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Summary

Context

Stochastic partially-observable sequential environments are a good representation of the
reality we live in and as a consequence, this branch is given a growing attention from the
artificial intelligence community. In order to solve these problems, several frameworks have
been proposed and one of the most famous is the Partially Observable Markov Decision
Process (POMDP).

Interactive Partially Observable Markov Decision Process framework has been pro-
posed in order to extend POMDPs to a multi-agent environment and it is currently un-
dergoing a growing interest from the community. The strength of the framework is given
by its ability to represent the other agents and to infer the probability of their actions.

In I-POMDPs other agents are included in the belief state, and as a consequence, the
framework is able to understand the model of the agents it is interacting with.

This work contains two major themes - solving Interactive POMDPs and defining
agents able to work with the framework - that alternate during both the introduction
phase and the method phase of the thesis.

Agents are defined by means of a structured interface used in order to enable the
communication among them. The implemented inner agent model is then used in order
to act optimally in the environment. However, there is no current standard to implement
agents using Interactive POMDPs as an inner model. This lack of infrastructure results
in a lack of comparison and access to existent work by the research teams interested in
this new framework.

Goals

The goals of this work are double: i) define a common interface in order to formalize
agents capable of implementing IPOMDP as inner agent models ii) define a method in
order to solve I-POMDPs in an efficient way.

The first goals include a first phase consisting of understanding the solutions already
present in order to define agent for stochastic partially-observable sequential environments
and understand whether it is possible to extend or include them in order to implement
I-POMDPs. The second phase is the definition of the interface itself, by understanding
the motivations behind other designs and extending them in order to be able to implement
agents capable of acting in multi-agent settings by means of Interactive POMDPs.

The second goal is differentiated by the first due to its nature: rather than being
implementation oriented it needs to solve the complexity problem for Interactive POMDPs.
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It is important due to the number of states the problem can generate through time. Both
phases are aimed to provide the community with a structured method to both define
agents implementing Interactive POMDPs and develop solvers for the framework. Having
this structure available could decrease the time needed in order to develop and implement
new solvers and methods, hence speeding up the research process.

Methods and Results
Due to the nature of the goals, they are intrinsically dependent. In order to design a
working interface for defining agents, it is needed a solver capable of resolving the agent
function, while in order to define such solver an interface needs to be implemented.

As first, an analysis of the possible solving methods has been performed in order to
define the solution method. The possibility of reducing I-POMDPs (due to their tight
similarity to POMDPs) has been considered the most promising approach. After choosing
the approach, the different parts of the I-POMDP framework have been derived starting
from the elements of the POMDPs and generalizing them following probability theory.

In order to fulfill the interface definition goal, an analysis of the present solving methods
has been performed. A very complete framework, Julia.POMDPs is already present and
provides most of the characteristics needed (extensibility, ease of use, speed) and shows
an interesting design for defining single-agent POMDPs. The resulting I-POMDP inter-
face has been called Julia.IPOMDPs and takes advantage of Julia.POMDPs framework in
order to perform the reduction from an Interactive to a normal POMDP. Julia.IPOMDPs
deeply extends Julia.POMDPs by implementing the concept of model, an entity capable of
returning optimal actions and probability distributions over its decision. The model inter-
face allows Julia.IPOMDPs to be general enough to be used to define not only I-POMDP
agents but virtually any agent which follows the classic perceive-think-act loop. Once
Julia.IPOMDPs interface is defined, it is possible to implement the reduction algorithm
derived in the first phase.

The last phase of the work consists in testing both Julia.IPOMDPs and the reduction
solver. A set of problems have been derived from the ones present in the literature in
order to create a set of examples. For the examples tested (different on the nesting level
and the number of models emulated), the solution time is reported. Interesting patterns
are found and the effect of other agent actions are evaluated.

The results underline how the course of history affects the run-time by means of the
size of the interactive state set. Solutions are proposed to address future research that
might address the problem.
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Chapter 1

Motivation and Previous work

The Interactive Partially Observable Markov Decision Process framework is developed to
deal with partially observable stochastic domains where more than one agent is present
in the environment. The possibility of solving Interactive Partially Observable Markov
Decision Processes is limited by two main factors: computational and space complexity.
In order to produce solutions which can deal with these two factors, every research team
needs to develop its personal development and testing environment. However, when a
standardized procedure to define such problems is present, it allows be able to compare
performances on particular algorithms produced by different research teams. The aim of
this work is to define and propose a standardized way to describe I-POMDPs.

Interactive Partially Observable Markov Decision Process is a framework developed
by expanding Partially Observable Markov Decision Process in order to include multiple
agents in the environment. It is experiencing a growing interest in the Artificial Intelligence
community. As a consequence of this growing involvement, examples have been developed.
They are very varied and range from money laundering applications [12] to models in order
to define trustworthiness of agents [18]. Further examples of applications can be found at
[22].

Solving Interactive Partially Observable Markov Decision Processes is a very complex
problem and requires a significant amount of resource due to the course of history and
course of dimensionality as will be later explained in 2.2.2. I-POMDP has been formalized
in 2004 [7] and it is a relatively new framework. In order to demonstrate its capabilities
and provide the first examples, it is needed to develop new solving algorithms. Currently,
several methods have been proposed:

• The interactive particle filter (I-PF) method explored in [5] aims to infer the possible
actions of the other agents by sampling their belief state. Through the interactive
particle filter algorithm, some particles are selected in order to represent the other
agents’ beliefs bt−1. These obtained particles are then projected forward in time
in order to sample the future possible belief states and consequently estimate the
other agent’s belief bt. In case the other agent is an I-POMDP itself, in order to
project the particle in the future the I-PF function needs to be called recursively
for each nesting level of the models, until level-1, where the action for the nested
level-0 models can be inferred through the use of normal POMDP belief update. All
these particles need to be weighted in order to be effective. The weighting factor is
the probability of receiving the observation which generated the particle given the
actions of all the agents and the current interactive state.

• Value iteration is the most classical algorithm used in order to solve sequential
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1 – Motivation and Previous work

decision-making problems and it has been proved to be optimal for POMDPs. How-
ever, while it has been successfully applied to I-POMDPs, it has not been proved
to be optimal due to the fact that Interactive Partially Observable Markov Deci-
sion Process might be self-referencing [17]. Value iteration, however, is proved to
converge [7].

• Policy iteration is another classical algorithm. It has been adapted to Interactive
Partially Observable Markov Decision Process in [21].

Value iteration and Policy iteration are often used along with an interactive particle filter.
The former methods are used in order to control the value estimation of the states of the
model, while the latter is often used in order to solve the models of the other agents which
are part of the Interactive Partially Observable Markov Decision Process type.

Another interesting application of Interactive Partially Observable Markov Decision
Processes is to learn other agents models as explained in [9]. The agent is demonstrated
to be able to learn the models of other agents by applying Bayesian inference and sequential
Monte Carlo sampling. The example is given use interactive particle filter as I-POMDP
solving method.

2



Chapter 2

Background

Sequential decision making is the branch of artificial intelligence which deals with prob-
lems using a procedural approach and where earlier decisions influence the later state of
the world. There are two important characteristics of the environment which make it
particularly difficult to deal with[16]:

• Partial observability: An environment is said partially observable when the agent is
not given access to each state of the environment for each point in time.

• Stochasticity: an environment is said stochastic when the outcome of the agent action
is not deterministic. This can happen because of either partial observability or for
the complexity of the environment due to variables and other agent presence.

Partially Observable Markov Decision Processes are found to deal particularly well in
partially observable stochastic domains (POSD). However, they are not defined for multi-
agent systems. Multi-agent systems are all those environments where more than one agent
is present. They are extremely common since they can be used in order to express the
forms of interaction used in our society. Behavior of agents [23] may be summarized in:

• Cooperative: agents work together in order to achieve a result
• Competitive: agents work against each other
• Neutral: agents do not really care about each other

Since the environment is very similar to POSD, it comes naturally to expand the Partially
Observable Markov Decision Process framework to a multi-agent setting. In fact, there
have been several trials to expand POMDP to multi-agent settings. Depending on the
type of problem, several frameworks are available[23]:

• Cooperative: Decentralized Partially Observable Markov Decision Process (Dec-
POMDP) [13] where all the agents share the same reward function hence suitable
for cooperative games.

• Competitive: Interactive Partially Observable Markov Decision Process (I-POMDP)[7]
is a framework capable of empowering the agents with a theory of mind of the ad-
versaries, hence suitable for competitive games

• Indifferent: Partially observable stochastic games [10] is an extension of stochastic
games [19]

This work is focused on I-POMDPs due to its expressive power and range of implementa-
tions it can perform [4]. The ability to model the other agent’s behavior makes I-POMDP
suitable for all three the stated categories. In order to be able to fully understand the
capabilities if Interactive Partially Observable Markov Decision Processes it is, however,
necessary to introduce Partially Observable Markov Decision Processes first.
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2 – Background

2.1 POMDP

Partially Observable Markov Decision Process is a very known framework in the AI com-
munity. It is aimed to solve single-agent POSDs hence considering the idea that the
agent might not have full access to all the world states. An agent which agent function is
described as a POMDP will implement:

POMDP = éS, A, T, Ω, O, Rê

Where S is the set of all the possible states of the world and Ω are all the possible obser-
vations the agent can receive from the environment. In order to provide the agent with a
complete model of the world the Transition and Observation functions are defined. The
reward function describes the agent behavior.

The Transition function describes how the agent’s actions affect the world. It is a
distribution over states and actions where q

stÔS T (st−1, at−1, st) = 1. In the special case
when the transition is deterministic T (st−1, at−1, st) = 1 for the resulting st and 0 for all
the others.

Due to the fact that the world is usually non-deterministic, we use the Observation
function to describe the likelihood of receiving an observation by performing a certain
action and arriving in a selected state. It is used in order to understand the feedback
received from the environment to the agent action. Similarly for the transition function,
also the observation function is a probability distribution where q

otÔΩ O(at−1, st, ot) = 1.
In case of deterministic observations, certain combinations will lead to O(at−1, st, ot) = 1
for the resulting ot and 0 for all the others. Note that in fully observable environments
there is no need for specific observations. Due to the fact that the agent has access to
the states of the world, we can map the observations to the states, de facto converting a
Partially Observable Markov Decision Process to a Markov Decision Process.

