
POLITECNICO DI TORINO
Master Degree in Computer Engineering

Master Thesis

Deep Learning Solution for
Analyzing Visual Imagery in

Industrial Applications
Machine learning on low-power low-cost platforms: an application case

study

Supervisors
Prof. Bartolomeo Montrucchio
Prof. Renato Ferrero

Candidate
Carmine D’Amico

Company supervisors
Istituto Superiore Mario Boella
Dr. Olivier Terzo, Dr. Alberto Scionti

December 2018

Carmine D’Amico
Deep Learning Solution for Analyzing Visual Imagery in Industrial Applications
©December 2018.

This work is subject to the Creative Commons License 4.0 International.
A full version of the license is available at:
https://creativecommons.org/licenses/by/4.0/legalcode

https://creativecommons.org/licenses/by/4.0/legalcode

A mia madre, che mi
osserva da lassù.
A chi mi supporta ogni
giorno, credendo in me.

Summary

Machine learning is one of the hottest topics of the last years in the computer indus-
try. The growing interest on methods for processing large amount of heterogeneous
data and new cognitive systems is creating new challenges and opportunities. In the
ICT domain, a major effort is spent on improving and applying machine learning,
deep learning and in general artificial intelligence techniques. Applications can be
seen in various fields, from civil to military, through industrial. This work of the-
sis is focused precisely on this last area of application and precisely on the image
recognition problem, which is addressed using deep learning (DL) models based on
a state-of-the-art Convolutional Neural Network. Image recognition is used in the
industrial area for the quality control of the products, for tracking, counting and
measuring objects, etc.

Although high performance devices are often required to perform image recogni-
tion operations, one of the most popular market trends is to try to use devices that
require a lower amount of electric power to work. Starting from this statement, the
goal of this thesis was to try to use the Parallella board, that is a modern low-power
parallel general-purpose device, to run a deep learning model based on Darknet, an
open source neural network framework. The limitations of the device used, in terms
of both performances and available resources, have represented the main challenges
of this research and also the starting point for all the solutions found. Different
approaches have indeed been followed and investigated to optimize the evaluation
times for a single image: from basic solutions for making the most of the board’s
multicore architecture to ad- hoc solutions developed to bypass the main bottlenecks
of the device (like the poor amount of memory available), up to the use of optimized
methods to speed up the convolution operation.

Finally, the different approaches used have been tested and evaluated, allowing
to express some considerations on the use of low-power devices for machine learning
applications and in particular on the direction that the scientific research could take
in order to improve such use.

v

Acknowledgements

This thesis was carried out at Istituto Superiore Mario Boella, in the Advanced
Computing and Electromagnetics (ACE) laboratory. I would like to offer my most
heartfelt thanks to Dr. Olivier Terzo, head of the research area, and to Dr. Alberto
Scionti, that was my supervisor for this work. It was thanks to them and their
support if I had the chance to do this thesis.
I would also like to thank all the researchers of this laboratory for making the
working environment as welcoming as possible, allowing me to work serenely and
feel like a real colleague.

vi

Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Thesis Motivations . 1

1.1.1 Industrial Applications . 1

1.1.2 Heterogeneous Computing . 2

1.2 Limitations . 2

1.3 Thesis Structure . 3

2 State Of The Art 4

2.1 Machine Learning . 4

2.1.1 Classification Algorithms . 5

2.1.2 What Is A Neural Network? 6

2.1.3 Convolutional Neural Network 11

2.2 Darknet . 14

2.2.1 Implementation Details . 15

2.2.2 Convolutional Layer . 16

3 Hardware Platform 17

3.1 Parallella . 17

3.1.1 Why The Parallella? . 18

3.1.2 Hardware Architecture . 19

3.1.3 Epiphany Coprocessor . 20

3.1.4 Application Development . 24

3.1.5 Problems Faced . 26

vii

4 Solution Design 28

4.1 General Idea . 28

4.1.1 Zynq as master, Epiphany as slave 28

4.1.2 Focus On The Shared Memory 29

4.1.3 Implemented Layers . 33

4.1.4 Synchronization . 38

4.1.5 Training The Network . 40

4.2 The Models Used . 40

4.2.1 Tiny Darknet . 40

4.2.2 MNIST Custom Model . 41

4.3 Basic Solution . 42

4.4 Extended Memory Solution . 44

4.4.1 Implementation . 45

4.5 Optimized Convolution Solution . 48

4.5.1 Memory-efficient Convolution (MEC) 49

4.5.2 Implementation . 50

4.6 Summary . 51

5 Experimental Evaluation 52

5.1 Performance Analysis . 53

5.1.1 Methodologies Used . 54

5.1.2 Results for Tiny Darknet . 56

5.1.3 Results for the MNIST Custom Model 58

5.1.4 Analysis . 61

5.2 Power Consumption Analysis . 65

5.2.1 Methodologies Used . 65

5.2.2 Results for Tiny Darknet . 69

5.2.3 Results for the MNIST Custom Model 70

5.2.4 Analysis . 72

6 Conclusions 75

6.1 Future Works . 75

Bibliography 77

viii

List of Tables

3.1 Coordinates to identify the Epiphany cores 22

4.1 Tiny Darknet . 41

4.2 Network trained on the MNIST dataset 42

4.3 Epiphany Architecture - Memory Performance 45

5.1 Tiny Darknet - Basic Solution - Layer Execution Times 56

5.2 Tiny Darknet - Basic Solution - Total Execution Time 57

5.3 Tiny Darknet - Extended Memory Solution - Layer Execution Times 57

5.4 Tiny Darknet - Extended Memory Solution - Total Execution Time . 57

5.5 MNIST Custom Model - Basic Solution - Layer Execution Times . . . 58

5.6 MNIST Custom Model - Basic Solution - Total Execution Time . . . 58

5.7 MNIST Custom Model - Extended Memory Solution - Layer Execu-
tion Times . 59

5.8 MNIST Custom Model - Extended Memory Solution - Total Execu-
tion Time . 59

5.9 MNIST Custom Model - MEC Solution - Layer Execution Times . . . 60

5.10 MNIST Custom Model - MEC Solution - Total Execution Time . . . 60

5.11 Base Energy Cost . 66

5.12 Base Energy Cost For Remote Loads And Stores On The eMesh . . . 66

5.13 Tiny Darknet - Basic Solution - Energy Consumption 69

5.14 Tiny Darknet - Basic Solution - Power Consumption 69

5.15 Tiny Darknet - Basic Solution - Parallella Power Consumption 69

5.16 Tiny Darknet - Extended Memory Solution - Energy Consumption . . 69

5.17 Tiny Darknet - Extended Memory Solution - Power Consumption . . 70

5.18 Tiny Darknet - Extended Memory Solution - Parallella Power Con-
sumption . 70

5.19 MNIST Custom Model - Basic Solution - Epiphany Energy Consump-
tion . 70

5.20 MNIST Custom Model - Basic Solution - Epiphany Power Consumption 70

ix

5.21 MNIST Custom Model - Basic Solution - Parallella Power Consumption 70

5.22 MNIST Custom Model - Extended Memory Solution - Epiphany En-
ergy Consumption . 71

5.23 MNIST Custom Model - Extended Memory Solution - Epiphany
Power Consumption . 71

5.24 MNIST CustomModel - Extended Memory Solution - Parallella Power
Consumption . 71

5.25 MNIST Custom Model - MEC Solution - Epiphany Energy Consump-
tion . 71

5.26 MNIST Custom Model - MEC Solution - Epiphany Power Consumption 71

5.27 MNIST Custom Model - MEC Solution - Parallella Power Consumption 72

x

List of Figures

2.1 Graphical representation of a perceptron 6

2.2 Example of an input layer for a 3 × 3 image 8

2.3 Example of an output layer with 4 neurons 9

2.4 Example of an hidden layer with 7 neurons 10

2.5 Local receptive field for an hidden neuron 12

2.6 Example of a CNN . 14

3.1 The Parallella board . 20

3.2 Representation of the two-dimensional array of eNodes 21

3.3 Graphic representation of an Epiphany node 22

4.1 Conceptual division of the shared memory 30

4.2 Representation of the workflow followed 32

4.3 Allocation of input channels to eCores 35

4.4 Allocation of input submatrices to eCores 35

5.1 Tiny Darknet - Basic Solution - Kernel Execution Times 56

5.2 Tiny Darknet - Extended Memory Solution - Kernel Execution Time 58

5.3 MNIST Custom Model - Basic Solution - Kernel Execution Times . . 59

5.4 MNIST Custom Model - Extended Memory Solution - Kernel Execu-
tion Time . 60

5.5 MNIST Custom Model - MEC Solution - Kernel Execution Times . . 61

5.6 Tiny Darknet - Total Execution Times Comparison 62

5.7 MNIST Custom Model - Total Execution Times Comparison 62

5.8 Tiny Darknet - Epiphany Power Consumption Comparison 72

5.9 MNIST Custom Model - Epiphany Power Consumption Comparison . 73

xi

Chapter 1

Introduction

Among all the ICT trends, in recent years, machine learning (ML) has had the great-
est impact, revolutionizing various fields, from civil to military, through industrial.
Scientific community started to look at deep neural networks (DNNs) and other ML
techniques as a convenient way to crunch the enormous amount of data generated
by experiments. This work of thesis is focused precisely on the industrial area of ap-
plication and precisely on the image recognition problem, which is addressed using
deep learning (DL) models based on a state-of-the-art Convolutional Neural Net-
work. Image recognition is used in the industrial domain for the production quality
control of the products, for tracking, counting and measuring objects, etc.

The work carried out is an application case study for machine learning techniques,
regarding in this thesis the recognition of images, on a low-power low-cost platform.
In particular the targeted device was the Parallella single board computer.

1.1 Thesis Motivations

The work summarized in this thesis was carried out at the “Istituto Superiore Mario
Boella (ISMB)” at the laboratory of Advanced Computing and Electromagnetics.
This has determined some characteristics of this study and some of the decisions
made. In particular, the term industrial applications in the title of this thesis is
attributable to the possible application contexts, as well as to the choice of the
development device.

1.1.1 Industrial Applications

During the research activity, a job opportunity arrived at the ISMB; it concerned the
design of a low energy consumption solution, to be used in an industrial context, for
the production and processing of hazelnuts. This opportunity has helped to shape
and above all to direct this work. In particular, in fact, what was required was
a solution capable of being used in the production chain, in order to identify and
recognize the defective hazelnuts. These can be recognized through some features
they possessed, such as atypical shape and/or color. This led to the need to use

1

1 – Introduction

and apply machine learning techniques for this purpose, using image recognition as
a mean of achieving the desired final result. As it can be seen in the next chapter,
in which an excursus about some of the most used machine learning techniques is
presented, Convolutional Neural Networks represent as today the state of the art
for this purpose. They have been the ones used during this research.

In general, machine learning is taking more and more ground in industrial con-
texts and in particular in manufacturing. As reported by several articles released
in recent years [1][2], it is revolutionizing the way of working in some cases, help-
ing companies to increase their efficiency, reducing the number of committed and
increasing the accuracy of work. Some examples of applications are shown below:

• It is used to monitor, record, and analyze everything in manufacturing, to
try to proactively identify possible problems in order to solve them promptly.
Data from a variety of different sensors is used for this purpose, so as to reach
an amount that can be used to train machine learning models.

• It is used to make robots smarter, integrating deep learning techniques in
them to improve both their work and their integration with the work done by
humans.

• It is used to improve quality control, in particular within assembly lines, where
the weaknesses of the machines are identified in order to be minimized.

1.1.2 Heterogeneous Computing

The choice of the device to be used to obtain a solution capable of executing with
low energy consumption and good performances has been influenced by another
activity under way at the ISMB. This research activity concerns in particular a
study on the use of heterogeneous architectures. This thesis has represented an
excellent opportunity to be integrated into this framework, providing an application
case study for machine learning techniques on a low-cost low-power platform. The
platform chosen for this work was the Parallella board, conceived and developed by
Adapteva. A comprehensive analysis of this device will be provided during the third
chapter of this thesis.

1.2 Limitations

Despite one of the main reasons behind this thesis was the request from a customer,
this work is more like a theoretical evaluation on the use of a platform with specific
characteristics, such as the Parallella, for ML applications in the case of image
recognition. At the end of this work, therefore, a real working prototype was not
produced, rather an analysis based on the performance achieved, in terms of required
execution times, and on energy consumption was provided.

2

1 – Introduction

1.3 Thesis Structure

This thesis is structured as follows:

• Chapter 2 gives an overview of the state of the art of the main machine learn-
ing techniques, starting from the perceptron up to the convolutional neural
networks. It also introduces the Darknet framework, used as a starting point
for this work to develop the solutions found.

• Chapter 3 describes and analyzes the Parallella board, the computing system
used for this thesis, focusing in particular on the Epiphany architecture and
its characteristics.

• Chapter 4 describes the approach used in this work, analyzing the basic prin-
ciples that distinguish it. All the optimizations made to increase the perfor-
mance of the solutions found are introduced, emphasizing on the differences
between them and on what limitations of the hardware they have effect.

• Chapter 5 presents the obtained results in the course of the work, both from
the point of view of performance and energy consumption. The same results
are also analyzed and discussed.

• Chapter 6 concludes the thesis, providing a summary of the entire work done,
with a look at possible future developments.

3

Chapter 2

State Of The Art

Machine Learning is one of the hottest topics of these years. Its application ranges
in different areas: from the medical to the economic field, from the purely academic
to the industrial scope.

This chapter introduces the topic, analyzing the concepts of neural network and
convolutional neural network, together with their founding elements and their main
characteristics. A particular focus is placed on image recognition, as this is the main
application of machine learning that is dealt within this thesis. Finally this chapter
presents and describes Darknet, an open source neural network framework which is
used in the continuation of the practical part of this work.

2.1 Machine Learning

As suggested in the paper “A brief introduction into Machine Learning” [3] by G.
Ratsch, artificial intelligence, i.e., the scientific field which aims to mimic intelligent
abilities of humans by machines, could be considered the parent of machine learning,
which is instead focused on how to make these machines able to “learn”. As explained
by the author, in this context the term learn is referred to an inductive inference,
where the machine learns by observing a series of examples regarding a “statistical
phenomenon”.

Machine learning can be classified into two categories:

• unsupervised learning : features (or patterns) are typically found by searching
regularities or by detecting anomalies in the available data;

• supervised learning : each considered example is associated to a label. A ma-
chine tries to extrapolate information from such examples in order to predict
the labels for other cases, not contained in the examples.

In this chapter the focus is mainly on supervised learning, in particular on that class
of problems where the labels are discrete, also called classification problems. Classi-
fication algorithms have the goal of distinguishing different input data, based solely

4

2 – State Of The Art

on the patterns recognized in them. In general they are used to find a functional
mapping between the input data X and a class label Y:

Y = f(X)

In the scientific literature there are several examples of classification algorithms.
In the following subsection the most important ones are described, lingering later
on neural networks and especially on convolutional neural networks, that nowadays
represent the state of the art in the image recognition field.

2.1.1 Classification Algorithms

In the following, five among the most important and the most used classification
algorithms are described:

• k-Nearest Neighbor Classification: Such method was described in the paper
“Nearest neighbor pattern classification” [4] by T. Cover and P. Hart. It finds
the k points of the training set that are closer to the considered input; then, a
label is assigned based on the label which is more present among the identified
points;

• Linear Discriminant Analysis : This method was described by R.A. Fisher
in the paper “The use of multiple measurements in taxonomic problems” [5].
An hyperplane is computed within the input space to minimize the variance
between data of the same class (label), maximizing on the other hand the
distance between different classes;

• Decision Trees : One of the most important and famous implementation of such
method is the one provided by R. Quinlan et al. in the book “C4.5: Programs
for Machine Learning” [6]. In this method a tree is built by partitioning the
input data space recursively, with the aim to create the purest nodes possible,
i.e. nodes that contain only points of the same class. The classification of a
new input point is computed by visiting the tree previously built from the top
to the bottom;

• Support Vector Machines (SVM): This classification method was introduced
for the first time in the paper “Support-Vector Networks” [7]. Its operating
mechanism is given by the identification of an hyperplane, which is defined
starting from the labeled training data. From these data the classification
algorithm creates an optimal hyperplane which will categorize the new arriving
data;

• Neural Networks : This is probably the most important and used method to
resolve a classification problem. Such method takes inspiration from the mam-
malian’s brain, trying to re-create it. Given the great importance of this type
of algorithms, they are analyzed in depth in the next section.

5

2 – State Of The Art

2.1.2 What Is A Neural Network?

From Perceptron To Sigmoid Neuron

One of the first models used to try to represent human decision-making was the
perceptron, which was introduced at first by Frank Rosenblatt in his paper “The
perceptron: a probabilistic model for information storage and organization in the
brain” [9]. Such model is very simple, it produces indeed a single binary output
based on the input vector received. The output is computed using a vector of
weights, where each element is associated to a single input component, indicating
the importance of that input with respect to the output. Each weight is a real
number. The mathematical formula that expresses how to calculate whether the
output is 0 or 1 can be written as follows:

output =

(
0 if

P
i xiwi ≤ threshold

1 if
P

i xiwi > threshold

where the weighted sum
P

i xiwi is compared to a certain threshold to determine
the output. The threshold value is a real number belonging to the perceptron itself.

Such model can be simplified just moving the threshold to the other side of the
inequality, renaming it as bias ; moreover

P
i xiwi + bias could be rewritten as a dot

product x̄i · w̄i + bias . In this way the previous mathematical model becomes:

output =

(
0 if x̄i · w̄i + bias ≤ 0

1 if x̄i · w̄i + bias > 0

Intuitively a perceptron can be imagined as an element that “takes decisions
weighting up the inputs”. A possible graphical representation of a perceptron could
be the one in Fig. 2.1.

