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Abstract

This thesis aims to understand if machine learning techniques may be applied to
forecast the petrographical composition of a sample of soil given its mineralogical struc-
ture. The problem formalization requires predicting, from a set of continuous attributes
(mineralogical constitution), a set of continuous features (petrographical constitution).
The soil samples we have at disposal, for which both compositions are known, present
two challenges: their limited quantity and the non-uniform distribution of values of their
features. These distributions are approximatively gaussian or exponential.

We have addressed the prediction task with both regression and classification techniques.
In the second case, to obtain class labels, we have discretized petrographical attributes
using a custom methodology. This allows classifying a sample by indicating the possible
range of values of the attribute. We applied Linear, Lasso, Ridge and Support Vector
Machine (SVR) as regression techniques. The classification method used is the Decision
Tree. Furthermore, we tested a third regression approach exploiting Non-Negative Matrix
Factorization (NMF) technique. We have designed a way to evaluate the ability of regres-
sion models to predict less recurrent values in the dataset: it consists of two visual metrics
called regression-precision and regression-recall inspired by precision and recall classi-
fication metrics. Results show that models perform better on exponentially distributed
petrographical attributes. Linear, Lasso and Ridge regressions are more promising than
Decision Tree. NMF and SVR behave the worst. In the future we will focus on the
possibility to exploit some relations that partially link petrographical composition with
mineralogical one, with the help of a domain expert, trying in such a way to compensate
the lack of data with domain knowledge. However, although we still have not achieved
final results, our preliminary analysis reveal that there is the possibility to successfully

apply regression techniques for this kind of soil analysis.
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Part I

Background



Chapter 1

Introduction

1.1 Context

Soil analysis is important for oil companies in order to understand which areas are more
promising for oil and gas extraction. Geological samples are extracted to determinate
their internal composition, which is useful to evaluate the suitability of the area. A sample
constitution can be expressed in terms of minerals or rocks: respectively mineralogical
and petrographical composition. Mineralogy is the discipline that studies minerals.
Petrography instead focuses on rocks. Rocks are composed by minerals, this leads to
some dependencies between the two compositions. However, there isn’t a chemical
formula that allows to obtain petrographical constitution given mineralogical one. To
extract these two types of composition is necessary to subject the sample to two separated
procedures, one for mineralogy and one for petrography. Cost of performing the latter
is higher than the one required for the former. Unfortunately information provided by

petrographical composition are more interesting for this kind of soil analysis.

1.2 Objective

The aim of this thesis is to predict a sample petrographical composition given its min-
eralogical one, to avoid performing petrographical analysis, which is an expensive pro-
cedure. We apply our analysis to some samples for which both mineralogical and

petrographical constitutions are known. These compositions are expressed through a set
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1 — Introduction

of attributes. Each attribute codes a specific rock or mineral. Every sample posses values
for these features, representing the percentage of the rock/mineral present in the sample,
with respect to its total composition. The formalization of the problem is predicting
continuous values (petrographical composition) having at disposal a set of continuous
features (mineralogical composition). The difficulties of this specific application field
are the small quantity of data at disposal and the non uniform distribution of attributes.
In particular some attributes present an approximatively gaussian distribution, while oth-
ers an exponential one. The necessity is to predict correctly also those values that are
less recurrent in the dataset, especially for exponentially distributed attributes, where all
predictions tend to be part of a same range of values. Petrographical attributes that are
available for our study are organized in two versions, one is more general and presents
more attributes, while the other is an aggregated version of the first one. In practice
the last one presents a less detailed description of petrographical composition, because

groups of rocks are considered together.

1.3 Proposed solution and contribution

Three data mining techniques have been taken into account: regression, classification
and a Non Negative Matrix Factorization (NMF) based approach. Regression and classi-
fication work separately for each petrographical attribute: one different model is built for
each of them. All attributes of mineralogy are used to build the model together with the
petrographical attribute in consideration, no other attribute of petrography is exploited.

Regression is the more obvious choice. As already stated the formalization of the
problem is to predict continuous values having at disposal continuous features and this
is actually the aim of regression. Different regression models have been tested on the
dataset: Linear, Lasso, Ridge and SVR.

Classification, instead of predicting a continuous value, indicates a range in which
the real could fall. These ranges have been obtained discretizing attributes values. This
approach allows choosing properly ranges, to simplify the prediction of non recurrent
values. In fact, enlarging ranges leads to more samples per range, augmenting the
recurrence of the range in the dataset. This leads to a less precise prediction too, because

the value effectively assumable by the attribute belongs to a largest range. A limitation
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1 — Introduction

of this approach is that the prediction is strongly linked to the provided dataset: ranges
whose values are not present in the dataset will never be predicted. Only one classification
model is considered: the Decision Tree.

NMF approach exploits a different procedure: all petrographical attributes are pre-
dicted simultaneously, only one model is built. NMF has been chosen because it bonds
petrographical attributes with each other. Moreover it is possible to add further links
and constraints between attributes by slightly modifying the original algorithm. This
approach is treated and evaluated as a regression technique.

The evaluation of models performances has been done considering the need of cor-
rectly predicting less recurrent values. Classification is evaluated through F-measure,
precision and recall. These two last metrics are well suited to evaluate rare classes.
Regression is evaluated through Mean Absolute Error (MAE) and Explained Variance
Score (EVS). None of these two metrics allows to analyse in detail performances for less
recurrent values. Because of this need we have defined some custom visual metrics called
regression-precision and regression-recall to permit this kind of evaluation.

We also propose a way to compare performances of regression and classification models:
regression continuous predictions have been discretized. In this way a direct comparison
can be done by exploiting same metrics used for classification.

As we will see in Chapter 7 range enlargement strategy provides an improvement of per-
formances for Decision Tree, but Linear, Lasso and Ridge regressions in general perform
better than classification, SVR and NMF. It is worth mentioning that performances of
models strongly depend on petrographical attribute taken into account and its distribution.
Models perform in general better with exponential distribution with respect to gaussian

one.
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1.4 Overview

This thesis is divided into two parts. The former is a theoretical overview, the latter
concerns the presentation of the solution. First part is organized as follows.

An analysis of some regression techniques is reported in Chapter 2, while some clas-
sification ones are presented in Chapter 4. NMF mathematical procedure is shown in
Chapter 3, together with common data mining application fields. Discretization aim is
described in Chapter 5, with some common implementations.

The second part of the thesis, the proposed solution, is structured as reported below.
Chapter 6 starts with the description of the considered datasets (Section 6.1). Techniques
that we have decided to test on the dataset and the reason why we chose them are reported
in Section 6.2. Then, in Section 6.3, is reported in detail how each dataset is exploited for
models generation and validation. In particular custom implementations of discretiza-
tion and NMF approach are detailed respectively in Section 6.4 and in Section 6.5. An
overview of quality metrics is reported in Section 6.6. These are used in Chapter 7
to perform comparisons between different techniques and datasets. Finally conclusions

deduced by this work are reported in Chapter 8.



Chapter 2
Regression

In this chapter is performed an overview of regression technique. In Section 2.1 is
presented a general description and aim of the method, with an introduction to the ter-
minology used in this chapter. In other sections is provided a picture of some common
regression algorithms applicable to our dataset: more than one continuous feature used
to predict a continuous value. These techniques are Linear (Section 2.2), Lasso (Sec-
tion 2.3), Ridge (Section 2.4), Polynomial (Section 2.5) and Support Vector (Section 2.6)

regression.

2.1 Technique

Regression is a data mining technique that provides prediction of a continuous value
(predicted variable) given a set of features (predictors). A regression model is an entity
able to perform this kind of prediction. It aims to find the mathematical relation existing
between N predictors ({xi}i]\i’ol) and the predicted variable (y). The model stores a

function that approximates this relation:

g = f(zo,21,...,TNn-1) .1

The relation f, that links input features and the prediction (7), has a format dependent
on the specific regression method. This function presents some parameters that must be
learned by the model in the training phase. In the following sections some regression

methods are reported and the focus is given on f function and the way it is learned.
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2 — Regression

2.2 Linear

Linear regression technique is based on the assumption that the function linking predictors
and predicted variable is linear. Relation f, introduced in Equation 2.1, is then a linear

combination of predictors and has the format:
Y =apro+a1xy+ ... +ay_1xn_1+ay 2.2)

Parameters to be learned by the model are {a;}Y, coefficients. Given a certain training
set, these components can be found by minimizing a quantity, the loss function, that
expresses the error committed by the model in predicting training samples. There are
different types of loss functions and procedures to minimize it, as stated in [1]. A common
loss function is the sum of squared errors:

M-1

loss = Z (v — 9:)* (2.3)

=0
M is the number of samples in the training set, y; is the true value for sample 7 in
the dataset, while ¢; is the prediction for the i-th sample given by regression model.

