
POLITECNICO DI TORINO

Master degree in Computer Engineering

Master Thesis

The RGB-D Triathlon Challenge:
Towards Agile Visual Toolboxes

for Robots

Supervisors
doct. Mancini Massimiliano
prof. Caputo Barbara
prof. Lamberti Fabrizio
prof. Montuschi Paolo

Fabio Cermelli

December 2018

The RGB-D Triathlon Challenge: Towards Agile Visual Toolboxes for
Robots Master thesis. Politecnico di Torino, Turin.

© Fabio Cermelli. All right reserved.
December 2018.

The work in this thesis will be submitted to the International Conference on Computer
Vision Systems (ICVS) 2019.

II

https://icvs2019.org/
https://icvs2019.org/

Acknowledgments

In this part, I want to thank all the people who have been close to me during these years.
For this reason, I would like to apologize to who does not speak Italian, but the following
part does not cover academic arguments and it is intended to be read by relatives and
friends that are not very comfortable to understand English language.
Vorrei ringraziare i miei genitori, mio fratello Andrea, i miei zii, i miei nonni e tutta la
mia famiglia, che non mi ha mai fatto mancare nulla e che mi ha sempre supportato in
ogni decisione. Un ringraziamento speciale va a Chiara, a cui devo moltissimo. Lei mi
ha aiutato a superare ogni difficoltà con il sorriso e rende speciale ogni giorno passato
insieme.
Vorrei ringraziare la Professoressa Barbara Caputo e Massimiliano Mancini per avermi
dato questa opportunità. Non era facile scommettere su un ragazzo che non conoscevano,
di un’università lontana dalla propria e che non aveva forti conoscenze in machine learning.
Ma loro lo hanno fatto, e spero di essere stato una scommessa vinta. Senza il loro aiuto
questa tesi non avrebbe mai preso corpo e probabilmente il mio destino avrebbe preso una
piega diversa. Vorrei anche ringraziare il Professor Fabrizio Lamberti, che si è dimostrato
sempre disponibile durante il corso della tesi, sia per fornirmi le risorse necessarie, che
per aiutarmi a superare le difficoltà lungo il cammino.
Vorrei dedicare un ringraziamento speciale al Professor Paolo Montuschi. Questa tesi
è nata grazie al suo contributo, infatti, è grazie a lui che ho potuto conoscere la pro-
fessoressa Caputo. Inoltre, lo ringrazio per aver speso sempre una buona parola su di
me. Infine, vorrei ringraziarlo per quello che ha fatto e sta facendo per una associazione
studentesca, il Mu Nu chapter of IEEE-HKN. Vorrei ringraziare il professore e tutti i
membri dell’associazione, non solo per aver creato una comunità virtuosa all’interno del
Politecnico, ma soprattutto per avermi fatto conoscere delle persone meravigliose, che mi
hanno accompagnato in questi anni in numerose esperienze che hanno lasciato il segno
nella mia memoria personale e professionale.
Infine, vorrei ringraziare tutti i miei amici, coloro che non si sono mai tirati indietro
nel fare qualche follia con me, coloro che mi hanno accompagnato in tante serate di
divertimento e in progetti strampalati. In particolare vorrei ringraziare Lorenzo e Pietro
che sono diventati la mia seconda famiglia nell’ultimo anno, Marco che è stato il mio
compagno di merende al Politecnico, i miei ex-coinquilini e tutti i miei amici di sempre,
coloro con cui sono cresciuto e con cui ho passato i miei anni migliori.

III

Abstract

Convolutional Neural Networks have brought in the last years a significant advance in
the perceptual visual abilities of intelligent autonomous systems like robots. Still, these
algorithms need to ’overspecialize’ in order to achieve performances robust enough to be
employed in realistic settings. While this is a suitable strategy for methods design to
perform a single visual task, it is clearly suboptimal in the case of a robot system, where
multiple and varying visual tasks are requested in order to act and interact intelligently
with the environment. This thesis studies the problem of learning without forgetting
in the robot vision context, developing the RGB-D Triathlon Challenge, a benchmark
evaluation protocol to assess the advantages and weaknesses of possible approaches, and
evaluate the current state of the art in computer vision in this new, challenging scenario.

IV

Contents

1 Introduction 1

2 Related Works 7

3 The Landscape 11
3.1 Defining the robotic vision challenge 11

3.1.1 Image classification . 12
3.1.2 Pose estimation . 14
3.1.3 From RGB to RGB-D: the importance of the third dimension 16

3.2 Convolutional neural networks . 17
3.2.1 Neural networks . 17
3.2.2 Convolutional neural networks 20
3.2.3 Standard architectures . 27

3.3 Multi-task learning . 29
3.3.1 Visual decathlon challenge 31
3.3.2 Classical methods: fine-tuning and feature extraction 32
3.3.3 Residual adapters . 33
3.3.4 Piggyback . 35
3.3.5 Binarized affine fransformation (BAT) 38

4 The RGB-D triathlon challenge 41
4.1 Task and datasets . 41

4.1.1 Object classification . 41
4.1.2 Pose estimation . 43
4.1.3 Scene recognition . 45

V

4.2 Metrics for evaluation . 46
4.2.1 Average accuracy . 47
4.2.2 Average accuracy - parameters ratio 47
4.2.3 Decathlon score . 47
4.2.4 Revised decathlon score . 49
4.2.5 Linear score . 50

5 Experiments and Results 53
5.1 Implementation . 53
5.2 Results . 56

6 Conclusion and future works 63

VI

Chapter 1

Introduction

Some years ago it was often said that computer vision could not compete with
human abilities. They were wrong. The use of deep learning algorithms leads to
incredible results: now computers can recognize images as well as humans do [19],
there are self-driving cars on the road that drive themselves more safely than the
average humans do, and applications on the medical sector show that computers
could save our lives, for example, by predicting cancer [89]. However, there are
still very few applications that use deep neural networks in the real world. These
algorithms, in fact, achieve very high results only when they have thousands of
parameters and are specialized in performing a single task in a specific domain.
Clearly, this strategy could not be used to deploy autonomous systems, such as
robots, in the real world because they need to perform multiple and various tasks
to effectively interact with the environment.
Computer vision is a long-standing field that deals with how computers can under-
stand and interpret images. Its core tasks are simple visual recognition tasks such
as image classification, recognition, and detection. The first outstanding result in
computer vision obtained through the application of deep learning was reached in
2012 at the Neural Information Processing System (NIPS) conference, when Ge-
offrey Hinton and two students, Alex Krizhevsky and Ilya Sutskever, submitted
a paper showing that their convolutional neural network, AlexNet [33], was able
to classify objects on the ImageNet [70] dataset with an error rate of 16 percent,
outperforming the previous best method by 9 percent. Since then, the approaches
that take advantage of deep learning have dominated the computer vision field,
consistently outperforming solutions based on alternative learning paradigms. For
example, [65] and [40] are able to perform object detection in real time, [86] is able
to estimate the human pose, [56] performs semantic segmentation, [14] can tracks
the motions, and [60] is able to recognize human actions.
The sudden growth of deep learning in computer vision motivated the robotics

1

1 – Introduction

community to investigate how to take advantage of these algorithms. For an au-
tonomous robot is fundamental the ability to understand and interpret the world.
For example, a self-driving car must be able to perceive what there is in front of
it and it must detect pedestrians, animals, or cyclist to avoid them. It must com-
prehend where it is to regulate its speed, and it must interpret the traffic signs to
respect the driving rules. Doing all of this without artificial vision might be un-
feasible, and certainly very costly. Through this example can be caught the main
differences between computer vision and robot vision.
First of all, while computer vision aims to extract information from images, robot
vision aims to use that information to make decisions and perform actions. There-
fore, making mistakes while extracting information from data is much more dan-
gerous in the robotic context, because it can lead to bad decisions or actions and
compromise the ability of a robot to complete its task, with possible dangerous
consequences for humans. Thinking again to the self-driving car example, if the
system makes a mistake detecting pedestrians, it may run over them with catas-
trophic consequences.
Another important difference is that a robot must take actions depending on its
context. It is important that the car understands where it is and that it regulates
its behavior accordingly. If the car is in an urban context, it should slow down and
be very careful because pedestrians can appear suddenly.
A robot is an agent that acts in the space, therefore, the depth is very important
for the artificial sight. The most common approach of computer vision is to analyze
only flat colored images (RGB images), that project the three-dimensional world
into two-dimensional images, leading to the loss of the depth information. Robotic
vision can exploit the diffusion of low-cost RGB-D cameras that add to the standard
RGB images the depth information, i.e. the distance between the scene and the
camera pixel by pixel. The depth allows robots to better understand the geometry
of the scene, increasing their ability of estimating the distance of the objects. The
importance of the depth became even clearer in the self-driving car example. By
analyzing the distance between the car and the objects, the car is able to estimate
perfectly the distance of objects in the scene, a crucial ability to avoid pedestrians
and accidents.
In computer vision, the state of the art deep neural networks achieve very high
accuracy on many tasks but they require millions of parameters and a lot of com-
putations both for training and inference. Often these algorithms are executed by
clusters with many GPUs, therefore, with a lot of computational resources, and
with terabytes of memory (RAM). Obviously, this is not applicable in the robotic
context. Robots must make decisions in real time but they can neither mount a
cluster to perform the computation due to both spatial and energy constraints,
nor connect to a cluster through th Internet due to the latency that it will gener-
ate. Thus, it is necessary to use models with fewer parameters than those used in

2

1 – Introduction

computer vision.
To deal with this issue, multi-task learning is considered a very promising approach.
Multi-task learning in computer vision refers to models that perform different tasks
at the same time, by sharing parameters and computation among them. Therefore,
this approach reduces the number of parameters needed by sharing them between
different tasks while decreasing the time needed for training and inference.
The ability to add new tasks sequentially to an existing model is crucial [51], [85].
Early methods such as [7] assumes that all tasks that would be performed are
known before the training. This assumption is unrealistic, because applications
evolve over time and the need of introducing novel tasks can arise when the model
is already deployed. Therefore, is essential the ability to add tasks sequentially
without modifying the performance over tasks that are already optimized. A well-
known problem of sequential learning is that it typically suffers from forgetting or
degrading the performances on the previous tasks. This phenomenon, referred to as
catastrophic forgetting [15], [50], must be kept into account by developing models
able to avoid it or limit its effect. Moreover, training data of old tasks may be
unavailable or outdated, thus, to be as much as possible realistic, the old training
data should not be used while training for a new task.
For example, suppose to have a self driving car that is able to perfectly detect
pedestrians and see traffic lights. The car was initially trained on a standard
dataset and next the neural network’s parameters were optimized while making
real experience in cities, but now the company wants to extend its market and
update the car to drive also in the countryside. Thus, the car needs to perform new
tasks, such as detecting animals, to be deployed in this new scenario. However,
training again the car from the initial dataset will degrade the performance of the
car, because the experience done in the city would be lost. Then, the novel tasks
must be learned sequentially, using an approach that leverages only on the data of
the new tasks. Summarizing, the car should be able to learn new tasks without
increasing too much the number of parameters of the model, without suffering
catastrophic forgetting, and without accessing the old training data. This thesis
will focus on this setting that is related to multi-task, sequential, life-long and
incremental learning.
Many mainstream approaches for adapting deep models to novel tasks do not re-
spect the constraints of this setting. For example, fine-tuning the network param-
eters to the new task produces a powerful model on the novel task but it degrades
the performances on the old ones. To avoid this problem, one can think to replicate
the network and train a separate copy for each new task. This approach preserves
exactly the performances on the old tasks at the expense of introducing as many
copy of the network’s parameters as the number of the tasks to be performed, and
indeed breaking the constraint of adding only a few parameters to learn the new
task.

3

1 – Introduction

An interesting approach is designing models that introduce task-specific network
parameters [46]–[48], [62], [63]. This approach consists in adding few extra task-
specific parameters that are optimized during training on that task, while the other
network’s parameters are kept frozen. Interestingly, these methods obtain perfor-
mances comparable to fine tuning the whole network on the new tasks without
suffering catastrophic forgetting and at the cost of introducing only a small frac-
tion of the network’s parameters per task (between 3% and 15%).
Robots can also make use of multi-task learning to exploit the relations between
tasks and improve the overall performance. For instance, robots can exploit the
relation between object classification and scene recognition. The real world presents
many semantic regularities and robots should reason about the semantic relations
between the scene and the objects in it. For example, it is very common to found
cups in the kitchen or on the dining table, but it is not probable to find them in
a bathroom. Currently, state of the art detection systems [65], [66] do not exploit
this relationship, losing a big opportunity. If robots are able to understand their
context, i.e. the scene they are on, they can use semantic relationships as prior to
detect objects and, vice-versa, they can use the information of the detected object
to improve the performances on scene recognition. Robots can also exploit the
relation between object classification and pose estimation. When a robot must
estimate the rotation of an object, identify the class of the object is really helpful
as a prior for the estimation. On the other hand, to classify an object can be useful
to know how it is orientated in the image an the pose of the object can be extracted
and used as a prior for the classification task. Combining two or more tasks allows
robots to reason about the geometries and semantics of their surroundings, an
ability necessary to make a step toward the general artificial intelligent.

Contribution of this thesis This thesis proposes a benchmark for multi-task
learning in robotic context: the RGB-D triathlon challenge. It aims to motivate
researchers in developing new models able to perform different visual tasks on the
constrained, realistic robotic setting. It is crucial for these models to share many
parameters among different tasks and to be able to learn sequentially new tasks,
without accessing the training data of the other tasks and suffering catastrophic
forgetting.
The challenge proposes three fundamental tasks: object classification on the RGB-
D Object Dataset (ROD) [34], pose estimation on LineMOD dataset [22], and scene
recognition on NYU Depth V2 dataset [53]. These datasets provide RGB-D images
taken by robots in real environments. Thus, three settings are proposed for the
challenge: the RGB setting, in which can be used only RGB images, the D setting,
in which are only available depth images, and RGB-D setting, where both RGB
and depth images are provided.
It is defined a simple accuracy metric for every task, and, to assess the performances

4

1 – Introduction

of methods on the multi-task benchmark, five different metrics that bind the results
of the three tasks with the number of parameters used to perform them, and provide
the overall score of the challenge are discussed. As it is shown in the experiments,
the linear score demonstrated to be the fairest metric and it is proposed as the
metric for the RGB-D triathlon challenge.
This work evaluates against the challenge some methods that have shown good
performances in sequential and multi-task learning: serial [62] and parallel [63]
residual adapter, Piggyback [47], and binarized affine fransformation (BAT) [48].
These methods are compared with two baseline methods: fine-tuning the whole
neural network on the new task and considering the network as a feature extractor
by training only the task-specific classifier. Fine-tuning the network parameters
can be seen as an upper bound for the performances of the other methods.
The methods showed an outstanding ability to adapt to novel task. This demon-
strates that neural networks, if well designed, can share a lot of parameters among
different tasks without degrading the performances on them. Moreover, in some
cases, the performances of these methods are better than those obtained by fine-
tuning the network’s weights, demonstrating that performing multiple tasks at the
same time can even lead to better results.
However, the tasks that have been chosen require a similar neural network archi-
tecture. To obtain a real agile toolbox for robotic vision more complex tasks shall
be included, such as object detection, semantic segmentation, or grasp prediction,
that require different neural network architectures to be performed.
The remaining part of the thesis discusses the related works (chapter 2) that em-
phasizes the importance of the problem for the community. Then, the technical
foundations to understand this work are introduced in chapter 3, explaining the
tasks presented by the challenge, presenting the basic concepts related to Neural
Networks and Convolutional Neural Networks, and summarizing the methods that
are compared in the challenge. In chapter 4 it is introduced the challenge, diving
into the details of the tasks to be performed and discussing the evaluation metrics.
Chapter 5 reports the results of the methods and explains how they was imple-
mented. Finally, in chapter 6, the fundamental points of this work and its future
possible developments are discussed.

