupperleg
e11

e12 = 2L sin θ0e13 f12 = f11

e14 = mmotors, support
df14
dt

f14 = 2L sin θ0f12

e15 = mupperleg
df15
dt

f15 = f14

Defining

Keq support =
mmotors, support +mupperleg

Iupperleg
(2L sin θ0)

2 (4.32)

The effort e11 results to be

e11(t) =
KgearboxKworm gear

1 +Keq motor +Keq worm +Keq gear +Keq support

Tmotor(t)−
cfriction
Iupperleg

∫
e11(t)dt

(4.33)
By applying the Laplace transform and taking into account the relation (4.31), the transfer
function between the measured angle θ and the input torque Tmotor is derived.

θ(s)

Tmotor(s)
=

1

s

KgearboxKworm gear

1 +Keq motor +Keq worm +Keq gear +Keq support

Iupperleg

s+
cfriction
Iupperleg

(4.34)

Again, as example, the transfer function between the hip joint angle (θ1) and the input

torque is computed with a linearisation angle θ0 =
π

6
.

θ1(s)

Tmotor(s)
=

1

s

106.24

s+
chip friction
1.43 10−1

(4.35)
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As for the flight phase, the friction parameter is only in part known and its contribution
is studied during the control design phase.

4.4 Motor model

Since it is not possible to get a model of the motors driver with the current control, it
has been decided to identify the system ”driver + motor” (duty cycle - current) and to
use it as black box model, as shown in Figure 4.6.

Figure 4.6: Motor model

The a-priori information are:

• The driver controller should be a PI, it has 1 pole

• The electrical circuit has 1 pole due to the motor inductance

Therefore, a second order function has been chosen as system model.

Different square waves signals have been used as input to the driver and the corresponding
current measurements have been acquired through Escon Studio. The collected data is
shown in Figure 4.7.

Imported the data in Matlab, the system identification tool has been used.
The mean value (50) has been removed from the input signal, while the output one has
already zero mean value.
The final chosen model has 1 zero and 2 poles:

I(s)

d(s)
=

0.20
(

1 +
s

4403

)
(

1 +
s

1.61 106

)(
1 +

s

4201

) (4.36)

The simulation results obtained through the identified model are compared to the acquired
ones on Figure 4.8.
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Figure 4.7: Motor current response to square wave duty cycle signals
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Figure 4.8: Motor data simulation compared to acquired motor data

4.5 Closed loop model

The overall closed loop model is completed with the torque constant Km = 42.7mNm/A
stated into the motors datasheets and the encoder filter in the feedback loop as shown in
Figure 4.9.
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Figure 4.9: Closed loop model
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Chapter 5

Controller design

The dynamics of a robotic leg can be described through the hybrid dynamic system theory
[18, 19]. The model is composed by one discrete state σ, which describes the phases of
the jump, and a vector of infinite continuous states describing the dynamics of the flexible
structure in the different conditions. The hybrid dynamic system model is shown in Figure
5.1.

Figure 5.1: Hybrid dynamic system model

In Figure 5.1, the discrete parameter σ identifies the leg phase, either σ = 1 if the leg is in
the stance one or σ = 2 if it is in the flight one. The transition between this two phases is
described by the boolean variable γ, this is detected though either the flexible link strain
gauge readings or the knee torque sensor ones. For the two phases the equations derived
in chapter 4 are used.
This family of dynamic systems is characterised by discontinuities in the differential equa-
tions during the transition between a discrete state to another. In rigid robotic legs the
transition between the flight phase and the stance one produces a jump discontinuity in
the joint velocity, this phenomenon may lead the system to instability. The introduction
of a flexible link in the leg mechanism can be a solution to this problem. The compliance
of this structural element acts like a filter, cutting the high frequency dynamics caused by
the impulsive force induced by the impact between the leg and the ground. It allows to
move the discontinuity from the joint velocity to state variables related to the vibrational
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dynamics of the flexible element.