Figure 2.1. Graphical representation of a perceptron

6

2 – State Of The Art

Nowadays it is more common to use different models rather than the one based
on the concept of perceptron. Among these, the most used one is definitely the
sigmoid neuron.

As it can be imagined every modification made to the parameters used in a
perceptron, whether it is performed out on the weights or on the bias, involves
a change in the used model that can lead to different classification results. In a
network made of perceptrons every change brings indeed to a complete “flip” of the
output result from 0 to 1 or vice versa. On the contrary a very useful property for
a practice neuron would be to make a small variation in the network’s parameters
coinciding with a small variation in the output itself. For instance, it is sufficient
to think about a network that is classifying a 0 as a 1, the first thing to do should
be to modify some weights and/or biases in order to fix such classification. With
perceptrons what would happen is that, on the one hand, such particular case would
be solved, but on the other hand all the other cases (or anyway a large part of them)
could be compromised. This would make really hard a network of perceptrons to
“learn”.

On the contrary sigmoid neurons overcome such problem in a very efficient way.
They are very similar to perceptrons, accepting a vector of inputs and using as
their own parameters a vector of weights and a bias. The real difference is in the
mathematical model used, which, for a sigmoid neuron, is:

output = f(x̄ · w̄ + bias)

where f() takes the name of activation function. In particular in a sigmoid neuron
the activation function is a sigmoid function in the form:

σ(x) =
1

1 + e−z

where in our case z is equal to
P

i xiwi + bias. Using this model the resulting
outputs are no longer binary, but they can be any real number. In this way, thanks
to the properties of the sigmoid function, a small change in the local parameters
of a neuron would reflect in a small change in the resulting output. At this point
another way to think about a perceptron would be to consider it as a particular case
of a neuron where the activation function is a step function.

Since the output of a sigmoid function is no longer a binary result, but a real
number, such value should be interpreted. In some cases, indeed, such result could
be convenient, for example to represent the “intensity” of some feature; in other cases
it could be better to have a result that represent a particular class of results. In these
cases a good convention could be to establish some ranges of results, classifying an
output based on the range in which it falls.

A Complete Network

Obviously a single neuron could not be enough to achieve a good classification.
What is needed is a complete network of neurons, able through its own topology to
classify a given input.

7

2 – State Of The Art

In the case of image recognition, the input is usually represented by an input
image that can be abstract as a matrix of input. In this particular case the input
layer, i.e., the leftmost layer, is composed by a neuron for each pixel having as value
the intensity of that pixel. For example, considering a 3 × 3 greyscale image the
input layer would be composed by 9 neurons. A graphical representation of such
case can be seen in Fig. 2.2.

Figure 2.2. Example of an input layer for a 3× 3 image

The output layer, instead, is the rightmost layer in the network. There could be
different choices in the design of such layer. Considering four possible classification
classes for the previous example, it could be decided to implement the output layer
following different philosophies:

• There could be just one neuron in the output layer, indicating only whether a
given input belongs or not to a single class;

• There could be four neurons in the output layer, i.e. a neuron for each different
class. In this case the neuron with the highest value would represent the class
assigned to a given input;

• There could be only two neurons, treating each of them as a binary value.
They would be indeed enough to encode the result class, because 22 = 4.

8

2 – State Of The Art

The choice about the design of such layer depends most of the times by an empirical
observation of the described network designs: the one that performs better should
be the right one. In Fig. 2.3 could be seen an example of the network previously
described with four neurons in the output layer.

Figure 2.3. Example of an output layer with 4 neurons

The black box portrayed in the middle of Fig. 2.3 represents the one or more
hidden layers present in a neural network architecture. These layers are the ones
that contain neurons that are neither inputs nor outputs. As mentioned, a neural
network could have just one hidden layers, as it can have more than one. There
is not any exact rule that can be applied to the design of the topology of these
layers. Researchers have developed, during the years, different heuristics that can
be used in order to achieve a good trade off for the composition of such layers, in
order to obtain the desired behavior from the neural network. The parameters that
can be manipulated in the design phase regard the number of hidden layers as well
as the number of neurons present in each hidden layer. In Fig. 2.4 is showed the
network previously described as example with just one hidden layer composed by
seven neurons.

From the same figure it can be seen how all the neurons in one layer are connected
to all the neurons in the next layer, i.e., all the outputs from one layer are used as
inputs for each neuron of the next layer. Such kind of nets, without loops in their
topology, are also known as feedforwarding networks, as opposed to recurrent neural

9

2 – State Of The Art

Figure 2.4. Example of an hidden layer with 7 neurons

networks where instead feedback loops are possible.

Training Neural Networks

Up to now, the parameters of the network have been discussed without specifying
where they come from or how they are calculated. Weights and biases have been
taken for granted, in reality they are computed through the so called process training
of the network. The most used algorithm for such process is called backpropagation
and it represents the state of the art training model for neural networks (and also
for convolutional neural networks, as it will be seen).

The training of a network is not an argument of this work of thesis. The reason
behind such statement lies in the fact that, for the practical experiences carried
on during this work, already trained networks have been used. This was due to
the poor performances of the board analyzed and used. The training of a network
is, indeed, one of the most resource-intensive processes, taking a long time to be
completed. Darknet, the open source neural network library used for this thesis
that is described in the continuation of this chapter, provides some networks’ models
already trained, including Tiny Darknet that was argument of this thesis, together
with the required parameters (weights, biases, etc...) to work with them. As stated
during the introduction, the point on which we focused is on the evaluation process

10

2 – State Of The Art

and on how to optimize it, making it run on the board studied.

2.1.3 Convolutional Neural Network

As stated in the previous paragraph, Convolutional Neural Networks (or CNNs) are
widely used to recognize and classify images. This is due to the spatial nature of
an image, which does not fit perfectly with the architecture of a classical neural
network.

The structure of a typical neural network, like the one previously described,
involves the use of adjacent layers that are fully connected between each other. In
this way a single neuron in a layer is connected to every neurons in the previous
layer as well as with the ones in the next. This type of network treats all the pixels
in the same way, whether they are near or far from each other: in this way the
concept of spatial structure is lost within the input image.

Convolutional Neural Networks were introduced during the 1970s, but their mod-
ern use for image recognition and classification was described only in the 1998 with
the paper “Gradient-based learning applied to document recognition” by Y. Lecun
et al. [8]. The main focus of such publication was to highlight the superiority
of carefully designed learning machines that operate directly on pixel images over
hand-designed heuristics. In particular the case study analyzed in such paper re-
garded character recognition, using Convolutional Networks instead of traditional
fully-connected multi-layer networks. The main advantages that have led to this
choice are:

• The large number of parameters that would be required using a fully-connected
network, considering the typical sizes of an image (several hundred pixels), and
the system’s memory needed to meet these requirements;

• The fact that traditional fully-connected networks have no built-in invariance
with respect to translations or local distortion of the inputs. This variance
can not be perfectly compensated by the preprocessing of the input image.
On the contrary, as we will see later, with convolutional networks invariance
is guaranteed by the nature of the network itself;

• As previously mentioned the convolutional networks, unlike the traditional
ones, take into account the two-dimensional topology of an image, extracting
local features of the input before recognizing spatial or temporal objects.

The three architectural pillars that allow Convolutional Networks to ensure such ad-
vantages over fully-connected multi-layer networks are: local receptive fields, shared
weights and pooling or sub-sampling. Such concepts will be analyzed and described
in the following paragraphs.

Local Receptive Fields

In a convolutional network each layer can be molded as if all the neurons that com-
pose it form a two-dimensional area. In particular in the first layer each value/neuron

11

2 – State Of The Art

corresponds to the pixel intensity used as input. Such representation is opposite to
what has been seen before with fully-connected networks, where the inputs could
be represented as a vertical line of neurons. To connect such inputs to a layer of
hidden neurons not all pixels will be connected to each single new hidden neuron,
which will be instead connected only to small region of the initial area. Such region
takes the name of local receptive field.

For example, for an input image with dimensions 12 × 12 and local receptive
field of 3 × 3, an hidden neuron could have a connection that looks like the one in
Fig. 2.5.

Figure 2.5. Local receptive field for an hidden neuron

A local receptive field can be seen as a window that slides over the entire input,
forming a connection to the new hidden neuron at every step. Each connection
“learns” both a weight and a bias. In this way to each local receptive field corresponds
an hidden neuron in the new hidden layer. The parameter that indicates by how
many pixels each window will slide is called stride length.

The number of neurons in the new layer depends on the number of possible
moves that a window can perform on the input area. Such value can be computed
by knowing the input size (W), the receptive field size (F), the amount of zero
padding applied (Z) and the stride length (S). The formula for calculating the
number of neurons in the new hidden layer is given by:

W − F + 2P

S
+ 1

Shared Weights

As mentioned, talking about the local receptive field, each new hidden neuron has a
bias and a number of weights equal to the number of values present in the receptive
field. These parameters are the same for each hidden neuron that belongs to the

12

2 – State Of The Art

same hidden layer. In this way for a local receptive field of N × N values there
will be N2 shared weights and a single shared bias that will be used to create the
new hidden layer. The following equation represents such concept:

output[x][y] = σ(bias+
NX
j=0

NX
j=0

input[x+ i][y + j] ∗ weight[i][j])

in which the value for the new hidden neuron (output) is given by the activation
function σ() applied to the sum of the shared bias for the product of the recep-
tive field’s weights with the input considered region. Such operations is also called
convolution, hence the name of convolutional networks.

The meaning of such operation is that each neuron in the hidden layer is used to
locate exactly the same feature, i.e., the same input pattern that will activate such
neuron (for example a particular shape in the image). Such feature is searched along
all the image, from this the use of shared weights. It is this peculiarity that makes
the convolutional networks invariant with respect to translations of the input.

To detect more than a single feature, from the same input neurons must derive
multiple hidden layers. Such hidden layers are called also kernels or filters. Each
filter will have its shared bias and its shared weights, that will allow it to detect
different image pattern.

One of the main advantages of shared weights is that they allow to reduce the
number of parameters required by each layer. For each filter, indeed, there will be
only a single bias and, considering a local receptive field with dimensions N × N ,
only N2 weights are needed.

Pooling

In addition to convolutional layers, CNNs contain also pooling layers. Such layers
are often placed after a convolution layer and they are used to “condense” an hidden
layer, simplifying it. In practice such kind of layer takes the output of a convolution
operation and sampling it. For each filter deriving from a convolutional layer it
summarizes small regions into a single hidden neuron. In this way the number
of hidden neurons decreases, without losing any information. Conceptually when a
pattern has been found, its exact position can be discarded, while the only important
thing is its rough location relative to other features.

To summarize a small region different approaches can be taken, three of the most
used pooling layers types follows:

• Max Pooling Layer : from a small considered region within the output of a
convolutional layer, only the highest value is considered, discarding the other
values present;

• Average Pooling Layer : from a small considered region within the output of a
convolutional layer, the mean value of all the values present is calculated and
taken;

13

2 – State Of The Art

• L2 Pooling Layer : from a small considered region within the output of a
convolutional layer, the square root of the sum of the squares of the neurons’
values is taken.

A Complete Network

After having described the basic blocks of a convolutional neural network, it is
possible to give an example of the instantiation of a network of this type. In Fig. 2.6
is showed an example of a minimal CNN.

Figure 2.6. Example of a CNN

In the hypothesized example, the network starts with the input image of size
12 × 12, where the neurons represent the intensity of the input pixels. Then, there
is a convolutional layer with a local receptive field of size 3 × 3. Without zero
padding and with a stride length of 1, using the mathematical equation previously
described it is possible to see how the output of this layer has size 2 × 10 × 10,
considering two filters. Such result goes through a pooling layer, that is applied to
2 × 2 regions, producing an output with 2 × 2 × 5 hidden neurons. The final
layer is a fully-connected layers (like those seen previously), which connects all the
neurons from the previous layer to every neuron of the 3 output neurons.

Typical convolution networks have dozens of hidden layers, hence the name deep
learning. Such definition has nothing to do with the precise number of layers used,
it is rather used as opposed to the networks used until mid-2000s, which provided
for the use of at most one or two hidden layers.

2.2 Darknet

With the incredible popularity achieved in these years by machine learning, many
software libraries and frameworks were born. Among these we must certainly men-
tion important machine learning frameworks like TensorFlow [10], Caffe [11] and
PyTorch [12]. This work of thesis focuses on Darknet [13], an open source neural
network framework which supports CPU and GPU computation.

14

2 – State Of The Art

Darknet was developed by Joseph Redmon and it came to the fore thanks to
YOLO (You Only Look Once) [14][15]. As reported by its website, YOLO is a
state-of-the-art, real-time object detection model, distinguished by the fact that it
is both extremely fast and accurate. It is able to classify different regions of a single
image passed as input. Differently from other image classification algorithms it does
not apply its model multiple times on different regions to achieve multiple detections.
Instead, it applies solely a single deep convolutional neural network, dividing the
image into regions and predicting bounding boxes and probabilities for each region.
The fact that it uses a single evaluation to detect multiple regions inside a single
image, make it faster than other similar system, which runs many evaluations for
the same purpose.

The reasons behind the decision to use Darknet for this work of thesis are multiple
and they are summarized below:

• On the official site of Darknet many models already trained are available (in-
cluding the already cited YOLO) such as SSD300, SSD500, and Tiny YOLO.
For many of these models there are also different versions depending on the
dataset used for the training. Being already trained models has been a posi-
tive factor for this work, that, as stated before, does not focus on the training
process for convolutional neural networks, but only on the evaluation part;

• Tiny YOLO, the just mentioned model available, is one of the two network
models used for this research. It is the smallest available variant, perfectly
suitable to run fast also on devices with low performances like smartphones,
or the Parallella board used for this thesis. Tiny YOLO is described and
analyzed in the fourth chapter, talking about the networks used;

• Darknet has incredibly supporting community, which has developed many
other pre-trained models, using the most diverse possible datasets. Among
these there is also a custom network model trained using the MNIST dataset
that was used for this thesis. The analysis of such model was done in the
fourth chapter of this work;

• Darknet has only a single programming interface, written in C. While this
could be a problem in many cases, for this work it is perfect. As it will be seen
in the next chapter, indeed, the Parallella board can be programmed using the
C language. This made it easier to adapt some methods already developed for
Darknet on the used board.

2.2.1 Implementation Details

Darknet has represented the starting point for the practical solutions developed for
this work of thesis. The porting of such framework was only partial, with only few
original features really used. For example, Darknet’s training methods have been
ignored, as well as all those implementations of layers that were not required in the
models used for this work of thesis. On the contrary, instead what has been ported
is (for example) the library used for the pre-processing of the images and the pa-
rameters (weights, biases, etc.) produced. What was developed at the end is almost

15

2 – State Of The Art

a newly framework that just reads the model’s parameters produced by Darknet,
but then execute all the required layers in its own way. This approach is mainly
due to the characteristics and limitations of the Parallella board, the following sub-
section shows the example of the convolutional layer and how the implementation
on Darknet was impracticable for the porting developed.

2.2.2 Convolutional Layer

As it can be expected convolutional layers are the most important part of a convolu-
tional neural networks. During the continuation of this work it will be seen how the
convolution operation is the balance needle for the performances of an implemented
model, that are indeed highly influenced by the methods and the optimizations used
to execute the convolutional operations.

Earlier in this chapter the convolutional layers were described analyzing a method
also known as direct convolution, i.e. an execution of the convolution operation
made by performing the dot product between the input matrix and the sliding
matrix of the weights. This is a really basic way to execute a convolution, not used
and discouraged in the scientific literature, due to its poor performances caused
by the irregular memory accesses involved in it. What is instead advised to do
is to use one of the many optimized versions of such operation, that, performing
different transformations on the input matrix, achieve to transform the dot product
into a matrix multiplication. The benefit of this transformation is that the matrix
multiplication is an operation widely studied in literature and which execution has
been highly optimized, both on the CPUs and on the GPUs. As it will be described
later, talking about the solution design, for this work of thesis the majority of the
solutions are based on the use of the direct convolution method. The reasons behind
this decision lie in the fact that the main negative point of most of these optimized
versions of the convolution is the extremely high memory consumption that they
need. Indeed, in order to transform the dot product into a matrix multiplication,
huge support matrices are used. The main bottleneck of the Parallella board used
for this research, as it will be highlighted many times in the continuation, is just the
small amount of memory available. For this reason it was not possible to implement
most of these optimizations, but it had to be used the direct convolution instead.

On the other hand, Darknet uses an optimized method for the convolutional
layer, called im2col. Such method will be analyzed and described in the fourth
chapter, when a solution with an optimized convolution is introduced and presented
also for this work. As it will be seen, im2col arranges the data in a way that the
memory accesses are regular for matrix multiplication, adding however in this way
a lot of data redundancy. Such redundancy is counterbalanced by the performance
benefit achieved with the matrix multiplication used instead of a dot product. With
Darknet, in particular, matrix multiplication is executed using GEMM (General
Matrix to Matrix Multiplication), that is an optimized method for such operation.
GEMM is one of the most used methods to perform multiplications between matri-
ces, probably the most used [16]. It is part of the Basic Linear Algebra Subprograms
(BLAS) [17], that is the de facto standard low-level routines for linear algebra li-
braries.

16

Chapter 3

Hardware Platform

Heterogeneous computing, i.e., the mix of different processing architectures on the
same computing system, is one of the most popular market trends of the last years
in the ICT domain. Its popularity is mainly due to the possibilities that it can
offer, like the opportunity to create devices with high performance but low power
consumption. Even many Internet of Things (IoT) devices have started to integrate
acceleration units, in order to keep low their energy consumption.