Another important element of the POMDP framework is the Reward function. The
reward signal is provided to the user by the environment and it is used as part of the value
function the agent is trying to maximize. The reward function maps the states an actions
to the reward signal and is expressed as R(a, s).

Since Partially Observable Markov Decision Processes are suitable for non-deterministic
environments, the agent does not track one single actual state. Instead, it keeps a dis-
tribution over all the possible states called belief. The belief of an agent is a probability
distribution over the whole state space S and indicates the likelihood an agent is in a
certain state s. When the agent is in the first phase of the environment, the belief distri-
bution b0 is created and indicates intuitively the initial belief of the agent. However, the
agent is going to perform actions on the environments and receive both observations and
rewards from it. This changes the real state of the world (which is unknown to the agent)
and the belief of the agent is not considered to be updated anymore. As a consequence it
is useful to define a belief update function. The update phase is performed when the agent
performs the action at−1 and receives the observation ot:

bt(s) = αO(at−1, st, ot)
Ø

st−1ÔS

bt−1(st−1)T (st−1, at−1, st) (2.1)

4



2 – Background

where α is used as normalization factor. The update function is also called the State
Estimation function SE(bt−1, at−1, ot) which intuitively returns the updated belief state
bt.

2.1.1 solving POMDPs

During the agent loop, the agent needs to select an action. This action aims to maximize
the reward over time. In order to define the concept of the utility function, it is first useful
to introduce the concept of optimality criterion OC. The optimality criterion indicates
how are weighted the received rewards over time. By defining the reward at current time
t as rt, common criteria are:

• Finite horizon criterion: the parameter T (called length of the horizon) indicates the
maximum number of future rewards rt considered, maximizing the sum of expected
rewards E(qT

t=0 rt)
• Infinite horizon criterion with discount: the parameter 0 ≤ γ ≥ 1 (called discount

factor) indicates how influent are the future rewards rt. The agent is hence maxi-
mizing the function E(q∞

t=0 γtrt)
The latter optimality criterion is used in the widely popular Bellman optimality equation,
which describes the utility of a specific belief state:

V (b) = max
aÔA

[
Ø
sÔS

R(s, a)b(s) +
Ø
oÔΩ

Ø
sÔS

O(s, a, o)b(s)V (SE(b, a, o))]

= max
aÔA

[R(b, a) +
Ø
oÔΩ

O(o|b, a)V (SE(b, a, o))]
(2.2)

As we can note, the Bellman equation can be split into two parts:
• q

sÔS R(s, a)b(s) is the immediate reward for performing the action a in the current
belief state b

• q
oÔΩ

q
sÔS O(s, a, o)b(s)V (SE(b, a, o)) indicates the discounted reward obtainable in

from the future actions
It is intuitive that, in order to obtain the second term, an eventual solver needs to branch
in the future considering all the possible actions and observations. This increases signifi-
cantly the complexity of POMDPs.

In order to define which action needs to be taken depending on the possible belief
state, one solver needs to compute a policy π. Whenever this policy is considered optimal
it is defined as πõ.

In order to calculate the Partially Observable Markov Decision Process policy, several
methods have been developed. The programs who implement those methods are here
defined solvers. They are usually divided into two categories:

• On-line solvers: determine the optimal policy before acting. They move all the
computations to the initial planning phase. This allows the agent to run smoothly
once the policy is calculated.

• Off-line solvers: determine the policy at run-time. The planning phase occurs during
the whole agent lifetime.

Two of the more recent solving methods developed are SARSOP and DESPOT.
• Successive Approximation of the Reachable Space under Optimal Policies (SARSOP)

[11] is a POMDP off-line solving algorithm which plans over the optimally reachable

5



2 – Background

belief spaces (which are those belief spaces reachable by applying optimal policies)
to increase computational efficiency.

• Determinized Sparse Partially Observable Tree (DESPOT ) [24] is an on-line POMDP
solving algorithm which exploits randomly generated scenarios in order to perform
planning.

2.1.2 julia.POMDPs

Julia is a programming language developed aiming to high performance in technical com-
puting [2]. Julia provides the possibility to execute compiled code and to interact with
the console, making it simple to query and analyze the obtained data.

Within Julia ecosystem, Julia.POMDPs [6] is an open-source package developed in
order to support the user in defining problems, running experiments and creating solvers
with the aim of both encouraging the growth of its package ecosystem and the creation of
new and more efficient algorithms. The main design criteria followed in the Julia.POMDPs
development are Expressiveness of the problem definition interface, Extensibility of the
framework in order to allow algorithms to be easily implemented within Julia.POMDPs
and usability to allow the user to use the package with all the already existent solvers.

2.2 Interactive-POMDP
Interactive Partially Observable Markov Decision Process is a framework applicable to self-
interested autonomous agents participating in a multi-agent game in a non-deterministic
environment. Agents defined with I-POMDP are capable of defining advanced constructs
in order to model and predict the behavior of the other agents present in the game. The
Interactive Partially Observable Markov Decision Process approach is based on computing
the optimal action by anticipating the response of the other agents.

In I-POMDP agents are defined based on their type and frame. A type of an agent is
the tuple

θi = ébi, Ai, Ωi, Ti, Ri, OCiê (2.3)
Where all the parameters of the tuple are described in 2.1 with OCi indicating the

optimality criterion the agent I uses in order to calculate the expected cumulative reward.
The frame of an agent is defined as

âθi = éAi, Ωi, Ti, Ri, OCiê (2.4)

which is practically identical to the type definition, omitting the interactive belief distri-
bution bi = ∆(S). Consequently the type of an agent can be expressed as

θi = ébi, θ̂iê

Interactive Partially Observable Markov Decision Process generalized Partially Ob-
servable Markov Decision Process in order to include the presence of other agents. In
IPOMDP notation, the other agents’ presence is included in the state space, which con-
cept is expanded in order to generate the interactive state space. An Interactive-POMDP
of an agent I can be described as:

I-POMDPi = éISi, A, Ti, Oi, Ωi, Ri, OCiê (2.5)

6
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Considering an ideal game where N agents are playing, A = Ai × Aj × · · · × An is the set
containing all the possible combinations of action they can perform. Each agent, however
will be defined by its own agent type, meaning that in the case agent J is a IPOMDP, it
will be defined by I-POMDPj = éISj , A, Tj , Oj , Ωj , Rj , OCjê. It is easy to conclude that,
while the action space is shared among all the IPOMDP agents playing in the game, their
observation space is not. In fact, the observation space of agent I will be Ωi which is not
necessarily related to any other agent’s observation space.

ISi is called interactive state set of agent I. One of the characteristics of Interactive
Partially Observable Markov Decision Process framework is to allow the agent to define
constructs capable to model the other agents acting in the same environment in order
to be able to predict their actions. This characteristic is included in the world state
representation from the agent I. By defining S as the set containing all the possible states
of the world and Mx the set containing all the possible models of an agent X:

ISi = S × Mj × · · · × Mn (2.6)

Similarly, the interactive belief of an Interactive Partially Observable Markov Decision
Process is defined as:

bi = ∆(ISi) (2.7)

It is important to note that the set ISi is infinite, due to the fact that Mj is infinite itself.
A model of an agent J is defined as mjÔMj and it is the construct that enhances the agent
I with a representation of the other agents playing in the game. Each other agent will be
modeled in I’s interactive state space as a model. A model is the tuple

mj = éhj , fj , Ojê (2.8)

Where hj is the history of observations the model received during its lifetime, fj is the agent
function, meaning the function which maps the model’s history to its actions fj(hj) → Aj .
The last element is the model observation function, which indicates how the world is
providing the model mj with its observation. The term model and type of an agent look
very similar but are actually different. Taking, for example, an agent J who is represented
as an I-POMDPj in I’s interactive state space ISi, there are as many models mj as the
different beliefs bj(ISj) that can be generated. As a consequence it is useful to define the
model as a combination of history and frame of an agent:

mj = éhj , âmjê

It is important to note that the number of models of an agent J is infinite, due to the fact
that hj could easily be a Kleene closure h∗

j .

The transition function Ti indicates how agent I maps the actions of the various agents
to the world he is playing in. Each combination of agent actions s and previous state results
in a probability distribution

Ti(st−1, at−1, st) = P (st | st−1, at−1) (2.9)

It is useful to indicate that the joint action at−1 is a composition of all the actions the var-
ious agents took at a certain time t−1. In a world where N agents are performing actions

7
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a = éai, . . . , anê. Another useful insight is to note how the transition functions acts on dis-
tributions over physical states ∆(S) and not on interactive states. This is due to the Model
Non-manipulability Assumption(MNM) which indicates that agents’ actions cannot change
other models directly. Since this is a probability distribution q

stÔS Ti(st−1, at−1, st) = 1
for given at−1 and st−1.

The observation function in a Interactive Partially Observable Markov Decision Process
is, like in Partially Observable Markov Decision Processes , a probability distribution over
the actions

Oi(st, at−1, ot
i) = P (ot

i | st, at−1) = P (ot
i | st, at−1

i , at−1
j ) (2.10)

Indicating how the world supplies the agent I with its observations. The observation func-
tion is defined over the agent I’s observation set q

ot
iÔΩi

Oi(st, at−1, ot
i) = 1 and maps which

observations we could receive given that the agents performed a certain combination of
actions and the world transitioned to a determined physical state. The observation, how-
ever, depends only on the physical state and not on the interactive state of the problem.
This is due to the Model Non-observability Assumption (MNO), which states that it is
impossible for an agent to directly observe the inner state of the other agents.

Reward is defined in a similar manner to the Partially Observable Markov Decision
Process ’s reward function, only it depends on the combination of actions of all the agents:

Ri(is, a) = R(is, a) (2.11)

It deeply influences the behavior of the agent and maps how the reward signal received
by the environment relates to the combination of actions of the agents and the current
interactive state. The reward function, however, it is not affected by MNM and MNO
assumptions due to the fact that shaping the reward of the agent depending on the other
agent state maintains the autonomy of the agent.

OCi is the optimality criterion for the agent I. It defines the horizon and the modality
the received rewards rt are considered during the time. The most common optimality
criterion for IPOMDPs is the infinite time horizon with discount 0 ≤ γ ≥ 1 which, similarly
to POMDPs, indicates the reward as E(q∞

t=0 γtrt).