Procedures that optimize this kind of loss function are called ordinary least squares [2].

2.3 Lasso

Lasso regression is a variant of Linear regression (described in previous section): it
supposes a linear relation between predictors and predicted variable. However, the
function to be minimized in learning phase is slightly different from Linear regression
one, with the aim to avoid overfitting. An operation that prevents from this phenomena
is called regularization. Overfitting is a condition showing up when a model learns too
much training set characteristics. This leads to wrong predictions when the model has to
forecast new unseen data. This is due to model inability to properly generalize what it

has learned. The function to be minimized is:
N-1
loss + \ Z |a| 2.4)
i=0

loss is to be intended as the one defined in Equation 2.3. The added term is needed to

activate or deactivate features: it performs feature reduction and parameters shrinkage.
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2 — Regression

Consider to minimize only the second term: it decreases the more values of {a;}x ' are
closer to zero.

If a; is equal to zero feature selection is performed: in Equation 2.2 the dependency of y
from z; is deleted. This avoids the model to learn from features that are not so relevant
to determine y value.

The fact that parameters are limited in magnitude is call parameters shrinkage. Limiting
parameters range performs regularization too: it avoids that they fit too much the training
set. In fact, allowing them only small variations, leads to the construction of a function
that has a limited complexity and consequently cannot follow exactly the trend defined

by the training samples.

2.4 Ridge

Ridge regression is a variant of Linear regression (Section 2.2) and presents the same aim
as Lasso (Section 2.3): to avoid overfitting. It has, as Lasso, same format of f defined
for Linear regression in Equation 2.2 and it adds a term to the function (Equation 2.3) to
be minimized. Differently from Lasso, no feature selection is performed by Ridge. The

function to be minimized is:

N-1
loss + A ) _a; (2.5)
=0

the second term substantially pushes values of {a;}2 ;' toward a zero, but forces none of
them to assume a zero value, as Lasso does. Ridge in conclusion avoids overfitting by
only shrinking coefficients. For a statistical and geometrical interpretation of Lasso and
Ridge see [3].

2.5 Polynomial

Polynomial regression is used when the following assumption on data is done: {z}Y*
and y are linked by a relation that is not linear. It proposes a relation f (with reference to
Equation 2.1) that is a polynomial function with grade greater than one. This means that
y cannot be well modeled by a first grade polynomial: a linear combination of {z}X ',

as for Linear regression (see Equation 2.2). When using this kind of regression it is
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2 — Regression

necessary to choose the proper grade of polynomial to use.

Polynomial regression, in practice, can be treated as a Linear regression. Polynomial in
fact is a sum of monomials. For translating the problem from a Polynomial regression to
a Linear one all operations among literals defined by monomials are applied to predictors.
The result of this operation is a new set of predictors, whose cardinality is equal to the
number of monomials, on which to apply Linear regression. An example is given with a

second grade polynomial in two variables:
Uy = apxo + a1y + agzztg + Clgl'% + agxor1 + O (2.6)

This is the relation f (with reference to Equation 2.1) for a Polynomial regression having
as predictors x( and ;.
For treating it as a Linear regression, operations defined by monomials are applied to

obtain new predictors:

Xo = Zo
Xy = x1
Xo= a2 2.7)
X3= 22
X4 = wor1

This is done for all elements in the dataset and leads to a new dataset whose records
are made of five predictors {X;}?_,. These new features are exploited using Linear

regression, solving a problem that is equivalent to the one defined by Equation 2.6:

Uy = aoXo+ a1 X1 + aeXo + asXs + as Xy + as (2.8)

2.6 SVR

Support Vector Machines are supervised learning methodologies used for both classifi-
cation and regression. In the case they are used for regression, the technique that exploits
them takes the name of Support Vector Regression (SVR). Its aim is to find a function f

that has the same format as for Linear regression (see Equation 2.2), that links predictors
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and predicted value. First of all the same function is presented in vectorial form:

(
a= (&1,@2,...,&]\],1) (29)

minimize
(2.10)
under conditions

a - ¥ — ay is the prediction of SVR for 7, y is the true value and ¢ is a tolerance factor
that indicates a range inside which the prediction can be considered correct. The part
to be minimized presents again the same concept of regularization explained for Lasso
(Section 2.3) and Ridge (Section 2.4) regression.

Moreover SVR provides a way to model relations between y and 7 that are non linear.
Note that all vectorial operations in Equation 2.10 exploits the dot product. Kernel
functions provides a definition of the dot product in a space in which the function to be

modeled is linear.
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Chapter 3

NMF

In this chapter a mathematical presentation of Non Negative Matrix Factorization is done
in Section 3.1. In Section 3.2 state of art data mining application fields of NMF are
described: recommendation systems, feature extraction and clustering. In particular,

focus is given on the interpretation that each application ascribes to NMF procedure.

3.1 Technique

Non Negative Matrix Factorization is a procedure that allows to express a matrix 7', in

function of two other matrices X and Y, by factorizing it:
T~XY (3.1)

X and Y are non negative, algorithms for calculating them are proposed in [4]. The
purpose of these algorithms is to solve the following problem:

min d(T, XY) (3.2)

d is a measure of dissimilarity between two matrices, in such a case 7" and XY. It must
be minimized to obtain a matrix XY = 7' similar to 7.

Speaking about dimensions, if 7" matrix has size M x N, X has size M x K and Y
K x N, K is chosen minor of min(M, N).

14



3 - NMF

3.2 Applications

State of art applications exploiting NMF are recommendation systems [5], feature extrac-
tion [6] and clustering [7]. In the following a brief description of how NMF is adapted to

each application field is given:

* Recommendation system is used in the scope of users assigning ratings to items.
Not all items are rated by all users. It aims to predict the rating that a user would
give to an item. This problem can be formalized by creating a matrix of dimensions
|users| x |items| holding in each entry the rating that the user has given to the item.
This matrix presents unknown values. Considering it the 7" matrix, matrices X and
Y are built exploiting known entries only. In such a way it is possible to build, by

multiplying X and Y, the new matrix T filled with values that were unknown in 7.

* Feature extraction is a technique used to reduce dimensionality of data. A data
sample is described by a set of M features. The aim is to transform them in such a
way that the same sample can still be completely characterized by a reduced number
of features. In practice the problem is to project data from a M -dimensional space
to a K -dimensional one, with K < M. Considering every sample a vector of
features, 7' matrix is built by organizing samples as columns. In this way the
resultant matrix is a M x N matrix (/N is the number of samples). Columns of
matrix Y can be considered as same records in 7’ columns represented in a different

feature space, where number of features is equal to K&'.

* Clustering aims to find common features conformation in data records. It agglom-
erates similar data in groups (clusters) and provides for each of them an element
(centroid) that is promoted to representative of the cluster. Arranging again samples
in columns, matrix 7" is composed by M x N entries, N is the number of samples
and M the number of features. The idea behind the use of NMF for clustering
lies in the fact that matrix X can be considered as a list of K centroids, one for
each column. While Y matrix can be seen as an indicator of membership. So a
sample 7; is member of a cluster with centroid X; only if the element Y); indicates
membership. Membership is represented by 1 value, while non membership by 0.

This means that Y has only one non zero value per column. In such a way formula
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in Equation 3.2 acquires the meaning of finding clusters centroids similar as much

as possible to records that belong to them.
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Chapter 4
Classification

In this chapter a high level definition of classification is given in Section 4.1. It follows
a description of some classification methods adaptable to our study. Our dataset requires
in fact the use of a multi-label classification, for each attribute there are typically more
than two class labels, in such a case we would speak about binary classification . Features
characterizing data are continuous. For this purpose suitable algorithms are: Decision
Tree (Section 4.2), Neural Network (Section 4.3), Rule Based (Section 4.4), K-Nearest
Neighbor (Section 4.5) and Support Vector Machine (Section 4.6).

4.1 Technique

Classification is defined as the task of associating a category/class label to a given
input sample described with a set of features. A classifier is a model able to perform

classification after learning from a set of training data.

4.2 Decision tree

Decision Tree is a classification technique that provides a tree shaped classifier. In leaf
nodes are assigned the labels. Every other node expresses one (binary splitting) or more
conditions (multiway splitting) on a feature. When an input sample is supplied to the
classifier it follows a path of the tree from the root node to a leaf, according to conditions

satisfied by the value of its attributes. The leaf in which it arrives provides its label. An
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example of a simple Decision Tree trained model is reported in Figure 4.1.