5

6

Chapter 2

Related Works

The competition pushes humans into achieving increasingly higher performances
since the Olympics of ancient Greece. In the same way that competition is good
for sports, it is also good in pushing forward the state of the art in artificial in-
telligence and machine learning. In recent years, the computer vision community
has proposed challenges and competitions such as ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [70], Common objects in context (COCO) [39],
Places [98]. These competitions have encouraged the researchers in developing new
methods that led to improvements in object recognition, object detection, seman-
tic segmentation, place recognition, and visual question answering. The challenges
motivated the researchers with interesting problems, provided new datasets and
evaluation metrics to establish which method solved best the problem. The most
popular challenge is ILSVRC [70] that evaluates algorithms for object detection
and image classification at a large scale. It is considered the standard benchmark
to monitor the convolutional neural networks performances in image classification.
It introduced a very large dataset made of more than one million images taken
from the Internet, divided into 1000 classes. The benefit of this challenge can be
seen by considering the growth of the performances: in 2010, when the challenge
was launch, a good error rate was around 25%; 7 years later, the best methods in
classifying objects reached error rates of nearly 3%, a performance comparable to
human abilities.
The robotics community has seen a great opportunity in the growth of the computer
vision and especially of the deep learning methods. In the last few years, researchers
were very engaged in discussing how deep learning could be applied and what are
the opportunities that it offers in the robotic field [82]. For instance, [36], [74]
demonstrate the use of deep learning for grasping and manipulating objects. [36]
describes an approach that learns eye-hand coordination for robotic grasping using
a monocular camera and a convolutional neural network that predicts the proba-
bility of success of the grip. [74] presents a deep learning approach that combines

7

2 – Related Works

Figure 2.1: ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [70]
winning algorithm’s classification error rate in chronological order.

object detection and semantic segmentation to perform autonomous robotic manip-
ulation in cluttered scenes. Moreover, 10% of the papers submitted to ICRA 2018
used as keyword Deep learning in robotics and automation, and it was initiated a
new Conference on Robot Learning (CoRL). However, even if robotic context can
take advantage of the progress in computer vision, it presents a different scenario.
Differently, from computer vision, where the agent is static and has the goal to ex-
tract information over images, a robot is a dynamic agent that acts in, and interacts
with, the world with the goal to make decisions and perform actions. It introduces
many more challenges such as the deployment in open-set conditions, incremental
learning, semantic reasoning, active learning, active vision, and transfer learning.
Researchers still lack benchmarks to evaluate the performance of the deep learn-
ing methods they develop in this new context. This theme is very important for
the robotics community, in fact, it was discussed recently in the main conferences.
In CVPR 2018 it was held a workshop named Real-World Challenges and New
Benchmarks for Deep Learning in Robotic Vision [91] in which were discussed new
benchmarks with the aim of recreating the success of the computer vision chal-
lenges also in robotic vision. In this conference were presented many new chal-
lenges: Paris-Lille-3D [69] proposes a new benchmark for scene segmentation and

8

2 – Related Works

classification, [17] discusses new metrics and experimental paradigms for continual
learning, Falling Things [87] is a synthetic dataset for object detection and pose
estimation, the active vision dataset [2] is a benchmark to evaluate performances
of active learning.
However, none of these challenges focus on a very important aspect: multi-task
learning. Multi-task learning has been proven to be effective in deep learning by
Caruana [7]. In its standard approach [7], it is implemented in neural networks by
sharing the early layers of the architecture among different tasks. The tasks are
jointly learned by these layers by means of back-propagation. The final layers of the
network instead are task-specific and trained only on the relative task. The main
advantage is that it offers a way to learn more general representations by implicitly
adding an inductive bias caused by the constraint on the learned representation. It
has demonstrated to be effective in many different fields such as natural language
processing [9], speech recognition [12], drug discovery [61], reinforcement learning
[21], and computer vision [31], [97].
Some challenges were proposed to deal with multi-task learning. The Robust Vi-
sion Challenge [67] aims to encourage researchers to develop visual systems that
are robust and can perform several tasks (reconstruction, optical flow, semantic/in-
stance segmentation, single image depth prediction) across benchmarks with differ-
ent characteristics. The Natural Language Decathlon [49] is a challenge that spans
ten tasks in the context of natural language processing: question answering, ma-
chine translation, summarization, natural language inference, sentiment analysis,
semantic role labeling, relation extraction, goal-oriented dialog, semantic parsing,
and commonsense pronoun resolution. The Visual Decathlon challenge [62] is a
challenge on multiple domain learning, a problem related to multi-task learning.
Instead of trying to learn different tasks, it aims to learn the same task, image clas-
sification, within different domains. The challenge is a benchmark that evaluates
how well neural network models are able to learn simultaneously ten very different
visual domains.
Multi-task learning is also useful in robotics. In [38] it is presented a method that
tries to understand scenes by exploiting several semantic relations between objects
and the overall scene using conditional random fields. Place categorization and
improved object detection have been reached utilizing learned scene-object priors,
as demonstrated in [83]. In [96] the authors developed a method to perform holistic
scene understanding extracting information from the context using a deep neural
network. However, in these works, multi-task learning is only a tool to achieve
better performances toward a primary goal. The secondary tasks are auxiliary and
the method tries to improve their performances only for achieving better results on
the primary task. This thesis aims to motivate the community to develop methods
able to perform multiple tasks at the same time, without differentiating between
auxiliary and primary tasks. This is useful for two reasons: (i) the neural network

9

2 – Related Works

can learn better representations by the effect of the inductive bias and by exploiting
the semantic relationship between tasks, (ii) by sharing the network parameters we
can use few parameters per task, reducing the amount of memory and computation
required to perform the various tasks.
This thesis proposes a new benchmark in the robotic vision context to evaluate the
performances in multi-task learning. To the best of the candidate’s knowledge, this
is the first multi-task benchmark in the robotic vision context.

10

Chapter 3

The Landscape

This chapter introduces the technical foundation on which this thesis is based.
Section 3.1 describes the tasks chosen as target of the challenge. Section 3.2 briefly
explains the concept of Neural Networks, focusing on their convolutional version
(CNN). Lastly, Section 3.3 describes the methods used as baselines for the challenge.

3.1 Defining the robotic vision challenge

A robot is an active agent that interacts with the world. It perceives the world
with a set of sensors and it should exploit all the available information to decide,
plan, and execute various tasks. Mistakes can lead to catastrophic results that not
only can harm the robot itself, but even the humans around it. In such scenario
the ability to see is essential. Since a robot must perceive the environment around
it and take actions based on what it sees, thus its perception capabilities must be
highly accurate.
For this reason the proposed challenge should tackle tasks which better allow the
robot to understand the scene it has in front. Under this consideration, multiple
tasks are essential (e.g. object classification and localization, instance segmentation,
scene recognition). As a starting point the challenge proposes three fundamental
tasks for a visual system:

• Object recognition concerns the ability of identifying the semantic category of
an object present in an image. This task is fundamental for a robot and it is
the foundation to perform more complex tasks (e.g. object manipulation).

• Pose estimation aims to define the orientation of an object relative to the
agent. This task allows a robot to handle objects and understand their role
in the scene. Even this task is the base to perform complex tasks such as
grasping and manipulation.

11

3 – The Landscape

• Scene classification concerns the ability to recognize where the agent is seman-
tically (e.g. in what type of environment among dining room, outdoor, etc).
This task is necessary for spatial competencies, robot navigation and human
robot interaction.

Even if the tasks are very different, both object recognition and scene classification
can be reduced to image classification. In fact, both tasks aim to process an image
producing a class label which denotes the global semantic content of the image
itself.
Finally, notice that while the tasks considered are three, the challenge can be easily
extended to include other different tasks (e.g. action recognition), even involving
different output representations (e.g. object detection).

3.1.1 Image classification

Image classification aims to assign to an input image one label from a fixed set of
categories. This is one of the classical problems in computer vision that, despite its
simplicity, has a large variety of practical applications and it is the basic building
block of more complex tasks such as object detection [66] and semantic segmentation
[41].
To better explain this task, let us suppose that we want to classify an image in one of
4 categories: dog, hat, mug and cat. Given the image in figure 3.1, the classification
task aims to predict the correct label of the image (in this example, a cat). The
algorithm receives as input the image as a 3-dimensional matrix of size w × h× 3,
where w is the width in pixel, h is the height in pixel, and 3 is given by the fact
that images are represented by three color channels: red, green and blue (or RGB
for short). Each value of the matrix is an integer with a value that ranges between
0 (black) and 255 (white). The cat image of the example is 248 pixels wide and
400 pixels tall, for a total of 297600 integer values. The image classification task
consists in converting these integer values into a single label, the class of the image.
The output of the algorithm is a probability vector which denotes the probability
of the image to belong to each of the known classes, taking as predicted label the
one with maximum probability. We can see that, in this example, the algorithm
is quite confident (82 %) that the image portrays a cat and not the other classes,
thus the final prediction of the algorithm would be correct.
Although the task of recognizing concepts in images is trivial for a human to per-
form, it presents many challenges for a computer or robot vision system among
which:

• Viewpoint variation. An instance of an object can be oriented in many ways
with respect to the camera.

12

3.1 – Defining the robotic vision challenge

Figure 3.1: The image is taken from [28]. The goal of image classification is to
predict a single label (or a distribution over labels as shown here to indicate our
confidence) for a given image. The algorithm sees the images as a 3-dimensional
matrix of size Width × Height × 3. Each value of the matrix is an integer that
ranges from 0 to 255 that represents the intensity of the color channel (the most
common representation is given by the three colors red, green, blue and known as
RGB).

• Scale variation. Objects often exhibit variation in their size.

• Deformation. Objects that are not rigid bodies can be deformed in many ways.

• Occlusion. The objects in the image can be overlapped by other objects and
only a small part can be visible.

• Illumination conditions. The effects of illumination can change the integer
values drastically, even if for humans the difference is imperceptible.

• Background clutter. The objects to be recognized may camouflage into the
environment, making them hard to identify.

• Intra-class variation. The object classes can be relatively broad. There are
various instances of these objects, each with their own appearance.

An image classification model must consider all these possible variations and must
be robust enough to do not suffer a decrease in performance under different input
conditions.

13

3 – The Landscape

Many approaches have shown to be successful in addressing this task such as build-
ing K-Nearest Neighbor or Support Vector Machine classifiers on top of image
feature representation such as histogram of oriented gradients (HOG) [11], speeded
up robust features (SURF) [3], scale-invariant feature transform (SIFT) [42], [43].
However, all these approaches have been recently outperformed by Convolutional
Neural Networks (CNNs) [19], [33], [75], [84], [95]. These architectures replace
precomputed features with trained ones, merging the feature extraction and classi-
fication phases in a single architecture, trained end-to-end.
The improvement that these algorithms brought to this task can be noted from
the top performances on the Imagenet Large Scale Visual Recognition Challenge
(ILSVRC) [70], the de-facto standard benchmark for image classification. Imagenet
is a dataset made of more than one million images taken from the internet, divided
into 1000 categories. In 2010, the first year of the challenge, a good error rate
was about 25%. In 2012, Geoffrey Hinton, Ilya Sutskever, and Alex Krizhevsky
submitted the first model of a deep convolutional neural network called AlexNet
[33] that reached an incredible result, achieving an error rate of 16%. In 2017, after
seven years, the top-5 accuracy in classifying objects within the dataset rose from
71.8% to 97.3%, comparable with human abilities [71].

3.1.2 Pose estimation

A fundamental task of computer vision and robotics is to determine the object’s
position and orientation relative to some coordinate system. This information is
important to allow, for example, a robot to interact with the object and manipulate
it.
The term pose refers to the transformation between the object and the camera
and it is often captured using six parameters that represent both orientation and
position: azimuth a, elevation e, camera-tilt c, distance d to the camera and image
translation made of two parameters, x and y. The pose estimation task can be
decomposed in two sub-tasks: the localization of the object in the image, which
is represented by the last three parameters (d, x, y), and the estimation of the
rotation matrix R between the object and the camera, captured by the first three
parameters (a, e, c).
Even though many works try to perform both sub-tasks at the same time [59], [93],
this work assumes that the object is always centered in the input image, implicitly
solving the first task and reducing the pose estimation task only to the latter sub-
task as in [44], [90]. This is motivated by the fact that object localization is a
well-known task in computer vision and can be performed by an object detection
system, for which exists many implementations such as [40], [65] that can do it even
in real-time. So, for us, the pose estimation task consists in converting an image
into a rotation matrix representation, such as the one made by the three angles

14

3.1 – Defining the robotic vision challenge

(a)

(b) (c)

Figure 3.2: The images report an example of the pose estimation task. The image
(a), taken from the linemod dataset [22], is given as input to the object detection
system, that localizes the ape in the center (the object of interest) and outputs the
figure (b). Finally, the rotation of the object is estimated as we can see from the
arrow represented in (c).

azimuth, elevation and camera tilt, or axis-angle representation, or quaternions.
In the literature there are many works that address this task, from [20], [58], [73]
to more recent methods that use Convolutional Neural Networks (CNN) [44], [57],
[81], [88], [90], [92]. The CNN-based methods use very different approaches. For
instance, there are methods that treat pose estimation as a classification problem,
fragmenting the pose space into bins. These methods can be divided into two
groups: the first contains those that predict 2D keypoints from the image and then

15

3 – The Landscape

use a 3D model to evaluate the 3D pose given these keypoints [57], [92]; the second
group contains those methods that predict directly the pose given the image [81],
[88]. An interesting method is the one in [90]. It uses a CNN to map the image space
to a descriptor space and then searches, through the nearest neighbor algorithm,
the most similar descriptors to predict the pose and the object class.
There exist also CNN-based methods that consider pose estimation as a regression
problem. The challenge is that 3D pose space is a non-Euclidean space, hence,
CNN algorithms need to take it into account. To this extent, in [44] the authors
try to solve the problem by designing a suitable representation and a loss function
that respects the non-linear structure of the pose space. They specifically study
two representations of the rotation, axis-angle and quaternions, and model their
constraints using non-linearity in the output layer. Moreover, they propose to (i)
use the geodesic distance on the space of rotation matrices as a loss function; (ii)
exploit the knowledge about the object, proposing a network architecture that is
made by part shared between all objects (called feature network) and a part that
is object-specific called pose network.
This work takes inspiration from [44] and treats the pose estimation task as a
regression problem. Similarly to that work, this thesis represents the rotation using
quaternions and uses the geodesic distance as loss function. Differently from it, it
is proposed a network architecture that both predicts the object class and regresses
the pose of the object.

3.1.3 From RGB to RGB-D: the importance of the third
dimension

A robot is an agent that acts in a 3D environment, thus, it is important to consider
not only the 2D representation of the sight but also the depth to effectively act
in the real world. The diffusion of low-cost RGB-D cameras gives an incredible
opportunity to robotics, because they add to the RGB image also the distance from
the various parts of scene to the camera. Obviously, exploiting this information can
lead to build more robust models, achieving better results in various tasks.
This work proposes three settings: the setting where only RGB data are available,
the setting where only depth information is provided and the setting where both
RGB and depth data are given. Moreover, it is provided a simple way to combine
depth and RGB information on a pretrained architecture and it is studied the effect
of this additional input to the final performances of the employed models.

16

3.2 – Convolutional neural networks

(a) (b)

Figure 3.3: The images show a dining room. In the left (a) there is the RGB
image, while in the right (b) there is the depth image that was colored for better
visualization.