2.2.1 Belief update

Analogously to Partially Observable Markov Decision Processes , an IPOMDP agent main-
tains a belief on the current state of the world. However, this belief is not only on the
physical states of the world S, but it includes the models of the other agents in IS. In the
same way to Partially Observable Markov Decision Processes , the actions of the agents
and the observation an agent receives can modify what an agent I believes about this state
of the world. As a consequence a belief update function is needed. Given a system where
agents I and J are performing actions on the environment, the belief update function for

8
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Interactive Partially Observable Markov Decision Processes is as follows:

bt
i(ist) = β

Ø
ist−1:âmt−1

j =âθt
j

bt−1
i (ist−1)

×
Ø

at−1Ô{at−1
i ×Aj}

Ti(st−1, at−1st)Oi(st, at−1, ot
i)P (at−1

j | mt−1
j )

×
Ø

ot
jÔΩj

Oj(st, at−1, ot
j)τmt

j
(ht−1

j , at−1
j , ot

j , ht
j)

(2.12)

We note that two particular components are introduced in 2.12:
• P (at−1

j | mt−1
j ): since during the belief update of agent I all the possible actions of

J are considered, P (at−1
j | mt−1

j ) indicates the likelihood of each action depending
on the model mt−1

j present in the current interactive state ist−1. The action is
calculated by following the criterion indicated in 2.2.

• τmt
j
(ht−1

j , at−1
j , ot

j , ht
j): the τ indicates the translation from one model mt−1

j to an-
other mt

j by means of the actions at−1
j taken and the possible observation received

ot
j . Due to the way a model is defined in 2.8 this results in a mere update in the
history ht−1

j → ht
j .

2.2.2 Complexity

Acting optimally in an multi-agent POSD is a very hard task which requires a significant
amount of resources. Decentralized POMDPs [13] has been proved to be NEXP-complete
[1]. Interactive Partially Observable Markov Decision Processes are very highly intractable
due to two major issues[5]:

• Course of dimensionality: The belief representation is directly proportional to the
dimensions of the belief simplex

• Course of history: The dimension of the state of all the policies is proportional to
the number of possible future beliefs

These problems, however, are typical ofPartially Observable Markov Decision Processes
[14] [15] and, due to the fact that the IPOMDP framework shares various characteristics
with it(Bayesian belief update and similar value function) they are transferred to Interac-
tive Partially Observable Markov Decision Processes . Moreover, whenever the modeled
agent J is a POMDP type, these characteristics become a part of the I’s interactive belief
state, hence both the nesting level of a Interactive Partially Observable Markov Decision
Process and the types of the simulated agents should be considered when calculating the
complexity of the framework. Interactive Partially Observable Markov Decision Process
worst-case time complexity seems to be double-exponential [17].

2.2.3 Solving I-POMPs

The whole objective of Interactive Partially Observable Markov Decision Processes is to be
able to define the optimal action in a non-deterministic multi-agent system by predicting
the actions of the other models. With this in mind it is useful to recall the concept of
optimality criterion 0 ≤ γ ≥ 1. The discounted reward is defined as q∞

t=0 E(γtrt). As a
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consequence, the utility function the agent is trying to maximize is

U(θi) = max
aiÔAi

{
Ø
is

ER(is, ai)bi(is) + γ
Ø

oiÔΩi

Pr(oi | ai, bi)U(éSEθi
(bi, ai, oi), âθiê)}

= max
aiÔAi

{
Ø
is

Ø
ajÔAj

Ri(is, ai, aj)P (aj | mj)bi(is)

+ γ
Ø

oiÔΩi

Pr(oi | ai, bi)U(éSEθi
(bi, ai, oi), âθiê)}

(2.13)

Similarly to the Bellman optimality equation, the I-POMDP’s value function can be ana-
lyzed in its two parts:

• q
is ER(is, ai)bi(is): This is the part relative to the immediate reward for performing

an action ai in the current interactive belief state bi

• γ
q

oiÔΩi
Pr(oi | ai, bi)U(éSEθi

(bi, ai, oi), âθiê): This is the part relative to the future
discounted rewards. It takes into account the discounted optimality criterion γ.

It is trivial to note that maximizing 2.13 implies the agent to both branch over all the pos-
sible action and observation combinations (due to the future rewards part of the equation)
and solving the nested models in the current interactive state. The latter requirement is
due to the term P (aj | mj), which implies being able to solve (or at least estimate) the
model mj in order to be able to calculate a distribution over its possible actions.
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Chapter 3

IPOMDPs.jl

The main purpose of this work is to provide the Artificial Intelligence community with
an instrument in order to easily define, enhance and test Interactive Partially Observable
Markov Decision Processes . The tool proposed is called Julia.IPOMDPs.
It is a framework designed around the user needs to facilitate problem and solver defi-
nitions. The project is thought to be an ecosystem of packages interacting together by
means of a common interface. As a consequence, the real package IPOMDPs.jl only pro-
vide such interface, plus some common methods which might be useful to all the future
implementations of the framework. The other package provided in this work is a solver:
ReductionSolver.jl which aims to solve Interactive Partially Observable Markov Decision
Processes by folding them in 0-level Partially Observable Markov Decision Processes .

The choice of Julia as the basic programming language is based on its speed and pack-
age availability. Julia [2], as explained in 2.1.2, is a programming language designed for
high performance. The characteristic that implements multiple dispatch paradigm allows
all the future packages of Julia.IPOMDPs framework environment to be developed even
quickly due to the simplicity of extension.

The package IPOMDPs.jl is the core package of the Julia.IPOMDPs framework. It
contains the declarations to be extended in order to define an Interactive Partially Ob-
servable Markov Decision Process agent. The agent lifetime is ideally divided into three
different phases:

• the Definition phase requires the user to define the agent function
• the Initialization phase takes includes all those actions needed in order to initialize

the program. In this action the initial belief is created and, in the case of online
solvers being used, policies are calculated. In this phase the actions performed need
to prepare the agent to the next phase:

• the final phase is the Usage phase. The agent is prepared and can interact with
the environment he is posed in. In order to interact with the agent, an interface is
proposed, although it is useful to implement a simulator to automatize the usage
process. However, even if in order to test the framework a small simulator has
been developed, creating a simulator is not part of this work and it is left to future
development.
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3.1 Definition

The definition phase is the only phase the user needs to take care of. It is needed in
order to define all the logic of the problem. Since Interactive Partially Observable Markov
Decision Process is a complex framework, the definition phase must be taken seriously
and requires the definition of multiple traits of the agent and the problem structure.
In order to simplify the definition logic and process, this phase has been divided into five
major sets:

• Agent definition is the part capable of describing the relations among the agents
(who is emulating who)

• Frame definition is the part used in order to define the proper logic of each agent.
• Model definition is the part used in order how a certain model reacts
• Problem structure is the part used in order to determine the hierarchy between frames
• Initial state is the part used in order to describe the initial state of the problem

3.1.1 Agent

This part is responsible for defining the characteristics of each agent. The agent is char-
acterized by a specific Type, which needs to be declared by taking advantage of the Julia
type inheritance. Each agent is different and possesses a determined set of actions and
observations:

• IPOMDPs.agent_actions
• IPOMDPs.agent_observations

Agent actions Ai must be superset of all the actions the models frames âmi,nÔMiof and
agent I.

Ai =
nÛ

x=1
Aâmi,x

The same concept needs to be applied to the agent observations

Ωi =
nÛ

x=1
Ωâmi,x

3.1.2 Frame

Following the I-POMDP frame definition in 2.4, the frame is the part of the Interactive
Partially Observable Markov Decision Process which contains all the information regarding
the world transition, the observed behavior, the reward signal from the environment and
the optimality criterion for the calculation of the discounted reward. As a result, it comes
the need to define all the parts which are themselves part of the IPOMDP framework:

• IPOMDPs.states: the set of physical states of the problem. This corresponds to the
set S.

• IPOMDPs.actions: the joint actions of all agents present in the environment. This
corresponds to the set A.

• IPOMDPs.observations: the set of observations the current agent can perceive. This
corresponds to the set Ωi.

• IPOMDPs.transition: the transition function. This corresponds to Ti.
• IPOMDPs.observation: the observation function. This corresponds to Oi.
• IPOMDPs.reward: the reward function. This corresponds to Ri.
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• IPOMDPs.discount: the optimality criteria. It is expressed as a float number in
order to limit the depth of the discover tree in the solver used. This corresponds to
γ.

It is trivial to note that the states S of the problem must be common among all the agents
participating in the game. The user is provided with the ability to define only the physical
states of the problem, due to the fact that the interactive states (which are part of the
I-POMDP framework as ISi) are automatically generated.

3.1.3 Problem

The problem phase aims to define the structure of the problem itself. This phase is needed
in order to provide a link between the frames of Interactive Partially Observable Markov
Decision Processes (and eventually Partially Observable Markov Decision Processes ) to
the agent they refer to. In the case of I-POMDP frames, this phase is fundamental to
indicate which other agent types are to be considered in the generation of the interactive
state.

• IPOMDPs.agent: specifies which agent the current frame refers to
• IPOMDPs.emulated_frames: specifies the frames which are part of the interactive

state space of the current I-POMDP frame
Summarizing, this phase connects and specifies the relationship between the frames pre-
viously defined.

3.1.4 Initial state

The initial state section defines all the methods necessary in order to initialize the belief
of a certain model. In order to increase the expressibility of the framework, the user is
required to provide a distribution over both the possible physical states of the world and
the frames which will be part of the interactive state set.

• IPOMDPs.initialstate_distribution: describes the initial belief distribution re-
garding the physical states of the environment

• IPOMDPs.intialframe_distribution: describes the initial belief distribution re-
garding the frames emulated by the current I-POMDP frame.

These functions are fundamental in order to be able to determine the initial interactive
belief state of the Interactive Partially Observable Markov Decision Process bt=0

i .

3.1.5 Model

The Model is the operative entity of Julia.IPOMDPs. it is a generalized object containing
only a history and a frame. It comes from the formal definition of

m = éh, fê

It needs to be capable of providing a common interface for the program to access the logic
of the inner frame. The interface will be referred to as model interface and is composed
by:

• IPOMDPs.Model: Creates the model starting from a defined frame.
• IPOMDPs.action: Describes the next optimal action. This function contains the

agent function f(h) → A described in 2.2.
• IPOMDPs.actionP: The probability that a model takes a specific action. It provides

P (a | m).
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• IPOMDPs.tau: Updates the history of the model in order to make it keep track of its
simulated observations. This is the τ function described in 2.12.

• IPOMDPs.model_observation: The way a specific model receives the observation
from the environment. This corresponds to O described in 2.2.