The most common controller used in this type of system is the PD controller with a
feed-forward term used to compensate the gravity. However, this type of controller is
very sensitive to noise, so, to avoid this problem, the control law proposed is based on a
phase-lead network.

5.1 Gravity compensation

Since the leg models have been derived without taking into account the gravity effect, its
contribution is compensated through a feed-forward term, as shown in Figure 5.2.

Figure 5.2: Gravity compensated system model

The gravitational force generated by the mass of each component produces different
torques at the two rotational joints depending on the leg phase.
From the virtual work (δW ) computation, the relation between the joint torques and the
virtual forces (F) is computed. The hip torque is called Thip, the knee one Tknee, the hip
angle θhip and the measured (relative) knee angle θknee.

δW = F1δθhip + F2δθknee = Thipδθhip + Tknee(δθhip + δθknee) (5.1)

This brings to the joint torques computation as follows.

Thip = F1 −F2

Tknee = F2
(5.2)

5.1.1 Flight phase

During the flight phase, the two joints have to counteract only the weight force due to
the components connected after them: the knee joint has to balance the lowerleg force
and the kip joint the two links one. The relations between the two virtual forces and the
joint angles are derived from the leg geometrical analysis.

F1 = mllg lcm,ll sin(θhip + θknee) + (mul lcm,ul +mll Lul)g sin(θhip)
F2 = mllg lcm,ll sin(θhip + θknee

(5.3)

With

mll and mul: the lowerleg and upperleg masses
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lcm,ll and lcm,ul: the lowerleg and upperleg center of mass distances from the knee and
hip joints respectively

Lul: the rigid link length

F1 = 0.60 sin(θhip + θknee) + 4.26 sin(θhip)
F2 = 0.60 sin(θhip + θknee)

(5.4)

By taking into account equations (5.2) and (5.4), the joint torques needed to balance the
weight force in flight mode are computed.

Thip = 4.26 sin(θhip)
Tknee = 0.60 sin(θhip + θknee)

(5.5)

5.1.2 Stance phase

In stance phase, the two joints have to counteract the weight force due to the components
connected before them, where the major contribution is given by the leg support along
with the motors. The relations between the two virtual forces and the joint angles are
derived from the leg geometrical analysis.

F1 = −(msuppLul +mulLul +mll(Lll − lcm,ll))g sin(θhip + θknee)+
−(msuppLul +mul(Lul − lcm,ul))g sin(θhip)

F2 = −msuppLul +mulLul +mll(Lll − lcm,ll))g sin(θhip + θknee)
(5.6)

With

msupp: the support plate and motors masses

mll and mul: the lowerleg and upperleg masses

lcm,ll and lcm,ul: the lowerleg and upperleg center of mass distances from the knee and
hip joints respectively

Lll and Lul: the flexible and rigid link lengths

F1 = −29.24 sin(θhip + θknee)− 25.59 sin(θhip)
F2 = −29.24 sin(θhip + θknee)

(5.7)

By taking into account equations (5.2) and (5.7), the joint torques needed to balance the
weight force in stance mode are computed.

Thip = −25.59 sin(θhip)
Tknee = −29.24 sin(θhip + θknee)

(5.8)

5.2 Loop shaping controller design

Since the leg is modelled as an hybrid dynamic system defined by two different discrete
states, it needs two different control laws, one for each phase.
The proposed analysis starts evaluating the mathematical models derived in chapter 4 with
as friction only the bearings one computed in section 3.3. Then, the friction parameter is
varied and the closed loop system behaviour is analyzed in order to find how the controller
should be modified in order to keep the desired performances.
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5.2.1 Flight phase

Lowerleg

Adding the bearing friction information in the mathematical model derived in section 4.2,
the transfer function for the lowerleg in flight phase is computed.

θ2(s) + θ1(s)

Tmotor(s)
=

1

s

176.76

s+ 0.17
(5.9)

Referring to the generic closed loop system model shown in Figure 5.3, the direct branch
G is computed as function of the unknown lowerleg flight phase controller function Gc,ll,f .