3.2 Convolutional neural networks

3.2.1 Neural networks

Neural networks are a data processing paradigm that is inspired by the way biologi-
cal nervous systems, such as the brain, process information. They are composed by
a number of highly interconnected processing elements, called neurons. Each neu-
ron has multiple input connections and, to each connection, a weight is assigned.
Every neuron performs a function: it takes as input a vector x ∈ Rm and performs
a dot-product between the input and its weights w ∈ Rm, adding the bias b and
applying an activation function to it:

y = f(
mØ
i=1

wixi + b). (3.1)

In the formula, f indicates the activation function, which is typically non-linear.
The most used functions are the sigmoid, the tanh, the ReLU, or the step function.
The weights and the bias term are values that each neuron stores and these are
typically learned in the training phase.
A neural network is structured in layers [l1, . . . , ln] ∈ L, that are a collection of
neurons. Layers are interconnected in a way that the output of the li is the input
of the following layer li+1. The input of the first layer l1 is the input data, while the
output of the last layer ln is the result. In the most common layer type, the fully-
connected, the neurons within a layer are not inter-connected, but each neuron is
connected to all neurons of the previous and following layers.
Training a neural network with a supervised approach means learning the weights

17

3 – The Landscape

Figure 3.4: 3-layer neural network with three inputs, two hidden fully-connected
layers of 4 neurons each and one output layer. Notice that in both cases there are
connections between neurons across layers, but not within a layer. Image taken
from [28]

and the bias term for each neuron that minimize the difference between the out-
put produced by the network and the desired output. Before training, the neu-
ron’s weights are typically initialized with random values close to zero. Training
is then made by alternating two phases: the forward propagation and the back-
propagation. In the first phase, the input is passed to the first layer and the output
is produced by computing values layer by layer until the last one. The produced
output is evaluated by a loss function that estimates how far it is from the desired
one. After calculating the loss value, the back-propagation phase begins. In this
phase the loss value (or error) is propagated backward i.e. it is passed to the output
layer and passes through the network until the first layer, and the neuron’s weights
and bias are updated according to some policy. The loss-function estimates the
error between the output produced by the current set of weights and the desired
output. The goal of the training is to find the set of weights that minimize the loss
function. The most common update policy is the Gradient Descent, that updates
the weights by descending the gradient of the loss function computed with respect
to the weights themselves. Given a loss function with this form:

C(W, b, xi, yi) = 1
2 |fW,b(xi) − yi| (3.2)

where xi is the input, yi is the output, W, b are the weights and the bias term,
the neuron’s weights are updated using the gradient of the loss function, with the
following update rule:

18

3.2 – Convolutional neural networks

Wi,j = Wi,j − α
∂C(W, b)
∂Wi,j

(3.3)

bi = bi − α
∂C(W, b)

∂bi
(3.4)

The parameter α takes the name of learning rate and specifies the degree of the
learning. This hyper-parameter is very important because it sets the step size of
the update in the direction pointed by the gradient.
Usually, α is higher in the first iterations of the training, to perform larger steps, and
it decreases during the training to perform smaller steps when we are in proximity
of a local minimum to facilitate convergence. The main drawback of this technique
is given by the fact that the shape of the loss function is often non-convex and there
can be a lot of local minima where the algorithm can remain blocked, preventing
the weights and the biases to find the optimal value.
There are many strategies to apply this optimization policy that mainly differs
in the amount of input data processed by the network for the calculation of the
gradient. The Vanilla Gradient Descent (or Batch Gradient Descent) is the simplest
version: the entire dataset is used to compute the gradient and to update the
weights. In large scale application, where the training dataset contains millions
of example, it is not efficient to perform a single update to the weights after the
computation of the loss function over the whole dataset. Thus, in these cases, the
Vanilla Gradient-Descent is replaced by the Stochastic Gradient-Descent (SGD)
that computes the gradient after processing batches of data. The batch size is
an important hyper-parameter that affects the performances of the algorithm and
typical value ranges between 16 and 256 for classification tasks. The SGD works
well because the examples in the training data are correlated and the gradient of
a batch is a good approximation of the gradient computed over the full dataset.
Therefore, using it increases efficiency because it performs more frequent parameter
updates, reducing the time needed for the training.
Neural networks have a high representational power, in fact, they are universal
function approximators [10]. Increasing the size and the number of layers in a neural
network increases the capacity, i.e. the space of representable functions. While
increasing the capacity allows the representation of more complicated functions, this
has also a drawback: the network is more exposed to overfitting. Overfitting occurs
when the model fits the noise of the data, decreasing the overall performance. There
are many regularization techniques preventing overfitting such as L2 regularization,
early stopping and dropout [78]. L2 regularization penalizes the squared magnitude
of all parameters adding a term 1

2λw
2 directly in the loss function. It can be

interpreted as a way to limit peaky weight values, encouraging the network to use
all of its input rather than some of its input a lot. Dropout is a very effective

19

3 – The Landscape

xi

yi

W, b

Dataset

ŷ i = f (xi,W, b) C (ŷ i, yi)

Forward propagation

Wi, j = Wi, j − α ∂C
∂Wi, j

bi = bi − α ∂C
∂bi

Back-propagation

Figure 3.5: Illustration of the steps required to train a neural network with a super-
visioned approach. In the forward propagation the input xi, the weights W and
the biases b are used to compute the output ŷi. The loss function is then computed
comparing ŷi and yi. Then, the back-propagation starts: the gradient is computed
and the weights and the biases are updated.

and simple regularization technique that complements the other methods. This
technique left out randomly some neurons during the forward phase. It assigns a
probability p to the neurons to be switched off and this probability can even differ
between layers. Using these techniques improves the network ability to generalize
over example data and boost the performance.

3.2.2 Convolutional neural networks

Convolutional Neural Networks (CNN) are similar to a standard neural network:
they are made by neurons that have weights and biases that should be optimized to
minimize a loss function. However, CNNs make an explicit assumption: that input
points in different locations may need the same features (e.g. as for different parts
of an image) and this allows to make an efficient architecture that simplifies the
computation of the forward function and reduces the number of parameters within
the network.
First of all, Convolutional Neural Networks exploits the dimensionality of the input
images, that are represented as integer matrices of dimension Width × Height ×
3 (see Section 3.1.1) and, as shown in figure 3.6, they arrange neurons in three
dimensions: width, height and depth. Thus, every layer of a CNN transforms a

20

3.2 – Convolutional neural networks

Figure 3.6: The structure of a convolutional neural network. Image taken from [28]

volume of activations W ×H ×D to another through a differentiable function.
A standard CNN is a sequence of different components. In the following some of
them will be described.

Convolutional Layers are inspired by the structure of the visual cortex in the
animal world. In this part of the brain every neuron looks at only a small region
of observation, called receptive field, responding to precise stimuli. The receptive
fields of different neurons are overlapped in a way that covers the entire field of
view.
The convolutional layer architecture emulates it by applying the convolution oper-
ation to a small region of activation volume. A convolutional layer is made by a set
of learnable filters that are 3-dimensional matrices with small width and height but
with a depth equal to the depth of the input volume. For example, given an input
volume of 32×32×3, the filters have the form w×h×3, where typical values for h
and w range between 1 and 7. Moreover, the filters are typically squared (h = w).
h and w are important hyper-parameters known as kernel size and represent the
receptive field of the neuron.
During the forward pass each filter is convoluted with the input volume. It means
that, for each region of the input volume, it computes the dot product between the
filter and the input values in any position. The result of the convolution between
one filter and the input volume gives a 2-dimensional activation map that represents
the responses of that filter at every position of the input volume. Intuitively, we
can see this operation as looking for patterns in the input image where each filter
searches for a different pattern and, when the filter founds it in a region, a positive
value is stored in the activation map for that specific region.
This mechanism is an efficient parameter sharing scheme, allowing to reduce the

21

3 – The Landscape

number of parameters. It starts from this assumption: if a feature is useful in posi-
tion (x1, y1) then it is also useful in another position (x2, y2). From this assumption
it turns out that it can be wasteful to train many filters to search for the same
pattern in many positions: in fact, this would require to use as many filters as the
input surface pixels. It is more efficient to reduce the number of parameters by
training a single filter to search for a pattern in the whole input surface. Anyway,
the assumption may not make sense in some specific cases. If we know that the
input images have a structure where we should expect to have some patterns in
different specific positions, we should learn different filters and apply them only in
the relative position. A common way to solve this problem is to relax the parameter
sharing scheme and use a so-called Locally-Connected Layer.
The output volume of a convolutional layer has size w × h× d and it is controlled
by three hyper-parameters: depth, stride and padding. The depth controls the
third dimension of the output volume d and it is equal to the number of filters that
we use. The filters elaborate the same input volume but they look for different
patterns and produce different 2D activation maps. Thus, after the convolution
layer we obtain d 2D activation maps where d is the depth or the number of filters
used. The two dimensions w and h, that represent the size of the activation maps,
are controlled by the other two parameters. The stride is the step that each filter
takes sliding the input volume. When the stride is one, we apply the convolution
at all coordinates of the input volume; when the stride is two, the convolution is
performed one pixel every two. The same principle applies for all values: if the
stride is n the convolution is performed one pixel every n. Anyway, it is uncommon
to find stride values grater than two because, as we will see later, the stride reduces
the output volume proportionally to it. The padding adds zeros to the edge of the
receptive field. It is useful because it allows to control the output volume, especially
to keep it at the same dimension of the input volume.
Given the dimension of the input volume, the kernel size, the padding, and the
stride, the dimension of the activation maps can be obtained using the following
formula:

w = Wi − F + 2P
S

+ 1 (3.5)

where w is the resulting width, Wi is the width of the input volume, F is the
kernel size, P is the padding, and S the stride. To obtain the resulting height, it is
sufficient to replace the width of the input volume with the relative height.
To summarize, the output volume size is w × h × d where w and h are obtained
with the previous formula and d is the depth.

22

3.2 – Convolutional neural networks

Figure 3.7: Example of a convolution operation between 2 different filters with the
input volume. The input volume is 7 × 7 × 3, the kernel size is 3 × 3, the stride is 2
and the padding 1. Therefore, the output volume is 3 × 3 × 2. The image is taken
from [28].

Pooling layer is another common layer that can be found in a CNN architecture.
Its main goal is to decrease the surface (height and width) of the volume of activa-
tions, obtaining a reduction in the number of parameters and in the computation
time. It accepts a volume size of Wi ×Hi ×Di and requires two hyper-parameters:
the spatial extent F and the stride S. The pooling operation is performed on
each depth slice (i.e. the single 2-dimensional section along the depth axis of the
activations volume) sliding a simple function, such as maximum or the average,
over the receptive field. The dimension of the receptive field is controlled by the
parameter F , in fact, it contains a region of activations of dimension F × F . The
stride parameter controls the step of the sliding: as in the convolutional layer, with
a stride of one it is computed for each pixel (x,y) of the depth slice, with a step of
2 it is computed once every two pixels, and so on. The output width is given by
the following formula:

23

3 – The Landscape

w = Wi − F

S
+ 1. (3.6)

The output height h can be obtained in the same way, substituting Hi to Wi. The
resulting output volume has size w × h × Di, where w and h are computed with
the previous formula, and Di is the input depth.
It is important to note that the pooling layer does not have any learnable parameter.
Once the hyper-parameters are set, it can apply its function over and over. For
this reason the pooling layer does not perform any update operation in the back-
propagation but it only propagates the errors backwards.
It is worth to note that recently, many researchers proposed to discard the pooling
layers [77] in favor of an architecture that uses larger stride in the convolutional
layers.

Figure 3.8: Example of a pooling operation with spacial extent and stride equal 2.
The pooling function used is the maximum. Image taken from [28]

Non-linear activations are the functions which are commonly found after each
convolutional layer. Their purpose is to apply a non-linear transformation to the
output of a convolutional layer in order to increase the capacity of the network: in
fact, it can be mathematically shown that a series of layers with linear activation
functions is equivalent to a single linear layer. Adding non-linear activations allows
to increase performance without introducing additional parameters. In fact, com-
mon non-linear activation performs only a fixed function, without requiring any
learnable parameter. The most popular functions that are applied in a non-linear
activations layer are:

24

3.2 – Convolutional neural networks

• Sigmoid or logistic function

f(x) = 1
1 + e−x

(3.7)

• Hyperbolic Tangent function (Tanh)

f(x) = 1 − e−2x

1 + e−2x (3.8)

• Rectified Linear Units (ReLU)

f(x) = max(0, x) (3.9)

• Leaky ReLU

f(x) = 1(x < 0)(αx) + 1(x ≥ 0)(x) (3.10)

where α is a small constant.

The first two methods have seen frequent use historically but they have fallen out
of favor because they suffers the vanishing gradient problem [5]. This means that
when the neurons’ activation saturates the gradient became almost zero, making
the training of the network impossible. ReLU and Leaky ReLU instead do not
suffer the vanishing gradient problem, because they never saturate, and accelerate
the convergence of stochastic gradient descent as showed in [33].

Fully Connected (FC) layer is the classical layer of a neural network wherein
the neurons are connected to all neurons in the previous layer. The activations of
an FC layer are computed as the dot product between the input and the weight
matrix, plus a bias term (see equation 3.1). It is common to find fully-connected
layers used one or more times in the final part of a convolutional architecture,
especially for classification and regression tasks.
To connect the FC layer to the previous layers, the input volume with size w ×
h × d must be flattened to obtain a 1 × 1 × n volume so that the FC neurons
can be connected to all input values. The fully-connected layer has only one hyper-
parameter to be set: the number of neurons K. This parameter controls the output
dimension that is a single vector with dimension 1×1×K. The main function of the
FC layer is to summarize the information extracted by the convolutional layers and
convert it in a way that can be used to complete the task. For example, suppose to
solve an image classification task, the last FC layer will contain as many neurons
K as the number of classes present in the dataset. The computed 1 × 1 ×K vector
is then fed to a probabilistic function that will perform the final classification.

25

3 – The Landscape

Batch Normalization (BN) layer [26] is a layer frequently used after each
convolutional layer. Being introduced recently, it does not appear in classical ar-
chitecture but recent works make extensive use of it. It aims to simplify the training
of the neural network reducing the effect of the internal covariate shift. This phe-
nomenon is due to the fact that, during training, each layer’s input changes because
of the change of the parameters in the previous layers. This forces each layer of
the network to continuously adapt to a new input distribution. Typically, a low
learning rate and a careful initialization of the network parameters are adopted to
limit the effect of covariate shift. However, it is still hard training the network and
having a low learning rate increases the time needed for training.
Batch normalization comes from the observation that network parameters converge
faster during training if its input is whitened (linearly transformed to obtain zero
means and unit variance) and decorrelated, then it should be also advantageous
apply the same operation to the input of each layer. Batch Normalization ad-
dresses the problem by adding to the architecture a new layer responsible for the
normalization of its input. The normalization is performed during the training of
each batch (see Stochastic Gradient-Descent in the previous section) by subtract-
ing from each channel the mean and dividing by the standard deviation computed
over the current batch. Given the values of x over a batch B = {xi, ..., xm}, the
normalized output x̂ is obtained through the following formula:

µB = 1
m

mØ
i=1

xi, (3.11)

δ2
B = 1

m

mØ
i=1

(xi − µB)2 , (3.12)

x̂ = x− µBñ
δ2
B + Ô

, (3.13)

where Ô is a small constant that prevents the division by zero.
Unfortunately, this operation may change what the layer is able to represent. Thus,
an additional transformation is applied which scales and shifts the normalized value
through two trainable parameters: γ and β. The result of the batch normalization
y is given by the following formula:

y = γx̂+ β. (3.14)

It is worth noting that, neglecting Ô, setting γ =
ñ
δ2
B and β = µB recovers the

identity function y = x.
Despite the normalization dependent of batches is very efficient during training, it
is neither necessary or desirable during inference, since we want to determine the

26

3.2 – Convolutional neural networks

output deterministically, depending solely on the current input. For this reason,
the BN layer uses the following formula in the inference to compute the output y:

y = γ
x− E [x]ñ
V ar [x] + Ô

+ β. (3.15)

E [x] and V ar [x] use all input data rather than the examples sampled in the
batches. Since the means and the variances are fixed during inference, the nor-
malization is a simple linear transformation applied to each activation.
Since this transformation is applied to each depth slice/channel of the input, in-
dependently of other slices, given an activation volume with depth size of d, a BN
layer requires 2d additional parameters, that is γ and β for each depth slice.

3.2.3 Standard architectures

The most common architecture [33] is composed of few blocks made of convolutional
and ReLU layers followed by a pooling layer until the activation volume reaches
a small size. After these blocks, the activation volume is flattened and there are
applied some fully-connected layers, until the last one that computes the output.

INPUT CONV RELU POOL FC

N times M times K times

FC

Figure 3.9: Classical pattern for a convolutional neural network.

Sizing the convolutional layer is tricky. There are two strategies to reach large
receptive fields: stacking small filters with non-linearities in between or using large
filters. Despite being more simple, using a large filter has many disadvantages. The
output of the single filter is a linear combination of input while more layers add
non-linearity, increasing the expressiveness of the network. Moreover, using large
filters introduce more parameters than stacking small filters. The downside of using
small filters is that they need more memory to hold the intermediate results while
training the model with back-propagation.
In the literature there are many proposed architectures: AlexNet [33] was the first
model able to outperform the ImageNet ILSVRC challenge [70]; ZF Net [95] won
the ILSVRC 2013, improving AlexNet by tweaking architecture hyper-parameters,
especially the size of the middle convolutional layers; GoogLeNet [84] won ILSVRC

27

3 – The Landscape

2014 proposing an Inception Module that reduced drastically the number of pa-
rameters and replacing the fully-connected layers at the top with average pooling
layers; another important submission in ILSVRC 2014, VGGNet [75], showed that
the depth of the network (the number of layers) is critical to get good performance,
and proposed a depth architecture containing 16 layers. The downside of VGGNet
is that is very expensive, both in term of memory and time, containing 140 million
parameters (AlexNet contained 60 million parameters, GoogLeNet only 4 million).
In 2015, the ILSVRC challenge was win by a novel architecture called ResNet[19].
This architecture solves many problems of standard ones, such as vanishing gradi-
ent [5], and it is currently the building block in many state of the art models [18],
[24], [94]. In the following, this architecture will be briefly described, since it will
be the one on which are built the baselines for the challenge.