The importance reached by Machine Learning (ML) and Deep Learning (DL)
algorithms these years is overwhelming, as it has been highlighted during the intro-
duction to this thesis, starting to influence the evolution of modern computer archi-
tectures. Among these, also heterogeneous devices have been targeted for ML/DL
applications.

These concepts have been the driving force for this thesis and the idea of applying
a DL algorithm on a low-power heterogeneous platform has represented the main
challenge faced, accentuated by the decision to use a low-cost general purpose board
for this purpose. In particular the target for this thesis has been the Parallella
board, a cheap, credit-card-sized computer built on top of the many-core Epiphany
coprocessor (Adapteva, 2011). This chapter introduces such hardware platform,
describing and analyzing its main features.

3.1 Parallella

The Parallella board, as reported in the paper [18] was born in 2013 following a
crowdfunding campaign on Kickstarted, and launched by Adapteva, an hardware
company founded by Andreas Olofsson in 2008 with the aim of creating floating-
point processors easy to program and with a high energy efficiency. The campaign,
that reported as main goal the construction of a complete parallel computing eco-
system around the Epiphany architecture, was a success and it was funded in less
than 30 days. The first product announced was the Parallella board itself, introduced
as a 99 USD open source parallel computing project, developed with the dual goal of
democratizing access to high performance parallel computing and building a software
eco-system around the Epiphany architecture.

17

3 – Hardware Platform

3.1.1 Why The Parallella?

The decision to use the Parallella board for this work of thesis was depending on
many factors. Among these the most important and perhaps most trivial is the
fact that this platform was already available in the “Advanced Computing and Elec-
tromagnetics” laboratory at the Istituto Superiore Mario Boella, to be studied and
analyzed for a project concerning heterogeneous computing architectures. For this
reason it was decided to further deepen the use of this board, to understand up to
what could be pushed into highly demanding areas of use such as machine learning
and artificial intelligence.

Beyond that we must certainly mention the incredible attention recalled by this
device and the incredible community that has been gradually creating and that is still
active after five years from its launch. The fact of being a low-cost device with a low
energy consumption has certainly been a fundamental factor in the great popularity
achieved. We must also consider that it is a board with a parallel architecture that
can bring a wide range of development possibilities, also thanks to Linux support.
Another important and interesting opportunity offered by Parallella is to create a
cluster of boards connected to each other, in order to obtain a high performance
computing architecture with relatively low costs.

To make the comparison more precise, we taken into consideration (where possi-
ble) alternative acceleration platform with similar features in terms of solution cost,
power consumption and manufacturing process.

Field Programmable Gate Array

Field programmable gate array (FPGAs) are reconfigurable devices, which offer large
flexibility over more performing dedicated ASICs, still providing high performance in
several application domains (e.g., signal processing, image manipulation, etc.). Flex-
ibility is achieved by a full programmable fabric, where different resources (LUTs,
flip-flops, DSPs, and integrated memory blocks) can be dynamically configured to
perform any (complex) Boolean function. As such, internal fabric resources can be
(even only partially) reorganized to provide the functionalities of a dedicated dig-
ital circuit. Application developers express the desired configuration (i.e., what is
called the bitstream) using complex tool-chains that transform HDL (i.e., hardware
description language) models (e.g., a Verilog or VHDL source code) into the final
bitstream through several stages. Among the others, such transformation requires
to generate the equivalent set of logic gates (i.e., logic synthesis), and to map it on
the fabric resources (i.e., place & route). Unlike traditional high-level programming
languages, HDL models require understanding the underlying hardware system, as
well as how parallelization of the operations will take place in the synthesized cir-
cuit. To overcome such challenge, in recent years, tool-chains started to support
high-level synthesis (HLS) capabilities. As such, C/C++ code can be automatically
transformed into synthesisable HDL models.

Although the availability of FPGA devices targeting embedded systems (e.g.,
Xilinx Zynq, Xilinx Artix-7, Intel Max10) and HLS tool-chains, the design of modern
complex applications as the case of a complete CNN, still requires larger effort

18

3 – Hardware Platform

than of using standard compilers. Indeed, performance of synthesized circuit may
be affected by the way high-level code is written, thus requiring long time to be
optimized. Furthermore, complex applications may still demand for features only
available on mid-range and high-end products, such as the case of hardened DSP
blocks supporting IEEE-754 single precision arithmetic.

Graphics Processing Unit

Graphic processing units (GPUs) are nowadays the standard de-facto platform cho-
sen for accelerating complex applications. The reason behind their success, out of the
2D-3D graphics rendering, is in their massive parallelism. Compared to a standard
multi-core, a GPU is equipped with thousands of tiny processing elements. Each
single processing element is less performing and complex (architecturally speaking)
with regards to a traditional (both in-order and out-of-order) core; however, their
aggregated computing power outclass any standard CPU architecture. Indeed GPU
architectures has been, over the years, optimized for quickly crunching a huge num-
ber of floating point operations. Being initially devised as discrete components of
a computer, GPUs became common in System-on-Chip designed for mobile and
low-power applications.

Comparing the Parallella multi-core accelerator (i.e., the Epiphany-III) with a
GPU requires for taking in to consideration, at least, a GPU based on the same
manufacturing process. Also, the programming frameworks should be compared.
Manufacturing technology evolved very quickly, and for the 2013 (i.e., the year of
commercialization of the Epiphany-III) 28 nm technology was used to implement
the Nvidia Tegra-4 chip. The most similar device family is the Nvidia Tegra-2,
manufactured at 40 nm. This was a SoC equipped with a dual-core ARMv7 solu-
tion coupled with an embedded GPU. Such manufacturing processes are up to two
generations ahead of that available for the Epiphany-III, and giving to Tegra-2 and
Tegra-4 a big advantage in terms of power consumption (around 1 W). Despite their
processing power, their architecture was initially restricted to graphics tasks; only
with newer version of the platform was possible to exploit the more flexible general
purpose programming framework, named CUDA.

Programming GPUs requires dedicated frameworks (i.e., compilers and devel-
oping libraries), spanning from OpenGL (for graphics) to OpenCL and CUDA
for general purpose computations. Compared to the technology level provided by
Epiphany-III, such frameworks were only available on discrete devices, leaving out
all the embedded low cost systems.

3.1.2 Hardware Architecture

The Parallella board, that can be seen in Fig. 3.1, presents a Xilinx Zynq 7010/7020
System-on-Chip (SoC) with two 667 MHz ARM Cortex-A9 processor cores (that are
fully supported by Linux), 1 GB of RAM, GBit-Ethernet, USB and HDMI interfaces
and a MicroSD card-reader (that can be used for booting the system). Further-
more, one of the fundamental components of this system is the 16-core 32 GFLOPS

19

3 – Hardware Platform

Epiphany E16G301 accelerator, which uses a custom Adapteva’s e-Link interface,
implemented inside the FPGA logic of the Zynq processor, to allow communication
and data exchange between the ARM cores and the Epiphany ones.

Figure 3.1. The Parallella board

The dual-core ARM Cortex A9 is the main processor (or host) of this system
consuming up to 5 W, it has 32 kB L1 cache per core and 512 kB shared L2 cache,
running Linux OS as operating system. In particular in the course of this work
Ubuntu 15.04 was used as an operating system. The Epiphany chip is instead used
as co-processor, running without any operating system with a flat, unprotected
memory map. It consumes up to 2 W in addition. In the following subsections
are described the Parallella’s main components, in particular the ones that have
represented a focal point for the thesis, starting from the Epiphany chip which can
be considered the main focus for this work.

3.1.3 Epiphany Coprocessor

The Epiphany architecture consists of a two dimensional matrix of 16 mesh nodes
(eNode). Each node is subdivided in turn in a 32-bit floating-point RISC CPU, also
called eCore, a local scratchpad memory, a direct memory access (DMA) engine, two
event timers and a network interface. The “eCore” nomenclature will be used several
times in the course of this work to refer precisely to the cores present in the Epiphany
coprocessor, opposing to the use of the word “core” that will instead often be used to
refer to the two ARM cores on the Zynq. The eNodes are connected to the Network
on Chip (NoC) through their network interface. Such NoC is called eMesh and it
allows the eNodes to be interconnected to each other. A graphical representation
of such architecture can be seen in Fig. 3.2, with with a greater detail regarding
the architecture of an eCore in Fig. 3.3. These figures are largely inspired by those
present in the presentation paper [18] of the Parallella board itself.

20

3 – Hardware Platform

Figure 3.2. Representation of the two-dimensional array of eNodes

Each eCore is a 32-bit superscalar RISC processor, equipped with a 9-port 64-
word register file, an integer arithmetic logic unit (ALU) and a floating-point unit
(FPU). The instruction set architecture (ISA) is focused mainly on floating-point
operations and C-programmability. All the eCores have also a program sequencer
in order to support typical program flows (jumps, branches, etc.) and an interrupt
controller.

Memory is not hierarchical in the Epiphany architecture, not including Level 1
(L1) or Level 2 (L2) caches. On the contrary it was opted for a solution that could
maximize the amount of local storage and memory bandwidth. For this reason a
banked scratchpad memory (SRAM or Static RAM) was used, with support to si-
multaneous instruction fetching, data fetching, and multicore communication. The
Epiphany memory architecture is based on a flat distributed shared memory, with
a partitioned global address space of 512 kB. Each eCore has 32 kB available subdi-
vided in four banks of 8 kB, that can be used for code, stack and data. Furthermore,
each eCore can access to the memory of the other eCores present on the Epiphany,
using the eMesh. To each eCore two coordinates, represented by two tags, are as-
signed to distinguish it on the eMesh according to its position on the Epiphany’s
2D matrix of eNodes. These coordinates make up the identifier itself of the eCore,
which can be used in concatenation with the desired memory location to access the
memory of another Epiphany core. The coordinates for each eCore are showed in

21

3 – Hardware Platform

Figure 3.3. Graphic representation of an Epiphany node

Table 3.1.

TAG

TAG

80 90 A0 B0
80 (0, 0) (0, 1) (0, 2) (0, 3)
84 (1, 0) (1, 1) (1, 2) (1, 3)
88 (2, 0) (2, 1) (2, 2) (2, 3)
89 (3, 0) (3, 1) (3, 2) (3, 3)

Table 3.1. Coordinates to identify the Epiphany cores

The Epiphany eCores have also access to 32 MB of the host main memory. This
memory is often referred as shared memory, external memory or DRAM. Such mem-
ory space is located between the addresses 0x8e000000 and 0x8fffffff, and it is
divided into two parts of 16 MB: the first part is used for storing C’s newlib; the
second one can be used by both the Epiphany and the ARM’s cores to store data.
This memory represent often the appointed communication channel between the
host and the Epiphany cores. As it will be seen later, for the implementations done
in this work such area was used for transferring the input images and the network’s

22

3 – Hardware Platform

parameters from the main program running on the ARM cores to the kernel exe-
cuted by the eCores. ARM cores could also access directly to the internal memory of
the Epiphany cores, but this approach is widely discouraged due to its poor perfor-
mances. It is important to highlight that also read/write times between the eCores
and the shared memory are much slower compared to the inter-communication times
between the eCores.

All the memory sections described until now can be accessed from the Epiphany
cores dereferencing a pointer to an address, by hardcoding it as follows:

int *C = (int*)0x8f000000;
float *D = (float*)0x8f800000;

Another possibility is to use section labels to indicate to the compiler where a variable
should be stored. Both the two 16 MB areas of the shared memory have indeed a
label, the first part is labelled as shared_dram, while the second one as heap_dram.
Such these memory access method is reported below:

int A SECTION("shared_dram");
float B SECTION("heap_dram");

As said before, each eNode has two 32-bit event timers available. These timers
can be used for monitoring events that happen inside the node, sampling real-time
events. They have been widely used for this work, as it will be showed in the analysis
of the achieved results. As described in the “Epiphany Architecture Reference” [19]
the events that can be monitored are several and the one to be monitored can be
configured using the CONFIG register. The monitorable events are reported below:

• Clk : The number of clock-cycles between two events is reported.

• Idle: The number of clock-cycle spent in IDLE.

• IALU valid instructions : The number of operations executed by the integer
ALU unit. It includes the local loads and stores, that are also executed by the
ALU.

• FPU valid instructions : The number of FPU instructions issued.

• Dual issues instructions : The number of cycles with two instructions issued
simultaneously.

• E1 stalls : The number of pipeline stalls due to load/store register dependen-
cies.

• RA stalls : The number of register dependency pipeline stalls.

• Fetch contention stalls : The number of stall cycles caused by memory-bank
contention in the processor node.

• Ext fetch stalls : The number of instructions executed from external memory
instead of local memory.

23

3 – Hardware Platform

• Ext data stalls : The number of stalls clock-cycle due to a load instruction
accessing external memory and stalling the pipeline.

• Mesh traffic: The number of wait or access events on the local cMesh network
node.

3.1.4 Application Development

To take advantage of the Epiphany architecture two different approaches can be
used:

1. Using the Epiphany Software Development Kit (eSDK);

2. Using one of the higher-level frameworks available.

The eSDK allows a developer to manage the use of some specific low-level resources,
like registers operations, interrupts handling, timers, mutexes, barriers and DMA
functions. It supports the C programming language with mathematics functions,
offering also partial support for C++. The available compiler is a modified version
of the GNU/GCC compiler. The eSDK makes available two different libraries to be
used: the Epiphany Host Library (eHAL) and the Epiphany Utility Library (eLib).
The former can be used to manage the Epiphany chip inside from the host side,
while the latter provides hardware abstraction in the eCores. For this work of
thesis it was decided to use the eSDK and not other higher-level frameworks, which
however will be described below for completeness, because its compatibility with
the C programming language has accelerated the porting of various functions of the
Darknet framework.

As said, also higher-level frameworks are available to be used for programming
the Epiphany architecture. In particular COPRTHR and APL are worthy of note.
COPRTHR is used for many different heterogeneous platforms, like CPUs, GPUs
and also the Parallella itself. It was developed by Brown Deer Technology and
allows the support for OpenCL, STandarD Compute Layer (STDCL) and bare metal
coprocessor threads. Array manipulation language (APL) was developed instead by
Lab-Tools Ltd. It is also possible to use the Erlang functional programming language
to manage the Epiphany chip.

Epiphany Host Library

Epiphany Host Library (eHAL) is a library included in the Epiphany Software De-
velopment Kit that makes possible to control and manage the Epiphany cores from
the host (the two ARM cores). It allows to load programs, start and reset the
eCores. It can also be used to access the internal memory of the Epiphany cores
and the shared memory, both for reading and writing.

A typical workflow to allocate space in the shared memory and read and write
from the same is shown in the following code snippet. The same read and write
functions below can also be used to manage the internal memory of eCore.

24

3 – Hardware Platform

e_mem_t mbuf;

e_alloc(&mbuf, 0x01000000, MEM_SIZE_16MB);

e_write(&mbuf, 0, 0, MEM_SIZE_1MB, &input, sizeof(input));

...

e_read(&mbuf, 0, 0, MEM_SIZE_1MB, &output, sizeof(output));

The subsequent lines of code instead show the typical workflow to follow to access
the Epiphany architecture, receiving information on it, and open the connection to
the desired eCore indicating them through their coordinates (in the example shown
are used only the first eight eCore) . The program to be executed is subsequently
loaded and launched, after its execution the chip is reset and the connection to it is
closed.

e_platform_t platform;
e_epiphany_t dev;

e_init(NULL);
e_reset_system();
e_get_platform_info(&platform);

e_open(&dev, 0, 0, 2, 4);

e_reset_group(&dev);

e_load_group("some_task.elf", &dev, 0, 0, 2, 4, E_FALSE);

e_start_group(&dev);

...

e_close(&dev);

e_free(&mbuf);

e_finalize();

Epiphany Utility Library

Epiphany Utility Library (eLib) is another library provided by the eSDK, that can
be used instead from inside the Epiphany cores to obtain access to the underlying
hardware. It allows, among other things, to: read and write from the internal
memory of all the eCores and from the shared memory; access the event timers;
use the DMA engine; use mutex and barrier functions for synchronization purposes;

25

3 – Hardware Platform

attach and detach interrupt-handlers. The read and write functions calls are the
same as the ones previously seen in the eHal library, while examples of the other
functionalities will be provided in the next chapters.

3.1.5 Problems Faced

During the work for this thesis some problems were faced developing for the Paral-
lella board. Most of these problems are related to the use of the Epiphany architec-
ture and to some bugs present in the compiler. These have slowed down the progress
of the works; furthermore, most of them do not have a plausible explanation.

The debugging of the solutions developed was carried out by analyzing the partial
results produced. This was done by simply printing out the intermediate matrices
produced by both the convolutional neural network running on the Parallella board
and the same network running on a standard personal computer using the Darknet
framework. In this way it was possible to identify the differences between the devel-
oped version and the real framework, obviously taking the results produced by the
latter as correct. In particular, after the execution of each layer, what was done was
to print the matrices representing the various output channels for both, comparing
these through the diff command on the terminal.

The next subsubsections describe some of the bugs found, trying to give an
explanation when possible.

(activation_value = 0.1; output[i][j] *= activation_value) != (output[i][j]
*= 0.1)

Although the title of this subsection may seem strange, it is probably the title that
best describes the bug found in this case.