Figure 5.3: Generic closed loop system model

G(s) = Gc,ll,f (s)
1.14 107(s+ 4403)

s(s+ 1.16 106)(s+ 4201)(s+ 0.17)
(5.10)

The feedback branch H is composed by the encoder filter function stated in section 3.4.

H(s) =

 1

1 +
1.414s

25
+
( s

25

)2


2

(5.11)

Since the encoder filter introduces a fast phase lag, the proposed controller is based on a
phase-lead action. The controller is designed trying to shape the closed loop function like
a prototype second order function on the Nychols chart. The used prototype is slightly
under-damped, in order to have a fast response (ζ = 0.6), with the crossover frequency
as fast as possible.

Gc,ll,f (s) =
1.4(s+ 0.18)

1 +
s

50

(5.12)

As shown in Figure 5.4, the obtained closed loop function has a gain crossover frequency
of ωcp = 10.17 rad/s, a phase crossover frequency of ωcg = 45.45 rad/s and a phase
margin of ϕm = 68.06 deg.

The computed controller is suitable for the considered function but the real leg has the
power transmission system friction that is unknown. Increasing the friction parameter,
in order to keep the loop shape unchanged, it is necessary to increase only the controller
zero frequency proportionally. Therefore, this parameter has to be tuned experimentally.
An example is shown in Figure 5.5, where the friction parameter has been increased ten
times and the controller zero has been modified to keep the loop shape as the one obtained
during the controller design process.

56



5 - Controller design

-150

-100

-50

0

50
M

ag
ni

tu
de

 (d
B)

Loop function
Sensitivity function
Complementary sensitivity function

100 101 102 103
-540

-360

-180

0

180

Ph
as

e 
(d

eg
)

Position loop

Frequency  (rad/s)
-360 -270 -180 -90 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

 6 dB
 3 dB

 1 dB
 0.5 dB

 0.25 dB
 0 dB

 -1 dB

 -3 dB

 -6 dB

 -12 dB

 -20 dB

 -40 dB

Loop function
II order prototype loop function

Position loop

Open-Loop Phase (deg)
O

pe
n-

Lo
op

 G
ai

n 
(d

B)

Figure 5.4: Lowerleg flight phase closed loop Bode diagram and Nichols chart
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Figure 5.5: Modified lowerleg flight phase closed loop Bode diagram and Nichols chart

The modified controller is Gc,ll,f,mod(s) =
1.4(s+ 1.8)

1 +
s

50

.

The final result obtained from the experimental tuning operation, compared to the model
simulation, is discussed in chapter 6.
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Upperleg

From the mathematical model derived in section 4.2, the transfer function for the upperleg
in flight phase is computed adding the bearing friction information.

θ1(s)

Tmotor(s)
=

1

s

162.12

s+ 0.28
(5.13)

Referring to the generic closed loop system model shown in Figure 5.3, the direct branch
G is computed in function of the unknown upperleg flight phase controller function Gc,ul,f .

G(s) = Gc,ul,f (s)
1.05 107(s+ 4403)

s(s+ 1.16 106)(s+ 4201)(s+ 0.28)
(5.14)

The feedback branch H is composed by the encoder filter function stated in section 3.4.

H(s) =

 1

1 +
1.414s

25
+
( s

25

)2


2

(5.15)

As for the lowerleg, since the encoder filter introduces a fast phase lag, the proposed
controller is based on a phase-lead action. The controller is designed trying to shape the
closed loop function like a prototype second order function on the Nychols chart. The
used prototype is slightly under-damped, in order to have a fast response (ζ = 0.6), with
the crossover frequency as fast as possible.

Gc,ul,f (s) =
1.4(s+ 0.12)

1 +
s

40

(5.16)

As shown in Figure 5.6, the obtained closed loop function has a gain crossover frequency
of ωcp = 9.28 rad/s, a phase crossover frequency of ωcg = 67.25 rad/s and a phase margin
of ϕm = 70.48 deg.