The model interface is capable of providing all the functions needed to implement the
classical agent life-cycle (Think-Act-Observe). It is important to note that the inter-
face is general enough to make possible to define possibly infinite types of models. It is
later shown how to create a model for a Partially Observable Markov Decision Process
frame. However, this is not the only type of model we can create. In order to expand the
framework with the ability to communicate with different agent types, the user needs to
implement the model functions defined above.

In a fictitious case where we want to implement a dummy frame âmi,1 of the agent I
which randomly acts over its possible actions Aâmi,1

= {OL, OR} and receive no informa-
tions Ωâmi,1

= {}, the relative model would be defined as:
• IPOMDPs.Model( âmi,1) → {nil, âmi,1}
• IPOMDPs.action(mi,1)→ aiÔAâmi,1
• IPOMDPs.actionP(mi,1,ai)→ 0.5
• IPOMDPs.tau(mi,1)→ mi,1
• IPOMDPs.model_observation( âmi,1, nil)→ 1

3.2 Initialization
This phase is completely automated and does not need any user interaction. In the
Initialization phase of the program, the interactive state set is created, the initial belief over
the states is extracted and the eventual policy is calculated. The phase is ideally contained
in the previously defined IPOMDPs.Model. Due to the way the framework is constructed
(3.1.5), the core concept of Julia.POMDPs is the model object. As a consequence, the
problem itself is treated as a model object which, by implementing the model interface, is
capable to communicate with the environment. In order to create the model of a certain
frame, the steps to be taken are:

• Interactive state set definition: In this phase, all the interactive states are defined
by following the logic defined in 3.1.4. However, in order to be able to perform
such operation, all the models of the frames emulated by an I-POMDP need to be
defined. This creates a cascade effect whereby calling IPOMDPs.Model on the frame
of the agent situated at the top of the agent hierarchy, all the models undergo the
initialization phase. At the conclusion of this phase, ISi is formed. It is important
to note that, formally, ISi is an infinite set as defined in 2.6.

IS = S × Mj × · · · × Mn

However, the set constructed in this phase is a subset of those interactive states
which are actually considered by the agent.

• Initial belief creation: Once all the interactive states are formed, the initial belief is
defined. The process takes advantage of the two previously defined IPOMDPs.initialstate_-
distribution and IPOMDPs.initialframe_distribution functions in order to
perform a cartesian product and generate the interactive states’probabilities:

P (is) = P (s)
Ù

xÔ{J,...,N}
P (mx)
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In the Interactive Partially Observable Markov Decision Process definition 2.7 the
belief is a distribution over all the interactive states ISi. However, due to the fact
that ISi is infinite, bi(ISi) is represented as a discrete distribution over only those
states whose probability is different than 0.

• Policy calculation is the last operation to perform during the initialization phase.
This operation strongly depends on the type of solver used along with POMDPs.jl.
In case an off-line solver is used, this phase has the final objective of creating a
policy. In the case an online solver is used (as the case of ReductionSolver.jl), this
phase performs the basic operations in order to set-up the solver, without producing
any policy.

Once the model of the frame corresponding to the agent at the top of the agent
hierarchy is calculated, the program is ready for the next and final phase.

3.3 Usage
During the usage phase, the program takes advantage of the model interface in order to
communicate with the environment. In particular, the functions used by the environment
will be:

• IPOMDPs.action: represents the acting phase of the agent life cycle. The agent (the
model of the problem) calculates the best action depending on its current interactive
belief state and returns it to the environment.

• IPOMDPs.tau: represents the observation phase of the agent life cycle. It is used in
order to provide the model with the observation resulting from the combination of
actions of all the agents acting in the environment. IPOMDPs.tau is used in order to
update the model’s interactive belief.

3.3.1 Belief update

In order to keep track of the state of the environment, an Interactive Partially Observable
Markov Decision Process keeps track of its interactive belief over physical states and other
agents models (2). The Interactive Partially Observable Markov Decision Process update
function defined in 2.12, however, is capable to only keep track of the actions and possible
observations of two agent I and J . In orde rto be able to really implement I-POMDPs in
a true multi-agent environment with N agents, it is needed to expand the original update
function:

bt
i(ist) = β

Ø
ist−1:âmt−1=âmt∀âm bt−1

i (ist−1)
Ø

at−1Ô{at−1
i ×Aj×···×An}

Ti(st−1, at−1st)

× Oi(st, at−1, ot
i)

Ù
xÔ{J,...,N}

P (at−1
x | mt−1

x )
Ø

ot
xÔΩx

Ox(st, at−1, ot
x)

× τmt
x
(bt−1

x , at−1
x , ot

x, bt
x)

(3.1)

The expansion is minimal but powerful enough to be able to now include the possibility
to provide the agent I with infinite constructs over an infinite amount of agents.

However, this function is unpractical to deal with due to the fact that it is based on
a summation over ISi which has infinite cardinality. In order to deal with this problem
it turns very useful the approximation adopted in section 3.2, which is to consider only
those is whose probability P (is) /= 0. In order to maintain this approximation it is useful
to divide the I-POMDP update function into two separate parts:
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• IS expansion: Expands the set IS. In this first phase, all the possible combinations
actions and observations of all the agents in the environment are calculated. They
are then passed as a parameter to IPOMDPs.tau for all the models in every interactive
state. This allows expanding the set of IS to all those interactive states reachable
by any combination of actions and observations. The expansion is calculated by
considering all the combinations of
– ist−1ÔISt−1

– stÔS
– at−1Ô{at−1

i × Aj × · · · × An}
– otÔ{Ωj × · · · × Ωn}

Each generated ist will be defined by

ist = [st, éSE(ht−1
j , at−1

j , ot−1
j ), âmt−1

j ê, . . . , éSE(ht−1
n , at−1

n , ot−1
n ), âmt−1

n ê] (3.2)

Together with the IS expansion the new probability for each interactive state is
calculated:

P (ist) = bt−1
i Ti(st−1, at−1, st)Oi(st, at−1, ot

i)
Ù

xÔJ,...,N

P (at−1
x | mt−1

x )Ox(st, at−1, ot−1
x )

(3.3)

• After the expansion phase it is useful to perform the duplicate removal phase. This
is a trivial phase but very important. Due to the fact that Bayesian belief update is
not bijective [8], there is the possibility to have duplicated is. As a consequence it
is useful to aggregate them and sum their probabilities:

P (ist) =
Ø

isÍ,t:isÍ,t=ist

P (isÍ,t) (3.4)

3.3.2 Action selection

The model object is constructed in such a way that all the information needed in order
to calculate the optimal action are already included in the model itself. The next action
is obtained by means of the function IPOMDPs.action(mi,x). The way the model returns
the action depends strictly on the model implementation. It will be shown in sections
3.4.1 and 3.4.2 how the action is obtained in the case of a Partially Observable Markov
Decision Process and Interactive Partially Observable Markov Decision Process .
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3.4 IPOMDOToolbox.jl

In order to make feasible for the first user to use the framework, it is needed to create
some initial structures and provides some model and solver implementations. The package
IPOMDPToolbox.jl aims to provide such basic requirements.

In particular, two model implementations and a solver have been developed to allow
future users to work with the framework without needing to define their own solvers:

• IPOMDOToolbox.ipomdpModel: is the definition of the model relative to a Interactive
Partially Observable Markov Decision Process frame.

• IPOMDOToolbox.pomdpModel: is the definition of the model relative to a Partially
Observable Markov Decision Process frame.

3.4.1 IPOMDOToolbox.pomdpModel

IPOMDOToolbox.pomdpModel is defined in order to allow the user to define Partially Ob-
servable Markov Decision Processes in the Julia.IPOMDPs framework. The model is
constructed in order to provide an interface with the more famous and structured Ju-
lia.POMDPs framework. Julia.POMDPs, although it is a relatively new framework, al-
ready allows the user to define Partially Observable Markov Decision Processes in a very
powerful way and provides an extremely varied array of solvers, benchmark suites and
tools to allow users to define POMDPs. In order to take advantage of the expressive
power of such framework, pomdpModel is designed to act as a wrapper, providing a link
between the Julia.IPOMDPs model interface and Julia.POMDPs framework.

IPOMDPToolbox.pomdpModel accepts as a frame any Partially Observable Markov De-
cision Process defined by means of Julia.POMDPs. The most important thing to consider
in designing pomdpModel is the choice of the solver for the POMDP frame. Two of the
most performing solver available at the moment this work has been produced are:

• SARSOP [11] is an off-line solver which, during belief exploration, explores only
those states reachable by an optimal sequence of actions

• AR-DESPOT [20] is an online solver which uses heuristics in order to estimate the
value of the policy during the forward search phase.

They are both compatible with Julia.POMDPs interface and hence are considered as
candidates for IPOMDPToolbox.pomdpModel inner solver. Due to the intrinsic difference
between online and off-line solver explained in section 2.1.1, it comes naturally to choose
SARSOP as default solver. It is able to compute a policy during the initialization phase
and, as a consequence, moves all the complexity to this initial phase, instead of the usage
one. Having an already calculated policy means to be able to act only by querying it.
This saves a consistent amount of time when P (a|m) needs to be calculated by calling
IPOMDPs.actionP on the current model.

The model interface is hence implemented as follows:
• IPOMDPs.Model: perform the model Initialization phase. The belief generated is of

type DiscreteBelief, which is the one required by SARSOP solver. A SARSOP solver
is instantiated and a belief updater is then created and stored in the pomdpModel
object for later utilization. By providing all the needed structures for SARSOP.solve
to function, the policy is calculated and stored in the pomdpModel object too.

• IPOMDPs.action: due to the fact that SARSOP is an off-line solver, the IPOMDPs.action
method only acts as a wrapper to the SARSOP.action function. It passes the com-
puted policy and the current belief stored in the model structure and returns the
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selected action to the environment.
• IPOMDPs.actionP: Determine the probability of performing a determined action. In

order to provide a reliable statistic, the policy is queried 100 times. Thanks to the
use of an off-line solver, this procedure is significantly sped up.

• IPOMDPs.tau: This is a wrapper for the SARSOP.update belief update function. It
turns out that the latter is a wrapper too for the more nested DiscreteBelief.update
function. The used function takes the belief updater and the belief object as a pa-
rameter and returns the updated belief. Due to the implementation of how Julia
treats the object in memory, it is not possible to update the current model object,
but it is required to create a new one. All the references to the static objects in
the model (updater, policy, and frame) are passed to the new object along with the
updated belief.