There are different ways to build a Decision Tree, the most common is a top down
inductive approach [8]. This approach is described in the following. The learning phase
organizes all samples in the root node of the tree, that has initially only one node: the
root. A feature and relative conditions to associate to the root node are chosen. For binary
splitting two splits (partitions of the training set) are created: the first is composed by
samples for which the condition is verified and the second one by samples for which it is
not. For multiway one the number of splits is equal to the number of conditions, samples
are assigned to splits depending on which of them is verified.

Purity index is the metric that is used to choose what is the best attribute and relative
conditions to assign to the node. It is calculated on splits and expresses the uniformity of
labels distribution inside them: the more samples present the same label the higher the
index is. Some purity indexes have been summarized in [9]. A branch for each split is
created and splits are routed in the appropriate branch. Branches terminate with a node,
here the process starts again till one node is pure. Pureness means that in the node, all
training samples are of the same label. This node is promoted as a leaf and the label
of samples is assigned to it. The constraint of pureness can be relaxed by specifying a
minimum value of purity index as acceptable for promoting the node as a leaf. In this

case the majority class among samples is assigned to the node.

4.3 Neural network

Neural Network (NN) can be either a supervised and unsupervised machine learning
technique. In this section the focus is given on supervised NN that are used for classifi-
cation problems. NN is inspired by the organization of human brain. A neural network
is composed by neurons and connections. Neurons are unit of calculations while con-
nections link neurons each other. Neurons are organized in layers, each one in a layer
is independent from all others in the same layer, this means that NN are suited for par-
allelizing calculations. Output layer, the last one, has a number of neurons equal to the
number of classes, and has the aim to indicate the class of belonging of the input sample.

Learning of a Neural Network consists of properly assigning weights to connections

on the basis of a loss function, that represents the error of prediction committed by the
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Condition
on attribute A

Verified Mot verified

l

Condition 1,
Condition 2,
Condition 3

Condition on attribute B Condition

1 verified 3 verified

Condition 2
verified

Class 3

Figure 4.1: A Decision Tree trained model. It is the result of two splitting operations.
The first node is an example of a binary splitting performed on attribute A. While the
other condition node shows a multiway splitting on attribute B.

network for a given training sample. This process is iterative: the whole training set is
seen more than one time by the network, and weights are updated according to the loss
function till convergence or till a finite number of iterations.

A single layer Neural Network is able to properly classify data that are linearly
separable, a two layers one can design convex decision boundaries, while a three layers

one can potentially design any decision region [10].
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4.4 Rule based

A Rule Based classifier is a classification model based on rules. A rule has the form
if <condition> than <class>

Condition is expressed on values of features. The model is composed by a database of
rules. When a new record has to be labeled, a rule that covers it (a rule whose condition
is satisfied by the new record) is searched in the database.

Rules can be:
 exhaustive: every sample is at least covered by one rule.
* mutually exclusive: every sample is at most covered by one rule.

If rules are not exhaustive a default label must be provided, because some records can
potentially not be covered by any rule. If they are not mutually exclusive a system must
be defined to decide which label of matched rules has to be assigned to the record.
Learning this kind of rules is a process called rules induction, in [11] are reported
some algorithms able to perform it. One method consists of using a Decision Tree
classifier (presented in Section 4.2): every path of the tree, from the root to the leaf is
converted to arule. Every rule is then composed by the logic AND of conditions in nodes
of the path, according to the followed branches that lead to the leaf. Rules built in such a

way are exhaustive and mutually exclusive.

4.5 K-Nearest Neighbor

K-Nearest Neighbor (KNN) is classification technique that exploits the concept of data
similarity. A survey of similarity measures is done in [12]. Training set is used as a
database. The classification of a new sample is provided by selecting the closest (in terms
of similarity) K samples in the database. These records are called neighborhood. The

class label assigned to the new sample is the label of majority in the neighborhood.
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4.6 SVM

SVM, as already said in Chapter 2, can be used both for regression and classification.
Learning phase of this type of classifier, seeing the problem in a R" space, where
N is the number of features, aims to find more hyperplanes that are able to separate all
samples belonging to different classes. The way in which hyperplanes are calculated aims
to maximize the distance between hyperplanes and samples coordinates. In particular
during learning, SVM creates a margin around the hyperplane inside which no point is
likely to lie. This margin must be maximized during the learning phase. Obviously,
some margin of misclassification is tolerated by the algorithm. The operation required
for learning is the dot product between vectors, considering samples vectors of features.
Hyperplanes based separation requires every class in the dataset to be linearly separable
from each other. If it is not the case SVM define some kernel functions that provides the
definition of dot product in a space where these are linearly separable.

A class label is associated to a new sample according to its position in the space, i.e.

in which area delimited by hyperplanes it falls.
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Chapter 5
Discretization

In this chapter is presented discretization as a procedure finalized to machine learning.
In Section 5.1 is reported its purpose and the distinction between supervised and unsu-
pervised discretization is clarified. The dataset we exploit is not suitable for applying
supervised one, because there are no class labels and the attribute we want to discretize
is the one to be predicted. For this reason only unsupervised techiniques are reported in
Section 5.2.

5.1 Technique

Discretization is a data transformation technique that is applied to reduce data domain
and to make data conform to the use of algorithms that require categorical attributes.
Discretization operates on continuous features. The aim is to provide some bins/cate-
gories/integers that became the new domain of a feature. In practice domain of the feature
migrates from a continuous to a discrete one. These discrete counterparts can then be
interpreted as intervals or categories.

Discretization can be supervised or unsupervised [13]. The former is done by only
considering feature values distribution among records, while the latter takes into account
also the class label of records. In the last case it is possible to create groups of samples,
that will be associated to the same discrete value, by optimizing a function dependent
from labels distribution inside the groups. This provides a discretization that is finalized

to improve performances of a later performed classification.
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5.2 Equal Width and Frequency binning

Binning is an unsupervised discretization technique that is used to create bins out of a
continuous values distribution. Bins are intervals of feature values. After discretization
every sample is assigned to a bin, that represents the new value of the new discretized
feature. A sample is assigned to a bin if its non discretized feature value falls inside
of that interval. A parameter of binning discretization is the number of bins to create:
N, that is also the dimension of the new discretized feature space. Feature continuous

domain is divided into N intervals. There are two ways of performing this division:

* Equal width binning provides bins having the same width. Suppose that values
assumed by the feature (z) are contained in a domain limited by [, r € R, z € [l, r].
Equal width binning generates bins of width ceil (”T_l) The number of samples
per bin is dependent from the distribution of feature values.

* Equal frequency binning generates bins in such a way that the number of records
perbin is equal. Bins have a number of samples equal to floor(A /N) or ceil (M /N),
with M the total number of samples. The width of these bins is dependent from
where is necessary to cut the initial interval for having the defined number of

samples per bins.

Equal width maintains initial data distribution of samples while frequency binning makes

uniform the final data distribution.
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Implementation

24



Chapter 6

Method

In this chapter, the practical implementation of our solution is described. In Section 6.1, a
detailed description of the two datasets we have at disposal is given, underlying difficulties
related to them and relations existing between petrographical and mineralogical attributes.
In Section 6.2, with reference to the analysis on regression and classification done in
Chapters 2-4, are reported which techniques we have chosen to be tested on the datasets
and why. In Section 6.3 is depicted the process that, starting from the row data, arrives
to obtain prediction results evaluable with metrics that will be described in Section 6.6.
The discretization methodology we designed for obtaining class labels is explained in
Section 6.4. The use we have done of NMF procedure for solving the regression problem

is clarified in Section 6.5

6.1 Dataset

The dataset under analysis is composed of NS samples (NS = 62) presenting a set of
mineralogical attributes (M) and petrographical features (P). Petrography and Miner-
alogy are two different ways of expressing the chemical composition of a geological
sample. Petrography expresses composition in terms of rocks, while mineralogy in terms
of minerals. Each petrographical and mineralogical attribute represents, respectively,
a rock or a mineral. Features domain are floats between 0 and 100; they express the
percentage of the feature present in the sample, with respect to its total composition. This

means that, for a given sample, the sum of all values of the petrographical attributes is
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100 and the same property applies to the mineralogical ones:

D =100 and Yy =100 (6.1)
ieM jep
where x; and y,; are the values assumed by 7 mineralogical and j petrographical attribute
for sample k£, respectively. A graphical representation of the dataset structure is reported
in Figure 6.1. The presented notation is used in all the rest of the thesis when possible.
Each attribute value is affected by an absolute measurement error around 8%, mainly
due to the precision of the machinery used to extract composition from the geological
sample. In the rest of the thesis the percentage symbol is always omitted when values of

attributes and errors are reported.