Again, since the real leg has the power transmission system friction that is unknown, the
computed controller is suitable only for the considered function. Increasing the friction
parameter, in order to keep the loop shape unchanged, it is necessary to increase the
controller zero frequency proportionally. Therefore, as for the lowerleg controller, this
parameter has to be tuned experimentally. An example is shown in Figure 5.7, where the
friction parameter has been increased ten times and the controller zero has been modified
to keep the loop shape as the one obtained during the controller design process.

The modified controller is Gc,ul,f,mod(s) =
1.4(s+ 1.2)

1 +
s

40

.

The final result obtained from the experimental tuning operation, compared to the model
simulation, is discussed in chapter 6.
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Figure 5.6: Upperleg flight phase closed loop Bode diagram and Nichols chart
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Figure 5.7: Modified upperleg flight phase closed loop Bode diagram and Nichols chart

5.2.2 Stance phase

The same procedure used for the flight phase is followed to find a suitable controller for
the stance phase.
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Lowerleg

Starting from the mathematical model derived in section 4.3, the transfer function for the
lowerleg in stance phase is computed adding the bearing friction information.

θ2(s) + θ1(s)

Tmotor(s)
=

1

s

108.36

s+ 0.17
(5.17)

Referring to the generic closed loop system model shown in Figure 5.3, the direct branch
G is computed in function of the unknown lowerleg flight phase controller function Gc,ll,s.

G(s) = Gc,ll,s(s)
6.99 106(s+ 4403)

s(s+ 1.16 106)(s+ 4201)(s+ 0.17)
(5.18)

The feedback branch H is composed by the encoder filter function stated in section 3.4.

H(s) =

 1

1 +
1.414s

25
+
( s

25

)2


2

(5.19)

Due to the fast phase lag introduced by the filtering action, the proposed controller is
based on a phase-lead action. The controller is designed trying to shape the closed loop
function like a prototype second order function on the Nychols chart. The used prototype
is slightly under-damped, in order to have a fast response (ζ = 0.6), with the crossover
frequency as fast as possible.

Gc,ll,s(s) =
2.4(s+ 0.18)

1 +
s

50

(5.20)

As shown in Figure 5.8, the obtained closed loop function has a gain crossover frequency
of ωcp = 10.67 rad/s, a phase crossover frequency of ωcg = 45.45 rad/s and a phase
margin of ϕm = 67.00 deg.

The obtained controller is effective only for the analyzed model, but the real one has an
higher dissipative component due to the power transmission system. Increasing the fric-
tion parameter, in order to keep the loop shape unchanged, it is necessary to increase the
controller zero frequency proportionally. Therefore, as for the flight phase, this parameter
has to be tuned experimentally. An example is shown in Figure 5.9, where the friction
parameter has been increased ten times and the controller zero has been modified to keep
the loop shape as the one obtained during the controller design process.

The modified controller is Gc,ll,s,mod(s) =
2.4(s+ 1.8)

1 +
s

50

.

The final result obtained from the experimental tuning operation, compared to the model
simulation, is discussed in chapter 6.
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Figure 5.8: Lowerleg stance phase closed loop Bode diagram and Nichols chart
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Figure 5.9: Modified lowerleg stance phase closed loop Bode diagram and Nichols chart

Upperleg

From the mathematical model derived in section 4.3, the transfer function for the upperleg
in stance phase is computed adding the bearing friction information.

θ1(s)

Tmotor(s)
=

1

s

106.24

s+ 0.28
(5.21)

Referring to the generic closed loop system model shown in Figure 5.3, the direct branch
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G is computed in function of the unknown upperleg flight phase controller function Gc,ul,f .

G(s) = Gc,ul,s(s)
6.85 106(s+ 4403)

s(s+ 1.16 106)(s+ 4201)(s+ 0.28)
(5.22)

The feedback branch H is composed by the encoder filter function stated in section 3.4.