3.4.2 IPOMDOToolbox.ipomdpModel

IPOMDPToolbox.ipomdpModel is defined in order to allow the user to interact with frames
defined by means of IPOMDPs.jl. ipomdpModel is, like pomdpModel a wrapper to the Inter-
active Partially Observable Markov Decision Process solver ReductionSolver.jl defined in 4.

IPOMDPToolbox.ipomdpModel accepts as a frame any Interactive Partially Observable
Markov Decision Process defined by means of Julia.IPOMDPs. Due to the fact that at
the moment this work has been produced, Julia.IPOMDPs is still being developed, the
only choice available is ReductionSolver.jl. ipomdpModel extends the model interface in
the following way:

• IPOMDPs.Model: perform the model Initialization phase. The obtained belief is of
type DiscreteInteractiveBelief, which is required by the ReductioSolver solver. The
belief updater of type DiscreteinteractiveUpdater is defined and stored in the model
memory. Due to the fact that the model is using an online solver, no policy is
currently calculated. However, a policy object is still generated. This is due to the
fact that, due to the solver implementation, the policy is used as a storage for all
those elements needed in order to speed up the computation of the model’s next
action.

• IPOMDPs.action: Defines a wrapper method to use ReductionSolver.action. While
the interface is very similar to the one used by pomdpModel to interact with SARSOP
solver, the fact that ReductionSolver is an on-line solver profoundly influences the
complexity of IPOMDPs.action.

• IPOMDPs.actionP: Determine the probability of performing a determined action.
In order to provide a reliable statistic, the policy is queried 100 times. Executing
IPOMDPs.actionP many times by using an on-line solver can prove to be very time-
consuming.

• IPOMDPs.tau: Similarly to pomdpModel, this acts as a wrapper to the ReductionSolver.update
function which itself acts as a wrapper for DiscreteInteractiveBelief.update
which takes as a parameter the belief, updater, observation, and action to calculate
the new belief. Like it was described in 3.4.1, the used function takes the belief
updater and the belief object as a parameter and returns the updated belief. Due
to the implementation of how Julia treats the object in memory, it is not possible
to update the current model object, but it is required to create a new one. All the
references to the static objects in the model (updater, policy, and frame) are passed
to the new object along with the updated belief.
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Chapter 4

Solving IPOMDPs

During the past years, a series of solving techniques for solving Interactive Partially Ob-
servable Markov Decision Processes have been described and implemented. They are
summarized in section 2.2.3. In this work, we try to solve an I-POMDP by reducing it to
a POMDP.

In order to explain the methodology it is useful to introduce the concept of strategy
level in I-POMDPs. A Interactive Partially Observable Markov Decision Process of agent
I with strategy level l is defined as

I-POMDPi,l = éISi,l, A, Ti, Oi, Ωi, Ri, OCiê (4.1)

where
ISi,l = S × Mj,lÍ<l × · · · × Mn,lÍ<l (4.2)

Is the set of interactive states relative to an I-POMDP of complexity l. The strategy level
indicates the level of nesting of the model, meaning the depth of the modeling process.
We start with the lower levels l = 0, which are POMDPs and all those model types which
do not include other agents’ belief and frames in their belief space. A depth on 0 means
that there is no concept of other agents’ models in an agent’s belief.

As shown in 4.2 we can see that in the case of an I-POMDP with strategy level l = 0,
it can be expressed as a POMDP. An agent including 0-level (I-POMDP0) models in its
belief space is said 1-level (I-POMDP1). Accordingly, we can define a I-POMDPl the
one of an agent including I-POMDPl−1 models in its belief space. Note that we still use
the term I-POMDPl for agents including both I-POMDPl−1 and I-POMDPl−x models
in its belief space.

Due to this similarity to Partially Observable Markov Decision Process , we can intu-
itively convert an I-POMDPn to a I-POMDP0.

4.1 IPOMDP to POMDP reduction

In order to reduce a Interactive Partially Observable Markov Decision Process to a POMDP,
we need to perform a comparison between the I-POMDP definition in 2.2 and the POMDP
definition in 2.1. The reduction is performed by comparing each element of the two frame-
works and providing a formula capable to link the two definitions which are reported in
Appendix A.1:
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• State: I-POMDP concept of state defined in 2.6 is more complex than POMDP’s
state definition. However S ⊆ ISi and, in order to reduce the model, it is possible
to marginalize S .

• Belief : I-POMDP interactive belief defined in 2.7 might be marginalized to a POMDP
belief by marginalizing the models of the agents present in ISi

bt
i(s) =

Ø
isÍ,t:sÍ,t=st

bt
i(isÍ,t) (4.3)

• Actions: There is a one-to-one correspondence between the I-POMDP agent actions
Ai and the POMDP’s action set A. By reminding that the agent actions Ai are the
superset of all the models of I’s action sets, again A ⊆ Ai and, at the moment we
are reducing a specific I-POMDP frame to a POMDP

A = Aâmi

• Observations: They can be easily converted, due to the fact that

Ω = Ωi

• Transition function: The transition function is very different in POMDPs and I-
POMDPs. The latter model considers the actions of all the agents in the environ-
ments in order to predict the change in the physical state, while the former do not
include the presence of other players in the game. In order to provide a mapping
between the I-POMDP transition and the POMDP transition functions, it is needed
to incorporate the actions of all the agents other than I as noise in the transition.
This can be formulated as:

T (st−1, at−1
i , st | bi) =

Ø
at−1

j Ô{Aj×···×An}

P (st | st−1, at−1
i , at−1, bt−1

i )

×
Ù

xÔ{J,...,N}

Ø
mxÔMx

P (ax | mx)P (mx | bi)
(4.4)

Where the other agents are marginalized by calculating the probability of their
actions and of their models.

• Observation function: The same concept as above is applied to the observation
function. The other agents are included as environmental noise and the received
observations probabilities reflect the probabilities the other agents to perform certain
actions:

O(st, at−1
i , ot

i | bi) =
Ø

at−1
j Ô{Aj×···×An}

P (ot
i | st, at−1

i , at−1, bt−1
i )

×
Ù

xÔ{J,...,N}

Ø
mxÔMx

P (ax | mx)P (mx | bi)
(4.5)

• Reward function: The third function where the main difference between I-POMDP
and POMDP definition is the inclusion of the other agents’ actions in the reward
function. The approach is the same taken for the transition and observation func-
tions:

R(s, ai | bi) =
Ø

aÔ{Aj×···×An}
Ri(s, ai, a)

Ù
xÔ{J,...,N}

Ø
mxÔMx

P (ax | mx)P (mx | bi) (4.6)
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• Optimality criterion: It is independent on the framework implementation. In fact,
it is straightforward to define:

γpomdp = γipomdp

• Belief update: While I-POMDP and POMDP belief update functions look similar for
they require the same parameters (bt−1

i , at−1
i , ot

i) their inner behavior is profoundly
different. Updating an Interactive Partially Observable Markov Decision Process
requires to consider all the possible observations and actions of all the other models,
other than estimating an updated version of them. This is completely absent in
the POMDP updated function. As a consequence, the update function is not re-
ducible. This leads to problems in terms of precision of a solver implementing such
a technique. It has been shown in 4.4, 4.5, 4.6, and 4.3 that the generated POMDP
elements are directly proportional to P (ax | mx)P (mx | bi). However, these terms
might change each time the agent’s belief needs to be changed. This leads to gen-
erated POMDP which is consistent with the I-POMDP only for the current time t.
However, solution algorithms to Partially Observable Markov Decision Processes do
not consider the possibility for the agent model to change at each time step. This
inconvenience reduces the precision of any solver which implements the I-POMDP
to POMDP reduction technique.

• Utility function: Utility for a I-POMDP is described in 2.13. Such function is com-
posed by several parts:
– The immediate reward part for both IPOMDP and POMDP utility can be

reduced by means of equation 4.6.
– The part related to the future reward seems already identical between POMDP

and I-POMDP utility function definitions.
However, the future reward part includes the belief update function. Due to the fact
that the belief update is not consistent, the utility function should be considered
coherent only for the current time step t and hence only for its immediate reward
section.

4.2 Julia.IPOMDPs
In order to provide Julia.IPOMDPs with the ability to define and extend solvers it is
needed to design an interface each solver should implement. Such an interface is referred
to as the solver interface. It is strictly related to the solver definition in Julia.POMDPs
[6] and is defined as:

• IPOMDPs.updater: Provides the user with the belief update the solver is designed
to use.

• IPOMDPs.initialize_belief: Provides the initial belief bt=0
i state for the problem.

This function acts as a wrapper for the real belief initialization function.
• IPOMDPs.update: Updates the belief by using the logic provided by the belief up-

dater. This method is often used as a wrapper for the real belief update function.
• IPOMDPs.solve: provides the user with a policy. This method can be profoundly

different in the online and off-line solver. In the former type, this method is very
light and it is just used in order to create a policy object which will be propagated
for all the agent’s lifetime. On-line solvers do not need to carry policies over the
time since they generate the current policy at time t. However, a policy object could
be extremely useful to carry information used in order to significantly speed up the
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computation. In the case of Off-line solvers, this method includes a major part of the
complexity of solving Interactive Partially Observable Markov Decision Processes .

• IPOMDPs.action: is the complementary method of IPOMDPs.solve. It is used in
order to determine the optimal action for a certain belief state given the policy object.
In the case of online solvers, this method includes the majority of the complexity of
the problem. The solver, in fact, needs to partially solve the problem and determine
the current optimal action. For off-line solvers, instead, IPOMDPs.action is used in
order to query the policy and determine which is the optimal strategy.

4.3 ReductionSolver.jl

ReductionSolver.jl is the module of Julia.IPOMDPs developed in order to provide the
user with the means to solve Interactive Partially Observable Markov Decision Processes
. It is an online solver, meaning that the optimal action is calculated depending only
on the current belief state and do not include the presence of any policy. In order to
design ReductionSolver, it has been followed an approach significantly different from the
one taken by all the solvers present in the I-POMDP solver ecosystem. While most of
the solvers rely on iteration methods such as value iteration or policy iteration in order
to calculate the value of a policy and a specific interactive belief, reduction solver tries to
solve the maximization problem by reducing the I-POMDP to a POMDP and relying on
the existent ecosystem of solvers already available to solve Partially Observable Markov
Decision Processes .