Mineralogy Petrography
| attribute
sample
sampte Xoma Xomb Xome Yopa Yopb Yopc
xlma leb X:er: e Ylpa Yipb Ylpc
XZma X2mb X2rm: e Y2pa YZpb Ych

Iy

attribute value

Figure 6.1: Portions of mineralogy and petrography matrices reporting notation and
terminology.

The dataset is provided in two versions. The number of attributes of mineralogy, for
both versions, is | M| = 10. For petrography, instead, some rocks are considered grouped
together in one version, with respect to the other, this means that it is a less informative
version. The grouped dataset version will be called “aggregated dataset” while the second
will be named “non aggregated dataset”. The latter version has a number of petrographical

attributes equal to | P| = 26, while the former has only |P| = 7. Aggregation means that
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some attributes are collapsed together by summing up their values:

Yi= > va (6.2)

kEARj
Y;; is an element (attribute j value for i-th sample) of the aggregated dataset. AR stands
for Aggregation Rule. There is one aggregation rule for each attribute of the aggregated
dataset. Each aggregation rule is expressed by a set of non aggregated attributes, that are

going to compose the aggregated one. Aggregation rules are reported in the following:

ARpa={pal,pa2,...,paS}

ARpp = {pbl}

ARpc = {pcl}

ARpp ={pdl, pd2, pd3, pd4}

ARpg = {pel, pe2, pe3}

ARprp = {pfl, pf2}

ARpc =1{pgl.pg2,...,pg7}
As it is possible to see some attributes are present in both datasets. These are called PB,
PC in the aggregated dataset and pb1, pcl in the non aggregated one.

During this thesis if no specification is provided the dataset in analysis has to be
considered the non aggregated one.

Notice that a rock composition can be expressed in terms of minerals, because rocks
are agglomerates of minerals. Unfortunately there is no chemical relation that links pet-
rographical composition to mineralogical one. However, a partial relation exists because
in each rock type can only be present a limited set of minerals. Given this observation the
problem could migrate to a different formulation: how a mineralogical attribute spreads
into petrographical attributes it is allowed to. In the following a formalization of these
relations is given.

Attributes are organized in 5 groups, identified through colors. Minerals in a group can
only spread into rocks of the same group. This leads to the following property: summing
up all the values of mineralogical attributes belonging to a group the result should be

equal to the sum of all the petrographical attributes of the same group. In formula:

Z Tpi = Z ykj, Vg € {purple, green, blue, orange, red} (6.3)

i€ My JEP,
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where £ is a specific sample, M, and P, are respectively the sets of attributes of mineralogy
and petrography belonging to the g-th group of attributes. To clarify the correspondence

between colors and attributes, the M/, and P, sets are listed below:

Myurpie = {ma}

Mypiye = {mb, mc, md}
Myreen = {me, mf'}
Meq = {mj}

Morange = {mg’ mh, ml}

Pourple = {pal, pa2, ..., pa8, pbl, pcl}
Pywe = {pdl, pd2, pd3, pd4, pel, pe2, pe3}
Pyreen = {pfl, pf2}

Prea={pg7}

Porange = {Pg1, pg2, ...pgb}

As we will see in the next section, these kind of relations are unfortunately non exploitable

for our study.

6.1.1 Consideration on error of measurement

It has been decided not to exploit properties reported in Equation 6.1 and 6.3 because of
an evidence that came up during a dataset exploration. In fact the relation in Equation

6.3 is not satisfied for all samples, i.e.:

D wi— Y Yk =Dk with Ay #0 (6.4)
€My JEP,
where Ay, specifies how much, for a given group g and a given sample k, the sum of
petrographical attributes differs from the sum of mineralogical attributes.
Boxplots of Ay, distributions can be observed in Figure 6.2. It is possible to see that for
the green group, 75% (III quartile) of samples present a Ay, under 10, while the largest
Ay, is above 20. An explanation of this evidence can be that propagating the measurement
error of individual attributes values to their sum leads to a more significant uncertainty.
It is not trivial using these sum relationships between mineralogy and petrography for

the predictions, because they are extremely affected by measurement errors. In fact they
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can totally mislead predictions. For now, these constraints based on sums have not been

taken into account, but they will be exploited for future analysis, with the support of a

domain expert.

10 range = 21.8

o

o

range = 21 15
10 o
°
5
range = 6.3

purple

range =6.3

oo

00

green blue

|mo 000 0 O

range =0.2 ‘ .

orange

red

Figure 6.2: Ay, boxplots, see Section 6.1.1 for explanation. Each boxplot shows how
values are distributed (I, II, IT and IV quartiles). Black dots correspond to isolated values

and are called outliers.

Table 6.1 reports petrographical attributes that in the whole dataset never assume

a value greater than the error of measurement (8). Values for all these attributes are

smaller than the measurement error and this characteristic makes difficult to evaluate the

prediction quality. Hence the predictions for these attributes will not be considered in the

following analyses. For these attributes it is needed further domain knowledge such as

specific (possibly lower) measurement errors or whether their prediction is fundamental

from a domain expert perspective.
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Attribute | Maximum Value
pa3 7.98
pad 2.53
pas 2.02
pa6 0.53
pa7 1.08
pa8 5.89
pd2 4.65
pd3 2.71
pe2 4.01
pf2 1.59
pgl 1.55
pg2 1.54
pg3 1.08
pgd 2.68
pg7 2.11

Table 6.1: Maximum values for attributes whose distribution stays under 8.

6.1.2 Distribution

Distribution presented by values of mineralogical and petrographical attributes is sub-
stantially of two types: exponential or gaussian. These distributions however span over
different values. This means that not all attributes have the same range of variation, they
tend to assume values always in an interval that it is proper of the attribute. As already
seen in Table 6.1, there are attributes whose values always ranges under 8 (the measure-
ment error). For completeness maximum value of remaining petrographical attributes is
reported in Table 6.2. In Table 6.3 are contained histograms presenting datasets attributes
distribution. Examples of gaussian distributions are: mf, PF and pf1; while exponential

ones are: md, PB, pd4.
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Attribute | Maximum Value
pal 66.80
pa2 10.58
pbl 43.47
pcl 19.89
pdl 8.76
pd4 40.33
pel 11.54
pe3 16.06
pfl 40.18
pgs 11.46
pgb 9.62

Table 6.2: Maximum values for attributes whose distribution spans over 8.
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Mineralogical attributes distribution

mf mg mh mi mj

Aggregated petrographical attributes distribution

bbb L

PE

PG

Petrographical attributes distribution

pd4 pel pe3 pfl pgs

-

pgb

Table 6.3: Distributions of attributes.
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6.2 Prediction techniques selection

The aim of our study is to predict, from a set of continuous features, a set of continuous
values i.e. from mineralogical attributes, predict petrographical ones. We decide to dif-
ferentiate our approach by exploiting both regression and classification techniques and to
apply a NMF based approach. This latter approach is described in Section 6.5.
Since values to predict are continuous, for classification approach is necessary to oppor-
tunely discretize the attributes to predict, to use discretized values, coded as intervals, as
class labels. The process of discretization is described in Section 6.4.
Discretization and regression models are applied separately for each petrographical at-
tribute, while NMF aims to capture also internal relations between petrographical at-
tributes, only one model for all attributes is built.

In Chapters 2-4 common regression and classification algorithms applicable to our
dataset have been described. In this section is reported which of them have been selected
for the problem in analysis explaining the main reason why they have been chosen.

Substantially our datasets present two challenges:

* Small dataset, only 62 samples with 10 features. Small with respect to the
suggested number of samples to be exploited for a regression problem [14] and for

a classification one [15].