Residual Networks (ResNet) [19] are convolutional neural networks which
were mainly built to address the vanishing gradient [5] problem. In very deep
networks the gradient is back-propagated through many layers and thus, it can
become infinitely small (or even explode) making the training very difficult. As a
result, increasing the depth of a neural network does not improve or even decreases
performance.
The solution proposed in the ResNet to avoid vanishing gradient is the residual
block. It is an architectural component that, instead of trying to learn some
unreferenced function, tries to learn a residual function starting from an identity
mapping. The authors hypothesize that it is easier to optimize a residual mapping
than to optimize an unreferenced function. They started from the intuition that,
taking a shallow model and stacking identity mapping layers to the end, the result-
ing network should keep the performances of the shallow model without suffering
the degradation problem, because the additional layers do not change the output.
Thus, if we add some trainable parameters to the identity mapping layers, we can
evaluate a function over the input and then compute the output as the sum of the
result of that function and the input itself, that is the residual function. If the
identity mapping is optimal, the additional parameters can be driven towards zero
and the identity function is recovered. More formally, given an input x, they obtain
a function H(x) using parameters θ:

H(x) = F (x, θ) + x. (3.16)

To implement it in a neural network, we can fit few stacked layers to approximate
the residual function F (x) = H(x) − x with x denoting the input of the first layer.
The operation F (x)+x can be implemented with shortcut connections, that are able
to connect directly the input with the output, implementing the identity mapping
without introducing any computation or additional parameters. The dimension of
x and F (x) must be equal in the previous equation. If it is not the case, it can be

28

3.3 – Multi-task learning

performed a linear projection Ws by a so called shortcut connection, obtaining

H(x) = F (x, θ) +Wsx. (3.17)

The union of the few stacked layers and the shortcut connection is called residual
block and is represented in Figure 3.10. A common choice for the layers is to use
a convolutional layer followed by the ReLU operation and another convolutional
layer. Moreover, it is common to use batch normalization after each convolutional
layer.

Figure 3.10: A residual block. Image taken from [19]

3.3 Multi-task learning

Multi-task learning (MTL) in computer vision looks at models that can accomplish
different tasks for a given image (such as image-level labels, semantic segments,
object bounding boxes, object contours, occluding boundaries, vanishing points,
etc.) while exploring commonalities and sharing computation among them. This is
crucial in settings where there are few computation capabilities and limited memory,
such as in realistic robotic settings.
Early methods in this area [7] focused on deep neural networks that share weights
in the early layers and define specialized ones in the later layers. The network pa-
rameters are jointly learned by interleaving samples from each task. As explained
in [7], sharing parameters is useful because tends to regularize better the network,
improving generalization and performances. This approach requires additional pa-
rameters per task and to manually design the network deciding which layers should
be shared across tasks. Moreover adding a novel task when the model has been
already optimized requires to train again the whole network from scratch by ac-
cessing the old training data. This can be a problem, because very often training
data of old tasks are unavailable, proprietary or outdated.

29

3 – The Landscape

An important research area in multi-task learning deals with networks able to
learn sequentially new tasks. Works in this area present approaches in which are
developed deep neural networks able to learn incrementally and life-long [1], [64]. It
is crucial, while learning a new task or domain, to keep the same performances on
the already learned tasks. Ideally, every time a new task has to be learned, it should
share the parameters with the old tasks, adding as few task-specific parameters as
possible, without suffering catastrophic forgetting [15], [50] and accessing the old
training data. We can identify two strategies to avoid catastrophic forgetting: one
is to preserve the knowledge of the old tasks without adding extra parameters, the
other is to freeze the weights of the old tasks while learning additional task-specific
parameters. Methods that follow the first strategy are for example [37] and [30]. In
[37], the authors ensure the preservation of performances on previous tasks by using
initial network responses on new data as regularization targets during the new task
training. [30] considers updating the network parameters based on the importance
for previously seen tasks. While these methods do not increase the network size
maintaining the same number of parameters as the original network, performance
drops as many tasks are added to the network, limiting the number of learned tasks
and suffering catastrophic forgetting. Also, for [37], a large domain shift for a new
task causes a significant drop in prior task performance.
To overcome these issues, methods that follow the second strategy keep the previous
weights frozen while adding additional per task parameters, leaving untouched the
performances on previous tasks and avoiding catastrophic forgetting. The extreme
interpretation of this strategy can be found in [72]. It instantiates a parallel neural
network for each new task, connected to networks of other tasks through parallel
connections. The main drawback of this method is clearly the significant growth
of parameters for every task added.
However, recently were introduced methods that follow the second approach capable
of learning a new task by introducing only few task-specific parameters. These
methods were first proposed in the context of multiple domain learning (MDL).
While multi-task learning aims at learning multiple related tasks, multiple domain
learning focuses into learning a single network to perform image classification tasks
in a diverse set of domains. In other words, it aims to perform only one task
(image classification) for many domains (or datasets). The main goal is to learn
a single network that can represent compactly all the domains with a minimal
number of task-specific parameters. Bilen and Vedaldi [6] proposed to share all
core network parameters except normalization layers to model different domains
in a single neural network, [46] introduced an approach that uses weight-based
pruning to free up redundant parameters across all layers of deep neural network
with minimal loss in accuracy, [68] proposed a parameter efficient architecture that
enables learning new domains sequentially without forgetting.
Recently, in [62] was introduced the Visual Decathlon Challenge that has motivated

30

3.3 – Multi-task learning

researchers to develop methods in this context. The challenge has lead to the
proposal of interesting methods that will be analyzed in the following: Piggyback
[47], binarized affine fransformation (BAT) [48], series [62] and parallel [63] residual
adapters.
Unlike multiple domain learning, this thesis focuses on learning different tasks se-
quentially, while it inherits from that setting the additional goal of requiring a
minimal number of task-specific parameters. For this reason, this work evaluates
against the proposed challenge models originally developed in the multiple domain
learning context and excludes the ones that require a lot of specific parameters per
additional task, or that need to access training data of old tasks while learning a
new one.

3.3.1 Visual decathlon challenge

The visual decathlon challenge [62] is a new benchmark that aims to evaluate per-
formances of algorithms in the multiple domain learning scenario. Every method is
tested on several different domains at the same time and the overall performance is
computed to measure its capability on addressing all tasks together. The decathlon
challenge proposes to use ten well-known classification datasets from multiple visual
domains: FGVC-Aircraft Benchmark [45] contains 10,000 images of aircraft, with
100 images for each of 100 different aircraft model variants. CIFAR100 [32] contains
60,000 colour images for 100 object categories. Daimler Mono Pedestrian Classifi-
cation Benchmark [52] consists of 50,000 grayscale pedestrian and non-pedestrian
images. Describable Texture Dataset [8] is a texture database, consisting of 5640
images, organized according to a list of 47 categories. The German Traffic Sign
Recognition Benchmark [79] contains cropped images for 43 common traffic sign
categories. Flowers102 [55] is a fine-grained classification task which contains 102
flower categories, each consisting of between 40 and 258 images. ILSVRC12 [70]
is the largest dataset in the benchmark and contains 1000 categories and 1.2 mil-
lion images. Omniglot [35] consists of 1623 different handwritten characters from
50 different alphabets. The Street View House Numbers [54] is a real-world digit
recognition dataset with around 70,000 images. UCF101 [76] is an action recogni-
tion dataset of realistic human action videos, collected from YouTube. It contains
13,320 videos for 101 action categories converted into images.
Methods are evaluated with a metric that gives a single scalar score, inspired by the
decathlon sport discipline. This metric encourages algorithms to perform well in
every task rather than be optimal only in few. Given the datasets Dd, d = 1, ..., 10
formed of pairs (x, y) ∈ Dd, where x is an image and y ∈ {1, ..., Cd} is a label,
divided into training, validation and test sets; given a model Φ that predicts the

31

3 – The Landscape

label given an image, the metric is computed as follow:

S =
10Ø
d=1

αd max{0, Emax
d − Ed}γd , (3.18)

Ed = 1
|Dtest

d |
Ø

(x,y)∈Dmax
d

1{y /=Φ(x,d)}, (3.19)

where Ed is the average test error for each domain, Emax
d the baseline error above

which no point is scored, the exponent γd ≥ 1 rewards more reductions of the
classification error as this becomes close to zero and is set to γd = 2 for all domains.
The coefficient αd is set to 1000(Emax

d)−γd so that the perfect result receives a score
of 1000 for each dataset (10,000 in total).
This work takes inspiration from this setting, defining a new challenge for sequential
multi-task learning, considering additionally RGB-D input data. Moreover, the
baseline methods that are evaluated in this work had already been evaluated on
the visual decathlon challenge. In the following, the baselines methods tested on
the proposed challenge will described.

3.3.2 Classical methods: fine-tuning and feature extraction

Fine-tuning is a common method of transfer learning in visual recognition. Often,
when a visual task has to be learned, the network is not trained from scratch but it
is initialized with weights taken from another network trying to solve a similar task
on a large amount of data (e.g. ImageNet [70]). Training on the new task modifies
the parameters of the existing model: usually, the classification layer is trained from
scratch and initialized with random weights (this is because two different domains
have often different set of classes) and a low learning rate is used to tune all the
parameters of the network, minimizing the loss function on the new task. Fine-
tuning a given architecture achieves good results on the new task at the cost of
degraded performance on the old ones because it suffers the catastrophic forgetting
problem. For this reason, fine-tuning can be used to learn a new task, but to keep
the same performance on the previous is necessary to duplicate the weights and
fine-tune the copy. So, we need to have an additional copy of the whole model
for each task, resulting in an explosion of parameters. For example, tackling three
tasks within the same model requires three copies of the parameters, one for each
task.
Feature extraction is another common method. It uses a neural network to extract
features from the input image. The features extracted in this way are then fed as
input to one or more classification layers. One can think of it as composed by a
first network that extracts useful information of an image and a classification layer
that takes in input the extracted data and that is specialized for a specific domain

32

3.3 – Multi-task learning

or task. As in the previous case, it is often used starting from a network already
trained for a specific task (for example, it is common in visual recognition tasks to
use a network trained to classify the Imagenet [70] dataset) to whom is replaced
the classification layer with a task specific one. The main advantage of this method
is that it does not modify the original network and allows the new task to benefit
from complex features learned by it. However, if the new task (or domain) is very
different from the original one, then the results are poor, far from the performances
reached by fine-tuning the model.

3.3.3 Residual adapters

Residual adapters were first proposed in [62] by Rebuffi, Bilen, and Vedaldi. They
aimed at finding a deep learning technique able to learn a universal representation
of the images, i.e. a neural network able to work well in different domains. The
knowledge should be shared between domains allowing to learn a compact multi-
valent representation. Sharing is the key to obtain a model that reaches better
performances in every domain than models tuned only in a specific domain.
Their goal is to develop a parametric family of neural networks φα : X → V
indexed by parameters α, where X ⊂ RH×W×3 is the space of RGB images and
V ⊂ RHv×Wv×Cv is the space of feature tensors. φα can be seen as a parametrized
neural network in which the classification layer is removed, therefore it is like a
feature extractor. The final parametric neural network is made by the feature
extractor φα in which are defined the parameters αd and the linear classification
layers V → Yd for each domain d.
The feature extractor parameters are partitioned in the universal vector w which
is fixed and shared among all domains, and a set α of parameters which contains
the domain-specific parameters. If α is chosen to contain a lot of parameters, the
network needs to learn, for each domain, millions of parameters, and this can slow
down the training phase and be computationally unfeasible for a large number of
tasks. Furthermore, if α contains only a small subset of the network parameters,
then the vast majority of parameters can be shared between different domains. For
these reasons, α must be chosen to contain few parameters. The ideal resulting
architecture is capable of sharing the vast majority of the parameters and has the
ability to learn a new α for a new domain from very few training samples.
The residual adapters were proposed in their series form in [62]. This implementa-
tion modifies a standard residual network (see Section 3.2.3) adding domain-specific
convolutional layers. Each additional convolutional layer has filters with a kernel
size of 1 × 1 to keep small the number of domain-specific parameters. In this way,
they got a network in which there were many shared domain-agnostic layers with
fixed parameters and few small convolutional layers with domain-specific parame-
ters. The residual adapter modules were added into the residual block as can be

33

3 – The Landscape

Figure 3.11: The figure, taken from [63] shows the series (a) and parallel (b) residual
adapter modules (in blue) embedded in the standard residual module. Both residual
adapters contain the batch normalization layers and the residual adapter modules
but in different configurations. In (a) there are two series residual adapter modules
that are made of a batch normalization layer and a 1×1 convolution, followed by a
batch normalization layers. In (b) there are two parallel residual adapter modules
followed by a batch normalization layer. It is important to note that the batch
normalization layers are domain specific in both (a) and (b) even if they are not
blue.

seen in figure 3.11. They implement the following function:

g(x;α) = x+ α ∗ x. (3.20)

It is important to note that in the formula we are ignoring the batch normalization
layers effect. These layers are added after each convolutional layer and they are
important to normalize the output and facilitate the learning. The normalization

34

3.3 – Multi-task learning

operation is followed by a shift and scaling of the output γx + β, where both γ
and β are domain-specific parameters (see Batch normalization in Section 3.2.2).
Learning domain-specific batch normalization layers is very effective because it
provides more model adaptation and improves performances at the small cost of
two parameters per layer.
One of the advantages of using a residual structure for the adapter modules is
that the original network output is unchanged if the adapter parameters are zeros.
This is extremely important for small domains because this mechanism can prevent
overfitting and get better performances.
Moreover, in the adapter modules is impossible to suffer catastrophic forgetting
because the shared parameters are fixed and they are never modified while the
extra parameters are domain specific, so they are not related to other domains.
This is crucial in life-long learning for two reasons: the performance on already
learned domains keeps untouched while learning new domains and, furthermore,
there is no limit on how many domains a model can learn.
The residual adapters were then proposed in their parallel form in [63]. As the
series residual adapters, they are added in a standard residual module, but, as it
can be seen in figure 3.11, instead of putting them sequentially to the convolution
layers, they are added in parallel to them. They implement the following function:

y = f ∗ x+ α ∗ x. (3.21)

Similarly to the series residual adapters, parallel ones have convolutional layers
made of 1×1 filters. So, parallel and series residual modules have a similar number
of parameters (the exact same number excluding the additional batch normalization
layer in the series residual adapters). The parallel residual adapters also have the
nice property of unchanging the output of the network if they are set to zero. As
in the series residual adapters, this is useful to avoid over-fitting and increases
performance.
The experiment in [63] shows that the parallel residual adapter modules give bet-
ter results than serials. Anyway, these methods gave similar performances in the
experiments and both will be evaluated against the proposed challenge.

3.3.4 Piggyback

Piggyback [47] is a powerful approach that allows solving many tasks adding very
few additional parameters to a fixed deep neural network without affecting the
performances on any old task.
The intuition behind it relies on the fact that to learn a new task it is not necessary
to change the network parameters, but it is enough selectively masking them, or
setting certain weights to zero, while keeping the rest the same as before.

35

3 – The Landscape

Therefore, the key idea of this method is to apply task-specific binary-valued (0,1)
masks per task, which will be element-wise multiplied with the network parame-
ters, enabling or disabling them for the specific task, as illustrated in figure 3.12.
The base network (called also backbone network) is then shared between multiple
tasks and its weights are kept fixed for all tasks. The binary masks are additional
parameters that are task-dependent, but, as we will see, they introduce only a little
overhead (i.e. 1 bit per network parameter per task).
This approach is very powerful because, even though the backbone network is
kept unchanged, it allows to create 2N different networks, where N is the num-
ber of network parameters. For example consider an array of parameter v =
[0.9, 0.37, 0.42, 1]. Applying masks to v can give rise to many filters such as v1 =
[0.9, 0.37, 0, 1], v2 = [0, 0.37, 0.42, 1] or v3 = [0.9, 0, 0, 1].

Figure 3.12: The image, taken from [47], is an overview of the piggyback method.
The set of real-valued weights mr passes through the thresholding function giving
the binary masks m. The binary masks are element-wise multiplied to the pa-
rameters W of the base network, which is the same of keeping active or not the
individual weights. In the evaluation time, the binary masks are sufficient to eval-
uate the output, so the real-valued masks can be discarded, obtaining an overhead
of one network mask per task.