In order to implement the functions described in section 4.2 and hence provide all the
necessary functionalities, it is first needed to define elements such as belief type, belief
updater, policy type, and solver object:

• DiscreteInteractiveBelief : The interactive belief object is the implementation of a
probability mass function on the discrete variable ISi

• DiscreteInteractiveUpdater : It is the object responsible of the behavior of the IPOMDP
agent belief update and initialization. It implements the belief initialization func-
tion by extending the solver interface function IPOMDPs.initialize_belief and
providing the first two operations described in 3.2: Interactive state set definition
and Initial belief creation.

• ReductionPolicy: The policy object is defined in order to maintain data produced
during successive runs of the solving algorithm. It is passed along with the belief
toIPOMDPs.action. The implementation contains a table of all those POMDPs
which have already been converted and solved. This element is necessary at each
phase present in the Usage phase described in section 3.3.

• ReductionSolver : the solver object is intended as a container for all the possible
settings needed for the solver. It is passed as an argument to the IPOMDPs.solve
function and takes part in the policy generation process.

4.3.1 IPOMDP reduction

ReductionSolver takes advantage of the existent ecosystem of POMDP solvers by reducing
I-POMDPs to Partially Observable Markov Decision Processes . The actual conversion
is performed by defining a special POMDP type called gPOMDP. gPOMDP is defined by
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relying on Julia.POMDPs interface. All the POMDP elements reflect the relative equa-
tions defined in 4.1, which are converted in order to make them easily computable. After
the conversion process, the general POMDP is solved by means fo the SARSOP off-line
solver. In order to provide a more accurate solution, the problem is solved by using as
initial state distribution the current reduced belief. Once the gPOMDP object is solved and
a policy created the optimal action is generated.

4.3.2 Curse of history reduction

Due to the fact that ReductionSolver is an online solver, a real policy does not exist.
However, the implementation structure of IPOMDPs.action requires a policy object to be
passed as an argument. In order to speed up the process of calculating the optimal action,
the policy object can be used as a storage for solved gPOMDP problems. In fact, gPOMDPs
are not unique. They could be equal to other already solved if the I-POMDP models used
in order to generate them are identical both in the frame and the belief over interactive
states. As a consequence it is possible, after defining a suitable comparing function, to
define a table to store solved gPOMDPs to avoid repeated calculations. This tweak allows
to significantly reduce the time needed for calculating the optimal action. In fact, without
it, solving 2-level I-POMDPs would be nearly impossible. As a consequence, the impact
of the curse of history, while it is not completely avoided, it is significantly mitigated by
storing the known solution to already visited problems.
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Chapter 5

Tests

In order to correctly test the solver and to show the possible applications, it could be useful
to define some hypothetical games and compare the performances with other existent
solvers.

5.1 Test environment

Tiger game (Appendix B) is a theoretical game proposed in [3] and is reported in where
an agent is posed in front of two doors. Behind a door stands a tiger and behind the
other one stands a reward. If the agent opens the wrong door receives a large penalty.
The agent uses the infinite horizon with discounted rewards optimality criterion in order
to calculate the best action.

The problem is particularly suited for Partially Observable Markov Decision Process
because it includes an information gathering phase, implemented through the possibility
of the agent listening. In this section, it will be derived a variant of such game which is
used as a reference game for testing Julia.IPOMDPs.

The multi-agent tiger game (Appendix C) described in this paper is a modification of
the multi-agent game described in [7], which is itself derived from the single-agent tiger
game. The environment includes two agents I and J which are in front of two doors. Only
one door hides the reward, while the other hides a tiger. As a consequence, we can define

S = {TL, TR}

Each agent can perform one of these three actions:

Ai = Aj = {OL, L, OR}

and, depending on the state the action is taken, the agent is rewarded accordingly. Simi-
larly to the original tiger game, the agent can receive observations but in this case, they
are expanded. It has been included the possibility to hear creeks generated by J ’s actions.
However, these observations are noisy.

Ωi = {GLCL, GLCR, GLS, GRCL, GRCR, GRS}

The environment is a non-deterministic environment which can generate transitions fol-
lowing C.1, which are reported below:
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éai, ajê State TL TR
éOL, ∗ê * 0.5 0.5
éOR, ∗ê * 0.5 0.5
é∗, OLê * 0.5 0.5
é∗, ORê * 0.5 0.5
éL, Lê TL 1.0 0.0
éL, Lê TR 0.0 1.0

Table 5.1: Multi-agent tiger game transition function

5.2 Multi-agent tests

There are some interesting implications of applying Interactive Partially Observable Markov
Decision Processes in a multi-agent environment. The Most interesting one is that with
a 1-level agent it is possible to define the behavior I has with respect to J . The three
versions of the agent have been denominated:

• Neutral: Agent I does not pay any interest to J . It emulates the other agent in
order to better predict the environment.

• Cooperative: Agent I is designed as a friend of J . Is reward function is declared in
C.7 and it is created in order to maximize I’s reward when also J opens the correct
door.

• Competitive: Agent I in this case is an enemy of J . Is reward function is declared
in C.6 and it is created in order to maximize I’s reward when J opens the wrong
door

In order to define the behavior of the agents it is sufficient to change their reward
function. Here are reported the reward functions described in C.4, C.7 and C.6:

éai, ajê TL TR
éOL, ∗ê -100.0 10.0
éOR, ∗ê 10.0 -100.0
éL, ∗ê -1.0 -1.0

(a) Neutral agent
éai, ajê TL TR

éOL, OLê -150.0 15.0
éOL, ORê -95.0 -40.0
éOL, Lê -100.5 9.5

éOR, OLê -40.0 -95.0
éOR, ORê 15.0 -150.0
éOR, Lê 9.5 -100.5
éL, OLê -51.0 4.0
éL, ORê 4.0 -51.0
éL, Lê -1.5 -1.5
(b) Cooperative agent

éai, ajê TL TR
éOL, OLê -50.0 5.0
éOL, ORê -105.0 60.0
éOL, Lê -99.5 10.5

éOR, OLê 60.0 -105.0
éOR, ORê 5.0 -50.0
éOR, Lê 10.5 -99.5
éL, OLê 49.0 -6.0
éL, ORê -6.0 49.0
éL, Lê -0.5 -0.5
(c) Competitive agent

Table 5.2: Possible Agent I Reward functions

The agents receive observations from the environment by following:
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éai, ajê State GLCL GLCR GLS GRCL GRCR GRS
éOL, OLê TL 0.167 0.167 0.167 0.167 0.167 0.167
éOL, OLê TR 0.167 0.167 0.167 0.167 0.167 0.167
éOL, ORê TL 0.167 0.167 0.167 0.167 0.167 0.167
éOL, ORê TR 0.167 0.167 0.167 0.167 0.167 0.167
éOL, Lê TL 0.167 0.167 0.167 0.167 0.167 0.167
éOL, Lê TR 0.167 0.167 0.167 0.167 0.167 0.167

éOR, OLê TL 0.167 0.167 0.167 0.167 0.167 0.167
éOR, OLê TR 0.167 0.167 0.167 0.167 0.167 0.167
éOR, ORê TL 0.167 0.167 0.167 0.167 0.167 0.167
éOR, ORê TR 0.167 0.167 0.167 0.167 0.167 0.167
éOR, Lê TL 0.167 0.167 0.167 0.167 0.167 0.167
éOR, Lê TR 0.167 0.167 0.167 0.167 0.167 0.167
éL, OLê TL 0.765 0.043 0.043 0.135 0.007 0.007
éL, OLê TR 0.135 0.007 0.007 0.765 0.043 0.043
éL, ORê TL 0.043 0.765 0.043 0.007 0.135 0.007
éL, ORê TR 0.007 0.135 0.007 0.043 0.765 0.043
éL, Lê TL 0.043 0.043 0.765 0.007 0.007 0.135
éL, Lê TR 0.007 0.007 0.135 0.043 0.043 0.765

Table 5.3: Multi-agent tiger game Agent I observation function

In the case one agent participating in the game is a Partially Observable Markov
Decision Process , some adaptations should be performed. Since POMDP is a single-
agent framework, it is useless to provide the agent with observations regarding the other
agent’s actions (meaning creek and silence). It is considered that agent J simply ignores
such information, hereby, as described in table B.3, the world observations will result in:

a State GL GR
OL * 0.5 0.5
OR * 0.5 0.5
L TL 0.85 0.15
L TR 0.15 0.85

Table 5.4: Multi-agent tiger game simplified observation function

5.2.1 Performances

There are two main important factors to consider when profiling an algorithm: space
and time performances. These aspects are particularly crucial in a Interactive Partially
Observable Markov Decision Process simulator due to its complexity.

• Execution time: It is the time needed in order to perform one agent loop. The two
main operations are selecting the action and updating the model.

• Memory consumption: It is the amount of memory necessary in order to store all
the necessary data structures.

• Number of distinct interactive states: It is used as an index on the level of complexity
of the problem. The more interactive states are present, the more computation time
is expected to be used, due to the fact that more simulations need to be performed.

In order to provide useful statistics, a test over 1000 rounds has been performed. The
feature extracted are the mean values on

• action time: It is the time needed for the function IPOMDPs.action to return the
optimal action.
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• update time: It is the time that IPOMDPs.update needs in order to update the model
of I given the past action and current observation.

• memory allocated: Indicates the number of kB that have been allocated during the
runtime of both IPOMDPs.action and IPOMDPs.update. Note that this value might
not be the exact amount of memory used by the program, due to the fact that there
are other factors which influence the runtime memory, such as garbage collector and
other functions allocations.

• IS size: The average number of interactive states present during execution time.

The following data has been recorded during execution and later parsed by means of
matlab. The precision is indicated as standard deviation.

action time(s) update time(s) memory allocated (kB) IS size
Neutral 0.8146 ± 0.7745 0.0273 ± 0.0080 10398.4309 ± 1280.0033 9.9860

Cooperative 0.9029 ± 0.7990 0.0296 ± 0.0527 10935.6964 ± 13165.7382 9.9860
Competitive 0.8337 ± 0.7136 0.0272 ± 0.0080 10259.9010 ± 1524.9730 9.9860

Table 5.5: Level 1 Tiger game run times statystics for 1000 runs

In order to analyze the complexity of the problem, it is possible to analyze the number
of interactive states generated from the problem during the time.