The main problem in applying machine learning to a small dataset is overfitting
[16]. There is not a way to surely avoid overfitting, but in general the model has
to be as simple as possible, to avoid that a complicate model adapts too much to
training data. For such a reason we decided to exploit Linear regression, supposing
a linear dependence of predicted variable from predictors. To avoid overfitting,
regularization techniques Lasso and Ridge have been selected. For exploring a
non linear relation we opted for SVR with a Radial Basis Function (RBF) kernel,
which is a kernel composed by an infinite sum of polynomial kernels. Polynomial
kernel is used when a polynomial relation of defined grade between y and ¥
is supposed. Hence, RBF could be a complete way to exhaustively evaluate a
polynomial dependency. We try to use as classifier the Decision Tree, because of
its interpretability and the possibility to extract association rules from it, that can

be analyzed and eventually modified by a domain expert.
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* Non uniform distribution of predicted variable and, as a consequence, non bal-
anced distribution of class labels. This can be a problem for classification tasks
as stated in [17]. Theoretically there is no problem for linear regression, as no
particular assumption is done on the distribution of y [18]. For classification this
problem is typically approached in two ways when no other data can be easily
retreived [17]:

— undersampling, that means reduce the number of labels of the majority classes

to reach balance.

— oversampling, that means replicate samples belonging to the minority classes,

with the same purpose of reaching class balance.

We have truly too few data to apply an undersampling strategy because, especially
for exponential distributed attributes, some class labels are presented by a very
limited number of samples (such as 1 or 2). In this situation undersampling
for obtaining such a number also for majority classes would lead to a very poor
resulting dataset. Oversampling strategy presents a problem too. With such a
few samples per class label, replicating them will probably prevent the model to
properly generalize rules for classifying them. In conclusion none of these two
techniques have been applied; but this problem has been addressed in the process
of discretization (Section 6.4), by enlarging ranges of intervals to create more

samples belonging to the poorly populated labels.

34



6 — Method

6.3 Process overview

Summarizing what has been stated in Section 6.2, machine learning techniques that have

been applied to both aggregated and non aggregated dataset are:
* Regression

Linear

Lasso

Ridge

Support Vector Machine
* Classification

— Decision Tree
* NMF

An important phase of our work is the comparisons between these techniques. We
have used some metrics, as we will see in Section 6.6, to evaluate results (predictions
performed for the test set) of different techniques and to quantitatively and graphically
compare them. As we have a small number of samples, we use a leave one out approach,
in this way the number of samples used for training the model is maximized to avoid
overfitting. In leave one out process VS models are created, each one trained with NS — 1
samples and tested with the remaining one. For every model the sample used for testing
is different. At the end of leave one out process a new database with all predictions for
every sample is created. Figure 6.3 depicts the outline of the process. This pipeline,
for regression and classification techniques, has been repeated for each petrographical
attribute in the dataset. While for NMF this is applied only one time, because NMF model
predicts all petrographical attributes jointly. Notice that for the Decision Tree classifier a
preprocessing step is required, in fact attributes of petrography must be discretized before

applying the whole pipeline.
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For all NS samples

Figure 6.3: Leave one out strategy.

6.4 Discretization

Consider that petrographical values to predict are continuous. As we said in Section 6.2
we would like to exploit a classification technique for our study. A classifier is able to
learn and predict samples labels, not continuous values. For such a reason petrographical
attributes have been discretized to find ranges to be used as labels for the Decision Tree.
Every attribute has its own intervals. Instead of using standard discretization techniques
reported in Section 6.4 it has been designed a method useful to consider both the non
uniform data distribution and the error of measurement on values of the attributes. Our

custom discretization procedure is composed of two phases:
1. creation of uniform bins
2. collapse of bins

The first phase consists in creating for each attribute a number of bin equal to:

e

NB = ceil <M> (6.5)

where e is the measurement error, Ym,x and Y, are respectively the maximum and
minimum petrographical value in the dataset for that attribute. This means that the
number of bin is dependent on the error of measurement.

An equal width binning discretization is applied (refer to Section 5.2), by using NB as
36



6 — Method

number of generated bins. This phase may lead to empty or not much populated bins
because of non-uniform values distributions. Notice that a Decision Tree classifier can
predict a label only if it is present in the training set. For this reason bins made of only
one sample and empty bins cannot be used in the classification process. The motive
is evident for empty bins. For one-element bins the reason is linked to leave one out
approach (Section 6.3). When the sample belonging to one-element bin is used in test
set its label is not comparing in the training set; the Decision Tree built in such a way
does not present the interested label in leaves and so it has not the possibility to properly
classify the test sample. Hence, not less than two samples per bin must be present in
the dataset. In this way at least one sample of the two is present in the training set for
each classifier generated in leave one out approach. Notice that the more samples are
present in a bin the more likely the model will correctly classify them, because it has
more examples for learning.

The solution to the sparse distribution of data, which entails the presence of bins with
less than two samples, is to collapse them, creating larger and more populated intervals.
This is performed by the second phase of the discretization process. Bins are collapsed
only when necessary, trying to maintain data values as more differentiated as possible. In
our process poorly populated bins are collapsed together with the less populated adjacent
bin. Collapsing two adjacent bins means expanding the first one in such a way that it

includes the second one:

B1 =[ly,r1)
B2 = [ly,19)
B1 and B2 are two adjacent bins 6.6)
adjacency imposes 1| = o
the resultant collapsed bin 512 is:

B]Q = [Zla TQ)

A pseudocode of the collapsing procedure is reported in Algorithm 1. The input parameter
mains represents the minimum number of samples that are required for not collapsing a
bin. It is tunable and controls the trade off between number of sample in bins and the
width of the intervals.

After applying the discretization method some attributes present only one bin. The

problem with this type of attributes is that it makes no sense to build a classifier, since
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there is only one class. The creation of only one bin can happen in both discretization

phases:

1. If the width of attribute range of values is, for all samples, minor or equal to the

measurement error. The first phase, in this case leads to the creation of only one

bin because starting from Equation 6.5:

0 S Ymax — Ymin S
(&

6.7)

1o

On this quantity the ceil function is applied, leading to NB = 1

. The first phase terminates with the creation of more than one bin, but the bins

collapse cause only one resulting interval. This happens because condition in line
5 in the pseudocode (Algorithm 1) is never satisfied for all iterations: less populated
bin, at each iteration does not reach the minimum number of samples for not being

collapsed.

In Figure 6.4, is shown the result of the discretization process on attribute pd4.

Algorithm 1 Collapsing procedure

Require: mins > 2
1: nb < number of bins
2: while nb > 1do

3:

10:

N A A

b < bin with less samples
ns <— number of samples of b
if ns > mins then
return > all bins have a sufficient number of samples
else
be, bd < bins adjacent to b
ba <— who has minimum number of samples between bc and bd
collapse b and ba
nb=mnb—1
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pd4
15 20 25 30 35 40
15 20 25 30 35 40

Figure 6.4: In the first histogram is reported the distribution of pd4 with a bin size equal to
4. In the second one red lines indicate borders of bins deriving from discretization process
for pd4, on y-axis is reported the number of samples belonging to the bin. Considered
error is 4, the minimum number of samples per bin is 2.

6.5 NMF approach

Some state of art applications of NMF have been summed up in Section 3.2. We exploit
NMF procedure for performing regression. Refer to Equation 3.1 for notation. We have
built matrix 7" by inserting training samples as rows. Samples are to be intended as

vectors of values of attributes, first mineralogical then petrogrephical ones.

tk = (xi,ma7 Timbs - -+ s Limgr Yi,pal s Yi,pa2s - - - 7yi,pg7) (68)

i is sample identifier. t, is the k-th row vector in matrix 7. The insertion of all training

samples leads to a 7" matrix that is made by NS — 1 rows and |P| 4 | M| columns. Given
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the test sample with id j, for which to predict petrographical values, its mineralogical

values are added to the matrix, while petrographical are left unknown:
z(:NS—I = (xj,ma» Ljmby+++sLjmg, ?7 ?7 CII) ?) (69)

Now, the same procedure exploited for recommendation system application field is applied
(Section 3.2). Matrix 7' is calculated such that T ~ XY = T and it holds predictions for
test sample in elements {TNS,lﬂ-}Lfl']\;"P'*l. Notice that this kind of procedure forecasts
all petrographical attributes jointly. This could allow to express other relations among
attributes, such as ones listed in Section 6.1, adding some constrains to the minimization
problem of NMF.

This approach is not suitable for a big 7" matrix, because every time a prediction is
needed, computational time for solving NMF problem (Equation 3.2) is required. Our

small dataset is totally suitable for this kind of approach.

6.6 Metrics

In following subsections are briefly presented and described quality metrics used to
evaluate and compare results obtained by algorithms we applied on the datasets. In
particular in Subsection 6.6.1, state of art used regression metrics are listed. In Subsection
6.6.2 the same analysis is applied for classification metrics. Instead, in Subsection
6.6.3 are reported some custom metrics we have defined for evaluating the behaviour of
selected regression techniques when facing rare values. In the end (Subsection 6.6.4)
some considerations have been done on the strategy we adopted to compare regression

and classification results.