As seen in the previous chapter, during the convolution operation a phase is
foreseen in which the result of this operation is passed through an activation function.
During Darknet’s porting, some anomalies were noted in this context. In particular,
in the original framework when the so-called Leaky function is used as activation
function (for example in Tiny Darknet): it multiplies by 0.1 the scalar value if this
is less than zero. This value is saved in a variable, then just be multiplied. This
practice is actually very common in software development, saving a frequently used
value in a variable that can be reused, rather than using an immediate value. In the
work carried out, we tried to stick to this practice, but found considerable problems:
observing the results obtained from the implementation made with those produced
by the original framework, we noticed strongly conflicting results. Empirically it
was noted that by modifying the activation function, so as to multiply the partial
output by an immediate value, rather than by a variable, the correct results were
obtained. For this reason it was decided to proceed in that way.

Although it may seem a smallness, this problem has represented a strong slow-
down of the work, being this bug difficult to identify. The cause of this bug could
be found in the fact that the value 0.1, used in Tiny Darknet, does not have a
precise floating point representation, but there is a loss of information to represent

26

3 – Hardware Platform

it when it is saved in memory. On the contrary this would probably not happen
if it were used as a value of 0.5, 0.25, 0.25, etc ... which can instead be effectively
represented in floating point notation. Not saving this value in a variable, but using
it as an immediate value does not cause problems for a different representation used
probably.

Malloc Within The Shared Memory

During the development of the various solutions found, among other things, an at-
tempt was made to dynamically allocate the matrices required for input and output
directly within the shared memory.

This would have greatly facilitated the development, allowing to write a single
function for each type of layer needed, allocating the necessary memory according to
the size of the input and output matrices and the number of their channels. As will
also be described in the next chapter talking about the actual implementations made,
this was not possible due to a bug in the Epiphany architecture. This bug crashes
the running application if a dynamic allocation is made in the shared memory, using
the malloc function to which an address referring to that memory location is passed.

27

Chapter 4

Solution Design

In this chapter the practical work carried out within this thesis is described, ana-
lyzing in particular the approach used and the implementations made. In the next
chapter, instead, the achieved results will be exposed and analyzed.

The chapter opens with the description of the general idea followed to achieve
a working porting of Darknet framework on the Parallella board. It explains the
decisions that have been made and the causes that lead to them. Then a description
of the two convolutional neural networks used during the work is provided, exploring
their features and the layers required. Finally a basic solution is provided and
described. From such implementation derive the other solutions analyzed in the
continuation of the chapter, with optimized and ad-hoc implementations made to
enhance performance.

4.1 General Idea

4.1.1 Zynq as master, Epiphany as slave

Describing the board used and how to develop a program for it in the previous
chapter, it has emerged how its programming model is very similar to the one used
for GPU programming, as for NVIDIA’s CUDA [20] for example. Such programming
model, indeed, expects the use of kernels, that are pieces of code that are executed
by parallel units, the Epiphany eCores in our case. These kernels, in particular their
management and scheduling, are handled, as seen, by the Zynq architecture on the
Parallella board.

Since one of the main objectives of this work is to test the performance of the
Epiphany coprocessor, one of the first decisions made was to relegate the ARM cores
only to the role of coordinators, i.e., they only have to schedule all the operations,
to synchronize the Epiphany cores between them and to prepare and load all the
necessary parameters in the shared memory. Most of these operations will be de-
scribed in detail in the following subsections. With such division of the work, the
eCores are in charge of all the operations closely related to the convolutional neural
networks, i.e., they have to implement all the requested layers of the network. They

28

4 – Solution Design

have, in a certain way, the role of slaves in a classical master/slave paradigm, while
in this case the Zynq architecture plays the role of master.

Another implementation decision taken was to use not just one kernel, but mul-
tiple ones. Such choice was taken for two reasons:

• Using multiple kernels there is a better separation of the concerns. In this
way, indeed, each network’s layer or series of consecutive related layers could
have its own kernel, making the code cleaner and more understandable;

• The second reason is more related to the architecture itself of the Epiphany
cores. This, as explained in the previous chapter, have a little amount of
internal memory and just an even smaller part dedicated to the program code
and to the global and local variables. Such restriction makes impossible to
write all the layers of the network in just one kernel. Therefore the division of
the layers in multiple kernels.

As it would be better explained in the next chapter, talking about results and
performance, the temporal overhead due to the context switching between one kernel
to the other is negligible compared to the total execution time.

4.1.2 Focus On The Shared Memory

After having described the programming model for the Parallella board in the pre-
vious chapter and how the tasks were divided between the Epiphany and the ARM
cores in the last subsection, it is now time to delve into some implementation details.

One of the most important problem faced during the work was how to actu-
ally manage data for an architecture like the one used, which has a poor amount of
memory resources. The biggest limitation encountered was in particular the internal
memory. As described previously, each Epiphany core has indeed only 32 kB of in-
ternal memory and a part of it is dedicated to program code, so only an even smaller
amount can be actually used to store local variables. Talking about convolutional
neural networks, one of their advantages is the lower number of parameters required
compared to the classic neural networks. Despite this, there are still too many pa-
rameters and they take up too much space to be saved inside an eCore memory.In
addition to them we must also have in memory, for each layer, the input and the
output matrices. All these values, both the network parameters (weights, biases,
etc.) and the input and output values, are stored as float on 4 B, so theoretically
each Epiphany core could store just eight thousand of these values. In practice, for
what was said just before, the number of parameters that can be memorized is even
smaller, because a part of the internal memory is dedicated to the program code
and to the global variables.

From these premises, for the final solution the attention was focused on the use
of the shared memory as communication channel between the ARM and Epiphany
cores and as main storage method. The idea was to subdivide the usable 16 MB of
shared memory in three parts:

29

4 – Solution Design

• A part dedicated to the inputs, where all the input values of a layer were saved;

• A part dedicated to the outputs, where each eCore could store the results of
its computations;

• A part dedicated to the storage of the required parameters, where are memo-
rized all of those parameters required by a convolutional layer (weights, biases,
etc...).

Such division can be seen in Fig. 4.1.

Figure 4.1. Conceptual division of the shared memory

At each new layer of the network, the parts dedicated to input and output
exchange each other, because, as it can be imagined, the computational results of
one layer become the input values of the following layer, as well as the the area
previously dedicated to inputs becomes overwritable for the subsequent outputs.

The imagined flow of execution prevides different steps of execution to achieve
the recognition of an input image:

1. At first the ARM cores load into the shared memory the parameters required
by the convolutional neural network. If possible all the parameters are loaded
into their dedicated area, in that way such operation could be executed just
one time at the start of the program. If this is not possible, because of the
size occupied by the parameters, such loading happens multiple times at each
evaluation, between the execution of a kernel and the next one;

2. When an image is ready to be analyzed it is preprocessed by the ARM cores
and then loaded into the input area in the shared memory. The preprocessing
phase is equal to the one used in the Darknet library. During it, the initial
image is divided into three channels of color (red, green and blue), then each
channel is resized to the dimensions expected by the network. The data loaded
into the memory are the matrices correspondent to each channel;

3. When both the network’s parameters and the input image are loaded into the
shared memory, the first kernel is loaded and executed by the eCores. For each
layer implemented by the kernel in execution, the eCores load the correspond-
ing required values using the DMA engine. Then, when the computation ends,
they load the generated outputs in the dedicated area of the shared memory.
For each layer, as explained, the memory locations for the inputs and the out-
puts exchange each other, while the parameters’ area always remain in the
same memory segment;

30

4 – Solution Design

4. When a kernel ends the next one is loaded and launched by the ARM cores,
until the last one is reached. At the end the ARM cores read the final output
from the shared memory, printing it out.

Such intensive use of the shared memory represent a bottleneck for the solution,
due to lower performance in reading and writing compared to those achievable using
the internal memory of each individual eCore. This reason is one of the starting
points for the research of the subsequent optimizations described in the continuation
of this chapter.

31

4 – Solution Design

Figure 4.2. Representation of the workflow followed

32

4 – Solution Design

4.1.3 Implemented Layers

As said in the first subsection, the actual layers of the convolutional networks are
executed by the eCores. They are in charge of loading the inputs, the required
parameters and of executing the needed computations. As it will be seen in the
continuation, the two analyzed networks present almost the same mix of layers, that
is: convolutional layers, max pooling layers, average pooling layers, full connected
layers and softmax layers.

Despite these kinds of layers are used multiple times in each network, their
implementation is not the same but change everytime, i.e. for each call to each
layer there is a different implementation. The reason behind such decision can be
found, again, in the little amount of memory present in each eCore. Such limitation
has led to ad-hoc solutions. In fact, depending on the size of input matrices of the
called layers, there is a different used approach: if the input matrix is too large to
be stored in the internal memory, then all computations take place directly in the
shared memory; otherwise it is copied through the DMA engine inside the eCore
memory, carrying out all the necessary operations directly inside this memory.

Talking about the input and output matrices of each layer, it is also important
to highlight the approach used for such objects. As mentioned before, on which
memory the computations take place strictly depends on the size of the matrices
under consideration. A little premise is important here to reiterate how inputs
and outputs are structured in the case of a convolutional network. They are, as
explained in the second chapter, composed of a certain number of channels, where
to each channel corresponds a matrix with some specified size. Depending on the
layer type, between inputs and outputs may change either the number of channels
present or the size of the matrices used. Going to analyze concretely in detail the
implementation approach used, we can identify mainly two cases, which are the
same described above and which strictly depend on the size of the layer’s matrices:

• On one hand there are those layers were input and output matrices have small
sizes, so they can be handled by the eCores internal memory. In these cases the
matrices are directly copied from the shared memory, using the DMA engine,
into local variables. Then, after all the computations, they are stored again
inside the shared memory, always using the DMA engine. With these layers,
the applied policy lies in dividing the number of channels of the layers by the
number of used cores. For example, considering a layer with 32 channels and a
program which uses 8 of the available eCores, each core would have 4 channels
to compute. Such method can be seen in Fig. 4.3.

• On the other hand in most cases the layers present input and output matrices
of big sizes, that cannot be handled directly inside an eCore’s internal memory.
In such cases a different policy has been applied. In particular, it was decided
to subdivide each channel’s matrix in a set of submatrices with sizes congruous
to the amount of memory present in each core. Each submatrix is managed by
a different eCore, copying it as described above using the DMA engine. The
number of submatrices was decided so that was a multiple of the number of
the eCores used. In that way each Epiphany core would work on each channel

33

4 – Solution Design

of the network, although only on small part of this. Let’s consider for example
a layer of 32 channels with matrices having dimensions sizes 224 × 224, using
16 eCores. In such case each core would work on every single channel, but
computing only a submatrix with sizes 14 × 14. An example of this approach
is observable in Fig. 4.4.

34

4 – Solution Design

Figure 4.3. Allocation of input channels to eCores

Figure 4.4. Allocation of input submatrices to eCores

35

4 – Solution Design

The following subsubsections describe the general implementations of the layers
used in the analyzed convolutional networks. In the continuation of the chapter
additional implementation details will be provided for each solution found.

Convolutional Layer

Convolutional layers are perhaps the most important layers implemented. The rea-
son of such statement lies in the fact that they are the real balance needle between
the solutions found. They are indeed the layers with the most evident differences be-
tween each implementation and the ones that, as it will be seen, allow performance
speedup.

The general idea followed in order to implement such layers was to use a direct
convolution, i.e., the classic one described in the second chapter. As explained de-
scribing the Darknet library, faster algorithms require (most of the times) a huge
amount of memory, so they were initially discarded. Nevertheless, as it will be
seen in the continuation of this chapter, a solution of this kind was tested using
the Memory Efficient Convolution (MEC) algorithm. Regarding the direct convo-
lutional algorithm used, it was very simple. It consists indeed in four nested for
loops: the most external one that iterates through the number of filters, the second
one through the number of channels and the last two that loop between the two
dimensions of the matrices.

A peculiar trait of the treated convolutional layers is that in the majority of the
cases they required zero padding of dimension one. The addition of such further
pixel is made when possible directly when the input matrix is copied in the eCore’s
internal memory, otherwise, if the computations happen directly within the shared
memory, another function responsible for this task is called. In this last case such
function simply moves the input matrices between the two locations of shared mem-
ory responsible for storing inputs and outputs, adding during the copy the required
values for the zero padding.

Max Pooling Layer

Max pooling layers are present in all the analyzed networks, almost always appearing
following the execution of one or more convolutional layers. Their implementations is
a really simple one. It consists of three nested for loops, one that iterates through the
number of channels and two that loop between the two dimensions of the matrices.
In all the analyzed cases such layers appear with size and stride both equal to two,
that means that each matrix is subdivided into submatrices of just four values.
During the loops such submatrices are analyzed and the highest value between the
four is the one that is saved into the output matrix.

Average Pooling Layer

The average pooling layers follow the same implementation of the max pooling ones,
having almost the same characteristics. In that case, instead of choosing the highest

36

4 – Solution Design

value among the four present in the analyzed submatrices, the average value between
these values is calculated and it is saved in the output matrix.

Full Connected Layer

The full connected layers follow an implementation very similar to the convolutional
layers. They consist in two nested for loops, one which iterates through the input
neurons and one which loops through the number of output neurons instead.

Softmax Layer

The softmax layers, differently from the other implemented layers, are executed by
the ARM cores. Such decision derives from the fact that they operates always at the
end of the evaluation, working with a small number of neurons. For this reason it
would have been too much overhead to parallelize this small amount of computations
between the eCores.

Such layers simply implement the softmax operation, which takes as input a
vector, that has as values the classification classes of the network, and gives as
output the probability for a given class to be the predicted one. The pseudocode
for such function is as follows:

float *softmax_layer(float *input, int number_of_classes)
{
int i;
static float output[number_of_classes];
float sum = 0;
float largest = input[0];

for (i = 0; i < number_of_classes; i++)
{
if (input[i] > largest)
largest = input[i];

}
for (i = 0; i < number_of_classes; i++)
{
float e = exp(input[i] - largest);
sum += e;
output[i] = e;

}
for (i = 0; i < number_of_classes; i++)
{
output[i] /= sum;

}
return B;

}

37

4 – Solution Design

As it can be seen, it simply consists of three for loops through the number of classes
of the network: in the first the largest value is selected among the ones present in
the input arrays; in the second cycle each element of the output array is computed
with the equation output[i] = einput[i]−largest; finally in the last loop each value of the
output array is divided by the sum of all the elements computed in the second for.

4.1.4 Synchronization

Working on the Epiphany coprocessor without an intervening operating system and
in cooperation with two ARM cores, synchronization was one of the main initial
problems faced.

The general idea followed was to work with two level of synchronization, one
within the eCores themselves and the other between the main program in execution
on the ARM cores and the whole coprocessor. For these two kind of synchronization
were used two different implementation approaches, using the different set of tools
made available by the Parallella’s libraries:

• To synchronize the eCores between themselves after the execution of each net-
work layer, it was used a classic barrier mechanism. A barrier system is a
typical synchronization method, widely used especially in the Linux environ-
ment. It allows in this case to prevent any core to go further with its execution
until all the cores have finished their computation on that layer. Parallella’s
“e_lib.h” library provides by default the barrier objects e_barrier_t that can
be used by the eCores for synchronization purpose. The following code snippet
shows an example of a typical use of such method:

volatile e_barrier_t barriers[number_of_cores];
volatile e_barrier_t *tgt_bars[number_of_cores];

e_barrier_init(barriers, tgt_bars);

layer_1();

e_barrier(barriers, tgt_bars);

...

layer_n();

e_barrier(barriers, tgt_bars);

...

As shown by this example, an array of barrier objects is declared by passing, as
size, the number of running eCores that must be synchronized; then, such array
is initialized using the system call e_barrier_init. After these preliminary
steps, the algorithm used prevides the synchronization of all the cores in order

38

4 – Solution Design

to wait everyone to finish the current layer before starting the next one. This
need arises from the fact that, before executing each layer, it is necessary to
guarantee the previous computations are finished.

• When all the eCores have finished their own execution, the ARM cores must
be informed in order to start the next set of operations or to read the produced
results. The approach used in this case is very simple and follow the guidelines
and the advises provided by the Parallella community. Each eCore store a local
variable used as flag and initialized to zero, before finishing their execution they
turn the value of such variable to one. On the ARM side, the main program,
after having launched the execution of the eCores, continuously loops, checking
the memory locations (flags) of each eCore. When all the flags are placed equal
to one it means that they have all finished their execution and the ARM’s main
program can continue its work. The following code snippet shows an example
of use of this method, both on the Epiphany side and on the ARM side. On
the eCore side there will be something like:

unsigned *flag;

flag = (unsigned *)0x00007000;

...

// Execution of all the required operations

...

*flag = 0x00000001;

return 0;

On the ARM side instead:

while (1)
{
all_done = 0;
for (i = 0; i < number_of_cores; i++)
{
e_read(&dev, i, j, 0x00007000, &done[i], sizeof(int));
all_done += done[i];

}
if (all_done == number_of_cores)
{
break;

}
}

39

4 – Solution Design

4.1.5 Training The Network

As explained in the second chapter, talking about backpropagation, the training of
the neural networks is not an argument of this thesis. The reason can be found in the
poor performance provided by the Parallella board, as well as by other embedded
systems of the same type. Such devices, indeed, are not suitable for this kind of
operations, that are very exorbitant in terms of requested resources.

So, a very followed trend is to train the requested network (learning phase) on
high performance systems and then to use the “learned parameters” on the embedded
devices just for the inference phase. In such a way the less performing devices will
be in charge of just the evaluation of the input, that is the less expensive in terms
of both execution time and resources.

In our case the training of the networks was carried out on desktop computers,
using the standard library provided by Darknet, then the results of such operation
were used on the Parallella board. In this way two important results were achieved:

• The time needed for training was almost solved, using computer systems able
to complete such operations in a relative short time;

• The parameters used by our implementation are completely compatible with
parameters used by the Darknet library.