In practice, the method selects a pre-trained network (for example a ResNet model
trained on ImageNet [70]) as the backbone network and associates a real-valued
mask to each convolutional and linear layer (except classification layer). Let us

36

3.3 – Multi-task learning

consider a fully connected layer (for simplicity, the same description holds for con-
volutional layers as well) with input vector x = (x1, x2, ...Xm)T of size m × 1, an
output vector y = (y1, y2, ...yn)T of size n × 1 and a weight matrix W = [w]ji of
size n × m. The input-output relationship is given by y = Wx. The bias term is
ignored for ease of notation.
Piggyback associates to the weight matrix W a matrix of real-valued mask weights
mr having the same size asW (n×m). The binary matrix m is obtained by passing
the real-value matrix mr through a thresholding function:

mji =

1, if mr
ji ≥ 0

0, otherwise.
(3.22)

The binary matrix m enable or disable the weights of W depending on whether the
particular value of mji is, respectively, 1 or 0. The input-output relationship of the
masked fully connected layer becomes

y = (W ¤m) · x, (3.23)

where ¤ indicates the element-wise multiplication. The training is done by freezing
the weights W while only training the real-valued mask weights mr. Even though
the thresholding function is non-differentiable, the gradients of the binary mask
weights can be used as a noisy estimator of the gradients of mr. Therefore, the real-
valued parameters mr are updated using the gradient computed for m, following
the straight-through estimator approach [4], [23].
After the training, the real-valued masks are no longer required and can be dis-
carded. The binary masks instead are stored and will be used in the evaluation
time to mask the weights of the model for the task for which they were trained.
The binary mask requires only 1-bit per parameter and these bits are the only
extra parameters to store for each task. Thus, the overhead per task is approxi-
mately 3.12% of the backbone network size. This is extremely effective to represent
compactly multiple domains or tasks.
There are two important aspects to note of this method. First, this method requires
attention in how the real-valued masks are initialized and optimized because the
mask gradients would have different magnitude at different layers. The authors
propose two approaches. The first is to initialize mr with values proportional to
the weight matrix W of the corresponding layer and use a constant learning rate
for all layers. The latter is to initialize mr with a constant value while using an
adaptive optimizer such as the Adam [29] algorithm. The latter approach produces
the best result and will be used also in this work.

37

3 – The Landscape

The second aspect concerns the initialization of the backbone network. A study
performed in [47] shows that a good initialization is critical to obtain good perfor-
mances. The authors tried different settings and it is shown that the pre-trained
model that works best is the one trained on ImageNet [70]. This work follows their
suggestion and it uses a model pre-trained on Imagenet.

3.3.5 Binarized affine fransformation (BAT)

Figure 3.13: The image, taken from [48], is an overview of the binarized affine
fransformation (BAT) method. Similarly to Piggyback, each convolutional filter is
masked by a task-specific binary-valued mask that is obtained passing a real-valued
mask through a thresholding function (orange part). However, while Piggyback uses
only the binary masks as task-specific parameters, BAT generalizes the approach
applying an additional affine transformation directly to the binary masks, which
scales (through the parameter k2) and shift (through the parameter k1) the mask
values. Moreover, both the original filter and the masked filter are multiplied by,
respectively, the scale factors k3 and k0. Finally, the different masks obtained are
summed to produce the final task-specific kernel.

This method, proposed in [48], exploits the same key idea of Piggyback (see Section
3.3.4). Thus it aims at learning incrementally new tasks without changing the
weights of the neural network but combining its parameters, obtaining a new model
at the cost of adding a few task-specific parameters.
This work can be seen as a generalization of Piggyback, in fact, instead of pursuing

38

3.3 – Multi-task learning

the construction of task-specific kernels by simply multiplying element-wise the
convolutional filters and the binary masks, it is implemented a more elaborated
parametric affine transformation that mixes the model parameters with task-specific
binary masks, as it is represented in figure 3.13.
This method starts from a pre-trained network (for example, a Resnet model trained
on Imagenet [70]), and associates a real-valued mask to each convolutional and lin-
ear layer (except classification layer). Consider a fully connected layer (for simplic-
ity, the same description holds for convolutional layers as well) with input vector
x = (x1, x2, ...Xm)T of size m× 1, an output vector y = (y1, y2, ...yn)T of size n× 1
and a weight matrix W = [w]ji of size n × m. The input-output relationship is
given by y = Wx. The bias term is ignored for ease of notation.
BAT associates to the weight matrix W a matrix of real-valued mask weights mr

having the same size as W (n × m). The binary matrix m is obtained by passing
the real-value matrix mr through a thresholding function

mji =

1, if mr
ji ≥ 0

0, otherwise.
(3.24)

Once the binary matrix has been computed, we can proceed to combine it with
the weight matrix W . The general input-output relationship of the masked fully
connected layer becomes

y = æW · x, (3.25)æW = k0W + k11 + k2M + k3W ¤M, (3.26)

where ¤ indicates the element-wise multiplication, ki are additional task-specific
parameters that are learned along with the binary mask m and 1 is a matrix of
n×m ones. If k1,2,3 are set to zero and k3 is set to one, this method behaves equally
to Piggyback.
The authors proposed also a second and simpler version of BAT. They found that
the term correspondent to Piggyback’s multiplicative transformation does not help
to achieve higher performances. For this reason, they got rid of that component
putting k3 = 0 and obtained the simple version, that implements the following
input-output relationship.

y = æW · x, (3.27)æW = k0W + k11 + k2M, (3.28)

In addition to learning the binary masks and the parameters ki, the authors suggest
learning also task-specific batch normalization parameters. In the cases where the

39

3 – The Landscape

batch normalization layer follows the convolutional one, the parameter k0 can be
fixed to 1, because the output of the batch normalization is invariant to the scale
of the convolutional weights.
While the training of ki parameters is straightforward, the optimization strategy of
the binary mask is the same followed by Piggyback (see Section 3.3.4). Moreover,
the authors initialized the mr values with a constant value and adopted an adaptive
learning strategy, specifically Adam [29].
BAT is a very effective strategy. It is able to obtain high performance by leveraging
the high degree of freedom in perturbing the base neural network while keeping low
the per-task overhead in terms of additional parameters. In fact, it adds slightly
more than 1 bit per parameter per task, that is nearly the 3% of the network
parameters.
This work is comparable, both in terms of performances and number of parame-
ters, with Piggyback, so, in the proposed triathlon challenge both methods will be
analyzed.

40

Chapter 4

The RGB-D triathlon
challenge

This thesis proposes the RGB-D triathlon challenge to motivate researchers in de-
veloping models able to perform different tasks and at the same time using a neural
network architecture that minimizes the number of additional parameters required.
The challenge requires to perform three fundamental tasks: object classification,
pose estimation and scene recognition. The datasets chosen offer both RGB and
depth images because the challenge wants to let researchers to exploit the data they
prefer, so, it provides three different settings: use only RGB data, use only depth
information, use both RGB and depth. Each setting will be evaluated separately
allowing researchers to focus on what they prefer.
The first Section of this chapter provides the details of the tasks to be performed, in
particular, the dataset chosen and how to compute the accuracy for the task. The
second Section discusses five different evaluation metrics that combine the accuracy
of the tasks to establish the score on the challenge.

4.1 Task and datasets

4.1.1 Object classification

Object classification is a common task that consists in assigning to an input image
containing an object a semantic class label. For this task it is chosen the RGB-D
Object Dataset [34]. It is a large dataset containing 300 common household objects
organized in 51 categories. The dataset was recorded using a Kinect style 3D
camera that records 30 synchronized and aligned 640 × 480 RGB and depth images
per second. Each object was placed on a turntable during the recording and it was

41

4 – The RGB-D triathlon challenge

(a) (b) (c) (d)

Figure 4.1: Some examples of dataset images. There are shown two apples, the
first (a) is in the training set and the second (b) belongs to the test set. Images
(c) and (d) represent two coffee mug and, as before, the left one is in the training
set, the right one belongs to the test set. It can be noted that they have different
dimensions and they are masked in order to exclude the background.

captured the whole rotation. For each object, there are three video sequences, each
one with the camera mounted at a different height so that the object is seen from
different angles, approximately 30, 45, and 60 degrees relative to the horizon. In
this dataset, objects are organized into both categories and instances. For example
the class apple is divided into physically unique instances like a red apple and a
yellow apple (see figure 4.1).
This work will use the evaluation version of the dataset, the same used by its
authors in their work [34]. It contains a subset of the original dataset, picking
only one image every fifth video frame. The images are also cropped to tightly
include the object in the frame and masked to exclude the background. Thus, the
evaluation dataset contains nearly 45000 RGB-D images with different width and
height divided into 51 categories. As in [34], the model is trained only on a subset
of the available objects (physical instances). The test dataset contains one instance
for each category that was left out from the training dataset. At test time, the
system is queried with an image that contains an object that was not present in
training data and the task is to assign a category label to that image. For ease of
comparison, the instances are not put into the test dataset randomly for every trial
as done in [34] but it is used a fixed set of instances, that is the first split proposed
by the authors in their trials.
The accuracy of the model represents the number of correct label assigned to the
examples of the test dataset. It can be computed using the following formula:

aOC = 1
|DTEST |

Ø
(xi,yi)∈DTEST

1(φ(xi) = yi), (4.1)

where DTEST is the test dataset, φ is the neural network function and φ(x) the
predicted class.

42

4.1 – Task and datasets

(a)
(b)

(c)
(d)

Figure 4.2: Example of LineMOD dataset images. On the left, images (a) and (c)
are taken from the original set and it is visible the marker-board. Images (b) and
(d) are to the cropped version of, respectively, (a) and (c). It can be noted that
they have the same pose but they do not have the surrounding marker-board.

4.1.2 Pose estimation

Pose estimation consists in determining the pose, i.e. the orientation, of an object in
the image (see Section 3.1.2). For this task, it was chosen the LineMOD dataset [22].
It contains 18000 RGB-D images with 15 different objects classes. The original ver-
sion of the dataset contained the objects centered in a marker-board. Making some
experiments we noted that the neural network was able to predict the pose without
considering the object but looking only to the marker board. Thus, we decided to
pick a cropped version of the dataset that was proposed in [90] and can be found
here: www.tugraz.at/institute/icg/research/team-lepetit/research-projects/object-
detection-and-3d-pose-estimation. In the cropped version all the images are squared
with size 64 × 64 pixels and they contain the objects centered in the scene.
The dataset was divided into two parts: the training set and the test set. The
full dataset was split by picking one image every five and putting it into the test
dataset. The other four images belong to the training set. The ground truth of
the pose is given in the form of 3 × 3 rotation matrix that maps the camera world
coordinate into camera coordinates.

43

https://www.tugraz.at/institute/icg/research/team-lepetit/research-projects/object-detection-and-3d-pose-estimation
https://www.tugraz.at/institute/icg/research/team-lepetit/research-projects/object-detection-and-3d-pose-estimation

4 – The RGB-D triathlon challenge

In order to explain the accuracy metric over this task, we need to define how to rep-
resent the rotation. Taking inspiration from [44] this work uses the unit quaternion
representation. It provides some advantages: it is a compact representation, using
only 4 numbers instead of the 9 parameters of the rotation matrix, it is numerically
stable and avoids the gimbal lock phenomenon.
Quaternions are a number system that extends the complex numbers. This work
will focus on unit quaternions that can be expressed as q = s+v1i+v2j+v3k = (s, v)
where i, j, k are fundamental quaternion units, and that have unit norm |q|2 = 1.
According to Euler’s rotation theorem, any rotation about a fixed point can be
expressed as a single rotation of angle θ around a fixed axis v, called Euler axis,
that runs through the fixed point. The Euler axis can be represented as a three-
dimensional vector with unit norm: v = v1i + v2j + v3k, |v|2 = 1. Therefore, any
rotation in three-dimensional space can be described through a combination of a
vector v and an angle θ, providing the axis-angle representation θv. The axis-angle
representation can be represented by a quaternion using the extension of Euler’s
formula:

q = e
θ
2 (v1i+v2j+v3k) = cos

θ

2 + sin
θ

2(v1i+ v2j + v3k) (4.2)

Quaternions can be also derived directly from the rotation matrix but it requires
particular care when the trace of the matrix is zero or very small.
Before defining the distance between quaternions is important to define some basic
algebraic operations. Let p = p1 + p2i + p3j + p4k and q = q1 + q2i + q3j + q4k be
unit quaternions representing two rotations in the same basis.

• Addition p+ q = (p1 + q1) + (p2 + q2)i+ (p3 + q3)j + (p4 + q4)k

• Multiplication by a scalar λq = λq1 + λq2i+ λq3j + λq4k

• Hamilton product pq =
(p1q1 − p2q2 − p3q3 − p4q4) +
(p1q2 + p2q1 + p3q4 − p4q3)i+
(p1q3 − p2q4 + p3q1 + p4q2)j +
(p1q4 + p2q3 − p3q2 + p4q1)k

• Conjugation q∗ = q1 − q2i− q3j − q4k.

Performing a rotation denoted by the multiplication between two rotation quater-
nions pq is equivalent to perform the rotation represented by q and next, the rota-
tion represented by p. The conjugate quaternion q∗ represents the same rotation
of q but performed on the opposite axis. In fact, recalling the extension of Euler’s
formula (Equation 4.2) it can be seen that the conjugation operation is equivalent
to deriving the quaternion from the axis-angle representation −θv.

44

4.1 – Task and datasets

Thus, the difference rotation quaternion that represent the difference rotation is
defined as r .= pq∗. The distance between rotations represented by p and q is the
angle of this difference rotation quaternion r:

cos(θ2) = p1q1 + p2q2 + p3q3 + p4q4, (4.3)

θ = 2 arccos(|p1q1 + p2q2 + p3q3 + p4q4|). (4.4)

The equation 4.4 define the geodesic distance between rotation represented by
quaternions. This is the optimal way to represent the distance in this non-Euclidean
space. Other distances, such as the L2 distance (or Euclidean distance), do not rep-
resent well the distance in this space and should be avoided.
The metric used for this challenge to define accuracy considers both the classifica-
tion task and the pose estimation task. The first is computed by comparing the
predicted label with the ground-truth class, while the latter is evaluated by comput-
ing the geodesic distance between the predicted quaternion and the ground-truth
rotation represented by a quaternion. In particular, the accuracy is computed using
the following function:

aPE = 1
|DTEST |

Ø
(xi,yi,ri)∈DTEST

1(φ(xi) = yi, θ(ψ(xi), ri) < 20), (4.5)

where φ(xi) is the label predicted by the model, yi is the ground truth label, ψ(xi)
is the quaternion predicted by the model, ri is the ground truth rotation, and θ(·)
is a function that computes the geodesic distance between quaternions expressed
in degrees.

4.1.3 Scene recognition

Scene recognition consists into assigning to an image a class label that corresponds
to the place where the picture was taken. For this task it is proposed the NYU-
Depth V2 dataset [53]. The dataset contains 1449 pair of synchronized RGB and
depth images, gathered from a wide range of commercial and residential buildings
in three different US cities, comprising 464 different indoor scenes across 27 scene
classes. Anyway, most of these scene classes are not well represented, thus, following
the approach used in [16] the 27 categories were divided into 10: 9 most represented
categories and the rest. As in the other tasks, the dataset was split in training data
and test data. The images are divided according to the split proposed in [80],
where is given a mapping between the image numbers and the dataset to which
they belong.
The accuracy of the model represents the number of correct labels assigned to the

45

4 – The RGB-D triathlon challenge

examples of the test dataset. It can be computed using the following formula:

aSR = 1
|DTEST |

Ø
(xi,yi)∈DTEST

1(φ(xi) = yi), (4.6)

where DTEST is the test dataset, and φ(x) the predicted class.

(a) (b) (c) (d)

Figure 4.3: Some examples of NYU-Depth V2 dataset images. Images (a) and (b)
represent two different classrooms, while images (c) and (d) represent two living-
rooms.

4.2 Metrics for evaluation

Defining the accuracy on each dataset is not enough, being a multi-task challenge,
the accuracies of the three tasks needs to be joined through single metric that take
them into account.
In particular, the metric must consider two factors: the accuracy achieved in each
task and the number of additional parameters required. For example, fine-tuning
achieves a very good result but at the cost of using a lot of additional parameters,
thus, it should be assigned a low score. The metric must assign a high score when
the accuracy is good for all tasks and the additional parameters are few.
For the challenge, different metrics have been evaluated for computing the score.
Each one has its own advantages and disadvantages, so each of them will be briefly
discussed, concluding with the metric chosen for the proposed challenge.
In the discussion it will be used this notation:

• ami is the accuracy of the model m for the task i.