6.6.1 Regression Metrics

The quality metrics that have been taken into account for evaluating and comparing
selected regression techniques (remarked in Section 6.2) are: MAE (Mean Absolute
Error), EVS (Explained Variance Score) and some custom metrics that will be detailed

in Subsection 6.6.3.
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MAE

MAE is calculated both per attribute and globally. It is the mean of absolute errors made

in predicting values. More formally:

S s — v

MAE,; = ==0 NSJ J (6.10)
_ MAE;

global MAE = % 6.11)

where MAE; is the MAE for the j attribute, y;; is the predicted value for sample ¢
and attribute j, y;; is the actual value (target), NS is the number of samples in the dataset.
The best value reachable by MAE is 0 and it is obtained when all predicted values are

equal to the actual ones.

EVS

EVS is a metric defined per attribute. It expresses the ability of the model in predicting
variations of attribute values. The best value that this metric can assume is 1. Lower
values (can also be negative) mean worse quality of the predictions. If the error |g;; — v;;|
of all the predictions (V7) for a j attribute is constant, the EVS will assume the value
1. This because adding an offset to the predictions of the model would give the correct
expected values. The EVS mathematical definition for a given attribute is:
Var(y — §)

EVS =1 —
Var(y)

(6.12)

6.6.2 C(lassification Metrics

As we have an high class imbalance, we decide to exploit metrics as precision, recall
and F-measure, that offer a per class quality evaluation under different perspectives.

Considering one class label, a record correctly predicted (its assigned class is equal to the
actual class) is a true positive. When the predicted class is wrong, the sample is a false
positive for the assigned class, and a false negative for the class it actually belongs to.

TP/FP/EN are the sum of all true positive/false positive/false negative for a given class.

* precision is used to evaluate if the considered class label is assigned to records

which effectively belong to it. It ranges from O to 1. 1 is the best case: all records
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that are assigned to the considered label are correct. More formally:

TP

TP+ FP 13

* recall is used to evaluate if records, which actually belong to the considered class,
have been correctly predicted. It ranges from O to 1. 1 is the best case: all records

actually belonging to the label are correctly predicted.

TP

_— 6.14
TP + FN (©.14)

* F-measure is used to evaluate together precision and recall, having only one metric,

that goes from O to 1 (the best case):

Recall - Precision
F- =2- 6.15
measure Recall + Precision ( )

Trying to generate models which maximize recall would penalize precision. Indeed,
if many items are recalled by a specific class, the likelihood of having false positives in the
same class is higher (lower precision). Hence, good quality classifiers should maximize
the trade off between these two metrics.

Confusion matrix is used to report visually the results. There is one confusion
matrix per attribute. It is a matrix that has for rows actual classes, while columns are
predicted classes. The values in each cell of the matrix are the number of records with
the corresponding actual and predicted classes. Hence, a good confusion matrix has all

the non zero values on the diagonal or closer to it.

6.6.3 Custom Metrics

Accuracy is a metric typical of classification, that we haven’t exploited because its value
is strongly polarized towards performances obtained by the most populated class. We
propose a slightly modified version of the standard accuracy metric that can be applied
to evaluate also regression algorithms. First of all here is reported standard accuracy

definition according to notation defined in Subsection 6.6.2:

ZZEL TP
ZleL(TPl + FPZ)
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This formula calculates the fraction of correct predictions with respect to the total number
of predictions. L is the set of labels. T'P; and F'P; are respectively true positive and
false positives for [ label. Accuracy can assume values between 0 (worst case) and 1(best
case). Our aim is to build a metric for regression that has the same meaning, which
models the measurement error on attribute values. For example, with a measurement
absolute error of +4%, if the prediction is 17.5% and the actual value is 18%, this value
has to be considered coherent, because the distance between the predicted and the actual
value is lower than the measurement error. This reasoning can also be seen as a way
of considering correct a prediction with a certain tolerance. We consider correct values

those included in a certain interval of error. A new definition of correctness is given:
it y;—e<u; <wyj;j+e —> isacorrect prediction (6.17)

e is the tolerance factor, if prediction error is smaller than it the prediction is considered
correct.

For every attribute j the regression-accuracy is:

number of correct predictions

regression-accuracy = (6.18)

total number of predictions

where correctness has to be intended as defined in Equation 6.17. Notice that this metric,
such as classification accuracy, doesn’t permit to evaluate how the model behaves for rare
values.

For this reason, we defined other two metrics related to correctness defined in Equa-
tion 6.17: regression-precision and regression-recall. Regression-precision is obtained
by plotting the distribution of predicted values, in two different colors. The first color
(blue) represents correct predictions. The other (wrong) predictions are plotted in orange.
Regression-recall is obtained by plotting the distribution of actual values and presenting
again two different colors for correct and wrong predicted values. An example of these
charts are shown in Figure 7.19 and Figure 7.20 in Chapter 7.

Regression-precision allows inspecting the number of correct predictions along the
distribution of the predicted values. Instead, regression-recall allows inspecting the
number of correct predictions along the distribution of the actual values. Regression-
precision distribution of values must be as similar as possible to the distribution of actual

values. This shows that the model is able to properly capture attribute variation, avoiding

43



6 — Method

to predict all values in the same range or assigning samples to totally non-coherent ranges,
such as ranges even not present in the initial distribution. Regression-recall instead is
more intuitive because presents the same distribution of actual values and immediately

identifies ranges which model has difficulties to predict.

6.6.4 Regression and Classification comparison methodology

There are no common metrics for directly comparing regression and classification meth-
ods; in fact regression predictions are continuous values, while classification predictions
are labels. Therefore results of regression must be transformed to permit a comparison
with classification results, or vice versa. It has been decided to discretize regression
predictions exploiting same bins used for classification. Hence, the metrics used for
the comparison are the ones typical of classification: precision, recall, F-measure and
confusion matrix.

It is important to observe that this approach introduces a particular issue. Suppose to
have a discretization with two class labels (/; and l,) for a specific petrography attribute.

The actual value y to be predicted is assigned to one of the two labels following this logic:

N <y<yp=>yech
Yo <Y <ys =y €l

Consider the case where y assumes the following value:

€
y=y2+§:>y6l2

where ¢ is a real value greater than 0 and smaller than e (error of measurement). In this
case the value y is assigned by discretization process to [ label.

Then if the associated prediction is:

Yy=y—==>9ycl

N

The prediction is assigned to /; label.

Calculating the difference between predicted and actual value the relation is:

y—g=ce
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y—y<e
This means that even if § belongs to [;, the difference with the actual value is minor than
the error of measurement. It is a correct prediction considering correctness as defined in
Equation 6.17, but for a classification point of view the prediction is wrong. From this
reasoning Decision Trees giving better predictions using this method of comparison do
not necessary entail better quality. Conversely, if better results are given by regressors,

regression gives necessary better results than classification.
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Chapter 7
Experiments

In this chapter performances of all methods applied on the datasets are compared, with
the aim of identifying the best one. A first analysis concerning how to compare results
obtained on aggregated dataset with outcomes reached on non aggregated one is done
in Section 7.1. In all other sections instead, the analysis is totally focused on outcomes
obtained on non aggregated dataset, as we observe that results for the two datasets have
the same quality. In particular for each aggregation group has been identified a leading
attribute (belonging to non aggregated dataset) whose predictions can be easily compared
with the ones obtained for the exponent of aggregated dataset in the same aggregation
group. In Section 7.2, Decision Tree performances on leading attributes are discussed.
In Section 7.3, best performing regression methods are pointed out. In Section 7.4,
Decision Tree results are compared with the ones of best performing regression techniques

(identified in Section 7.3).

7.1 Aggregated vs non aggregated dataset

In this section is performed a comparison between results achieved with aggregated and

non aggregated datasets by regression techniques.
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Figure 7.1: Global MAE for different regression techniques. On the left side the MAE is
referred to non aggregated dataset, while on the right MAE is referred to aggregated one.
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Figure 7.2: On the right is reported the MAE for the attribute PA, part of the aggregated
dataset. On the left is reported MAE for all attributes composing PA.
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At afirst glance, by looking at the global MAE (Fig. 7.1) the aggregated dataset seems
to give worst results with respect to the non aggregated one. Indeed, MAE values for non
aggregated dataset are closer to zero.