4.2 The Models Used

During this work of thesis two models of convolutional neural networks were im-
plemented (using the Darknet library to train them): Tiny Darknet and a custom
network trained on the MNIST dataset. In the following subsections there is an
analysis of these two networks.

4.2.1 Tiny Darknet

Tiny Darknet [21] is a small convolutional neural network model proposed by the
author of Darknet himself. Such model, as described by its presentation, was inspired
by SqueezeNet [22], which is a deep neural network with a small architecture that
requires a smaller amount of memory to be stored without sacrificing its accuracy.

Tiny Darknet was born with the same goal, indeed its model occupies only 4.0 MB
maintaining however a good accuracy (58.7% of accuracy for the Top-1 predicted
classes and 81.7% instead for the Top-5 predicted classes). The model provided
with the Darknet library was trained with 1000 classes of prediction. Among all the
proposed Darknet network, the choice for this work fell on Tiny Darknet because its
small model was the one that fits better for the Parallella board. As reiterated over
and over again in fact, the biggest bottleneck for such board is indeed the memory,
for this reason a network’s model which requires a smaller amount of memory to be
saved seemed the right choice.

40

4 – Solution Design

Tiny Darknet accepts, as input, images with sizes of 224 × 224 pixels, with
three channels of color. This network consists of 22 layers, 16 of which are convo-
lutional layers, 4 are max pooling layers, one is an average pooling layer and the
last one is a softmax layer. Having such a high number of layers, the number of
operations required for an evaluation is in turn very high and consequently also the
time required. All the convolutional layers use a zero-padding of one pixel and a
variant of the ReLu activation function, called Leaky ReLu, which can be described
by the following equation:

output =

(
0.1 ∗ input if input ≤ 0

input if input > 0

Table 4.1 shows in detail the Tiny Darknet’s architecture.

Layers Filters Filter Size Stride Input Output
conv 16 3 x 3 1 224 x 224 x 3 224 x 224 x 16
max 2 x 2 2 224 x 224 x 16 112 x 112 x 16
conv 32 3 x 3 1 112 x 112 x 16 112 x 112 x 32
max 2 x 2 2 112 x 112 x 32 56 x 56 x 32
conv 16 1 x 1 1 56 x 56 x 32 56 x 56 x 16
conv 128 3 x 3 1 56 x 56 x16 56 x 56 x 128
conv 16 1 x 1 1 56 x 56 x 128 56 x 56 x 16
conv 128 3 x 3 1 56 x 56 x 16 56 x 56 x 128
max 2 x 2 2 56 x 56 x 128 28 x 28 x 128
conv 32 1 x 1 1 28 x 28 x 128 28 x 28 x 32
conv 256 3 x 3 1 28 x 28 x 32 28 x 28 x 256
conv 32 1 x 1 1 28 x 28 x 256 28 x 28 x 32
conv 256 3 x 3 1 28 x 28 x 32 28 x 28 x 256
max 2 x 2 2 28 x 28 x 256 14 x 14 x 256
conv 64 1 x 1 1 14 x 14 x 256 14 x 14 x 64
conv 512 3 x 3 1 14 x 14 x 64 14 x 14 x 512
conv 64 1 x 1 1 14 x 14 x 512 14 x 14 x 64
conv 512 3 x 3 1 14 x 14 x 64 14 x 14 x 512
conv 128 1 x 1 1 14 x 14 x 512 14 x 14 x 128
conv 1000 1 x 1 1 14 x 14 x 128 14 x 14 x 1000
avg 14 x 14 x 1000 1000
softmax 1000

Table 4.1. Tiny Darknet

4.2.2 MNIST Custom Model

MNIST dataset [23] is one of the most well known machine learning database in
literature. It is used in particular to recognize handwritten digits. It has a training
set of 60000 examples and a test set of 10000 examples.

41

4 – Solution Design

For this work of thesis a custom network was trained using the Darknet library
along with this dataset. In particular it was used an open source repository on
Github, darknet_mnist [24], to perform such training. The architecture of the
network, that can be seen in detail in table 4.2, is very “slim”: it presents indeed
just 2 convolutional networks, 2 max pooling layers, 2 full connected layers and 1
softmax layers. Both the convolutional layers use ReLu as the activation function,
while the two full connected layers use a linear activation function which has the
form input = output. Moreover it uses small images for the evaluation, which can
be easily stored in the eCores’ internal memory. The negative aspect of this network
is that, presenting two full connected layers, it needs a huge amount of parameters
to work. For this reason, the loading of them into the shared memory can not take
place in one shot, but must be repeated several times by alternating the execution of
the various kernels used. Nevertheless, being a small network and therefore requiring
a low number of operations, it allows to appreciate the performance of the Parallella
board in a context much closer to a real case for it, i.e. a context in which just a
feature of an image must be recognized.

Layers Filters Filter Size Stride Input Output
conv 32 5 x 5 1 28 x 28 x 3 28 x 28 x 32
max 2 x 2 2 28 x 28 x 32 14 x 14 x 32
conv 64 5 x 5 1 14 x 14 x32 14 x 14 x 64
max 2 x 2 2 14 x 14 x 64 7 x 7 x 64
full connected 7 x 7 x 64 1024
full connected 1024 10
softmax 10

Table 4.2. Network trained on the MNIST dataset

4.3 Basic Solution

The first attempts to implement working convolutional neural networks on the Par-
allella board just follow a basic and simple philosophy: just make them working.
They do not have any optimizations, they just follow the general ideas previously
introduced in this thesis. This section describes such first basic and most impor-
tantly working solution implemented.

This solution implements both the two networks previously analyzed. It uses all
the 16 eCores available on the board, following the split of the tasks and the shared
memory usage described above. The approach to the convolution operations is
really basic, using a simple direct convolution algorithm where all the computations
happen in 4 nested for loops along the channels, the number of filters and the
two dimensions of the input and output matrices. All the problems related to the
memory bottleneck can be seen here, indeed in most of the layers the operations
are made completely in the shared memory with a tremendous overhead in terms of
execution time.

42

4 – Solution Design

In such solution the main program running on the ARM side loads all the param-
eters in one time in the shared memory, then it sets the coprocessor to use all the
16 eCores. On the eCores all the computations happen in the shared memory: each
convolutional layer has two local variables for the input and the output matrices
that reference two memory locations in the external memory, and all the operations
use such variables. Only the convolutional parameters are stored in the internal
memory.

As seen, all the layers used by the two networks uses a zero-padding of one
pixel. While the first operation of zero-padding is executed directly by the ARM
cores (loading the input image), all the subsequent ones are executed by the eCores.
By never copying the input and output matrices to internal memory, an additional
function has been created to make this operation happening. Such function copies
the input matrices to the second memory location dedicated to the matrices, but
during the copy it adds the additional zero pixel copying the input value in a memory
reference shifted by one. To help to understand such mechanism the following code
snippet is provided, where is taken as example an input matrix with dimensions 112
x 112 x 16:

void zero_padding()
{
float (*input)[112][112] = (void *) 0x8f000000;
float (*output)[114][114] = (void *) 0x8F400000;

int i, j, k;

...

for (k = 0; k < 16; k++)
{
for (i = 0; i < 112; i++)
{
for (j = 0; j < 112; j++)
{
output[k][i + 1][j + 1] = input[k][i][j];

}
}

}
}

The function simply makes a copy of the input matrix in a bigger output matrix,
shifting the indices by one. It can also be seen how the matrices are referenced
in the shared memory. In order to be sure that the location of the output matrix
contains only zeros for a perfect zero-padding, a memset operation is performed on
that memory location before calling the method just described.

43

4 – Solution Design

4.4 Extended Memory Solution

The basic solution just described follows perfectly the philosophy with which it was
created: it just works. It showed how even a low power board like the Parallella
could run a deep convolutional neural network for image recognition. However at
this point the question to wonder become: how can it become usable, i.e., how can
performance improve in order to be used in real application contexts?

As it will be seen in the next chapter, the performance achieved by the Parallella
using this solution are not close to a possible use in real contexts, nor using a network
like Tiny Darknet nor using a more suitable smaller network like the custom one
trained using the MNIST dataset. The biggest bottleneck was the memory and in
particular how to store the network’s parameters and the input and output matrices
in order to perform all the necessary computations in a performing way. Thus, any
improvement should only start from solving this problem.

With the basic solution previously described, all the operations on the input and
output matrices take place in the shared memory. This involves enormous latencies,
due to the times of reading and writing from the eCores to the external memory and
vice versa (exposed in the third chapter analyzing the board) even using the DMA
engine. Obviously, the best and ideal solution would to execute all the operations
in the internal memory of each eCore. Unfortunately this is not possible given the
small amount of available internal memory. With that in mind, the only possible
solution was to try to “extend ” such internal memory.

The solution imagined and then implemented goes precisely in this direction and
starts from a very simple question: is it necessary to use all the available Epiphany
cores? The initial answer should be trivially yes, more cores mean almost always
more power and so better performance. A more careful analysis can, however, lead
to slightly different answers. In particular, it is important to keep in mind that
the main problem with the basic solution previously analyzed was how to store the
huge amount of data derived from the use of a convolutional neural network in order
to speedup performance. It was not a problem on how to increase the number of
working parallel units. Resuming what was said about the split of work among the
eCores, one can understand how the real question was not how to further subdivide
the input and output matrices in order to reduce the number of computations to
perform, but it was mostly how to reach a subdivision that allows the execution
of the elaborations in the internal memory. From this assumption it is possible to
resume the initial question, i.e. whether it is necessary or not to use all the eCores
present on the Epiphany coprocessor, giving a more complete answer that could be:
no, it is not mandatory to use all the available eCores, if this is translatable into
some increase in general performance.

Summarizing what has been said so far and keeping in mind the possibilities of
communication between the eCores themselves, as offered by the Epiphany copro-
cessor, the hypothesis formulated was: using only half of the eCores available for the
real computations and the remaining other half only for their “storage capabilities”,
we could greatly counter the bottleneck due to the lack of memory. Explaining bet-
ter such concept, it could be more performing to use part of the available Epiphany
cores only for their internal memory, using this as an extension for the internal

44

4 – Solution Design

memory of the other eCores that actually perform the operations. In such a way the
cores in action would have a larger memory area to work with, with the possibility
to perform their operations directly in such space. Obviously, as it can be seen in
4.3, the read/write performance between an eCore and another one are not the same
as the one achieved by using directly the internal memory, but they are much better
compared to the use of the shared memory.

From To Method Write Speed (Mb/s) Write Speed (Clock cycles)

eCore Internal
Memory memcpy 504.09 9299

Internal
Memory eCore memcpy 115.65 40531

eCore External
Memory memcpy 142.99 32782

External
Memory eCore memcpy 4.19 1119132

eCore Internal
Memory DMA 1949.88 2404

Internal
Memory eCore DMA 480.82 9749

eCore External
Memory DMA 493.21 9504

External
Memory eCore DMA 154.52 30336

Table 4.3. Epiphany Architecture - Memory Performance

4.4.1 Implementation

Obviously, to test such hypothesis, a new approach to the implementation of the
networks has been taken. Although the part concerning the main program executed
by the ARM side has remained almost unchanged, the implementation regarding
the kernels executed by the Epiphany cores has been revolutionized.

The basic idea was to create two groups of eCores:

• The first group is the one in charge of performing the operations, i.e., the active
group. Their tasks are the same as the ones used in the basic solution described
in the previous subsections. What really changes is how they perform such
tasks, like for example how the convolutional layer is implemented having more
memory space available;

• The second group, instead, could be called silent or sleeping group. The eCores
of this group are not involved in the execution of the operations required by the
convolutional neural networks, they do not even have any kernels to execute.
They are only used for their memory, in such a way that the active cores
can access to their memory segment, storing local variables and executing the
required computations directly in such location.

The planned division consist of assigning the same number of eCores to each group.
In this way to each active eCore correspond a silent one (with a 1 to 1 mapping).

45

4 – Solution Design

With such solution, it was as if every Epiphany core in action had doubled its
amount of internal memory storage, from 32 kB to 64 kB. In reality, as explained
above regarding the use of internal memory by the cores, only a part of the internal
memory proper to each core can therefore be used, so the actual amount of available
memory is about 48 kB. It is good to note that the silent eCores, not having any
kernel to execute, have all their 32 kB available, because they do not have any part
of their memory dedicate to store the program code, the global variables, etc.

The implemented solution prevides that to each active eCore is assigned a silent
one. In practice it was decided to use as active group the first two rows of cores of
the coprocessor and the last two as silent group, having 8 active eCores and 8 silent.
In particular, to each core of a given row it was assigned the correspondent core from
the same position but belonging to the other group. For instance, to the first core of
the second row of the active Epiphany cores was assigned the first core of the second
row of the silent group. Absolute addresses are used to implement such assignment.
At the start of each kernel there is a switch construct on the indices of the cores that
is executing it. The following piece of code shows such implementation in practice.

void *A, *B,;

switch (4 * e_group_config.core_row + e_group_config.core_col)
{
case 0:
A = (void *)0x88800000;
B = (void *)0x88804000;
break;

case 1:
A = (void *)0x88900000;
B = (void *)0x88904000;
break;

case 2:
A = (void *)0x88A00000;
B = (void *)0x88A04000;
break;

case 3:
A = (void *)0x88B00000;
B = (void *)0x88B04000;
break;

case 4:
A = (void *)0x8C800000;
B = (void *)0x8C804000;
break;

case 5:
A = (void *)0x8C900000;

46

4 – Solution Design

B = (void *)0x8C904000;
break;

case 6:
A = (void *)0x8CA00000;
B = (void *)0x8CA04000;
break;

case 7:
A = (void *)0x8CB00000;
B = (void *)0x8CB04000;
break;

default:
break;

}

As it can be seen, in the switch is computed the absolute index of the eCore in
execution and depending on it A and B takes the absolute address of the internal
memory of the correspondent assigned silent Epiphany core. The memory segment
of such silent eCore is divided in two equal parts of 16 kB, i.e. A and B in the piece
of code below that are used to reference the input or the output matrix depending
on the case.

Convolution Layer

Having more performing memory available has meant changing the way in which
layer, such as the convolutional one could be executed. The decision made was
to continue to follow the split in submatrices previously described, with the big
difference that these could be now stored in the extended memory.

The implementation made for this second solution prevides the use, as before,
of a direct convolutional algorithm, still not optimized. Differently from before a
new step was added, which consists in the copy, using the DMA engine, of the input
matrix or submatrix from the shared memory to the extended memory location. In
this way all the computations can happen directly inside the silent eCore, saving the
results also in it. Such results are, at the end, transferred to the shared memory using
again the DMA engine. In this way the bottleneck of executing all the operations
in the shared memory can be avoid, having, as it will be seen, a consistent speedup
of the performance.

Another big advantage reached is that such solution can avoid using a further
function to implement the zero padding almost always required for a convolutional.
As seen, with the basic solution, a new function was created in order to add the
padding. Such function simply copied the input to a new memory location in the
shared memory adding the required zeroes. Although functional, this method was
highly ineffective, because it required many operations to happen in the shared
memory and also the use of the memset function directly in such location of memory.

47

4 – Solution Design

With this second solution can be avoided. Being that the input matrix or submatrix
is directly stored inside the extended memory locations, the padding can be added
during such operation, using the same method as before, i.e., shifting the indices
from the input to the new location by one. The following code snippet shows such
operation, in which each row of the input matrix is copied to the extended memory
from the shared memory, using the DMA engine:

for (i = 0; i < 56; i++)
{
e_dma_copy(&input[i + 1][1], &s_input[v][off_i + i][off_j], 56

* sizeof(float));
}

Max Pooling Layer

The new implementation for the max pooling layer is very similar to the one made
before for the basic solution. In the case of the second solution the main difference
resides in the fact that, as done for the convolutional layer, a new step is required.
In such step the input matrix or submatrix is copied from the shared memory to the
extended memory, in order to make all the computations happen in such memory
location. At the end, the new output matrix or submatrix is copied directly in the
shared memory again.

4.5 Optimized Convolution Solution

Having extended the internal memory of an Epiphany core, at the price of having
to use only half of the available cores, the next obvious question posed for this work
of thesis was: how can we go further in order to increase performance?

A possible approach could be to continue to work on the memory, trying to
further reduce the bottleneck deriving from it. It is true, indeed, that with silent
eCores the available high performing memory was increased, but it is also true that
despite this an eCore could not still always work with an entire input matrix, but it
has to use in most cases a submatrix that could fit in memory (internal or external).

Another possible approach, the one with which we decided to continue, prevides
to optimize directly the convolutional layer itself, that is the one used more often and
also the one heavier in terms of computations. Going in this direction it was decided
to try change the previous implementations in order to bring them closer to the
approach used in the Darknet library. As explained in the second chapter, Darknet
does not use a direct convolutional algorithm to implement the convolutional layer,
it uses a more optimized version known as im2col method.

im2col [25] is a very well known method in the scientific literature, used to
speedup the convolutional operations. It allows to achieve better performance trans-
forming the dot product between the filter window and the local receptive field to a
matrix multiplication. This is done by expanding all the possible moving windows,

48

4 – Solution Design

i.e., all the regions sampled by the sliding movement of the filter windows, in mem-
ory. To expand these windows two new “supporting matrices” are created, one for
the input image and the other for the weights. The latter is simply a row matrix
made by stretching all the weights on a single row. The first, instead, also called
lowered matrix, is a huge matrix having as width the square of the size of a single
filter multiplied by the number of channels of the input image and the height that
can be calculated as follows:

X = ((ih + 2 ∗ p − fs) / s) + 1

Y = ((iw + 2 ∗ p − fs) / s) + 1

height = X ∗ Y
where ih and iw are the sizes of the input image, p is the amount of zero padding
to be used in the convolution and s is the stride to use. The matrix multiplication
between these two matrices gives the result of the convolutional operation, that can
be reshaped back to the classical image matrix by applying the reverse operation
col2im. The negative aspect of this method derives from the sizes of the support
matrix used for the input image. Such matrix, as it can be imagined, has huge
sizes that cause an high memory consumption. This reason, despite the better
performance achievable, made such method impossible to be applied on the Parallella
board, due to the small amount of memory available.