Figure 5.1: Number of Interactive States in each run

It is clear to note in figure 5.1 that the program tends to convert to a fixed amount
of interactive states. The interactive states set size is relatively low due to the fact that
they depend on the possible combination of J belief states which are shown in 5.6 and the
physical states S of the system creating 10 interactive states as expected.
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P(TL) P(TR)
1 0.5 0.5
2 0.85 0.15
3 0.85 0.15
4 0.97 0.03
5 0.03 0.97

Table 5.6: Possible J beliefs

The various settings of the multi-agent tiger game are useful in order to test the
influence the agent I can have on the agent J reward factor. In the second experiment,
the various agents are playing in the same environment with the POMDP tiger agent. It
is possible to note the influence of the agent I on J ’s rewards. This concept is useful since
it shows the applicability of Interactive Partially Observable Markov Decision Processes
to those problems where the influence one agent can have on the other is fundamental,
like an assistant.

Example mean
Cooperative 9.2084
Neutral 7.1288

Competitive -4.5190

Table 5.7: Average discounted reward for Agent J with γ = 0.95

Figure 5.2: Discounted reward for Agent J with γ = 0.95

5.7 and 5.2 are formed by picking 400 samples from the whole execution dataset. The
result shows how the actions of I and its behavior influence the reward of J . However,
even if in 5.2 the behaviors are rather noisy, it is possible to recognize the agents by the
number of lower peaks of the three functions. The cooperative agent allows J to make
less errors than both the neutral and competitive agents.
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5.3 2-Level multi-agent tiger game
One of the main strength of the Interactive Partially Observable Markov Decision Process
framework is the possibility to define agents on various complexity levels. Julia.IPOMDPs
is structured in order to take full advance of this strength and make it as easy as possible
for the user to define nested models. In the 2-level multi-agent tiger game both the agents
are described as Interactive Partially Observable Markov Decision Processes : while I is
a 2-level I-POMDP, J is a 1-level I-POMDP. As a consequence I is emulating J which is
itself emulating I (this time as a 0-level POMDP). This example is relatively easy, but
it is enough in order to allow us to understand one of the main problems of Interactive
Partially Observable Markov Decision Processes : Computational and space complexity
as described in 2.2.2. The same data taken for 5.5 is taken. However, no mean value is
calculated due to the scarcity of elements.

run action time(s) update time(s) memory allocated (kB) IS size
1 9.2261 8.6383 415,816.0500 4
2 49.1595 40.7981 1,153,249.4400 6
3 125.6628 105.5685 2,890,821.1360 14
4 455.9217 385.2239 11,104,481.3120 28
5 1,701.2110 1,419.9813 42,872,848.4000 116

Table 5.8: Agent I run-time for 2-level I-POMDP

In fact, run times are significantly higher than the ones obtained in the former exam-
ples. This is expected due to the increased complexity of the problem. There are now
more interactive states to parse and, moreover, it is necessary to recurse more deeply in
the model structure. Even if some precautions in order to improve the execution time
have been adopted in section 4.3.2, it is interesting to note how the execution and the
memory time increase due to the curse of history. As a consequence we can confirm that
the explored gPOMDP table is useful only in case the program visits again the same belief
state (e.g. during IPOMDPs.actionP).

5.4 Agent model learning
Another interesting use of the Interactive Partially Observable Markov Decision Process
framework is to use its belief update function in order to learn the other agents’ model.
In this experiment, the task of agent J is still to maximize the multi-agent tiger game
reward, but the data we are interested in is its capability of recognizing the agent it is
interacting with.

In order to set up the experiment, we need to define the possible agent behaviors J
can assume:

• normal agent: This agent acts following the rules of the original tiger game.
• suicidal agent: This agent acts in the opposite way of the other. It is rewarded

whenever it is eaten by the tiger and it gets a strong penalty when it fails to do so.
I starts without any information neither on which agent he is playing with or the tiger

location and as a consequence its initial belief is:

TL TR φ

θj,n 0.25 0.25 0.5
θj,s 0.25 0.25 0.5
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The aim of the test is to recognize which agent I is playing with. After 250 runs in a
simulator where I is playing against the suicidal agent, the precision is extremely high as
shown in table 5.3:

Figure 5.3: Recognition of the normal Tiger POMDP

Learning the other agent’s model is very useful because allows the agent to take actions
depending on the behavior of the other agents it is interacting with.

5.5 Conclusions
Development of Interactive Partially Observable Markov Decision Processes by means of
Julia.IPOMDPs results smooth and straight-forward thanks to its interface architecture.
Due to the nature of the thesis work, it has not been possible to control all the parts
of developing such a project. There are several improvements which are left for future
development and possible research area. It has been shown the procedure used in order
to create the framework, but creating a software does not only require the design and im-
plementation phase. One immediate improvement of the work could be by implementing
a regression testing suite in order to provide consistent results in the future possible re-
leases. Moreover, Julia.IPOMDPs does not provide a simulator capable of easily handling
the agent testing phase. Reduction solver, even if it is affected by the problem explained
in 4.1, proves beyond expectations in terms of speed. However, it cannot be considered as
an exact I-POMDP solver. Whether or not it is possible to implement a correct reduction
respecting the POMDP belief update is left a matter of further research.
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Appendix A

Reduction formulas

A.1 Transition reduction formula

T (st−1, at−1
i , st | bi) = P (st | st−1, at−1

i , bt−1
i )

=
Ø

at−1
j ÔAj

P (st | st−1, at−1
i , at−1

j , bt−1
i )P (at−1

j | st−1, at−1
i , bt−1

i )

=
Ø

at−1
j ÔAj

P (st | st−1, at−1
i , at−1

j , bt−1
i )

×
Ø

mt−1
j ÔMj

P (at−1
j | st−1, at−1

i , bt−1
i , mt−1

j )P (mt−1
j | st−1, at−1

i , bt−1
i )

=
Ø

at−1
j ÔAj

P (st | st−1, at−1
i , at−1

j , bt−1
i )

Ø
mt−1

j ÔMj

P (at−1
j | mt−1

j )

× P (st−1, at−1
i , bt−1

i )P (mt−1
j | bt−1

i )P (st−1, at−1
i )

=
Ø

at−1
j ÔAj

P (st | st−1, at−1
i , at−1

j , bt−1
i )

×
Ø

mt−1
j ÔMj

P (at−1
j | mt−1

j )P (mt−1
j | bt−1

i )

(A.1)

A.1.1 Note: at−1
j indep. st−1, at−1

i , bt−1
i given mt−1

j :

It is part of the IPOMDP framework definition that the action aj is determined only by
the model mj .

A.1.2 Note: mt−1
j indep. st−1, at−1

i given bt−1
i :

It is part of the IPOMDP framework definition that the action aj is determined only by
the model mj . Moreover, mj is part of bt−1

i .
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A – Reduction formulas

A.2 Observation reduction formula
O(st, at−1

i , ot
i | bi) = P (ot

i | st, at−1
i , bt−1

i )
=

Ø
at−1

j ÔAj

P (ot
i | st, at−1

i , at−1
j , bt−1

i )P (at−1
j | st, at−1

i , bt−1
i )

=
Ø

at−1
j ÔAj

P (ot
i | st, at−1

i , at−1
j , bt−1

i )

×
Ø

mt−1
j ÔMj

P (at−1
j | st, at−1

i , bt−1
i , mt−1

j )P (mt−1
j | st, at−1

i , bt−1
i )

=
Ø

at−1
j ÔAj

P (ot
i | st−1, at−1

i , at−1
j , bt−1

i )
Ø

mt−1
j ÔMj

P (at−1
j | mt−1

j )

× P (st, at−1
i , bt−1

i )P (mt−1
j | bt−1

i )P (st, at−1
i )

=
Ø

at−1
j ÔAj

P (ot
i | st, at−1

i , at−1
j , bt−1

i )

×
Ø

mt−1
j ÔMj

P (at−1
j | mt−1

j )P (mt−1
j | bt−1

i )

(A.2)

A.2.1 Note 4: at−1
j indep. st, at−1

i , bt−1
i given mt−1

j :

It is part of the IPOMDP framework definition that the action aj is determined only by
the model mj .

A.2.2 Note 5: mt−1
j indep. st, at−1

i given bt−1
i :

It is part of the IPOMDP framework definition that the action aj is determined only by
the model mj . Moreover, mj is part of bt−1

i .

A.3 Reward reduction formula
R(s, ai | bi) :

=
Ø

ajÔAj

Ri(s, ai, aj)P (aj | bi)

=
Ø

ajÔAj

Ri(s, ai, aj)
Ø

mjÔMj

P (aj | mj , bi)P (mj | bi)

=
Ø

ajÔAj

Ri(s, ai, aj)
Ø

mjÔMj

P (aj | mj)P (bi)P (mj | bi)

=
Ø

ajÔAj

Ri(s, ai, aj)
Ø

mjÔMj

P (aj | mj)P (mj | bi)

(A.3)

A.3.1 Note: aj indep. bi given mj:

It is part of the IPOMDP framework definition that the action aj is determined only by
the model mj . Moreover mj is part of the belief bi
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Appendix B

POMDP Tiger game definition

B.1 States
S = {TL, TR}

B.2 Actions
A = {L, OL, OR}

B.3 Observations
Ω = {GL, GR}

B.4 Transition function

a State TL TR
OL * 0.5 0.5
OR * 0.5 0.5
L TL 1.0 0.0
L TR 0.0 1.0

Table B.1: POMDP Tiger game transition function

B.5 Observation function

a State GL GR
OL * 0.5 0.5
OR * 0.5 0.5
L TL 0.85 0.15
L TR 0.15 0.85

Table B.2: POMDP Tiger game observation function
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B – POMDP Tiger game definition

B.6 Reward function

a TL TR
OL -100.0 10.0
OR 10.0 -100.0
L -1.0 -1.0

Table B.3: Tiger game Agent J Reward function
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Appendix C

Multi-agent Tiger game definition

Definition for Agent I multi-agent Tiger game.
Agent J is considered to be defined as in Appendix B

C.1 States

S = {TL, TR}

C.2 Agent actions

Ai = {OL, L, OR}

C.3 Observations

Ωi = {GLCL, GLCR, GLS, GRCL, GRCR, GRS}

C.4 Transition function

éai, ajê State TL TR
éOL, ∗ê * 0.5 0.5
éOR, ∗ê * 0.5 0.5
é∗, OLê * 0.5 0.5
é∗, ORê * 0.5 0.5
éL, Lê TL 1.0 0.0
éL, Lê TR 0.0 1.0