This observation can be overturned when looking at Figure 7.2. It shows the detail
of the MAE score for the attributes which are aggregated in the PA group. The MAE
of PA in the aggregated dataset (right part of Figure 7.2) is comparable to the one of
pal in the non aggregated dataset. Instead, the MAE of all the other non aggregated
attributes inside the group PA are far lower. When computing the global MAE on the
non aggregated dataset, all these attributes with low MAE tend to lower the final value
(that is a mean), obtaining better results. Conversely, while computing the global MAE
on the aggregated dataset, only the higher value of PA is present and the final value will
be higher. The same reasoning can be applied to all the other aggregated attributes and

explains the reason why the global MAE is higher for the aggregated dataset.
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Figure 7.3: Detail of MAE for each attribute. On the right for aggregated dataset; on the
left for non aggregated one.

In conclusion, it is possible to compare aggregated dataset performances with respect
to the non-aggregated one by looking at the (leading) attribute with largest MAE values

among each aggregation group. Hence, the MAE of the aggregated attributes is similar
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to the one of leading attributes in the non aggregated dataset. By looking at Figure 7.3
the leading attributes of the aggregation groups are pal, pbl, pcl, pd4, pe3, pfl. For the
PG group there is not a prevalent leading attribute.

The prediction quality for aggregated attributes and the one for the corresponding
leading attributes are similar. From now on, we will focus only on leading attributes to

show the most relevant results.

7.2 Classification

In this section an analysis of performances of Decision Tree is done, by evaluating results
through metrics defined in Subsection 6.6.2. In Subsection 7.2.1, some considerations
concerning discretization minimum number of samples per bin (nums) is done. Then,
best conditions identified by these considerations are fixed and the evaluation of results

given by Decision Tree for leading attributes is reported in Subsection 7.2.2.

7.2.1 Discretization

In Figure 7.4 are shown metrics values for pd4 with a discretization done by using a
minimum number of samples per bin equal to 2. Figure 7.5 shows instead the outcomes
with the minimum number of samples set as 4. Observing metrics for the Decision Tree
(in brown) it is possible to see that using a coarser discretization (Figure 7.5) gives better
results. Discretization algorithm in the case of nums = 4 with respect to the other case
(nums = 2), collapsed bin (7.3, 11] with (11,14.7] and (14.7,25.7] with (25.7,40.30].
Notice that the last resulting range (14.7,40.30] is quite big with respect to the starting
dimension of bins chosen, that is minor than 4. However it has to be pointed out that
in this range only 5 samples are present. Augmenting the number of samples per bin,
to avoid overfitting and to augment the number of examples from which to learn for the
label worths sacrificing the width of the interval and consecutively the strictness of the

prediction. This collapse in fact improves precision, recall and F-measure for all bins.
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Figure 7.6 also shows the improvement. It is presented a confusion matrix calcu-
lated on results obtained by collapsing bins of predictions, after classification process
(Figure 7.6c). This means that the classifier works on the data discretized as reported
on the right in Figure 7.4. Predictions of the classifier are then ri-assigned to new bins,
because two new collapses are done: (7.3, 11] is collapsed with (11, 14.7] and (14.7,25.7]
with (25.7,40.30]. On the outcomes of this operation the confusion matrix is calculated.
Figure 7.6b instead shows outcomes for bin collapse performed before classification pro-
cess, on actual values. Indeed the classifier is trained with data discretized as reported
in Figure 7.5 and confusion matrix is calculated directly on test predictions. This latter
case introduces benefits with respect to the former: it augments the number of samples
present in the diagonal of the confusion matrix. This is due to a higher number of samples,
in each collapsed bin, that makes easier training the classifier. This considerations are
generalizable for all attributes in the dataset. Indeed, in this section and in Section 7.4 are

reported results for classification performed on attributes discretized using nums = 4.
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Figure 7.6: Confusion matrices for pd4. Matrix (a) is calculated on predictions of
Decision Tree after having performed a discretization setting the minimum number of
samples per bin to 2. While for (b) this parameter is set to 4. Matrix (c) is a cumulative
version of (a) aggregating labels as in (b).
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7.2.2 Decision Tree

Decision Tree obtains satisfying results for pd4 and pb1, both exponentially distributed.
They present a class, corresponding to the peak of the exponential distribution (see range
(0, 3.7] in Figure 7.5 for pd4 and range (0, 4] in Figure 7.7 for pb1), for which F-measure
is at least 0.7 and all other classes are correctly predicted at least one time. For all other
leading attributes there is one or more label that is never correctly predicted. Among
leading attributes must not be considered pe3, because discretization process leads to

only one class for this attribute.
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Figure 7.7: Metrics for pb1, error: 4, minimum samples per bin: 4.

All gaussian distributed attributes (pal and pfT) never present an F-measure over 0.4
(Figures 7.9 - 7.10). Looking at confusion matrices (Figure 7.8) values spread all over
them. This bad performance is probably due to the fact that discretization mode brings
to a distribution of labels that is quite uniform, with a small number of samples per class

in the order of 10. The model in this case is strongly overfitted.
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7.3 Regression techniques comparison

In the following a comparison between results obtained applying different regression
techniques is performed, using metrics defined in Subsections 6.6.1 - 6.6.3.

Looking at accuracy (Figure 7.11) it is possible to notice very good performances
(accuracy reaches the maximum value for most non aggregated attributes). Actually, since
for calculating accuracy a tolerance factor of 4 is considered, predictions for attributes
with a variation range lower than 4 are quite always considered correct. Table 6.1 reports
the list of attributes whose maximum value is lower than 8 for which the accuracy is high,
but not significant since the low variation range. These attributes are not going to be
taken in consideration in the following analysis.

Looking instead at leading attributes, good accuracies can be considered the ones of
pbl, pcl, pd4 and pe3, for which at least one regression technique provides a value over
0.70.
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Figure 7.11: Details of accuracy for each method and attribute, for the non aggregated
dataset on the left and for aggregated one on the right.
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Figure 7.12: Details of EVS for each attribute and method, on the right the aggregated
dataset, on the left the non aggregated one.

Looking at the EVS (Figure 7.12) it is possible to observe that only for some attributes
has a value greater than zero, for both aggregated and non aggregated datasets. It is also
interesting to compare EVS and accuracy. For attributes that have a good accuracy (pbl,
pcl, pd4 and pe3), it is possible to see that only two of them (pd4 and pbl) also have
an acceptable value of EVS for best performing regression method (over 0.4). All other
leading attributes have a positive EVS for at least one method, but it is very close to zero.

In the following, are compared regression techniques results for attribute pbl, that
present an acceptable EVS and accuracy. EVS indicates as more performing technique
Linear regression, followed by Ridge regression. Accuracy, instead, points out NMF as
more promising. We can analyze performances of those techniques in deeper, with the
support of regression precision and recall. Figure 7.13 reveals that predictions performed
by Ridge and Linear regression for pb! are of good quality. Orange values are less than
blue ones and the distribution of predicted values is very similar to the initial distribution.
Also some rare values (> 10) are well captured. NMF instead, clusters all prediction
values in the same range. Accuracy is high because the range is in correspondence of the

peak of exponential distribution (values in range [0, 4]), for this reason the majority of
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values is considered correctly predicted.

Look at Figure 7.14, here are reported actual vs predicted values. NMF always predict
the same range of values ( the trend is an horizontal line). Ridge and Linear regressions,
instead, provide more data on the diagonal.

Spending some words also on other methods, SVR has the lowest accuracy and Lasso
the lowest EVS. Their predicted distributions are very different from the initial (actual)
one. SVR has the lowest accuracy because it totally misleads predictions for peak values:
its forecasts distribution presents a peak in correspondence of the wrong range: [4,8].
Summing up, Ridge and Linear regressions give best results and allow to reach good

prediction quality for this attribute.
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Figure 7.13: pbl regression-precision, tolerance: 4.
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Figure 7.14: pbl scatterplot, actual values on x-axis, predicted ones on y-axis.

Attribute pd4, is now taken into account. It has a promising accuracy and EVS. In
terms of these two metrics Lasso overcomes all other techniques, followed by Ridge, that
has a good trade-off between accuracy and EVS. However, NMF has higher accuracy
with respect to Ridge, but it has a low EVS. Looking at regression-recall in Figure 7.16,
is evident that NMF predicts very well the peak of exponential distribution (few orange
values in range [0, 2]) and looking at regression precision (Figure 7.15) we can see that
this interval does not recall too much values from other ranges. The problem of NMF is
for highest rare values, above 15 no value is correctly predicted.