A method very similar to the one just described is the memory-efficient con-
volutional, better known as MEC. Such method, that will be described in the next
subsection, allows to improve the performance of the convolutional layer, but using a
support matrix with small sizes that reduces significantly the memory consumption
compared to the im2col algorithm. MEC was used for this work to implement the
custom network trained with the MNIST dataset and described below. Being that
such network uses already by itself smaller matrices compared to Tiny Darknet, it
would be ideal for testing the MEC algorithm.

4.5.1 Memory-efficient Convolution (MEC)

Memory-efficient convolutional or MEC [26] is a convolutional algorithm with the
aim of improving performance, reducing however the memory consumption com-
pared to algorithms like the im2col, previously described. Its principle is the same
as the im2col’s one, i.e., to transform the dot product between the filter window and
the local receptive field to a matrix multiplication. The difference lies in how the
support matrix is created, indeed MEC uses a different way for lowering the input
matrix, which allows to create a much more compact matrix, reducing the memory
overhead. The lower impact on memory was the reason behind the decision to use
such algorithm.

The lowered matrix in the MEC algorithm is created starting from dividing the
input matrix in submatrices with dimensions ih × fs, where ih is the height of
the input matrix and fs is the size of the convolutional filter. Each submatrix is
created from the start of the input matrix to the end of it, sliding it by s, which
is the size of the convolutional stride. Each submatrix formed in this way is then

49

4 – Solution Design

copied into one row of the lowered matrix. Once this operation is completed, MEC
further subdivides the newly created lowered matrix in other partitions, of sizes
ow × fs × fs, where ow is the output width and ds is the size of the filter. Each of
these submatrices, created from the start of the lowered matrix shifting by s × fs, is
then multiplied with the support matrix of the weights, created in the same already
seen in the im2col algorithm.

4.5.2 Implementation

The MEC algorithm was implemented only for the custom network trained with the
MNIST dataset. Such decision derives from the sizes of the lowered matrix, which,
even if smaller than the one that would be built with the im2col algorithm, occupies
a big amount of memory. For this reason it has been preferred to implement it only
for a network where the input matrices are considerably smaller than those used in
Tiny Darknet. Compared to previous implementations, what is really changed is
the addition of a new method for the creation of the lowered matrix and completely,
as it can be imagined, new method for the convolutional layer. The starting point
for this new solution was the previous solution based on the extended memory. Also
in that case, like in the two before, each eCore does not work with the entire input
matrix (lowered matrix in this case), but only on a submatrix of it.

mec_shaped() is the new method created for the creation of the lowered matrix
required by the MEC algorithm. It uses four nested for loops that cycle on the
number of filters, the number of channels and on the dimensions of the input matrix.
What this method does is simply to copy from one location of the shared memory
to the other assigned for storage of input and output matrices. Such copy is done
in order to directly create the lowered matrix in the shared memory.

The new convolutional function, instead, starts from the lowered matrix in the
shared memory and copies into the extended memory one of the partition that
must multiplied by the support matrix of the weights. This latter matrix is created
directly in the internal memory when copying the weights from the shared memory.
The algorithm used for the matrix multiplication is simply based on three for loops
and can be seen in the following code snippet:

float input[V][I], weights[I][J];

...

for (v = 0; v < V; v++)
{
for (j = 0; j < J; j++)
{
output[v][j] = 0;

for (i = 0; i < I; i++)
{
output[v][j] += input[v][i] * weights[i][j];

}

50

4 – Solution Design

}
}

The results of such multiplication are then saved in the shared memory.

4.6 Summary

In this chapter all the designed solution for this work of thesis were described and
analyzed. The chapter started from the general ideas used during the whole work,
showing the convolutional neural networks that were decided to use on the Parallella
board and describing how these were actually implemented.

Although the initial purpose was to try to implement the entire Darknet library,
at the end it was decided to use the original Darknet library only for the training of
the networks and for parameters obtained in this way. The main reason behind such
decision, stated many times during the chapters, was substantially the bottleneck
caused by the poor amount of memory present on the board. It is just this bottleneck
to have generated most of the decisions around this work, searching for new ways
to get around it, improving consequently the performance.

In conclusion, three different solutions were found and implemented, in order to
make the Parallella board capable of running convolutional neural networks:

• A first basic solution which exploits the use of the shared memory, both as
communication channel, between the ARM and the Epiphany cores, and as
memory location where all the computations happen.

• A more optimized solution, where it was decided to avoid the use of half of the
Epiphany cores present on the coprocessor in order to make them silent cores.
These cores are used only for their memory space, that is exploited by the ac-
tive cores to store the required variables (input and output matrix/submatrix
mainly) and to perform the needed computations.

• A third solution, which starts from the results and the new methods imple-
mented in the second solution to achieve an optimized version of the convolu-
tional layer based on the use of the MEC algorithm.

In the next chapter the results achieved using these three solutions will be analyzed.

51

Chapter 5

Experimental Evaluation

This chapter offers a view of the results achieved with the solutions and described
in the previous chapter. The analysis is divided into two parts: a first one focused
on the obtained performance, i.e., on the times required to run the models object of
this work, using the implementations made ad-hoc for the Parallella board; a second
one, where the focus is instead on the power energy consumption of the board during
the execution of such convolutional neural networks.

These two aspects represent the focal points of this thesis, as highlighted also in
the introduction to this work. They are indeed an indication of how it is possible
to use the Parallella board in a real application context, both in terms of execution
times and power energy consumed to perform the recognition of an image. Through
the results achieved it was possible to draw the conclusions on the hypothesis at the
basis of this thesis, that are exposed in the next and conclusive chapter.

General Methodology

In the course of this chapter, referring to both the measurement of performances
and power energy consumption, the descriptions of the specific methodologies used
for these two measurements will be provided. It will be explained how the presented
data were calculated, in particular the method and the tools used to obtain them.

During the two types of measurement, however, some similarities can be found
in the approaches used. In particular, it was decided to carry out at least 10x
measurements for each type of result, reporting, as shown below, for each result, the
average value and its standard deviation. Furthermore, the results presented are
initially presented in tabular form, referring to the data obtained for each network
layer in each solution; then, there is a summary histogram for each of the solution
found that indicates the execution time for all the kernels executed by the Epiphany
architecture. Finally, for each model used there is a conclusive histogram which
compares the total times of execution.

Another important point to underline is how the measurements were divided
for each layer. As mentioned in the previous chapter, above all for the convolution
operations, each different solution follows its own approach: the extended memory
solution has a unique function for each type of layer, the basic solution requires an

52

5 – Experimental Evaluation

additional function to perform zero padding for convolution, as well as the solution
based on the MEC algorithm requires a method called MEC Shape to “reorder” the
input matrix. In the measurements made, all the auxiliary functions were consid-
ered as being part of the same layer; for instance for the basic solution a single
measurement was performed that considers both the real convolution function and
the zero padding function. In the same way we proceeded in the solution based on
the MEC algorithm.

As for the used name, the following legend was used:

• The first solution found is called basic solution;

• The second solution, based on the use of only half of the available cores (using
the other ones only for their memory), is called extended memory solution;

• The third one, based on the use of the MEC algorithm, is simply called MEC
solution.

5.1 Performance Analysis

The analysis of the achieved performance provides an answer to the question: how
fast are the implementations found? Although this may seem a trivial question, in
reality it concerns one of the fundamental aspects for a possible realistic use of the
work carried out, i.e. the usability of the solutions found.

In a real context, especially in a possible industrial application, the time required
to perform an operation is fundamental. Although there were no specific constraints
on the required computation times, the direction followed during all the work was
to try to implement the most efficient solutions possible, where the efficiency in this
case was seen in terms of execution times. It can be said that the leitmotif “it is
enough that it works” was followed only at the beginning of this thesis, once the
criticalities arising from the limits of the board used were identified (limits widely
quoted several times in the previous chapters, like the amount of available memory
in primis) and above all, once these difficulties have been overcome, the focus has
been placed on some possible optimizations aimed at improving the execution times.

As expressed in the previous chapter, talking about the approach used for the
design of the implemented solutions, three different types of solutions were found:
a first one, that is really basic, which tries to overcome the limits of the Parallella
board in the simplest way possible, making the most on the shared memory and
using all the sixteen available eCores, without implementing any kind of ad-hoc
optimization; a second and more optimized solution, that, as described, tries to
bypass the memory limits by using only eight cores as active and the other eight
as silent ones, used only for accessing to their memory; a third and final solution
that is an attempt to use a different algorithm for the convolution operation, the
MEC algorithm, in order to try to speedup the performances following an approach
widely used by most of the neural networks frameworks.

All the results achieved using these three solutions are reported in the following
subsections. As said in the previous chapter the first two solutions described were

53

5 – Experimental Evaluation

used for running both Tiny Darknet and the custom model based on the MNIST
dataset, while the third solution was used only for the latter model. For this reason
the results reported in the remainder of this chapter are divided into five parts, one
for each solution and model used, moreover the results achieved for the same model
are compared between the three solutions found.

5.1.1 Methodologies Used

Before reporting all the obtained results, the methodologies used to measure these
performance will be described in this subsection. What we have tried to do is to
obtain different levels of granularity in the results found. To better express this
concept we can say that three types of results have been found with regard to the
execution times: one more coarse and referred purely to the total time required by
the entire program to be executed, which goes from when the image is received in
input to when the final result is returned; one referring to the entire Epiphany copro-
cessor, which reports the execution times of every single kernel developed for it and
executed by all the involved eCores; finally, a finer one that takes into consideration
every single operation performed by each of the Epiphany cores.

As it can be imagined, different approaches were taken for obtaining these dif-
ferent kinds of measures. Regarding the first two types of results, the method used
is rather simple and based solely on the use of the clock_t struct and of the clock()
function, both provided by the C programming language and used inside the main
program executed by the two ARM cores. The clock() [27] function returns the
CPU time used so far as a clock_t struct. To compute the time elapsed for the ex-
ecution of some operations it is sufficient to call such function just before and after
the operations that one wants to measure and then to compute the difference of the
two values returned. To get the number of seconds used, it is necessary to divide
the result by CLOCKS_PER_SEC and to multiply by 1000. To measure the total
time of execution of the program, the clock() function was just called at the start of
the program, before even loading the network parameters into the shared memory,
and after the result of the classification is returned. It was decided to provide such
kind of measure because it is also the one provided by running Darknet. In this
way it could be possible to compare the results achieved using the Parallella board
with the ones that could be possible to obtain running the framework on other de-
vices. To measure instead the time required by the Epiphany coprocessor to run
each developed kernel for such architecture, the same technique was used. In this
case the clock() function was called before and after the execution of each kernel, in
particular during the synchronization between the eCores and the ARM cores, after
each Epiphany core finished its execution.

As for the results with finer granularity, i.e. those concerning the execution
times of each individual layer by each eCore involved, a different method was used.
As said during the description of the Parallella board, each core of the Epiphany
architecture has two 32-bit event timers that can be used to sample different real-
time events within the system, including also a general-purpose clock-cycle counter,
which can be used to measure time and to profile function execution time. These
two registers are called CTIMER0 and CTIMER1 and they contain the current

54

5 – Experimental Evaluation

value of the event being monitored. Both these two registers count down from an
high value to zero, in particular the high value used during the measures taken was
E_CTIMER_MAX that is the highest value possible. To use such methodology,
inside each kernel the following schema was followed:

e_ctimer_set(E_CTIMER_0, E_CTIMER_MAX);
start_ticks = e_ctimer_start(E_CTIMER_0, E_CTIMER_CLK);

...

stop_ticks = e_ctimer_get(E_CTIMER_0);
e_ctimer_stop(E_CTIMER_0);

elapsed_ticks = start_ticks - stop_ticks;

As it can be seen, at first, the register used (in this case CTIMER0) is set to the
highest value. Then, the timer is started, passing as parameter the type of event
to measure. In this case E_CTIMER_CLK, in order to measure the number of
elapsing clock ticks. At the end the timer is stopped and the measured value is
retrieved. To compute the number of clock ticks that are elapsed it is necessary to
calculate the difference between the initial and the final value. As said, in this way
the value returned is the number of elapsed clock ticks. From such value the time
of execution in milliseconds can be obtained by dividing it by the clock frequency of
the cores involved and then by multiplying the result returned by 1000. In our case
the clock frequency of each eCore, as also said describing the Epiphany platform, is
set to 600 MHz, so the formula used, is as follows:

execution time (ms) =
clock ticks

600000000
∗ 1000

In the following subsections the results are reported as just described, in tabular
form and histograms. These were divided into two macro subsections related to the
two models used, Tiny Darknet and the custom model based on the MNIST dataset.
In turn, these subsections are subsequently subdivided for each of the solutions found
for them.

At the end of these subsections there is a further subsection in which an analysis
of the results achieved is carried out, discussing the main strengths and weaknesses
of the solutions found. This analysis will be used as a starting point, together with
the next one concerning power consumption, for the final conclusions on this thesis
work, as reported in the following chapter.

55

5 – Experimental Evaluation

5.1.2 Results for Tiny Darknet

1. Basic Solution

Kernel Layer Time (ms) Standard Deviation
conv 6838.527 5.615
max 87.559 0.151
conv 7102.861 1.307

1st max 43.622 0.0277
conv 1312.574 1.0513
conv 7158.27881 0
conv 1838.681 1.700
conv 7158.279 0

2nd max 44.271 0.0192
conv 1434.349 1.627
conv 7158.279 0
conv 1846.357 1.520
conv 7158.279 0

3rd max 23.349 0.0184
conv 1458.694 1.583
conv 6613.702 3.737
conv 1882.711 1.634

4th conv 6689.387 4.329
conv 2931.679 2.352

5th conv 4445.396 5.197

Table 5.1. Tiny Darknet - Basic Solution - Layer Execution Times

Figure 5.1. Tiny Darknet - Basic Solution - Kernel Execution Times

56

5 – Experimental Evaluation

Total Time Of Execution (ms) Standard Deviation
84317.837 48.263

Table 5.2. Tiny Darknet - Basic Solution - Total Execution Time

2. Extended Memory Solution

Kernel Layer Time (ms) Standard Deviation
conv 865.948 0.668
max 32.307 0.0763
conv 1438.061 0.919

1st max 18.936 0.015
conv 68.759 0.264
conv 1400.959 0.619
conv 251.0149 0.815
conv 1401.120 0.752

2nd max 19.006 0.0144
conv 224.222 0.154
conv 5537.610 0.803
conv 375.825 0.309
conv 6131.086 0.924

3rd max 9.933 0.025
conv 262.639 0.234
conv 3816.325 1.241
conv 430.017 0.219

4th conv 3949.849 1.425
conv 1117.222 0.444

5th conv 1102.213 0.436

Table 5.3. Tiny Darknet - Extended Memory Solution - Layer Execution Times

Total Time Of Execution (ms) Standard Deviation
31577.799 5.735

Table 5.4. Tiny Darknet - Extended Memory Solution - Total Execution Time

57

5 – Experimental Evaluation

Figure 5.2. Tiny Darknet - Extended Memory Solution - Kernel Execution Time

5.1.3 Results for the MNIST Custom Model

1. Basic Solution

Kernel Layer Time (ms) Standard Deviation
conv 109.199 0.115

1st max 2.568 0.003
conv 563.001 0.269

2nd max 1.319 0.002
3rd full connected 199.808 1.688
4th full connected 0.599 0.001

Table 5.5. MNIST Custom Model - Basic Solution - Layer Execution Times

Total Time Of Execution (ms) Standard Deviation
3177.344 3.3921

Table 5.6. MNIST Custom Model - Basic Solution - Total Execution Time

58

5 – Experimental Evaluation

Figure 5.3. MNIST Custom Model - Basic Solution - Kernel Execution Times

2. Extended Memory Solution

Kernel Layer Time (ms) Standard Deviation
conv 48.049 0.0131

1st max 1.273 0.004
conv 241.633 0.029

2nd max 0.806 0.002
3rd full connected 180.926 0.485
4th full connected 3.471 0.019

Table 5.7. MNIST Custom Model - Extended Memory Solution - Layer
Execution Times

Total Time Of Execution (ms) Standard Deviation
2756.158 3.579

Table 5.8. MNIST Custom Model - Extended Memory Solution - Total Execution Time

59

5 – Experimental Evaluation

Figure 5.4. MNIST Custom Model - Extended Memory Solution - Ker-
nel Execution Time

3. MEC Solution

Kernel Layer Time (ms) Standard Deviation
conv 52.596 0.163

1st max 1.633 0.006
conv 2122.981 5.518

2nd max 0.807 0.002
3rd full connected 180.970 0.539
4th full connected 3.473 0.020

Table 5.9. MNIST Custom Model - MEC Solution - Layer Execution Times

Total Time Of Execution (ms) Standard Deviation
4649.5824 5.3959

Table 5.10. MNIST Custom Model - MEC Solution - Total Execution Time

60

5 – Experimental Evaluation

Figure 5.5. MNIST Custom Model - MEC Solution - Kernel Execution Times

5.1.4 Analysis

In this subsection there is an analysis of the results just presented, commenting on
them and exposing the strengths and weaknesses of the solutions found. We will
also try to highlight the possible causes of these results trying to understand why
some approaches used are preferable to others. From this analysis and from those
that will follow in the course of the chapter, about the power energy consumption
of the board, we trigger the subsequent final considerations of the next chapter.