H(s) =

 1

1 +
1.414s

25
+
( s

25

)2


2

(5.23)

As for the lowerleg, since the encoder filter introduces a fast phase lag, the proposed
controller is based on a phase-lead action. The controller is designed trying to shape the
closed loop function like a prototype second order function on the Nychols chart. The
used prototype is slightly under-damped, in order to have a fast response (ζ = 0.6), with
the crossover frequency as fast as possible.

Gc,ul,s(s) =
2.2(s+ 0.3)

1 +
s

40

(5.24)

As shown in Figure 5.10, the obtained closed loop function has a gain crossover frequency
of ωcp = 9.58 rad/s, a phase crossover frequency of ωcg = 65.75 rad/s and a phase margin
of ϕm = 69.54 deg.
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Figure 5.10: Upperleg stance phase closed loop Bode diagram and Nichols chart

Again, since the real leg has the power transmission system friction that is unknown, the
computed controller is effective only for the considered function. Increasing the friction
parameter, in order to keep the loop shape unchanged, it is necessary to increase the
controller zero frequency proportionally. Therefore, as for the flight phase, this parameter
has to be tuned experimentally. An example is shown in Figure 5.11, where the friction
parameter has been increased ten times and the controller zero has been modified to keep
the loop shape as the one obtained during the controller design process.
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Figure 5.11: Modified upperleg stance phase closed loop Bode diagram and Nichols chart

The modified controller is Gc,ul,s(s) =
2.2(s+ 3.0)

1 +
s

40

.

The final result obtained from the experimental tuning operation, compared to the model
simulation, is discussed in chapter 6.
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Chapter 6

Experimental results

6.1 Controller tuning

The four controllers are tuned by applying to each subsystem some angle references signals.
For the proposed tests, the input command is composed by repeating sequences of fifth
order splines between two angular positions with a period of Tr = 0.7s, in order to generate
a signal frequency slightly lower than the crossover one proper of the controllers.

6.1.1 Flight phase

The leg is hanged on the linear guide suspended in order to let it move freely.

Lowerleg

Since the encoder measures the relative knee angle θ2 and the motor torque actuates the
absolute one θ2 +θ1, the input reference is computed by subtracting from the spline signal
the hip angle θ1. The requested reference amplitude is about 20 deg, from 90 deg to 70 deg
and its frequency around 1.43Hz. The controller zero is increased till the system response
becomes comparable to the simulation one, the final controller function is:

Gc,ll,f (s) =
1.5(s+ 2.5)

1 +
s

50

(6.1)

The measured response is compared with the simulation one in Figure 6.1.
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Figure 6.1: Lowerleg flight phase response

Upperleg

The input reference is directly computed with the spline signal. Its amplitude is about
10 deg, from −40 deg to −50 deg, half with respect to the lowerleg one in order to keep
the linearisation condition used during the mathematical model derivation in chapter 4.
The signal frequency is kept, as for the lowerleg, around 1.43Hz. The controller zero is
increased till the system response becomes comparable to the simulation one, the final
controller function is:

Gc,ll,f (s) =
1.6(s+ 2.5)

1 +
s

40

(6.2)

The measured response is compared with the simulation one in Figure 6.2.

Figure 6.2: Upperleg flight phase response
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6.1.2 Stance phase

For the stance phase tests, the leg is let to slide freely on the linear guide. The two
controllers have to be tuned at the same time since the non-slipping condition on the two
joint velocities derived in chapter 4 has to be maintained.

Lowerleg

As for the flight phase, the input reference has to be computed by subtracting from the
spline signal the hip angle θ1. The requested reference is the same for the fight test, with
an amplitude of about 20 deg and a frequency around 1.43Hz. The controller zero is
increased till the system response becomes comparable to the simulation one, the final
controller function is:

Gc,ll,f (s) =
2.5(s+ 3)

1 +
s

50

(6.3)

The measured response is compared with the simulation one in Figure 6.3.