• aei is the accuracy of the feature extractor for the task i.

• afi is the accuracy of the fine-tuning for the task i.

• pmi is the size of the additional parameters (in bit) added by the model m to
perform task i.

46

4.2 – Metrics for evaluation

• p0 is the size of the base parameters of the model (in bit); these parameters
are the ones shared between all tasks.

4.2.1 Average accuracy

This score is the simplest. It computes the average of the accuracy over the three
tasks. It does not consider the additional parameters.

S = 1
N

NØ
i=1

ami (4.7)

It presents many disadvantages. First of all, it does not consider the number of
parameters, ignoring one of the judging criterion. Being so trivial it also ignores
the fact that a task can be more difficult than others.

4.2.2 Average accuracy - parameters ratio

This score is an extension of the previous that considers also the parameters. It
computes the average accuracy over the tasks and divides it by the number of
parameters. To prevent a very tiny score, the parameter ratio is normalized by
adding p0 as follows:

S = 1
N

NØ
i=1

p0

p0 + pmi
· ami . (4.8)

Even if it considers the number of parameters, it presents the same disadvantages
of the previous score, being ineffective in judging tasks with different difficulties.

4.2.3 Decathlon score

This metric takes inspiration from the score used in the Visual Decathlon Challenge
[62] (see Section 3.3.1). This score does not consider the number of parameters but
tries to encourage the achievement of a good score on all tasks instead of focusing
only on some.
To define the metric they do not consider the accuracy but the error Ei. These are
obviously bound by the relation Ei = 100 − ai. Given Φi(x) the function of the
neural network for the task i, Dtest

i the dataset to be evaluated for the task i, the
error Ei of the dataset can be computed as follow:

Ei = 1
|Dtest

i |
Ø

(x,y)∈Dtesti

1(y /= Φi(x)). (4.9)

47

4 – The RGB-D triathlon challenge

They define a maximal error that can be committed for each task Emax
i . If Ei

is bigger than Emax
i the score assigned to the task i is zero. The overall score is

computed as follows.

S =
NØ
d=1

αi max(0, Emax
i − Ei)γi , (4.10)

αi = 1000(Emax
i)−γi (4.11)

It encourages getting a good score on all tasks by raising the difference between
errors by a coefficient γi. In the Visual Decathlon Challenge [62] it is suggested to
set γi = 2 for all tasks. It can be noted that, if a model focuses only on some tasks,
it will get a high score for them, but a very low score for the others, obtaining a
low final score. The score of each dataset is normalized by the parameter αi that
force it to be in the range [0,1000].
Anyway there are two drawbacks of using this score. First, it does not consider
the number of parameters, a judging criterion. Second, it is hard to set the Emax

i

for each dataset. Its value strongly impacts the score for each task and should be
carefully tuned. In [62] the authors propose to set Emax

i = 2Ef
i , where E

f
i is the

error of the fine-tuning method.

(a) (b)

Figure 4.4: The plot in figure (a) reports the Decathlon score for Emax
i = 50. The

plot figure (b) reports the same score with Emax
i = 20. The red dot indicates the

result that a model get making an error of 10 % in both (a) and (b). It can be
noted the score gets by a model making an error of 10% changes a lot by changing
the parameter Emax

i .

48

4.2 – Metrics for evaluation

4.2.4 Revised decathlon score

This new metric is built upon the decathlon score. It considers the number of
additional parameters used while keeping the advantages of the previous metric.
First of all, it takes into account the accuracy and not the error as done before.
Thus, it is introduced a parameter Amini that represents the minimal accuracy that
a model must get to have a score higher than zero for task i, and a parameter Amaxi

that represent the accuracy threshold that guarantees the highest score for task
i. Then, it is introduced another parameter: the minimal number of parameters
required by the model Pi for the task i.
The parametric function to compute the score is the following:

S =
NØ
i=1

αi · λ
Pi
pm
i
−1 ·max(0, ai − Amini)γi , (4.12)

αi = 1000(Amaxi − Amini)−γi (4.13)

As it can be noted, the function above contains the hyper-parameter λ that did
not appear in the decathlon score. λ affects the impact of the number of additional
parameters. If it is big, then the ratio P

pmi
will be very important for the final score.

Otherwise, if it is nearly one, the ratio has only a little effect. γi and αi have the
same meaning as in the decathlon challenge, and as it was done there, γi is set to
2 for all the tasks.
This metric considers both the parameters and the accuracy, motivating the models
to achieve good results in all datasets instead of focusing only on some. Anyway, it
requires a lot of parameters to be set: Amini , Amaxi , Pi, and λ. We evaluated some
different settings and we propose the following values.

• Amini = 100 − 2(100 − afi). It is the minimal accuracy that corresponds to an
error equals to the double of the fine-tuning error, as described in the previous
score but expressed in term of accuracy.

• Amaxi = 100. As adopted in the decathlon score.

• Pmax
i = p0. We decided to set the value to the number of parameters shared

by the network between tasks.

• λ = 10. We decided to strongly penalize the use of additional parameters. A
comparison with other values is reported in figure 4.5

49

4 – The RGB-D triathlon challenge

4.2.5 Linear score

This work proposes an additional metric that considers both the number of param-
eters and the accuracy. It is computed through the following formula:

S = 1
N

NØ
i=1

2 · (p0

p0 + pmi
− 1

2) · max(0, ami − Amini)
Amaxi − Amini

(4.14)

where Amaxi and Amini are arbitrary values.
This metric penalizes the addition of extra parameters, in fact, it decreases the score
when the additional parameter size increases. The maximal size of the additional
parameters to get a score is two times the size of shared parameters. For example,
the fine-tuning, that copies the original network introducing a number of parameters
equals to the original network, will have a score equals zero.
The accuracy is bound linearly to the score. When the accuracy reaches Amaxi ,
the model gets an optimal score for that task: 1000. the maximal score is kept
unbounded, giving a bonus to the methods that perform better than fine-tuning.
On the other hand, if the accuracy is less than or equal to Amini , the model will
score zero.
As in the previous metrics, the parameters need to set carefully. We propose to set
Amaxi equals to the fine-tuning accuracy to best evaluate the method. This is very
important for a lot of methods, such as piggyback (see Section 3.3.4), where the
initialization of the backbone network is crucial for the performances of the method
itself. We want to avoid that a simple tuning of the backbone network weights
increases the score, otherwise methods will be not comparable. This requires that
each submission to the challenge must compute the fine-tuning accuracy of its
backbone network. For the same reason, we set the Amini equals to the feature
extractor accuracy. The Equation 4.14 thus becomes:

S = 1
N

NØ
i=1

2 · (p0

p0 + pmi
− 1

2) · max(0, ami − aei)
afi − aei

(4.15)

where aei is the accuracy of the feature extractor and afi the accuracy of the fine-
tuning for the i-th task.
This is the metric that is applied to the RGB-D Triathlon challenge. It is more
adaptive to various models and it is the best way to evaluate different methods
with different baseline networks as it will be shown in Section 5.2.

50

4.2 – Metrics for evaluation

(a) λ = 1 (b) λ = 1

(c) λ = 2 (d) λ = 2

(e) λ = 10 (f) λ = 10

Figure 4.5: Effect of λ in computing the revised decathlon score with Amini = 50.

51

4 – The RGB-D triathlon challenge

(a) (b) (c)

Figure 4.6: Plot of the Linear score with aei = 60, afi = 90. The parameter scale
reports the ratio pmi

p0

52

Chapter 5

Experiments and Results

This chapter discusses the implementation and the performances against the chal-
lenge of these methods: fine-tuning, feature extraction, series residual adapter, par-
allel residual adapter, Piggyback, and binarized affine fransformation (BAT). The
first section describes the implementation of the methods, the data pre-processing
steps and the hyper-parameters used for the training. The second section discusses
the results on the challenge, providing the results using different score metrics,
showing the advantages and disadvantages of each one.

5.1 Implementation

The various methods evaluated against the challenge in this work require a back-
bone network. We decided to use the ResNet-18 pre-trained on ImageNet [70]
dataset. It is a cheap standard residual architecture which consists of four blocks
of two residual units. Each residual unit contains a convolutional layer with 3 × 3
kernel size, batch normalization and ReLU (see Section 3.2.3). The network accepts
224 × 224 images as input, downscale the spatial dimension by two at each block
and ends with a classification layer. The number of filters is set to 64, 128, 256, 512
for these blocks, respectively. This network because is the best trade-off between
accuracy and speed. Moreover, being a very common choice, many frameworks
provide their own implementation and even some pre-trained models, and this can
help other researchers to replicate the results reported in this work or to build over
them.
The fine-tuning is the simplest method to be implemented. It requires to instan-
tiate a new ResNet-18 model pre-trained on the ImageNet dataset for each task
and each of them is fed with the images of the respective dataset. Each network
is independent of the others, both in training and evaluation phases, de-facto pro-
ducing three different models, one for each task. The feature extraction instead

53

5 – Experiments and Results

requires only one backbone neural network but three different classification layers.
The weights of the network are frozen, i.e. they are not optimized, besides the task-
specific classification layer, for which parameters are updated through stochastic
gradient descent with momentum. The series residual adapter implementation fol-
lows the method given in [62]. A series residual adapter module is added after the
convolutional layer of each residual unit. It is made by a convolutional layer with
kernel size 1 × 1 and a batch normalization layer. While the weights of the back-
bone networks are taken from the pre-trained model on ImageNet dataset, the series
adapter modules’ convolutional layers are initialized randomly and follow the nor-
mal distribution N (0, 0.0001) and the batch normalization layers are initialized to
have scale equals 1 and bias equals zero. Each task requires a few additional param-
eters that are learned independently from the other tasks with stochastic gradient
descent with momentum. All the batch normalization layers are considered task-
specific. The parallel residual adapter method is similar to the previous one and
follows the method given in [63]. Instead of adding serial residual adapter modules,
it adds task-specific residual adapter modules parallel to the convolutional layers
of each residual blocks. Each parallel residual adapter module consists in a small
convolutional filter with kernel size 1×1 whose parameters are initialized randomly
and follows the distribution N (0, 0.0001). The other parameters are taken from the
pre-trained model. Also for this method, the batch normalization layers are consid-
ered task-specific. Piggyback is implemented as showed in [47]. The binary masks
are added to each convolutional layer and are task-specific. The real-valued masks
parameters are initialized to 0.01 and the threshold value is zero. The other param-
eters are taken from the pre-trained model and the batch normalization layers are
considered task-specific. Binarized affine fransformation (BAT) is implemented
as showed in [48]. As in the previous method, the binary masks are added to each
convolutional layer and are task-specific. The real-valued masks parameters are
initialized randomly and follow a uniform distribution U(0.00001, 0.00002). The
parameters k1, k2, k3 are task-specific and are optimized while training for the spe-
cific task. They are all initialized to zero. The parameter k0 is set to 1 and it is
not learnable.
To implement these methods it was used the PyTorch framework that offers an
open-source implementation of the ResNet-18 and a pre-trained model on the Ima-
geNet dataset. The code of the networks and the training procedure can be found
here: github.com/fcdl94/RobotChallenge.
All the methods have been evaluated on the three data settings: using only RGB
images (called RGB), using only Depth images (D), using both RGB and depth
images (RGB+D). While the RGB setting is trivial to use because the ResNet
architecture is designed to process RGB images, the other two settings require to
be adapted. First of all, the backbone neural network accepts RGB images that
have three color channels but a depth image has only one channel. To adapt the D

54

pytorch.org

5.1 – Implementation

setting it was used a naive approach. Instead of using the depth as single channel
image, the depth channel was copied into other two, obtaining a three channels
depth image where all the channels have the same values. In this way, the standard
ResNet can be fed with a 3-channel depth image and produce an output. After
some tests, we decided to process the depth images using the Resnet-18 pre-trained
over ImageNet as the backbone network, as done in the RGB setting. The RGB+D
settings present a similar problem. It should process 4-channels images: 3 channels
from the RGB image and one channel from the depth image. Instead of trying to
combine these channels, the naive approach was preferred again, using the depth
images as three-channels images. The RGB and depth images separately were
processed and then to combine with a classification layer the features extracted from
the two different sub-networks. Intuitively, the resulting neural network elaborates
both images at the same time extracting different features from each one, and then
combines these features with a fully-connected layer that is able to select which are
the most relevant and to give a prediction based on that. In this way, RGB+D
setting can be adapted the without changing the backbone network. It needs only
to instantiate two different networks of the selected method and to combine the
features with an additional fully-connected layer. It is important to note that we
call features the activation volume that is produced by the last layer before the
classification one.
To provide comparable results between the baselines the same set of hyper-parameters
was used for all the methods. The network parameters were trained using Stochas-
tic Gradient Descent with momentum except for Piggyback and BAT where it is
used SGD with momentum for the classification layer and Adam [29] as optimizer
for the rest of the network as suggested by their authors [47],[48]. The various
methods were trained in the RGB and D settings for 30 epochs with a batch-size
of 32, an initial learning rate for SGD of 0.005 with momentum of 0.9, and an
initial learning rate of 0.00001 for Adam. Both the learning rates are decayed by a
factor of 10 after 20 epochs. It is also added a regularization factor or weight decay
of 0.000005 to both the optimization policies. The only difference that has been
introduced in the RGB+D setting was training the methods for twice the epochs,
that is for 60 epochs with the step of the learning rate after 45 epochs. After few
tests, Piggyback shows difficulties to use the same Adam learning rate for all the
tasks, so two different learning rates have been used: 0.0001 for pose estimation
and scene recognition, and 0.00001 for object classification, keeping the decay of
the learning rates by a factor of 10 after 20 epochs in RGB and D settings, after
45 in the RGB+D setting. Any method submitted to the challenge should adopt
this set of hyper-parameters in order to be comparable with the baselines.
The three datasets offer RGB-D images of different sizes: the RGB-D object dataset
contains images of size nearly 100 × 100 pixels, LineMOD cropped dataset contains
images of size 64 × 64 pixels, and NYU Depth V2 Dataset contains images of size

55

5 – Experiments and Results

640 × 480 pixels. To make use of them with the neural network it is necessary
to rescale the images all to the same size: 224 × 224 pixels, that is the minimal
dimension accepted by the implemented ResNet. The data were normalized by
subtracting the mean of the ImageNet dataset to each channel. To increase the
generality of the dataset, data augmentation was performed: the images of RGB-D
object dataset are cropped randomly, while images of NYU Depth V2 Dataset are
cropped randomly and mirrored (i.e. flipped horizontally).