First of all, summary charts are shown in Fig. 5.6 and in Fig. 5.7. These charts
report, for both the two network models used, a comparison between the three
solutions found (two in the case of Tiny Darknet) regarding the total execution
times.

From these two graphs the first evidence is how the execution times of the model
based on the MNIST dataset are much lower than those required for Tiny Darknet.
This observation has been described as trivial because it can be easily understood by
the simple fact that the Tiny Darknet network model has an higher number of layers
compared to the MNIST based network, in particular the number of convolutional
layers (the most exorbitant in terms of both resources and necessary operations)
turns out to be much higher. A first logical deduction deriving from this consider-
ation is how a board with the characteristics of the Parallella is better suited for
smaller networks, having a smaller number of layers to perform. This is not surpris-
ing, indeed it has already been foreseen in the introduction to this thesis, discussing
the possible use cases that this work wanted to address. For those cases, as men-
tioned, it is expected to recognize a limited number of features present in an image
(among those already mentioned we remember the recognition of the color of an
object or its shape), which can usually be done through the use networks with a low
number of layers, as happens in the network used to recognize handwritten numbers.
On the contrary, Tiny Darknet represented only an experiment for this work, in an

61

5 – Experimental Evaluation

Figure 5.6. Tiny Darknet - Total Execution Times Comparison

Figure 5.7. MNIST Custom Model - Total Execution Times Comparison

attempt to understand when we could go further with the resources made available
by the Parallella board and in particular by the Epiphany architecture.

Comparing the two charts, a further consideration is how the difference in terms
of time between the execution of the base solution and that with extended memory
is much wider with Tiny Darknet than with the MNIST model. In the first case it
amounts to about 52 000 ms, while in the second it is only about 400 ms. What is
the reason for this sharp difference in terms of distance between the two solutions
depending on the model used? Surely an explanation can be sought in how the
models are made. Reconnecting to the last chapter, it is good to remember two

62

5 – Experimental Evaluation

fundamental characteristics both about the networks themselves, and about the
implemented solutions:

• The first thing to re-highlight is the difference in terms of the size of the
input and output matrices between the two models used. In the case of Tiny
Darknet, in fact, the dimensions of the intermediate matrices are significantly
greater than those required by the MNIST network. Indeed, in the first case
the input matrix is set to 224 x 224 x 3, while in the second case is set to
28 x 28 x 3;

• The second thing to remember is these matrices themselves are managed by
eCores. In fact, if there is a difference in the management of large matrices
between the base and the extended memory (in the first case the shared mem-
ory is used for storage, while in the second the memory of the dormant cores is
used), in the case of matrices of small dimensions these are saved directly in the
internal memory of the Epiphany core that is performing the computations.

Starting from these two underlined points, it is understandable that in the case
of the network based on the MNIST dataset the Epiphany cores statistically find
themselves managing small matrices more often, carrying out the necessary oper-
ations on them directly in their internal memory. Even if this were not possible,
that is, if the required matrices were not small enough to be stored within an eCore,
the basis solution would still perform fewer operations in the shared memory with
the MNIST network than with Tiny Darknet. This entails a thinning in terms of
execution times between the two solutions found.

This concept can be further explored. In fact, we can consider the two imple-
mentations of these solutions with regard to Tiny Darknet, observing both execution
times of each layer for both, in particular convolution layers that are generally the
heavier ones to execute, than the times required to perform every kernel. From
these we can see how in general the main differences between the two in terms of
performance are in the first layers/kernels executed. Obviously, it is not possible to
state that the execution times are similar for the last operations performed, since
these are almost longer than twice as long in the basic solution. However, what
can be said is that the enormous initial difference is due to the conformation of the
network, which initially provides large matrices but a small number of channels for
these. In these conditions the difference between the two solutions is clear, since in
the basic solution the eCores are to manage these matrices completely in external
memory, performing a large number of operations on it. In the extended memory
solution, on the other hand, the active cores are able to perform few transfers from
the shared memory to that of the dormant cores, precisely because the number of
channels is low, thus managing to perform the operations in a short time. On the
contrary, when the number of channels increases, the number of transfers increases
proportionally and therefore the performances are lowered. It can therefore be gen-
erally stated that the extended memory solution is clearly preferable to the basic
one, as is clearly noticeable by observing the execution times. However, this solution
also has its bending moments, which generally occur when the number of transfers
from the external memory to that of the dormant cores increases.

63

5 – Experimental Evaluation

This analysis obviously can not disregard the results achieved with the MEC
solution. This solution, as mentioned, has been implemented only for the convolu-
tional network based on the MNIST dataset. The results achieved by it in terms
of the total time necessary for its execution, as clearly visible, are worse than those
achieved with the other two solutions presented in this work. But how is it possible
that a solution that contemplates an optimized version of the convolution opera-
tion is worse than solutions based on a direct convolution, although the latter is
notoriously slower than the first? As explained in the course of this work, the op-
timized convolution algorithms, as well as im2col used in Darknet, were initially
discarded due to the fact that the performance guaranteed by them are obtained
at the expense of greater memory consumption. Therefore, working with a board
having a small number of resources in this sense, it was preferred to try to improve
performance by following other directions. Nevertheless, after the implementation
of the extended memory solution it was decided to proceed with a solution based on
the MEC algorithm, based on the same implementation principles (dormant eCores
used as memory extension) and using the MNIST network, which already requires
a smaller amount of memory (in general for the smaller dimensions of the matri-
ces involved). Observing the data obtained on the performance, especially of the
individual layers, a strong deterioration in performance can be observed especially
in the second convolutional layer compared to the other two solutions. This can be
attributed in particular to the mec_shaped() method used for the creation of the
lowered matrix required by the MEC algorithm. The main problem of this function
is not so much the fact that it happens completely in shared memory, because even
the method to get the zero padding in the basic solution has the same behavior
while still obtaining better results, but more than anything else that the operations
involved in it provide access to non-contiguous memory areas (such as zero padding),
due to the very nature of the lowered matrix. The same happens in the very heart
of the algorithm, when this last matrix is further sectioned to be multiplied by
the weight matrix. The resulting submatrix used by the Epiphany cores, in fact,
are constituted in the same way, through non-consecutive accesses in the SDRAM.
From this it can be affirmed, or better to confirm, the fact that such algorithms for
performing on devices with adequate amount of memory, are not very efficient on
devices such as the Parallella and in particular on architectures like as the Epiphany
one.

By observing the execution times of the kernels performed and comparing them
with the total execution times, it is possible to notice a certain discrepancy between
them. This difference is attributable to the execution times required by the two
ARM cores. Although the difference between these results is almost insignificant for
Tiny Darknet, it becomes substantial in the case of the MNIST network. The total
execution time becomes almost double, indeed compared to that given by the sum
of the times required to run the kernels. This difference is attributable in particular
to the fact that the network parameters in the case of Tiny Darknet are loaded at
once, at the beginning of the program (basically, therefore, they could be loaded
into shared memory only once and then used for recognizing more images), while in
the second convolutional network they are loaded in three steps and are interspersed
with the execution of the various kernels. This derives from the space itself occupied
by these parameters, which makes it impossible to load them into shared memory,

64

5 – Experimental Evaluation

thus making necessary to divide such loading in several times.

Finally, a general consideration must be given about the execution times of the
various layers, reported in the previous tables for each solution. From these it can
be seen how in each measurement the standard deviation is generally very low (the
maximum value assumed by it is equal to about 5 ms). This is a sign of a good
stability of the solutions, at least as far as performance and execution times are
concerned. In general, the reliability of Epiphany architecture can be emphasized.

5.2 Power Consumption Analysis

Results achieved using a low-power device like the Parallella board can not but take
into account the data about power consumption. As stated during the introduction
to this work, power efficiency is becoming more and more often a focal point for
modern implementations. Obviously such concept must also be applied to convolu-
tional neural networks, that despite being often evaluated on the basis of their mere
performances, as done for this work in the previous section, must take into account
their energy yield, especially in application contexts such as the industrial one.

As for the performances analysis also in this case the measurements made refer to
the three types of solutions found and to both the models used for the convolutional
neural networks.

5.2.1 Methodologies Used

In order to measure the amount of power consumed by the Parallella board, during
the execution of the solutions found, mainly two approaches were used: one relative
to the total consumption achieved by the entire Parallella board and one in which
it was attempted to measure the consumption of Epiphany architecture alone.

To measure the total consumption of the whole board, this was fed with a DC
power supply keeping the constant voltage at 5.3 V and measuring each time the
average electric current used. In this way power consumption can be traced back to
the formula power(W) = current(A) ∗ voltage(V).

In the second case, however, it was decided to try to measure the energy con-
sumption of only Epiphany architecture. Since there are no pins present on the board
in order to be used for this purpose, it was decided to proceed with an indirect mea-
surement. The idea followed was inspired by the scientific paper “Instruction level
energy model for the Adapteva Epiphany multi-core processor” [28]. Such publi-
cation introduces a measurement-based instruction-level energy characterization for
the Epiphany processor, that is the one presents on the Parallella board. Such
characterization is used to create an energy model for the most important Epiphany
instructions such as floating-point operations, integer operations, branches, etc. This
model allows to estimate the power consumption of a developed software starting
from the number of operations executed for each kind of instruction. What is done
in practice is to evaluate each type of instruction from an energy point of view,
assigning to each one a base energy cost. Starting from this mapping (instruction

65

5 – Experimental Evaluation

to base energy cost) and from the number of operations performed it is possible to
go back to the total energy consumption. The evaluation performed in the paper
uses ad-hoc written programs for the eCore in order to know precisely how many
operations are executed for any kind of instruction. In particular, as reported by the
authors, these microbenchmarks were built using C with in-line assembly insertions
to minimize the influence of compiler optimizations on the generated code. Using
this method it was possible to assign a base energy cost to most of the instruction
groups that can be used. These base energy costs are reported in 5.11 for the basic
instructions, while in 5.12 are reported the base energy costs for remote loads and
stores between two eCores (based on their Hamming distance).

Parameter Energy (pJ)
Integer Operations 17.93
Floating Point Operations 29.39
Branch 154.22
Local Store 47.99
Local Load 39.82
Pipeline Stalls 53.65
Shared Memory Stores 581.72
Shared Memory Loads 2054.67
NOP 17.07
Idle Cycle 23.59

Table 5.11. Base Energy Cost

Hamming Distance Load Energy (pJ) Store Energy (pJ)
1 339.28 112.51
2 379.61 117.96
3 419.48 123.34
4 461.65 128.47
5 499.30 134.21
6 541.89 139.22

Table 5.12. Base Energy Cost For Remote Loads And Stores On The eMesh

The nature of the developed code for this work of thesis, however, has made the
use of this method impracticable. In particular, the high complexity, at the code
level, of the implemented solutions made it impossible to calculate the number of
operations performed by type of instruction. The high number of cycles performed
together with the fact of not using assembly code but relying on the optimizations
performed by the compiler have emphasized this problem.

Not being able to have such a fine particle size about the number of instructions
executed by type of operation, it was decided to proceed with an approximation of
this count. As it will be seen later, many of the types of instructions executed can
not be counted precisely because they are aggregated, as many operations can not
be easily counted by exploiting the event timers present in each eNode. What has

66

5 – Experimental Evaluation

been done is to use the “worst case” considering for those instructions aggregated
the base energy cost relative to the most wasteful instruction. Following the same
reasoning it was decided to overbook all those instructions otherwise not counted
using the event timers.

Obviously this did not allow a precise calculation concerning the energy con-
sumption of the Epiphany architecture. But what has been possible, however, was
obtained by estimating the worst case, in any case capable of comparing the solutions
found also from an energy point of view (although this is always an approximation)
as well as that of mere performances.

Three approaches were used in particular to estimate these numbers:

• The first approach consisted of using the two event-timers present on each
eCore to count the number of occurrences related to the events caused by the
types of operations reported in 5.11. Specifically:

– E_CTIMER_IALU_INST was to used as parameter for the timers in
order to count the integer operations and the local loads and stores. These
three kinds of operations are all executed by the ALU of the Epiphany
coprocessor, so they are aggregated in the count performed by the event
timer. In this case as base energy cost the one related to a local store was
used.

– E_CTIMER_FPU_INST was used as parameter to count the floating
point operations performed by each eCore.

– E_CTIMER_E1_STALLS was the parameter passed to the event timers
in order to count the number of pipeline stalls.

– E_CTIMER_EXT_LOAD_STALLS was used to calculate the number
of external memory accesses to execute load instructions. In this case the
number returned by the event timer indicates the number of stalls due to
load operations in external memory. Instead, to estimate the data of our
interest, the value returned by the timer has been divided by the average
number of stalls due to an external data load, which amounts to about
10 as reported in the Epiphany Architecture Reference [19, Tab. 22].

– E_CTIMER_IDLE to count the number of clock cycle spent in idle.

• The second approach used involved the counting of branch operations and
NOPs. Since there are no parameters to use with the event timers available
to be able to count this type of instructions, it was to use a static analysis
technique based on the assembly code produced by the compiler. To obtain
the assembly code produced, in particular, a tool [29] supplied by Adapteva
was used: this receives the code written for the Epiphany architecture as
input, returning the assembly code as output. Such tool emulates the modified
version of the gcc compiler developed for the Parallella. From the assembly
code it was possible, writing just a little parser in Python, to calculate the
number of assembly instructions regarding the branch operations, as well as
the NOP instructions executed.

67

5 – Experimental Evaluation

Obviously such number does not take into account the executed loops, since
these are computed only at execution time and not at compilation time. To
overcome this problem, it was decided to count the number of cycles per-
formed for each function, multiplying this number by the number of branch
instructions counted by the parser. Also in this case the result obtained was
calculated in the worst case, taking the maximum number of times in which
the cycles could actually be executed.

• Finally, the third approach followed concerns the count of write/read opera-
tions between two eCores. For this purpose it was decided to use the mesh
timer, as described in an article [30] written by Nick Oppen (a computer sci-
entist who has dedicated part of his studies on the Parallella). As stated
by the author of this post, such timer works exactly as the one described in
the first method, the only difference is in the fact one has to specify which
mesh event must be counted. To do this, the desired value must be set in the
E_MESH_CONFIG register (the initial value of this register will be restored
once the measurement is finished). In the case in question, this register has
been set up so as to be able to count any kind of access to the eMesh, both
for reading and writing. An example of the lines of code used to configure this
register are shown below:

#define E_CTIMER_MESH_1 (0xe)
#define E_MESHEVENT_ANYWAIT1 0x00000200

...

int mesh_reg = e_reg_read(E_REG_MESHCFG);
int mesh_reg_timer = mesh_reg & 0xfffff0ff;
mesh_reg_timer = mesh_reg_timer | E_MESHEVENT_ANYWAIT1;
e_reg_write(E_REG_MESHCFG, mesh_reg_timer);

e_ctimer_set(E_CTIMER_1, E_CTIMER_MAX);
start_ticks = e_ctimer_start(E_CTIMER_1, E_CTIMER_MESH_1);

...

stop_ticks = e_ctimer_get(E_CTIMER_1);
e_ctimer_stop(E_CTIMER_1);

elapsed_ticks = start_ticks - stop_ticks;

As seen in 5.12, the energy required to perform this type of operation depends
on the Hamming distance between the two involved eCores. In the case of this
work, a distance of 3 was taken as the average value.

Using these three methods it was possible to estimate the number of operations
performed by type of instruction. From this estimate we proceeded with the cal-
culation of the power consumed for each layer performed by each of the proposed
solutions.