Figure 6.3: Lowerleg stance phase response

Upperleg

As for the flight phase, the input reference is directly computed with the spline signal.
Its amplitude is about 10 deg, half with respect to the lowerleg one in order to keep
the linearisation condition used during the mathematical model derivation in chapter 4.
The signal frequency is kept, as for the lowerleg, around 1.43Hz. The controller zero is
increased till the system response becomes comparable to the simulation one, the final
controller function is:

Gc,ll,f (s) =
2.6(s+ 6)

1 +
s

40

(6.4)

The measured response is compared with the simulation one in Figure 6.4.
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Figure 6.4: Upperleg stance phase response

6.2 Jump planning

One of the main aspects of this work is to show that the introduction of flexible link
in the robot design can be an effective solution to reduce the energy consumption. The
efficiency of the system can be increased defining a joint trajectory planning able to ex-
ploit the resonance phenomenon of the elastic element when the leg is in contact with the
ground.
This phenomenon is also found in nature, in fact, when bipeds want to perform a sequence
of jump, during the stance phase they have to squat down and then, thanks to a counter
movement, they are able to lift off. As for bipeds to obtain a jump it is necessary to
perform the same type of movements. To take advantages from the elastic energy stored
into the link it is necessary to excite the flexible link at the resonance frequency.
The natural frequency of the system depends on the joint configuration, but, working in
the range of angles defined in chapter 4, it is possible to assume that it is constant.
Due to the slowness of the designed controller, it is not possible to exploit the resonance
of the flexible link to store the landing energy and to use it for the next jump. Moreover,
the tendons broke during the first stance phase tests next to the thread drain groove, the
smallest section along the bar, since it is still smaller than the re-dimensioned one be-
cause the terminators can’t be substituted. This means that the prototype, in the current
configuration, can not jump.
To help the leg to rise from the ground and to reduce a little the tendons stresses, a weight
of 5kg is hanged to a pulley and linked to the support plate with a cable.

Since the system is changed, both the gravity compensator and the controller used for
the stance phase has to be modified. Following the same procedure stated in section 5.1,
the new gravity compensator for the stance phase is computed.

Thip = −10.87 sin(θhip)
Tknee = −14.53 sin(θhip + θknee)

(6.5)

Through the computation of the new system mathematical models and the control law
design process, it comes out that the change of support plate mass affects the control laws
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as a slight reduction of gain in order to keep the same loop shape unchanged.

The current state, flight or stance, at the beginning, was been derived from the strain
gauge measurements. When the flexible link tip deformation was sensed to change sud-
denly, starting from the unloaded position, the transition from flight phase to stance was
detected. Instead, if the flexible link tip deformation becomes negative, the detachment
from the ground was detected. The main problem of this method came out from the
signal conditioner shield, it wasn’t stable enough on the strain gauge port. At each leg
hit with the ground after a jump the calibration trimmer slightly moves changing the
bridge output voltage making the unloaded condition unknown jump after jump. Then,
for the state measurement, the knee torque sensor is used, since its signal conditioner
port is more stable. The sensing logic is similar to the strain one. If suddenly the torque
increases from the unloaded condition, the landing occurrence is detected, and if the mea-
sured torque lowers the unloaded one, the transition from stance phase to flight is detected.

To reduce the oscillation induced by the control action, it is necessary to use as reference
signal a sufficiently smooth function. In this work a 5th order polynomial trajectory is
used because it allows to compute the trajectory between two points imposing also the
initial and final velocities and accelerations.
Therefore, the squat movement reference for the hip joint is planned as a 5th order polyno-
mial trajectory with null initial and final accelerations, initial and final velocities opposite

and with magnitude equal to 0.75rad/s, and initial and final angles equal to −π
6

. The

duration, as shown in Figure 6.5, is of 0.4s.
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Figure 6.5: Hip joint trajectory