For Lasso, the best technique in terms of EVS and accuracy, Figure 7.16 shows a good
recall especially for medium values (range [6,30]). Looking insted to precision (Fig-
ure 7.15), range reaching the maximum value of recall ([6,10]) presents a low precision,
this means that the range recalls also values not belonging to it. Moreover the peak of
exponential distribution is shifted towards higher values.

Ridge has a better precision in terms of forecasts distribution than Lasso but a worse
recall. Lasso and Ridge regression can be both considered a good achievement for the

prediction of this attribute.
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Figure 7.16: pd4 regression-recall, tolerance: 4.

The leading attribute with the highest accuracy is pe3 (refer to Figure 7.11). It
has been already stated that, however, it has a low EVS. In Figures 7.17 is reported
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regression-precisions for pe3. Taking the distribution of the predictions and looking at
correct instances (in blue) is evident that every method predicts correctly low values of
pe3. Instead, when the methods try to guess higher values they always make wrong
predictions (orange is prevalent). This is actually not a good result because the model
is able to predict only values in the first part of the distribution, it is not able to capture
attribute variation, this is why it has a low EVS. The fact that it has an high accuracy is
again due to the fact that the distribution is exponential, and peak values, the majority, are
well detected. The technique with the highest accuracy is SVR, that instead behaves the
worst. In fact all predicted values can be found in the same range ([0, 2]). This is visible
also looking at the scatterplots actual vs predicted in Figure 7.18: data does not follow
properly the diagonal of the chart at all, it composes instead a straight horizontal line.
By the way this attribute is very complicated to be predicted, only one value is higher
than 5. Notice that, leading a leave one out approach, when this sample is in the test set,
all training values present a range of variation under 5. This makes its prediction very
difficult to perform.

NMF is the only method that, for pe3, has an EVS greater than zero. In fact, by looking
at the corresponding scatterplot in Figure 7.18, data in the range [2.5, 4] tend to follow a

bit more the diagonal.
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Figure 7.18: pe3 scatterplot, actual vs predicted values.

Figure 7.19 reports regression-recall for the leading attribute pal . Figure 7.20 shows

instead the regression-precision for the same attribute. For pa/ both accuracy and EVS are
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low. Both precision and recall charts present many orange samples (wrong predictions).
The distribution of the predictions is different from the actual one. In particular NMF
and SVR perform very badly.

In conclusion observing and comparing all results it is possible to see that there is not
a method that is better than the others for all attributes. On average, looking at current
analyses, Ridge, Linear and Lasso regressions have best performances, while SVR and
NMF have the worst.
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Figure 7.19: Regression-recall for pal, tolerance: 4.
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Figure 7.20: Regression-precision for pal, tolerance: 4.

7.4 Classification vs Regression

Briefly summing up what stated in Subsection 6.6.4, regression and classification results
are compared through metrics proper of classification (Subsection 6.6.2). In particular
regressions results have been discretized to obtain the same format of classification
outcomes. Conclusions of Subsection 6.6.4 state that a comparison performed in such
a way can only determine if regression techniques perform better than classification and
not vice versa.

We will focus on pbI and pd4, attributes for which both regression and classification
give promising results.

In Figure 7.5 (page 50) and in Figure 7.21 is reported the case of pd4. We are going to
lead a comparison between Decision Tree and Lasso regression followed by a comparison
between Decision Tree and Ridge regression. In fact, these regression techniques, have
been identified as more promising for this attribute in Section 7.3. Looking at Figure 7.5
it is possible to see that Lasso regression provides a F-measure greater than the one of
the Decision Tree, for all ranges. In this case we can say that Lasso performs better than

Decision Tree. Ridge behaves worse, in terms of F-measure, than Decision Tree only for
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the bin: (7.3, 14.7]; the reason is that precision of Ridge regression is lower than the one
of Decision Tree. Consulting confusion matrix for pd4 in Figure 7.21, it is visible that
some values actually belonging to range [0, 7.3) are assigned to the discussed label, this
is the reason why precision is lowered. Indeed range (0, 3.7] has a lower recall for Ridge
with respect to Decision Tree, because some values have been assigned to the wrong class.
However, in the final value of F-measure for range (0, 3.7] the low recall is compensated
by an higher precision. High precision of the peak range is a good achievement, so we
can totally consider both Ridge and Lasso regression better performing than Decision
Tree for attribute pd4.

Figure 7.7 (page 53), reports instead metrics for pb1. Methods that give best results for
this attribute among regressions, as stated in Section 7.3, are Ridge and Linear regression.
Looking at F-measure is evident, for both Ridge and Linear regression, that the metric is
higher than the one of Decision tree, for every range. So it is possible to conclude that
for attribute pb1 regression techniques provide better forecasts than the ones carried out
by Decision Tree.

Observing metrics for all attributes, in general, regression overcomes classification

in this specific application field.
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Chapter 8
Conclusions and future works

The aim of this study is to predict, for a geological sample, petrographical composi-
tion given mineralogical one. Constitutions are expressed through a set of continuous
attributes, whose values represent the percentage in which the feature composes the sam-
ple. The dataset we worked on, has been provided in two versions; one (aggregated)
version has a less detailed petrographical description: some attributes are collapsed to-
gether with respect to the non aggregated version, by summing up their values. There are
mathematical links between mineralogical composition and petrographical one but we
did not exploit them because of measurement uncertainty that affected data we have at
disposal. In our study we decided to focus on petrographical attributes that have a range
of variation larger than the error of measurement communicated by domain experts.
Challenges of the application field are the small dataset and the non uniform distri-
bution of the attributes values. Distributions, approximatively gaussian and exponential,
present some very few rare values that we need to correctly predict. To perform predic-
tions we tried three approaches: regression, classification and a custom NMF (regression)
method. We used, as classifier, the Decision Tree and as regression techniques Linear,
Lasso, Ridge and Support Vector regressions. There is more than one feature to predict,
indeed we built one different regression and classification model for predicting each of
them. Each model has as input all mineralogical features and as output only one petro-
graphical attribute. NMF instead has as output all petrographical features and as input
all mineralogical ones. Features to be predicted are continuous and we needed a way to

obtain discrete values for the output of the classifier. For this reason we implemented a
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custom methodology of discretization for obtaining class labels out of continuous fea-
tures. Each attribute has been discretized in such a way that the classifier indicates as
output the possible range in which the value could fall. The method aims to maximize
the number of samples belonging to rare values ranges, this has been done by enlarging
progressively these ranges finding a trade off between the width of the interval and the
number of samples belonging to it. Precision and recall classification metrics allow to
properly evaluate how well the classifier predicts each range separately, this permits to
properly evaluate the performances of Decision tree for rare values. We designed, for the
same purpose, two visual metrics for evaluating regression techniques inspired by these
classification ones: regression-precision and regression-recall.

By a preliminary analysis we identified a set of six (leading) attributes in the non
aggregated dataset, for which predictions quality can be directly compared with the
quality of forecasts for their aggregated version; we selected them as key attributes on
which we leaded analysis of results. We focused on the non aggregated dataset because
performances of methods are quite the same for both dataset, this means that aggregating
some attributes does not bring to any kind of benefit. Discretization method we designed
augment predictions quality of the classifier. In fact increasing the number of samples per
bin and consecutively enlarging intervals, cause an improvement of models performances.
Regression methods that fit better to our dataset are Linear, Lasso and Ridge regressions.
SVR and NMF do not reach good results at all, according to metrics that we have defined.
Between Linear, Lasso and Ridge it is not possible to identify the best one for the
whole dataset, because regression method that performs better depends on the considered
attribute. Regression results have been discretized to permit a direct comparison with
the outcomes given by the Decision Tree. From this direct comparison came out that the
regression approach is more promising than the classification one. Good performances
have been obtained, both by regression and classification models, on two exponentially
distributed attributes (pd4 and pb1). All the remaining four leading attributes are very
badly predicted. For pd4 and pb1 is reached a regression-accuracy over 0.7 and an EVS
over 0.4. For what concerns classification, instead, they reach an F-measure for the range
corresponding to the peak of exponential distribution greater than 0.7 while all the other
classes are correctly predicted at least one time. Good predictions obtained for these

two features, also on rare values, suggest to continue the study. In particular we will try
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different regression techniques on attributes that presently are not well predicted, with the
aim to eventually use for each attribute the best performing method. Moreover, with the
help of a domain expert, we will exploit also mathematical links between mineralogical
and petrographical attributes to overcome dataset difficulties. A possible exploitation
of these properties may consist in using well predicted attributes values to constrict the

predictions on the other features.
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