5.2 Results

This section reports the results obtained by some well-known methods on the RGB-
D Triathlon challenge. The results in term of accuracy for each task are reported
in table 5.1. The accuracy in the tables refers to the top-1 accuracy (as defined for
each task in Section 4.1) averaged between multiple runs to reduce the variance.
The results show, as one could image, that the highest accuracies are reached
through the RGB+D setting. Anyway, RGB and RGB+D settings are comparable,
denoting that all the methods find more useful the RGB images rather than the
Depth images. This may be due to the naive approach adopted in handling the
depth information. In only one case the result achieved on the RGB+D setting is
less than the one reached on the RGB setting. This is the case of Piggyback in
the object recognition task over the RGB-D object dataset. As can be noted in the
table, it reaches 79.29 % in the RGB setting and only 78.13 % in the RGB+D one.
This is mainly due to overfitting on the RGB+D setting.
Some methods achieve comparable and even higher results than fine-tuning the
base network in the object recognition task. The series residual adapters are able
to outperform fine-tuning in each setting, especially in RGB+D where it achieves
an accuracy of 82.55 %, 2 % more than fine-tuning. However, the best method
in the RGB+D setting is BAT that reaches 82.85 %, 0.3 % more than the series
residual adapter. It is worth noting that ROD is a challenging dataset, in fact, many
methods in the experiments suffered overfitting and it has been hard to mitigate
this problem. Overfitting appears mainly due to the way the images are split into
training and test dataset. The test dataset contains instances of objects that do
not appear in the training set and, in many cases, the variance between physical
objects of the same class is high. This scenario is challenging but also real. For
example consider the mug class, in the world there are many instances of mugs
with different shapes and colors and the system cannot be trained on every existing
instance but must be able to recognize them when operating.
In pose estimation, there is a large gap between the feature extractor and the other
methods. This is due to the fact that pose estimation is very different from the
task on which the pre-trained model was trained (image classification on ImageNet

56

5.2 – Results

dataset). Thus, the feature extraction is not able to extract interesting features and
it leads to poor performances. Moreover, the behavior of the feature extraction
underlines the ability of the other methods, especially Piggyback and BAT to
adapt to a new task very different from the original one, reaching an accuracy
similar to the one achieved by fine-tuning the backbone network. Differently from
object recognition, in this task, no method outperforms fine-tuning the base network
parameters but all the methods, except feature extraction, achieve comparable
results, especially on the RGB+D setting.
Similarly to object recognition, in scene classification some methods outperform
fine-tuning the base network, achieving higher accuracy. In the RGB setting, the
series residual adapter reaches an accuracy of 70.02 %, nearly 0.5 % higher than
the fine-tuning, while Piggyback reaches approximately the same accuracy of the
fine-tuning. In the D setting, the series residual adapter method is still the best
one, while the other methods do not converge to an optimal accuracy, reaching
results approximately lower by 3 % than the fine-tuning. In the RGB+D setting,
there is a tie for the best method between Piggyback and BAT, in fact, both reach
an accuracy of 71.46 %, a result 0.07 % better than fine-tuning.
Overall, the best results are achieved by the series residual adapter method and
BAT. Both show a great ability to adapt to new tasks, often reaching results com-
parable to or better than fine-tuning the base network. Also Piggyback showed this
ability but it requires to set carefully the hyper-parameters; recall that the learning
rate has been adapted to each task to obtain competitive results.
In the following it is analyzed how well these methods perform according to the
scores defined in Section 4.2: average accuracy (AvgA), average accuracy - param-
eters ratio (AAPR), decathlon (Deca), revised decathlon (RevD), and linear. The
hyper-parameters used to compute the metrics are the one discussed in Section 4.2.
The tables 5.2, 5.3, 5.4 report the scores for each method and metric, respectively
for RGB, D, and RGB+D settings. The tables report an additional column (LiWP)
that represents the linear score neglecting the number of parameters.
In the tables, the Par. column reports the sum of parameters used for all the
tasks respect the parameters of the base network. For example, Piggyback uses
1.10 · p0 parameters and that the number of additional parameters is 0.10 · p0,
where p0 is the number of parameters of the backbone network. The total number of
parameters is computed by calculating the total size of parameters in bits excluding
the classification layers.
On the average accuracy metric the best methods are fine-tuning over RGB and
D settings, and BAT on the RGB+D setting. However, this metric does not keep
into account the number of parameters and, moreover, it is not capable to consider
the difficulties on the tasks. For example, on the RGB setting, even if the serial
residual adapter method is better than BAT in both object classification and scene
recognition, it is penalized in the overall score because it loses many points on pose

57

5 – Experiments and Results

Methods for each dataset RGB D RGB+D
RGB-D object dataset [34]
Fine-tuning 79,44 64,03 80,92
Feature extractor 70,44 49,47 74,65
Piggyback [47] 79,29 60,68 78,13
BAT [48] 79,29 62,62 82,85
R.a. series [62] 79,84 64,20 82,55
R.a. parallel [63] 78,50 63,05 81,27
LineMOD dataset [22]
Fine-tuning 96,86 86,14 98,43
Feature extractor 14,00 10,11 17,39
Piggyback [47] 95,33 84,88 96,93
BAT [48] 95,83 85,41 96,66
R.a. series [62] 92,76 80,10 97,29
R.a. parallel [63] 91,77 82,60 95,27
NYU Depth V2 dataset [53]
Fine-tuning 69,59 61,16 71,39
Feature extractor 58,81 48,59 63,58
Piggyback [47] 69,60 57,21 71,46
BAT [48] 68,91 57,73 71,46
R.a. series [62] 70,02 61,34 70,70
R.a. parallel [63] 68,61 58,52 70,94

Table 5.1: Results in term of accuracy for the RGB-D Triathlon challenge.

estimation, that is a complex task, as indicated by the result of the feature extrac-
tion method. The average accuracy - parameter ratio improves the previous score
penalizing the methods that adds extra parameters. In this metric fine-tuning is
strongly penalized and achieves the last score. The best methods are Piggyback
and BAT that adds very few parameters while keeping good performances. How-
ever, this metric, as the previous, does not keep into consideration the difficulties of
the tasks. The decathlon score takes into account the different complexity among
tasks by assigning to each task a score between 0 and 1000. However, in the at-
tempt of penalizing the methods that performs well in only some task and poorly
in others, the definition of the maximal error as the double of the error committed
by fine-tuning the base network weights lead to the same problem of the previous
metrics. Few percentage points lost on pose estimation leads to a poor score. This
aspect will be further analyzed later comparing the scores of Piggyback and BAT.
The revised decathlon score improves the previous metric by penalizing the methods
that uses additional parameters but, having the maximal error defined in the same
way, it suffers the same problem. Finally, the linear score tries to solve the issues

58

5.2 – Results

of the previous methods by both considering the number of additional parameters
and the complexity of the tasks. The number of parameters is considered by scaling
the result for a factor proportional to the number of additional parameters. As it
can be seen, methods are strongly penalized for using additional parameters. For
example, the series residual adapter has accuracies comparable to Piggyback or
BAT, but it introduces more per-task parameters than these methods and so, the
score is lower. It considers also the complexity of the task, in fact, neglecting the
number of parameters and considering the RGB setting (see LiWP column of table
5.2), the series residual adapter method achieves 1011 points, even more than the
fine-tuning (1000) and BAT (969). This is due to the fact that the linear score
compares the accuracies with both the fine-tuning and the feature extractor meth-
ods, producing better estimates of the complexity of the tasks. For this reason the
linear score is considered the best way to evaluate the RGB-D Triathlon challenge.
In the scores that penalize the use of additional parameters the fine-tuning method
presents the worst results. Fine-tuning introduces a copy of the network for each
new task and so, it is strongly penalized by the number of parameters in these
metrics: in the average accuracy - parameter ratio score its result is one third of
the one obtained without penalizing the parameters; in the revised Decathlon score
it loses nearly 600 points with respect to the decathlon score; in the linear score it
achieves zero and this is due to the design of the score itself that assigns a score of
zero for the task in which the method adds as many parameters as the number of
parameters of the base network.
Feature extractor, instead, does not add any extra parameters. It achieves the same
score in metrics that consider parameters and in the ones that do not consider it.
The average accuracy and average accuracy - parameter ratio score are in fact
equals and the same applies to the decathlon and the revised decathlon scores.
However, even if it is not penalized by adding extra parameters, its results are
poor, especially on pose estimation, and the score is low compared to the other
methods. In the linear score, it achieves zero by the design of the score itself.
Series residual adapter method outperforms the parallel residual adapter method.
However, the latter adds less parameters and so the scores in some settings are
comparable. For example, considering the revised decathlon score, the parallel
residual adapter method reaches a score nearly equal to the series in the RGB
setting and a higher score in both D and RGB+D settings. However, in the linear
score, series achieves a higher result in every setting, even if they are nearly equal
in the RGB+D setting. This is due to the fact that the revised decathlon score
penalizes exponentially the use of additional parameters.
Even if the accuracies between BAT and series residual adapters are similar, the
number of parameters changes a lot. BAT introduces only a few parameters per
task, nearly 3.3 %, while the serial residual adapter introduces nearly 15.6 % for
each new task. For this reason, the scores of the series residual adapter method in

59

5 – Experiments and Results

the metrics that keep the parameters into account are lower than the one of BAT.
Piggyback and BAT use the same number of parameters. Piggyback achieves the
best linear score in the RGB setting while BAT achieves a better decathlon and re-
vised decathlon score. This difference can be explained considering how decathlon
score and linear score handle the pose estimation accuracy. Decathlon score en-
courages methods to get a good score in all tasks by computing the score of each
task raising by two the difference between the maximal error, set to the double of
the fine-tuning error, and the method’s error. This means that the decathlon score
maps the 1000 points available for this task in very few percentage points. Consid-
ering the RGB case, a score of zero is assigned for methods that achieve accuracy
below 93.76 %, and 1000 points for methods that achieve 100%. In linear score in-
stead adopts a completely different approach. Recalling what is defined in Section
4.2 this score computes the fraction between the difference of the accuracy of the
method and the accuracy of the feature extraction, and the difference between the
accuracy of the fine-tuning and the feature extraction. For pose estimation in the
RGB setting, the gap at the denominator is large, approximately 80, then, methods
that achieve similar accuracy, i.e. few percentage points of difference, will achieve
a similar score. Note that this does not apply to other tasks, for example object
recognition, because the accuracies of the feature extraction and the fine-tuning
methods are similar, producing a small denominator. In the other settings BAT
outperforms Piggyback, especially in the RGB+D setting.
It is worth noting that BAT reaches a linear score in the RGB+D setting (1030.61)
that is greater than the optimal score achieved by a method that does not introduce
additional parameters and perform as the fine-tuning (1000). BAT, in fact, outper-
forms fine-tuning in object classification and scene recognition while introducing
very few parameters.

Metric Par. AvgA AAPR Deca RevD LiWP Linear
Fine-tuning 3 81.96 27.32 750.00 161.58 1000.00 0.00
Feature extractor 1 47.75 47.75 183.20 183.20 0.00 0.00
Piggyback [47] 1.10 81.41 74.32 562.27 460.11 988.62 927.69
BAT [48] 1.10 81.34 74.26 597.85 489.21 969.29 909.54
R.a. series [62] 1.47 80.87 55.00 516.87 247.43 1011.46 737.25
R.a. parallel [63] 1.38 79.63 57.89 461.83 246.31 914.40 710.94

Table 5.2: Results in term of accuracy for the RGB-D Triathlon challenge in the
RGB setting. The best method is bold, the second best is underlined.

60

5.2 – Results

Metric Par. AvgA AAPR Deca RevD LiWP Linear
Fine-tuning 3 70.44 23.48 750.00 161.58 1000.00 0.00
Feature extractor 1 36.06 36.06 202.99 202.99 0.00 0.00
Piggyback [47] 1.10 67.59 61.70 614.00 502.45 813.09 762.98
BAT [48] 1.10 68.59 62.61 663.08 542.59 873.59 819.74
R.a. series [62] 1.47 68.55 46.62 584.38 279.75 982.30 715.99
R.a. parallel [63] 1.38 68.06 49.48 592.45 315.97 892.11 693.61

Table 5.3: Results in term of accuracy for the RGB-D Triathlon challenge in the D
setting. The best method is bold, the second best is underlined.

Metric Par. AvgA AAPR Deca RevD LiWP Linear
Fine-tuning 3 83.58 27.86 750.00 161.58 1000.00 0.00
Feature extractor 1 51.87 51.87 244.75 244.75 0.00 0.00
Piggyback [47] 1.10 82.17 75.02 433.78 354.97 848.09 795.82
BAT [48] 1.10 83.66 76.37 554.37 453.63 1098.31 1030.61
R.a. series [62] 1.47 83.51 56.80 551.39 263.96 1052.22 766.96
R.a. parallel [63] 1.38 82.50 59.97 501.40 267.41 986.32 766.86

Table 5.4: Results in term of accuracy for the RGB-D Triathlon challenge in the
RGB+D setting. The best method is bold, the second best is underlined.

61

62

Chapter 6

Conclusion and future works

In this thesis a new benchmark, the RGB-D Triathlon challenge, was proposed.
It aims to push forward the state of the art in multi-task life-long learning in
robotics context by encouraging researchers to develop methods able to perform
multiple tasks while using as few parameters as possible. The RGB-D Triathlon
challenge presents three fundamental tasks: object classification, pose estimation,
and scene recognition. Object classification and scene recognition can be seen as
a specialization of a more general task: image classification. Object classification
task is evaluated on the RGB-D object dataset [34] and scene recognition on the
NYU Depth V2 dataset [53]. Pose estimation is a complex problem that requires to
define the representation of the rotation and the solution space. Despite many works
consider it a classification problem where the pose space is discretized into bins,
this work takes the approach of [44] where the pose estimation task is considered
a regression problem in a non-Euclidean space. This task has to be performed on
the LineMOD dataset [22].
This work presented three settings for the challenge that differ on the data that
are considered: the RGB setting considers RGB images, the D setting considers
depth images, and the RGB+D setting considers both RGB and depth images.
Researchers interested in submitting methods to this challenge can chose the setting
they care most because each setting has its own leader-board and it is independent
from others. This work proposed a simple naive approach to handle depth images
that does not require to change the backbone network between different settings.
Each depth image is a single-channel image in which each pixel represents the
distance between that point and the camera. Every depth image is transformed
into a three channel image by simply duplicating the depth channel many times,
allowing well-known networks designed to process RGB images to elaborate it.
This strategy does not exploit at best the depth information but can be easily

63

6 – Conclusion and future works

implemented, allowing researchers to develop their own methods by using well-
known architectures, such as a ResNet-18, for which implementations and pre-
trained models can be easily found on-line.
For each method submitted to the challenge is assigned a score. Chapter 4 analyzed
many possible scores aiming to find the best metric that keeps in consideration two
factors: the accuracy achieved by the method on each task and the number of
additional task-specific parameters introduced. The metric must assign an higher
score to method that performs well on each task by using a minimal number of
additional parameters. The metric must consider also the complexity of the tasks
and must assign scores without preferring any task to others. The chapter started
by evaluating trivial scores: average accuracy score is computed by averaging the
performances obtained on each task, and average accuracy - parameter ratio score
is computed in the same way but adds a factor that penalize the use of additional
parameters for solving the tasks. Then it was discussed the metric defined in the
context of the Visual Decathlon Challenge [62] that is further extended by proposing
a revised version of it that takes into account the number of parameter used. These
metrics, however, do not estimate well enough the complexity of the tasks. Thus, it
is introduced an additional metric called linear score. It considers both the number
of additional parameters and the accuracy achieved and compares the accuracy
of each task with both the accuracies of the feature extractor and the fine-tuning
methods. By doing this it is able to perform a better estimate of the complexity of
the tasks.
Four methods were evaluated against the RGB-D Triathlon challenge. These meth-
ods were developed in the context of multiple domain learning: series residual
adapters [62], parallel residual adapter [63], piggyback [47] and binarized affine
fransformation (BAT) [48]. The results show that Piggyback and BAT achieve the
best scores by far, even if the series residual adapter achieves comparable perfor-
mances in term of accuracy. This is due to the fact that these methods use less
parameters, thus, the score penalizes more the series residual adapter method than
the other two methods.
We are interested to test the RGB-D Triathlon challenge with other methods. For
example, we are considering to test different backbone networks such as VGGNet
[75], a deeper Resnet [19] (Resnet-50 or Resnet-101), or a DenseNet [25]. This is
useful for two reasons: (i) it allows us to consider different quantities in the number
of parameters of the backbone network and, (ii) we provide additional baselines with
which researchers can compare their own methods. Moreover, we are considering to
evaluate other methods that have proven to be effective in sequential and life-long
learning such as Domain adaptation network [68] and Life-Long Learning [37].
This work encourages the community to develop methods able to face many differ-
ent tasks in robotics by providing an evaluation benchmark. Obviously, the RGB-D

64

6 – Conclusion and future works

Triathlon challenge is only a starting point to provide a much more complex bench-
mark, where must be included more complex tasks such as semantic segmentation
[41], grasp prediction [13], [27] and object detection [65], [66]. Methods that will
achieve a high score on this extended challenge will really be an agile visual toolbox
for robots and a big step toward general artificial intelligence.

65

66

Bibliography

[1] R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars,
“Memory Aware Synapses: Learning what (not) to forget”, arXiv preprint
arXiv:1711.09601, 2017.

[2] P. Ammirato, A. C. Berg, and J. Košecká, “Active Vision Dataset Bench-
mark”, in Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition Workshops, 2018, pp. 2046–2049.

[3] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features
(SURF)”, Computer vision and image understanding, vol. 110, no. 3, pp. 346–
359, 2008.

[4] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradi-
ents through stochastic neurons for conditional computation”, arXiv preprint
arXiv:1308.3432, 2013.

[5] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult”, IEEE transactions on neural networks, vol. 5,
no. 2, pp. 157–166, 1994.

[6] H. Bilen and A. Vedaldi, “Universal representations: The missing link between
faces, text, planktons, and cat breeds”, arXiv preprint arXiv:1701.07275,
2017.

[7] R. Caruana, “Multitask Learning”, Machine Learning, vol. 28, no. 1, pp. 41–
75, 1997, issn: 1573-0565. doi: 10.1023/A:1007379606734. [Online]. Avail-
able: https://doi.org/10.1023/A:1007379606734.