As stated in chapter 4, in equation 4.18, for the linearising condition, a fixed joint ve-
locities relation has to be maintained: θ̇2 = −2θ̇1. Moreover, to keep the leg tip touch
the ground under the hip joint, as derived again in chapter 4, in equation 4.16, there is a
fixed relation between the hip and knee joint angles: θ2 = −2θ1.
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Therefore, the squat movement reference for the hip joint is planned as a 5th order polyno-
mial trajectory with null initial and final accelerations, initial and final velocities opposite
and with magnitude double with respect to the hip one, equal to 1.5rad/s, and initial

and final angles equal to the opposite and double with respect to the hip one,
π

3
. The

duration, as shown in Figure 6.6, is of 0.4s.
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Figure 6.6: Knee joint trajectory

When the leg detaches from ground, two new 5th order splines with null initial and final
velocities and accelerations are computed as reference trajectories. The start angle is the

current one and the final angle is the landing one:
π

6
for the hip joint and

π

3
for the knee

one. The movement duration is set to be half the squat period, T = 0.2s.

The trajectory planning for making the leg jump is summarised in the flow chart shown
in Figure 6.7.
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Figure 6.7: Trajectory planning flow chart

Finally, though not exploiting the resonance phenomenon, thanks to the hanged weight
that unloaded the structure from too high stresses and compensated a little for the low
worm-gear system efficiency, the leg is able to perform little jumps.
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Chapter 7

Conclusions

Nowadays structural flexibility in robotics is often considered as a phenomenon to avoid.
However, the introduction of elastic components could bring to safer and energy efficient
mechanisms.
To analyze the benefits and the drawbacks introduced by the structural flexibility in
robotic systems, a test rig has been used composed by an already-made two links robotic
leg with one of them conceived as flexible. The goal of this work is to design a suitable
controller for its actuation, as a first step in designing a new concept of a jumping hu-
manoid robot as well as industrial robots.

In the first part of this work, an accurate characterization of the prototype is made in
order to either measure or estimate all its electro-mechanical properties. The main goal
of this process is to acquire all the data necessary for the computation of a model of the
leg that can be used during the control design phase.
The analysis of the FlegX starts from the lowerleg subsystem. First, the tendons are
re-dimensioned since they were subject to the buckling effect. Then, the flexible link is
studied along with the strain gauge placed upon it devoted to the measurements of its
deformation, both in statics and in dynamics: the sensor characteristics and the link nat-
ural frequencies and modal shapes are analyzed. The sensor characteristic is computed
following tree different methods and the obtained results are compared in Figure 3.13.
Further, the flexible link dynamical properties are derived through the Fourier analysis
and the obtained results are compared with the FEM analysis results preformed during
the mechanical design phase in Table 3.3. Then, the knee and hip torque sensors are
analyzed. The simplest model is a linear characteristic, but, since the two sensors are
affected by hysteresis, also a more accurate model is derived. The results are summarised
in Figures 3.23 and 3.26. After, the mechanical properties like masses, inertias around
the two revolute joints and bearings friction are either measured or estimated through the
physical pendulum approach. Last, the two encoders are analyzed and, since they are too
noisy to be used in a control loop, a suitable filter is designed. Some angle acquisitions
and the relative filtering action are shown in Figure 3.32.
The only physical dimension that has not been possible to measure is the worm-gear
system friction. Its contribution to the control action is studied starting from the math-
ematical model to its compensation achieved with the experimental controller tuning.

Once all the needed electro-mechanical properties are computed, a mathematical model
of the leg is derived. Under the assumptions that the joint velocity is slow and that the
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mass is concentrated mostly on the linear guide, neglecting the gravity force that can be
compensated in feed-forward, the equations describing the leg dynamics can be decoupled.
Furthermore, the leg is analyzed into two different conditions: when it is both in flight
phase and in stance phase. This brings to the definition of four different models, two for
each subsystem. The four equations are derived through the Bond Graph approach by
taking into account the uncertainty on the friction parameter. The resulting models are
stated in equations (4.7), (4.12), (4.30) and (4.35). Finally, in order to derive the closed
loop model for the control design phase, the motor model is derived through system iden-
tification.