Table C.1: Multi-agent tiger game transition function
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C – Multi-agent Tiger game definition

C.5 Observation functions

éai, ajê State GLCL GLCR GLS GRCL GRCR GRS
éOL, OLê TL 0.167 0.167 0.167 0.167 0.167 0.167
éOL, OLê TR 0.167 0.167 0.167 0.167 0.167 0.167
éOL, ORê TL 0.167 0.167 0.167 0.167 0.167 0.167
éOL, ORê TR 0.167 0.167 0.167 0.167 0.167 0.167
éOL, Lê TL 0.167 0.167 0.167 0.167 0.167 0.167
éOL, Lê TR 0.167 0.167 0.167 0.167 0.167 0.167

éOR, OLê TL 0.167 0.167 0.167 0.167 0.167 0.167
éOR, OLê TR 0.167 0.167 0.167 0.167 0.167 0.167
éOR, ORê TL 0.167 0.167 0.167 0.167 0.167 0.167
éOR, ORê TR 0.167 0.167 0.167 0.167 0.167 0.167
éOR, Lê TL 0.167 0.167 0.167 0.167 0.167 0.167
éOR, Lê TR 0.167 0.167 0.167 0.167 0.167 0.167
éL, OLê TL 0.765 0.043 0.043 0.135 0.007 0.007
éL, OLê TR 0.135 0.007 0.007 0.765 0.043 0.043
éL, ORê TL 0.043 0.765 0.043 0.007 0.135 0.007
éL, ORê TR 0.007 0.135 0.007 0.043 0.765 0.043
éL, Lê TL 0.043 0.043 0.765 0.007 0.007 0.135
éL, Lê TR 0.007 0.007 0.135 0.043 0.043 0.765

Table C.2: Multi-agent tiger game Agent I observation function

éaj , aiê State GLCL GLCR GLS GRCL GRCR GRS
éOL, OLê TL 0.167 0.167 0.167 0.167 0.167 0.167
éOL, OLê TR 0.167 0.167 0.167 0.167 0.167 0.167
éOL, ORê TL 0.167 0.167 0.167 0.167 0.167 0.167
éOL, ORê TR 0.167 0.167 0.167 0.167 0.167 0.167
éOL, Lê TL 0.167 0.167 0.167 0.167 0.167 0.167
éOL, Lê TR 0.167 0.167 0.167 0.167 0.167 0.167

éOR, OLê TL 0.167 0.167 0.167 0.167 0.167 0.167
éOR, OLê TR 0.167 0.167 0.167 0.167 0.167 0.167
éOR, ORê TL 0.167 0.167 0.167 0.167 0.167 0.167
éOR, ORê TR 0.167 0.167 0.167 0.167 0.167 0.167
éOR, Lê TL 0.167 0.167 0.167 0.167 0.167 0.167
éOR, Lê TR 0.167 0.167 0.167 0.167 0.167 0.167
éL, OLê TL 0.765 0.043 0.043 0.135 0.007 0.007
éL, OLê TR 0.135 0.007 0.007 0.765 0.043 0.043
éL, ORê TL 0.043 0.765 0.043 0.007 0.135 0.007
éL, ORê TR 0.007 0.135 0.007 0.043 0.765 0.043
éL, Lê TL 0.043 0.043 0.765 0.007 0.007 0.135
éL, Lê TR 0.007 0.007 0.135 0.043 0.043 0.765

Table C.3: Multi-agent tiger game Agent J observation function
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C – Multi-agent Tiger game definition

C.6 Reward function

éai, ajê TL TR
éOL, ∗ê -100.0 10.0
éOR, ∗ê 10.0 -100.0
éL, ∗ê -1.0 -1.0

Table C.4: Multi-agent tiger game Agent I Reward function

éaj , aiê TL TR
éOL, ∗ê -100.0 10.0
éOR, ∗ê 10.0 -100.0
éL, ∗ê -1.0 -1.0

Table C.5: Multi-agent tiger game Agent J Reward function

C.7 Variations

éai, ajê TL TR
éOL, OLê -50.0 5.0
éOL, ORê -105.0 60.0
éOL, Lê -99.5 10.5

éOR, OLê 60.0 -105.0
éOR, ORê 5.0 -50.0
éOR, Lê 10.5 -99.5
éL, OLê 49.0 -6.0
éL, ORê -6.0 49.0
éL, Lê -0.5 -0.5

Table C.6: Competitive tiger game Agent I Reward function

éai, ajê TL TR
éOL, OLê -150.0 15.0
éOL, ORê -95.0 -40.0
éOL, Lê -100.5 9.5

éOR, OLê -40.0 -95.0
éOR, ORê 15.0 -150.0
éOR, Lê 9.5 -100.5
éL, OLê -51.0 4.0
éL, ORê 4.0 -51.0
éL, Lê -1.5 -1.5

Table C.7: Cooperative tiger game Agent I Reward function

37



Bibliography

[1] Bernstein, D. S., Zilberstein, S., and Immerman, N. The complexity of decen-
tralized control of markov decision processes. Math. Oper. Res. 27 (2000), 819–840.

[2] Bezanson, J., Karpinski, S., Shah, V. B., and Edelman, A. Julia: A fast
dynamic language for technical computing. CoRR abs/1209.5145 (2012).

[3] Cassandra, A. R., Kaelbling, L. P., and Littman, M. L. Acting optimally in
partially observable stochastic domains. In AAAI (1994).

[4] Doshi, P. Decision making in complex multiagent contexts: A tale of two frame-
works. AI Magazine 33 (2012), 82–95.

[5] Doshi, P., and Gmytrasiewicz, P. J. Monte carlo sampling methods for approx-
imating interactive pomdps. J. Artif. Intell. Res. 34 (2009), 297–337.

[6] Egorov, M., Sunberg, Z. N., Balaban, E., Wheeler, T. A., Gupta, J. K.,
and Kochenderfer, M. J. POMDPs.jl: A framework for sequential decision mak-
ing under uncertainty. Journal of Machine Learning Research 18, 26 (2017), 1–5.

[7] Gmytrasiewicz, P. J., and Doshi, P. A framework for sequential planning in
multi-agent settings. J. Artif. Int. Res. 24, 1 (July 2005), 49–79.

[8] Gmytrasiewicz, P. V. . P. Sampling & updating higher order beliefs, 2010.
[9] Han, Y., and Gmytrasiewicz, P. J. Learning others’ intentional models in multi-

agent settings using interactive pomdps. In MAICS (2017).
[10] Hansen, E. A., Bernstein, D. S., and Zilberstein, S. Dynamic programming

for partially observable stochastic games. In AAAI (2004).
[11] Kurniawati, H., Hsu, D., and Lee, W. S. Sarsop: Efficient point-based pomdp

planning by approximating optimally reachable belief spaces. In Robotics: Science
and Systems (2008).

[12] Ng, B., Meyers, C., Boakye, K., and Nitao, J. J. Towards applying interactive
pomdps to real-world adversary modeling. In IAAI (2010).

[13] Oliehoek, F. A. Decentralized pomdps.
[14] Pineau, J., Gordon, G. J., and Thrun, S. Anytime point-based approximations

for large pomdps. J. Artif. Intell. Res. 27 (2006), 335–380.
[15] Poupart, P., and Boutilier, C. Vdcbpi: an approximate scalable algorithm for

large pomdps. In NIPS (2004).
[16] Russell, S., and Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.

Prentice Hall Press, Upper Saddle River, NJ, USA, 2009.
[17] Seuken, S., and Zilberstein, S. Formal models and algorithms for decentralized

decision making under uncertainty. Autonomous Agents and Multi-Agent Systems 17
(2007), 190–250.

[18] Seymour, R. S., and Peterson, G. L. Responding to sneaky agents in multi-
agent domains. In FLAIRS Conference (2009).

38



Bibliography

[19] Shapley, L. S. Stochastic games. Proceedings of the National Academy of Sciences
of the United States of America 39 10 (1953), 1095–100.

[20] Somani, A., Ye, N., Hsu, D., and Lee, W. S. Despot: Online pomdp planning
with regularization. In Proceedings of the 26th International Conference on Neural
Information Processing Systems - Volume 2 (USA, 2013), NIPS’13, Curran Associates
Inc., pp. 1772–1780.

[21] Sonu, E., and Doshi, P. Generalized and bounded policy iteration for finitely-
nested interactive pomdps: scaling up. In AAMAS (2012).

[22] Sonu, E., and Doshi, P. Scalable solutions of interactive pomdps using generalized
and bounded policy iteration. Autonomous Agents and Multi-Agent Systems 29, 3
(May 2015), 455–494.

[23] Spaan, M. Multiagent models for partially observable environments, 2007.
[24] Ye, N., Somani, A., Hsu, D., and Lee, W. S. Despot: Online pomdp planning

with regularization. In NIPS (2013).

39


	Summary
	Context
	Goals
	Methods and Results

	List of Tables
	List of Figures
	Motivation and Previous work
	Background
	POMDP
	solving POMDPs
	julia.POMDPs

	Interactive-POMDP
	Belief update
	Complexity
	Solving I-POMPs


	IPOMDPs.jl
	Definition
	Agent
	Frame
	Problem
	Initial state
	Model

	Initialization
	Usage
	Belief update
	Action selection

	IPOMDOToolbox.jl
	IPOMDOToolbox.pomdpModel
	IPOMDOToolbox.ipomdpModel


	Solving IPOMDPs
	IPOMDP to POMDP reduction
	Julia.IPOMDPs
	ReductionSolver.jl
	IPOMDP reduction
	Curse of history reduction


	Tests
	Test environment
	Multi-agent tests
	Performances

	2-Level multi-agent tiger game
	Agent model learning
	Conclusions

	Reduction formulas
	Transition reduction formula
	Note: ajt-1 indep. st-1, ait-1, bit-1 given mjt-1:
	Note: mjt-1 indep. st-1, ait-1 given bit-1:

	Observation reduction formula
	Note 4: ajt-1 indep. st, ait-1, bit-1 given mjt-1:
	Note 5: mjt-1 indep. st, ait-1 given bit-1:

	Reward reduction formula
	Note: aj indep. bi given mj:


	POMDP Tiger game definition
	States
	Actions
	Observations
	Transition function
	Observation function
	Reward function

	Multi-agent Tiger game definition
	States
	Agent actions
	Observations
	Transition function
	Observation functions
	Reward function
	Variations

	Bibliography