[8] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi, “Describing
textures in the wild”, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2014, pp. 3606–3613.

[9] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning”, in Proceedings of
the 25th international conference on Machine learning, ACM, 2008, pp. 160–
167.

67

https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1023/A:1007379606734

BIBLIOGRAPHY

[10] G. Cybenko, “Approximation by superpositions of a sigmoidal function”,
Mathematics of control, signals and systems, vol. 2, no. 4, pp. 303–314, 1989.

[11] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detec-
tion”, in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, IEEE, vol. 1, 2005, pp. 886–893.

[12] L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural network
learning for speech recognition and related applications: An overview”, in
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on, IEEE, 2013, pp. 8599–8603.

[13] A. Depierre, E. Dellandréa, and L. Chen, “Jacquard: A Large Scale Dataset
for Robotic Grasp Detection”, arXiv preprint arXiv:1803.11469, 2018.

[14] N. Doulamis and A. Voulodimos, “FAST-MDL: Fast Adaptive Supervised
Training of multi-layered deep learning models for consistent object tracking
and classification”, in Imaging Systems and Techniques (IST), 2016 IEEE
International Conference on, IEEE, 2016, pp. 318–323.

[15] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio, “An empiri-
cal investigation of catastrophic forgetting in gradient-based neural networks”,
arXiv preprint arXiv:1312.6211, 2013.

[16] S. Gupta, P. Arbelaez, and J. Malik, “Perceptual Organization and Recog-
nition of Indoor Scenes from RGB-D Images”, in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2013.

[17] T. L. Hayes, R. Kemker, N. D. Cahill, and C. Kanan, “New Metrics and
Experimental Paradigms for Continual Learning”, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, 2018,
pp. 2031–2034.

[18] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn”, in Computer Vi-
sion (ICCV), 2017 IEEE International Conference on, IEEE, 2017, pp. 2980–
2988.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition”, in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770–778.

[20] M. Hejrati and D. Ramanan, “Analysis by synthesis: 3d object recognition by
object reconstruction”, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2014, pp. 2449–2456.

[21] M. Hessel, H. Soyer, L. Espeholt, W. Czarnecki, S. Schmitt, and H. van Has-
selt, “Multi-task deep reinforcement learning with popart”, arXiv preprint
arXiv:1809.04474, 2018.

68

BIBLIOGRAPHY

[22] S. Hinterstoisser S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab, and
V. Lepetit, “Multimodal Templates for Real-Time Detection of Texture-less
Objects in Heavily Cluttered Scenes”, 2011.

[23] G. Hinton. (2012). Neural networks for machine learning, [Online]. Avail-
able: https://www.coursera.org/learn/neural- networks (visited on
10/31/2018).

[24] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks”, arXiv preprint
arXiv:1709.01507, vol. 7, 2017.

[25] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely con-
nected convolutional networks.”, in CVPR, vol. 1, 2017, p. 3.

[26] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”, arXiv preprint arXiv:1502.03167,
2015.

[27] E. Johns, S. Leutenegger, and A. J. Davison, “Deep learning a grasp func-
tion for grasping under gripper pose uncertainty”, in Intelligent Robots and
Systems (IROS), 2016 IEEE/RSJ International Conference on, IEEE, 2016,
pp. 4461–4468.

[28] A. Karpathy. (2018). Convolutional Neural Networks (CNN / ConvNets),
[Online]. Available: http://cs231n.github.io/ (visited on 10/15/2018).

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization”,
arXiv preprint arXiv:1412.6980, 2014.

[30] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A.
Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al., “Over-
coming catastrophic forgetting in neural networks”, Proceedings of the na-
tional academy of sciences, p. 201 611 835, 2017.

[31] I. Kokkinos, “UberNet: Training a Universal Convolutional Neural Network
for Low-, Mid-, and High-Level Vision Using Diverse Datasets and Limited
Memory.”, in CVPR, vol. 2, 2017, p. 8.

[32] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny
images”, Citeseer, Tech. Rep., 2009.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks”, in Advances in Neural Information
Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-
berger, Eds., Curran Associates, Inc., 2012, pp. 1097–1105. [Online]. Available:
http://papers.nips.cc/paper/4824-imagenet-classification-with-
deep-convolutional-neural-networks.pdf.

[34] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-view
RGB-D object dataset”, in 2011 IEEE International Conference on Robotics
and Automation, 2011, pp. 1817–1824. doi: 10.1109/ICRA.2011.5980382.

69

https://www.coursera.org/learn/neural-networks
http://cs231n.github.io/
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1109/ICRA.2011.5980382

BIBLIOGRAPHY

[35] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level concept
learning through probabilistic program induction”, Science, vol. 350, no. 6266,
pp. 1332–1338, 2015.

[36] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning hand-
eye coordination for robotic grasping with deep learning and large-scale data
collection”, The International Journal of Robotics Research, vol. 37, no. 4-5,
pp. 421–436, 2018.

[37] Z. Li and D. Hoiem, “Learning without forgetting”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2017.

[38] D. Lin, S. Fidler, and R. Urtasun, “Holistic Scene Understanding for 3D Ob-
ject Detection with RGBD Cameras”, in The IEEE International Conference
on Computer Vision (ICCV), 2013.

[39] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, “Microsoft coco: Common objects in context”, in European
conference on computer vision, Springer, 2014, pp. 740–755.

[40] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“Ssd: Single shot multibox detector”, in European conference on computer
vision, Springer, 2016, pp. 21–37.

[41] J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks for
Semantic Segmentation”, in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015.

[42] D. G. Lowe, “Object recognition from local scale-invariant features”, in Com-
puter vision, 1999. The proceedings of the seventh IEEE international confer-
ence on, Ieee, vol. 2, 1999, pp. 1150–1157.

[43] ——, “Distinctive image features from scale-invariant keypoints”, Interna-
tional journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[44] S. Mahendran, H. Ali, and R. Vidal, “3D pose regression using convolutional
neural networks”, in IEEE International Conference on Computer Vision,
vol. 1, 2017, p. 4.

[45] S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi, “Fine-grained
visual classification of aircraft”, arXiv preprint arXiv:1306.5151, 2013.

[46] A. Mallya and S. Lazebnik, “Packnet: Adding multiple tasks to a single net-
work by iterative pruning”, arXiv preprint arXiv:1711.05769, vol. 1, no. 2,
p. 3, 2017.

[47] ——, “Piggyback: Adding Multiple Tasks to a Single, Fixed Network by
Learning to Mask”, arXiv preprint arXiv:1801.06519, 2018.

[48] M. Mancini, E. Ricci, B. Caputo, and S. R. Bulò, “Adding New Tasks to
a Single Network with Weight Trasformations using Binary Masks”, CoRR,
vol. abs/1805.11119, 2018.

70

BIBLIOGRAPHY

[49] B. McCann, N. S. Keskar, C. Xiong, and R. Socher, “The natural language de-
cathlon: Multitask learning as question answering”, arXiv preprint arXiv:1806.08730,
2018.

[50] M. McCloskey and N. Cohen, “Catastrophic Interference in Connectionist
Networks: The Sequential Learning Problem”, English (US), Psychology of
Learning and Motivation - Advances in Research and Theory, vol. 24, no. C,
pp. 109–165, Jan. 1989, issn: 0079-7421. doi: 10.1016/S0079- 7421(08)
60536-8.

[51] T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, B. Yang, J. Betteridge,
A. Carlson, B Dalvi, M. Gardner, B. Kisiel, et al., “Never-ending learning”,
Communications of the ACM, vol. 61, no. 5, pp. 103–115, 2018.

[52] S. Munder and D. M. Gavrila, “An experimental study on pedestrian clas-
sification”, IEEE transactions on pattern analysis and machine intelligence,
vol. 28, no. 11, pp. 1863–1868, 2006.

[53] P. K. Nathan Silberman Derek Hoiem and R. Fergus, “Indoor Segmentation
and Support Inference from RGBD Images”, in ECCV, 2012.

[54] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading
digits in natural images with unsupervised feature learning”, in NIPS work-
shop on deep learning and unsupervised feature learning, vol. 2011, 2011, p. 5.

[55] M.-E. Nilsback and A. Zisserman, “Automated flower classification over a
large number of classes”, in Computer Vision, Graphics & Image Processing,
2008. ICVGIP’08. Sixth Indian Conference on, IEEE, 2008, pp. 722–729.

[56] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic
segmentation”, in Proceedings of the IEEE international conference on com-
puter vision, 2015, pp. 1520–1528.

[57] G. Pavlakos, X. Zhou, A. Chan, K. G. Derpanis, and K. Daniilidis, “6-dof
object pose from semantic keypoints”, in Robotics and Automation (ICRA),
2017 IEEE International Conference on, IEEE, 2017, pp. 2011–2018.

[58] B. Pepik, M. Stark, P. Gehler, and B. Schiele, “Teaching 3d geometry to de-
formable part models”, in Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on, IEEE, 2012, pp. 3362–3369.

[59] M. Rad and V. Lepetit, “BB8: A scalable, accurate, robust to partial occlu-
sion method for predicting the 3D poses of challenging objects without using
depth”, in International Conference on Computer Vision, vol. 1, 2017, p. 5.

[60] H. Rahmani, A. Mian, and M. Shah, “Learning a deep model for human action
recognition from novel viewpoints”, IEEE transactions on pattern analysis and
machine intelligence, vol. 40, no. 3, pp. 667–681, 2018.

71

https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8

BIBLIOGRAPHY

[61] B. Ramsundar, S. Kearnes, P. Riley, D. Webster, D. Konerding, and V.
Pande, “Massively multitask networks for drug discovery”, arXiv preprint
arXiv:1502.02072, 2015.

[62] S.-A. Rebuffi, H. Bilen, and A. Vedaldi, “Learning multiple visual domains
with residual adapters”, in Advances in Neural Information Processing Sys-
tems, 2017, pp. 506–516.

[63] ——, “Efficient parametrization of multi-domain deep neural networks”, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2018, pp. 8119–8127.

[64] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl: Incremental
classifier and representation learning”, in Proc. CVPR, 2017.

[65] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection”, in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 779–788.

[66] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks”, in Advances in neural information
processing systems, 2015, pp. 91–99.

[67] (2018). Robust Vision Challenge, [Online]. Available: http://www.robustvision.
net (visited on 11/01/2018).

[68] A. Rosenfeld and J. K. Tsotsos, “Incremental learning through deep adapta-
tion”, arXiv preprint arXiv:1705.04228, 2017.

[69] X. Roynard, J.-E. Deschaud, and F. Goulette, “Paris-Lille-3D: A Point Cloud
Dataset for Urban Scene Segmentation and Classification”, in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition Work-
shops, 2018, pp. 2027–2030.

[70] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Ima-
geNet Large Scale Visual Recognition Challenge”, International Journal of
Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015. doi: 10.1007/
s11263-015-0816-y.

[71] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual
recognition challenge”, International Journal of Computer Vision, vol. 115,
no. 3, pp. 211–252, 2015.

[72] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K.
Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive neural networks”,
arXiv preprint arXiv:1606.04671, 2016.

72

http://www.robustvision.net
http://www.robustvision.net
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y

BIBLIOGRAPHY

[73] H. Schneiderman and T. Kanade, “A statistical method for 3D object detec-
tion applied to faces and cars”, in Computer Vision and Pattern Recognition,
2000. Proceedings. IEEE Conference on, IEEE, vol. 1, 2000, pp. 746–751.

[74] M. Schwarz, A. Milan, A. S. Periyasamy, and S. Behnke, “RGB-D object de-
tection and semantic segmentation for autonomous manipulation in clutter”,
The International Journal of Robotics Research, vol. 37, no. 4-5, pp. 437–451,
2018.

[75] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition”, CoRR, vol. abs/1409.1556, 2014.

[76] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of 101 human
actions classes from videos in the wild”, arXiv preprint arXiv:1212.0402, 2012.

[77] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for
simplicity: The all convolutional net”, arXiv preprint arXiv:1412.6806, 2014.

[78] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting”, The
Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[79] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition”, Neu-
ral networks, vol. 32, pp. 323–332, 2012.

[80] D. Stutz, “Superpixel segmentation: an evaluation”, in German Conference
on Pattern Recognition, Springer, 2015, pp. 555–562.

[81] H. Su, C. R. Qi, Y. Li, and L. J. Guibas, “Render for cnn: Viewpoint es-
timation in images using cnns trained with rendered 3d model views”, in
Proceedings of the IEEE International Conference on Computer Vision, 2015,
pp. 2686–2694.

[82] N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner, B.
Upcroft, P. Abbeel, W. Burgard, M. Milford, et al., “The limits and potentials
of deep learning for robotics”, The International Journal of Robotics Research,
vol. 37, no. 4-5, pp. 405–420, 2018.

[83] N. Sünderhauf, F. Dayoub, S. McMahon, B. Talbot, R. Schulz, P. Corke,
G. Wyeth, B. Upcroft, and M. Milford, “Place categorization and semantic
mapping on a mobile robot”, in Robotics and Automation (ICRA), 2016 IEEE
International Conference on, IEEE, 2016, pp. 5729–5736.

[84] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions”, in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1–9.

[85] S. Thrun, “Lifelong learning algorithms”, in Learning to learn, Springer, 1998,
pp. 181–209.

73

BIBLIOGRAPHY

[86] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via deep neural
networks”, in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2014, pp. 1653–1660.

[87] J. Tremblay, T. To, and S. Birchfield, “Falling Things: A Synthetic Dataset for
3D Object Detection and Pose Estimation”, arXiv preprint arXiv:1804.06534,
2018.

[88] S. Tulsiani and J. Malik, “Viewpoints and keypoints”, in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1510–
1519.

[89] D. Wang, A. Khosla, R. Gargeya, H. Irshad, and A. H. Beck, “Deep learning
for identifying metastatic breast cancer”, arXiv preprint arXiv:1606.05718,
2016.

[90] P. Wohlhart and V. Lepetit, “Learning descriptors for object recognition and
3d pose estimation”, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 3109–3118.

[91] C. Workshop. (2018). Real-World Challenges and New Benchmarks for Deep
Learning in Robotic Vision, [Online]. Available: https://sites.google.
com/view/cvpr2018-robotic-vision (visited on 11/01/2018).

[92] J. Wu, T. Xue, J. J. Lim, Y. Tian, J. B. Tenenbaum, A. Torralba, and W. T.
Freeman, “Single image 3d interpreter network”, in European Conference on
Computer Vision, Springer, 2016, pp. 365–382.

[93] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolu-
tional neural network for 6d object pose estimation in cluttered scenes”, arXiv
preprint arXiv:1711.00199, 2017.

[94] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated Residual Trans-
formations for Deep Neural Networks”, arXiv preprint arXiv:1611.05431, 2016.

[95] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional net-
works”, in European conference on computer vision, Springer, 2014, pp. 818–
833.

[96] Y. Zhang, M. Bai, P. Kohli, S. Izadi, and J. Xiao, “Deepcontext: Context-
encoding neural pathways for 3d holistic scene understanding”, arXiv preprint
arXiv:1603.04922, 2016.

[97] Z. Zhang, P. Luo, C. C. Loy, and X. Tang, “Facial landmark detection by deep
multi-task learning”, in European Conference on Computer Vision, Springer,
2014, pp. 94–108.

[98] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places: A 10
million image database for scene recognition”, IEEE transactions on pattern
analysis and machine intelligence, vol. 40, no. 6, pp. 1452–1464, 2018.

74

https://sites.google.com/view/cvpr2018-robotic-vision
https://sites.google.com/view/cvpr2018-robotic-vision

	Introduction
	Related Works
	The Landscape
	Defining the robotic vision challenge
	Image classification
	Pose estimation
	From RGB to RGB-D: the importance of the third dimension

	Convolutional neural networks
	Neural networks
	Convolutional neural networks
	Standard architectures

	Multi-task learning
	Visual decathlon challenge
	Classical methods: fine-tuning and feature extraction
	Residual adapters
	Piggyback
	Binarized affine fransformation (BAT)

	The RGB-D triathlon challenge
	Task and datasets
	Object classification
	Pose estimation
	Scene recognition

	Metrics for evaluation
	Average accuracy
	Average accuracy - parameters ratio
	Decathlon score
	Revised decathlon score
	Linear score

	Experiments and Results
	Implementation
	Results

	Conclusion and future works