68

5 – Experimental Evaluation

5.2.2 Results for Tiny Darknet

1. Basic Solution

Operation Type Avg Total Number Of Operations Base Energy (pJ) Total Energy (pJ)
ALU Operation
(Integer Operations, Local
Loads and Stores)

28824604254 47.99 1383292758125.47

FPU Operation 1223578047 29.39 35960958801
Pipeline Stall 32542662920 53.65 1745913865652.63
External Memory Access 29709672950 2054.77 61046544687944.10
Idle Cycle 0 23.59 0
Branch Operation 65214910656.00 154.22 10057443521368.30
NOP 27 17.07 460.89
cMesh Operation 9328558303 419.48 3913143636942.44

Total Energy (pJ) 78182299429294.80
Total Energy (J) 78.182

Table 5.13. Tiny Darknet - Basic Solution - Energy Consumption

Energy Consumption (J) Execution Time (s) Power Consumption (W)
78.182 84.318 0.927

Table 5.14. Tiny Darknet - Basic Solution - Power Consumption

Voltage (V) Current (A) Power Consumption (W)
5.3 0.97 5.12

Table 5.15. Tiny Darknet - Basic Solution - Parallella Power Consumption

2. Extended Memory Solution

Operation Type Avg Total Number Of Operations Base Energy (pJ) Total Energy (pJ)
ALU Operation
(Integer Operations, Local
Loads and Stores)

19107873405 47.99 916986844681.96

FPU Operation 1005657407 29.39 29556271192
Pipeline Stall 11072965559 53.65 594064602224.26
External Memory Access 888659711.5 2054.77 1825991315296.12
Idle Cycle 0 23.59 0
Branch Operation 17806218 154.22 9754058186737.92
NOP 21 17.07 358.47
cMesh Operation 2782368566 419.48 1167147966065.68

Total Energy (pJ) 14287805186556.40
Total Energy (J) 14.288

Table 5.16. Tiny Darknet - Extended Memory Solution - Energy Consumption

69

5 – Experimental Evaluation

Energy Consumption (J) Execution Time (s) Power Consumption (W)
14.288 31.578 0.452

Table 5.17. Tiny Darknet - Extended Memory Solution - Power Consumption

Voltage (V) Current (A) Power Consumption (W)
5.3 0.93 4.95

Table 5.18. Tiny Darknet - Extended Memory Solution - Parallella Power Consumption

5.2.3 Results for the MNIST Custom Model

1. Basic Solution

Operation Type Avg Total Number Of Operations Base Energy (pJ) Total Energy (pJ)
ALU Operation
(Integer Operations, Local
Loads and Stores)

852938788 47.99 40932532436

FPU Operation 30791963 29.39 904975792.6
Pipeline Stall 325138283 53.65 17443668883
External Memory Access 691576058 2054.77 1421029736984.33
Idle Cycle 0 23.59 0
Branch Operation 1476920448 154.22 227770671490.56
NOP 7 17.07 119.49
cMesh Operation 61124555 419.48 25640528331

Total Energy (pJ) 1513722114036.98
Total Energy (J) 1.514

Table 5.19. MNIST Custom Model - Basic Solution - Epiphany Energy Consumption

Energy Consumption (J) Execution Time (s) Power Consumption (W)
1.514 3.177 0.476

Table 5.20. MNIST Custom Model - Basic Solution - Epiphany Power Consumption

Voltage (V) Current (A) Power Consumption (W)
5.3 0.93 4.95

Table 5.21. MNIST Custom Model - Basic Solution - Parallella Power Consumption

2. Extended Memory Solution

70

5 – Experimental Evaluation

Operation Type Avg Total Number Of Operations Base Energy (pJ) Total Energy (pJ)
ALU Operation
(Integer Operations, Local
Loads and Stores)

920768714.5 47.99 44187690609

FPU Operation 30804240 29.39 905336614
Pipeline Stall 479348413.7 53.65 25717042395
External Memory Access 25872053.89 2054.77 53161120171.56
Idle Cycle 0 23.59 0
Branch Operation 2459860992 154.22 379359762186.24
NOP 12 17.07 170.7
cMesh Operation 69045680 419.48 28963281846

Total Energy (pJ) 532294233992.50
Total Energy (J) 0.532

Table 5.22. MNIST Custom Model - Extended Memory Solution - Epiphany
Energy Consumption

Energy Consumption (J) Execution Time (s) Power Consumption (W)
0.532 2.756 0.193

Table 5.23. MNIST Custom Model - Extended Memory Solution -
Epiphany Power Consumption

Voltage (V) Current (A) Power Consumption (W)
5.3 0.90 4.75

Table 5.24. MNIST Custom Model - Extended Memory Solution - Par-
allella Power Consumption

3. MEC Solution

Operation Type Avg Total Number Of Operations Base Energy (pJ) Total Energy (pJ)
ALU Operation
(Integer Operations, Local
Loads and Stores)

4572171262 47.99 219418498863.38

FPU Operation 30791963 29.39 904975792.6
Pipeline Stall 2847752407 53.65 152781916646.28
External Memory Access 157144781.3 2054.77 322896382189.61
Idle Cycle 0 23.59 0
Branch Operation 2578384384 154.22 397638439700.48
NOP 12 17.07 2014.84
cMesh Operation 444111461 419.48 186295875660.28

Total Energy (pJ) 1279936090867.47
Total Energy (J) 1.280

Table 5.25. MNIST Custom Model - MEC Solution - Epiphany Energy Consumption

Energy Consumption (J) Execution Time (s) Power Consumption (W)
1.380 4.750 0.275

Table 5.26. MNIST Custom Model - MEC Solution - Epiphany Power Consumption

71

5 – Experimental Evaluation

Voltage (V) Current (A) Power Consumption (W)
5.3 0.93 4.91

Table 5.27. MNIST Custom Model - MEC Solution - Parallella Power Consumption

5.2.4 Analysis

The results about the power consumption just shown in the previous graphs will be
analyzed in this subsection. As previously done for the performance results, also in
this case are presented the Fig. 5.8 and Fig. 5.9 charts that summarize the power
consumption by comparing the approaches used for both the adopted models, Tiny
Darknet and the MNIST custom model.

Figure 5.8. Tiny Darknet - Epiphany Power Consumption Comparison

Although it is right to remember that the method used for calculating the power
consumption of the Epiphany architecture is the result of an approximation as pre-
viously mentioned, some considerations can be derived from it.

In general we can see, as widely predictable, how energy consumption is relatively
low, approaching the consumption of 1 W only in the case of the Basic Solution
with Tiny Darknet. In other cases, rather low consumption is found, which do not
exceed 0.5 W and even in the best case (with the Extended Memory Solution and the
MNIST network) fall below about 0.2 W, as can be expected from an architecture
such as Epiphany which, as also reported in its datasheet, has a maximum peak
consumption of 2 W.

A first interesting thing to note is how to the optimized solutions in terms of
performance, in this case the Extended Memory Solutions in particular, is associated
also a lower power consumption. This should not be a surprise considering the
basic energy consumption by type of instruction shown in 5.11, where it can be
seen how the energy consumption is related to instructions that access the external

72

5 – Experimental Evaluation

Figure 5.9. MNIST Custom Model - Epiphany Power Consumption Comparison

memory. In this sense, the Basic Solution is obviously strongly disadvantaged, since
its functional logic is completely based on continuous access in shared memory.

A particular fact must be done on the MEC Solution. Although this has not
presented exciting performances, as seen previously in this chapter, its consumption
is still contained, especially compared to the Basic Solution. The reason for this can
always be found in the fact that it performs a smaller number of external memory
accesses, although these are more random accesses than the Basic Solution. The
latter, in fact, performs a large number of contiguous accesses in external memory
that from the point of view of performance make it stand out compared to the MEC
Solution, but as regards power consumption make it less preferable.

In addition to the initial premise already made, it is right to spend a few more
words about the energy model used for Epiphany architecture. As mentioned above,
explaining the methodology used, it could not be perfectly applied to this thesis
work, due to the complexity of the code developed in comparison with the one used
in the paper taken as reference [28]. This is also demonstrated by the empirical
measurements made on the power consumption of the whole board. If the instruction
level energy model used was correct, it would mean, from the measurements made,
that the consumption by the Zynq architecture would be almost at its maximum
peak of 5 W. This is hardly credible, given that most of the processing is done
on the Epiphany architecture. Obviously besides the application developed and in
execution there are other active processes due to the operating system installed on
the Zynq side, but these would not justify such a high peak consumption anyway.
Are the measurements reported and so far commented totally unfounded? Not
entirely, in fact, the differences in consumption found in these are very similar to
those found by measuring the total consumption of the whole Parallel. What can be
hypothesized is that, despite the fact that they were carried out considering the worst
case, it turns out to be too low a valuation compared to the real one. This is easily

73

5 – Experimental Evaluation

addressable to the fact that different types of instructions, among those reported in
the paper introductive to this methodology, could not be correctly counted because
or aggregated to others or simply because the tools available did not allow it. The
model used nevertheless allows to have a basic idea on how certain approaches
are preferable to others with regard to power consumption, based on the type of
instructions executed. They support the thesis already supported by analyzing the
performances, so the direction to follow in the development of applications for this
board should go more towards reducing the number of external memory accesses to
be efficient, at the cost of having to use a lower eCore number compared to those
present.

Finally, a consideration on the total consumption of the board measured empiri-
cally. As already mentioned, these are very similar to each other on the whole, with
differences in the order of one hundred milliwatts. These differences can be assumed
to be due to the Epiphany architecture only, since the operations performed by the
ARM cores are the same for all the solutions found (only the number of parameters
loaded depends on the model considered).

74

Chapter 6

Conclusions

The main idea behind this thesis was to perform an evaluation on the use of ma-
chine learning techniques on a low-power low-cost platform like the Parallella board,
exploiting as much as possible the resources provided by it.

Different approaches have been followed and investigated to optimize the evalu-
ation times for a single image recognition (inference phase), with the aim of making
the solution found as usable as possible in a real context: from a basic approach
that tries to make the most of the board’s multicore architecture; to an ad-hoc im-
plementation developed to bypass the main bottlenecks of the device (like the poor
amount of memory available) trying to exploit the many cores present in a smart
way; finally trying to further improve the performances by intervening directly on
the algorithm used for the convolution operation.

The implementations obtained through these approaches have been tested and
evaluated, allowing, thanks to the results achieved, to make some consideration on
their strengths and weaknesses. In general, the results obtained were encouraging,
especially those related to the use of small networks, that proved to be the most
suitable for the hardware used. Nevertheless, they are very far from exploitable
results in industrial contexts, where the speed of execution is a fundamental re-
quirement and the possibility of recognizing images in real time even almost. This
does not mean, however, that future developments, which lead to optimizations in
these directions, can not make the results found in this thesis, obviously readjusted,
usable even in the contested hypotheses at the beginning of this work. In the next
section some of the possible future developments to follow are reported in order to
further carry out this study, improving the solutions found.

6.1 Future Works

This study was born with the aim of carrying out a feasibility assessment on the use
of a heterogeneous low-power architecture such as the Parallella board for machine
learning applications, in particular in the field of image recognition through the use
of convolutional neural networks. The encouraging results obtained leave several
doors open for future research.

75

6 – Conclusions

A first way forward could be that of optimizing energy consumption. The main
focus of this thesis, repeatedly reiterated, was that of obtaining a working solution
that could be executed as quickly as possible. Starting from the energy model pre-
sented in the previous chapter, however, future developments could be addressed
with a view to reducing the number of more energy-intensive operations. In par-
ticular, the event timers present on each eNode could be exploited, the same ones
previously used for the only count of the number of operations per type of instruc-
tion, for this purpose.

As far as performance improvement is concerned, on the other hand, it is possible
to explore optimizations inherent in the field of machine learning and in particular
the design of convolutional network models. As explained in the course of this
work, one of the main problems encountered was that of the amount of memory
present on the device, especially the amount of internal memory present in each
eCore. For this purpose, rather than looking for workarounds concerning the mere
development of software as done in this study, just think of the solution based on
the virtual extension of memory, we could intervene on the dimensions of the model
itself. Several scientific studies have been presented in this sense, in particular the
most encouraging are the representation of network parameters. They have shown
that while reducing the accuracy of these parameters, the accuracy of the network
does not diminish. In the used models the parameters are floating point numbers
on 4 B, you could, for example, try to use the same but with parameters represented
on 2 B, thus reducing their size by half. Assuming such an approach, it would be
possible, for example, to load all the parameters of the MNIST-based network at
once, greatly reducing the time required to execute it. Recalling the results obtained
with this network, it is predictable that this approach would allow to have an image
recognition with times close to near real-time.

Finally, another possible direction to follow could be the one concerning the
construction of a Parallella cluster. This type of solution has already been followed
several times by users of this board as well as scientific researchers, allowing to build
an architecture with the same characteristics and type of development of a single
Parallella board, but with performance increased proportionally to the number of
used devices.

76

Bibliography

[1] How Machine Learning (ML) Is Transforming
Manufacturing, https://towardsdatascience.com/
how-machine-learning-ml-is-transforming-manufacturing-dfaaa30e87e4

[2] Machine Learning in Manufacturing - Present and Future Use-Cases, https:
//www.techemergence.com/machine-learning-in-manufacturing/

[3] G. Ratsch, “A brief introduction into Machine Learning”
[4] T. Cover and P. Hart, “Nearest neighbor pattern classification”, IEEE Trans-

actions on Information Theory, Vol. 13, No. 1, Jan. 1967, pp. 21-27 DOI
10.1109/TIT.1967.1053964

[5] R. A. Fisher, “The use of multiple measurements in taxonomic problems”, An-
nals of Eugenics, Vol. 7, 1936, pp. 179-188

[6] R. Quinlan, “C4.5: Programs for Machine Learning”, Morgan Kaufmann Pub-
lishers Inc., 1993, ISBN: 1-55860-238-0

[7] C. Cortes, V. Vapnik, “Support-Vector Networks”, Mach. Learn., Vol. 20, No.
3, Sep. 1995, pp. 273-297 DOI 10.1023/A:1022627411411

[8] Y. Lecun, L.Bottou, Y.Bengio, P.Haffner, “Gradient-based learning applied to
document recognition”, Proceedings of the IEEE, Vol. 86, No. 11, Nov. 1998,
pp. 2278-2324 DOI 10.1109/5.726791

[9] F. Rosenblatt, “The perceptron: a probabilistic model for information storage
and organization in the brain”, Psychological review, Vol. 65, No. 6, 1958, pp.
386

[10] TensorFlow, https://www.tensorflow.org/
[11] Caffe, http://caffe.berkeleyvision.org/
[12] PyTorch, https://pytorch.org/
[13] J. Redmon, “Darknet: Open Source Neural Networks in C”, http://pjreddie.

com/darknet/, 2013 - 2016
[14] J. Redmon, A. Farhadi, “YOLOv3: An Incremental Improvement”, arXiv, 2018
[15] YOLO: Real-Time Object Detection, https://pjreddie.com/darknet/yolo/
[16] Why GEMM is at the heart of deep learning, https://petewarden.com/2015/

04/20/why-gemm-is-at-the-heart-of-deep-learning/
[17] Basic Linear Algebra Subprograms, https://en.wikipedia.org/wiki/

Basic_Linear_Algebra_Subprograms
[18] Kickstarting High-performance Energy-efficient Manycore Architectures with

Epiphany, A. Olofsson, T. Nordstrom, Z. Ul-Abdin, CoRR, 2014, http:
//arxiv.org/abs/1412.5538

[19] Epiphany Architecture Reference, http://www.adapteva.com/docs/
epiphany_arch_ref.pdf

77

https://towardsdatascience.com/how-machine-learning-ml-is-transforming-manufacturing-dfaaa30e87e4
https://towardsdatascience.com/how-machine-learning-ml-is-transforming-manufacturing-dfaaa30e87e4
https://www.techemergence.com/machine-learning-in-manufacturing/
https://www.techemergence.com/machine-learning-in-manufacturing/
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1023/A:1022627411411
http://dx.doi.org/10.1109/5.726791
https://www.tensorflow.org/
http://caffe.berkeleyvision.org/
https://pytorch.org/
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://pjreddie.com/darknet/yolo/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
http://arxiv.org/abs/1412.5538
http://arxiv.org/abs/1412.5538
http://www.adapteva.com/docs/epiphany_arch_ref.pdf
http://www.adapteva.com/docs/epiphany_arch_ref.pdf

Bibliography

[20] CUDA Toolkit Documentation, https://docs.nvidia.com/cuda
[21] Tiny Darknet, https://pjreddie.com/darknet/tiny-darknet/
[22] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, K. Keutzer,

“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB
model size”, CoRR, 2016, http://arxiv.org/abs/1602.07360

[23] The MNIST Database Of Handwritten Digits, http://yann.lecun.com/exdb/
mnist/

[24] darknet_mnist, https://github.com/ashitani/darknet_mnist
[25] Making Faster, https://leonardoaraujosantos.gitbooks.io/

artificial-inteligence/content/making_faster.html
[26] M. Cho, D. Brand, “MEC: Memory-efficient Convolution for Deep Neural Net-

work”, CoRR, 2017, http://arxiv.org/abs/1706.06873
[27] CLOCK, http://man7.org/linux/man-pages/man3/clock.3.html
[28] G. Ortiz, L. Svensson, E. Alveflo, P. Larsson-Edefors, “Instruction Level

Energy Model for the Adapteva Epiphany Multi-core Processor”, Proceed-
ings of the Computing Frontiers Conference, 2017, pp. 380-384, DOI
10.1145/3075564.3078892

[29] Parallella Interctive Compiler, http://gcc.parallella.org/
[30] Benchmarking Broadcast Strategies, https://nicksparallellaideas.

blogspot.com/2016/10/benchmarking-broadcast-strategies.html

78

https://docs.nvidia.com/cuda
https://pjreddie.com/darknet/tiny-darknet/
http://arxiv.org/abs/1602.07360
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/ashitani/darknet_mnist
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/making_faster.html
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/making_faster.html
http://arxiv.org/abs/1706.06873
http://man7.org/linux/man-pages/man3/clock.3.html
http://dx.doi.org/10.1145/3075564.3078892
http://gcc.parallella.org/
https://nicksparallellaideas.blogspot.com/2016/10/benchmarking-broadcast-strategies.html
https://nicksparallellaideas.blogspot.com/2016/10/benchmarking-broadcast-strategies.html

	List of Tables
	List of Figures
	Introduction
	Thesis Motivations
	Industrial Applications
	Heterogeneous Computing

	Limitations
	Thesis Structure

	State Of The Art
	Machine Learning
	Classification Algorithms
	What Is A Neural Network?
	Convolutional Neural Network

	Darknet
	Implementation Details
	Convolutional Layer

	Hardware Platform
	Parallella
	Why The Parallella?
	Hardware Architecture
	Epiphany Coprocessor
	Application Development
	Problems Faced

	Solution Design
	General Idea
	Zynq as master, Epiphany as slave
	Focus On The Shared Memory
	Implemented Layers
	Synchronization
	Training The Network

	The Models Used
	Tiny Darknet
	MNIST Custom Model

	Basic Solution
	Extended Memory Solution
	Implementation

	Optimized Convolution Solution
	Memory-efficient Convolution (MEC)
	Implementation

	Summary

	Experimental Evaluation
	Performance Analysis
	Methodologies Used
	Results for Tiny Darknet
	Results for the MNIST Custom Model
	Analysis

	Power Consumption Analysis
	Methodologies Used
	Results for Tiny Darknet
	Results for the MNIST Custom Model
	Analysis

	Conclusions
	Future Works

	Bibliography