Describing the dynamics of the leg through a hybrid dynamic system model, it is evident
that it is necessary to design four different controllers, one for each state of each actuated
subsystem. The proposed controller is based on a phase-lead network with a feed-forward
term used to compensate the gravity effect. The scheme of the controlled closed loop
system is shown in Figure 5.2.
The gravity compensation function is computed for both the flight and stance phases by
deriving the joint torques needed for balancing the weight force. The obtained results are
stated in equations (5.5) and (5.8).
Then, the phase-lead controllers are designed through the loop shaping technique by tak-
ing into account the friction uncertainty and analysing its contribution on the controller
parameters. To keep the loop shape unchanged with an increase of the friction param-
eter, the zero of the controllers has to be increased. This leads to have only one degree
of freedom. The controllers are then tuned experimentally and the obtained results are
discussed in chapter 6 along with the jump trajectory planning.

One of the main merits of this work is to show that the introduction of flexible link in
the robot design can be an effective solution to reduce the energy consumption. The
efficiency of the system can be increased defining a joint trajectory planning able to ex-
ploit the resonance phenomenon of the elastic element when the leg is in contact with the
ground. However, due to the encoder signals that need a filtering action and their low
output signal frequency, the final controllers are not able to move the leg fast enough to
evaluate the proposed phenomenon.
Moreover, during the experimental tests different mechanical critical issues arose, e.g. the
tendons’ break.
Anyhow, without the balancing hanged weight, the leg could not jump because of the low
efficiency of the worm-gear system.
In order to carry out this work the mechanical structure has to be re-designed. New sim-
ulations on different structures are already in process. Also the sensors and the electronic
shields have to be changed, faster and more reliable components are necessary to properly
actuate the leg.

Then, studies about the modelling and control of flexible link structure can be carried on
in order to take into account the link deformation and to be able to control the vibrations.
With such a controller it is possible to reduce the settling time of the robot and to increase
the positioning precision. This can bring to the design of a new concept of lightweight
manipulators that are energy efficient and safer in terms of human robot interaction.
Lightweight robots can collaborate with people without hurting them in case of collisions,
this means that in factories they have no need to be confined into cages without reducing
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drastically their speed. Furthermore, they can be used for inspection purposes without
the problem of damaging the surrounding environment. Flexible manipulators can also
be used to handle fragile objects without spoiling them.
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Appendix A

Instrumentation used

Note: the pictures of the instruments are taken from the producer website.

Oscilloscope

Producer: Tektronix
Model: MSO2024B

Figure A.1: Oscilloscope Tektronix MSO2024B

Laser displacement sensor

Producer: Micro-Epsilon
Model: optoNCDT 1300-100

Figure A.2: Laser displacement sensor Micro-Epsilon optoNCDT 1300-100
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Accelerometer

Producer: DYTRAN instruments, INC.
Model: 3255A2

Figure A.3: Accelerometer DYTRAN instruments, INC. 3255A2

Impact hammer

Producer: PCB PIEZOTRONICS
Model: 086C03

Figure A.4: Impact hammer PCB PIEZOTRONICS 086C03

Sensor signal conditioner

Producer: PCB PIEZOTRONICS
Model:482C series

Figure A.5: Impact hammer signal conditioner PCB PIEZOTRONICS 482C series
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Load cell

Producer: burster
Model: 8417

Figure A.6: Load cell burster 8417

Signal conditioner

Producer: burster
Model: 9235

Figure A.7: Load cell signal conditioner burster 9235

Bench scale

Producer: KERN
Model: FCB 6K0.5
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Figure A.8: Bench scale KERN FCB 6K0.5

Hanging scale

Producer: KERN
Model: CH 50K50

Figure A.9: Hanging scale KERN CH 50K50

82



Bibliography

[1] Wallén, Johanna, ”The History of the Industrial Robot”, Linköping University Elec-
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