

POLITECNICO DI TORINO
Department of Control and Computer Engineering

Master of Science Thesis in Computer Engineering

A vehicle Human-Machine Interface
implementation based on Google Android

Automotive OS

Supervisors

Prof. Gianpiero Cabodi

Prof. Danilo Vendraminetto

Candidate

Davide Cometa

https://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi8zISkp8_XAhUBzxQKHVH3AToQjRwIBw&url=https://it.wikipedia.org/wiki/File:Politecnico_di_Torino_-_Logo.svg&psig=AOvVaw1fPmcsFxZ8WRVNj1ti3AHP&ust=1511341314654570

List of Contents

Introduction .. 1

1.1 The Origins of In-Vehicle Infotainment ... 2

1.2 The growing importance of software in the automotive industry ... 4

1.3 In-Vehicle Infotainment design paradigms for safety and distraction avoidance 7

1.3.1 Avoid distraction through clever architectures and screens positioning........................... 10

1.3.2 Avoid distraction through design and clean interaction schemes 13
1.3.3 Avoid distraction through fast input mechanisms ... 14

1.4 From automakers Infotainments to software companies solutions .. 15

Android Automotive OS .. 18

2.1 Android Software Stack ... 19

2.1.1 Linux Kernel .. 21

2.1.2 Hardware Abstraction Layer (HAL) ... 22

2.1.3 Android Runtime (ART) .. 22

2.1.4 Java API Framework .. 23

2.1.5 System Application .. 25

2.2 Android key features: Why is expected to be adopted in Automotive industry? 25

2.2.1 Open source .. 25

2.2.2 Customizable and extensible features... 26

2.2.3 Use of a standard and well-known environment .. 27

2.2.4 Real multi-tasking environment ... 27

2.2.5 Built-in Vehicle APIs ... 28

2.2.6 Updatability and connectivity .. 29

Android Automotive IVI: Hardware architecture design and implementation 31

3.1 Hardware architecture and components ... 32

3.2 Chipset and processor... 33

3.3 In-Car displays .. 35

3.4 Raspberry PI and Rotary controller ... 36

3.5 EntryNAV system as gateway for CAN/V-MOST bus .. 37

3.6 Peripherals and other devices .. 39

Android Automotive IVI: An overview about system requirements, proposed
architecture and development process ... 41

4.1 Current stage requirements definition .. 42

4.2 Development process .. 45

4.3 Proposed high-level Infotainment architecture .. 48

 4.3.1 QNX Hypervisor 2.0 .. 49

 4.3.2 QNX Neutrino OS for Kanzi HMI (Info-Cluster) .. 51

 4.3.3 EntryNAV Gateway server .. 51

 4.3.4 Android Automotive OS, Android Applications and
 WebSocket/Socket Service... 52

 4.4 The Android software architecture ... 54

 4.5 Custom User Interface Library: mm_ui_lib .. 56

 4.6 Model-View-ViewModel (MVVM) architectural pattern for system UI colors

 customization .. 59

Android Automotive IVI: Infotainment application design and implementation 65

5.1 Overview application .. 67

5.2 Preferences application ... 70

 5.2.1 Themes fragment .. 70

 5.2.2 Connectivity fragment .. 80

 5.2.3 Volumes fragment .. 82

5.3 Stream service .. 84

5.4 SocketService application .. 88

5.5 Media application .. 92

5.6 Radio application .. 94

5.7 Dialer application .. 96

5.8 MyCar application ... 100

5.9 Navigation application .. 102

System performance evaluation .. 104

6.1 Memory and CPU usage ... 105

6.2 Infotainment features ... 113

Conclusions and future work .. 116

List of Figures

Figure 1. Diagram of UI, HMI and UX relationship .. 4

Figure 2. A digital cluster from Ford Mustang 2018 .. 11

Figure 3. A type 1 hypervisor architecture ... 12

Figure 4. A rotary knob for In-Vehicle infotainment interactions .. 14

Figure 5. Google Android Auto ... 16

Figure 6. Apple CarPlay ... 16

Figure 7. Android Automotive development timeline.. 19

Figure 8. Android Software Stack .. 20

Figure 9. Qualcomm Snapdragon S820Am.. 33

Figure 10. Raspberry PI 3 Model B ... 37

Figure 11. Android HMI monolithic architecture ... 44

Figure 12. Native Android Automotive OS customization .. 44

Figure 13. Development environment .. 45

Figure 14. Iterative development model ... 46

Figure 15. Infotainment high-level architecture ... 48

Figure 16. Hypervisor architecture model .. 50

Figure 17. Android Infotainment software architecture ... 54

Figure 18. Drawer usage example in the Media application to enable source selection 56

Figure 19. Overview application layout .. 67

Figure 20. Preferences – Themes fragment layout ... 70

Figure 21. Preferences - Connectivity fragment layout ... 80

Figure 22. Media – CardView for media player ... 93

Figure 23. Dialer – Main application layout ... 96

Figure 24. MyCar app – First TabLayout fragment .. 100

Figure 25. MyCar app –Third TabLayout fragment .. 100

Figure 26. System process profiling graph .. 108

Figure 27. Overview app profiling graph .. 109

Figure 28. SocketService profiling graph .. 111

List of graphs

Graph 1. Comparison of the evolution of LoC for various systems categories in past years 5

Graph 2. User’s interest in having third-party applications in IVIs ... 26

Graph 3. Customer reactions to bad applications behaviors... 106

Thesis summary and structure

Our experience in moving around in a car has changed so much in recent years

thanks to constant technology innovations. Modern vehicles provide services

that were almost unthinkable just 10 years ago. Continuous driving assistance,

GPS-based navigation, in-car phone calls are just some of the possible

examples and many other features are undergoing intense studies. The

automotive industry is currently facing many challenges to integrate new

features in the In-Vehicle Infotainment while respecting limitations concerning

driver safety and system usability, but the absence of widely accepted

standards adds complexity to this scenario.

This thesis work aims to present an Infotainment prototype implementation

developed in Magneti Marelli, based on the new-coming Android Automotive

OS. The target is to provide an easily extendible, customizable and multi-

tasking system that meets safety requirements and takes advantage from the

adoption of an open-source environment like Android, in contrast to the

proprietary infotainment systems being released today.

Throughout this paper will be provided a description of initial system

requirements, its hardware architecture elements and a more detailed depiction

about the software architecture, design choices and implementation. Emphasis

will be placed in the development of software components such as the service

handling the messaging protocol to interface the Info-Cluster and a physical

Rotary controller with the Android Automotive OS.

In particular this paper is structured as follows:

Chapter 1: This introductory chapter deals with the evolution of infotainment

systems from their origins to modern times pointing out the growing

importance of software in vehicles. In addition, it analyzes modern trends in

Infotainment development evidencing the lack of standard approaches to

guarantee driver safety and the limits in extendibility that actual systems on

the market offer.

Chapter 2: It aims in reviewing the Android Automotive environment, the

operating system adopted for implementation of the Infotainment, describing

the Android software stack and the advantages that its adoption for

Infotainment development provides.

Chapter 3: This chapter explains the system high-level hardware architecture,

a critical area that contributes to create a solid, reliable and safe to use system.

Each of its components is described both from the technical and functional

point of view.

Chapter 4: It outlines system requirements and focuses on the description of

the software architecture and the implemented Model-View-ViewModel

architectural pattern. As preparation for the subsequent chapter, a high view of

the development process is also provided to clarify the tools and techniques

that have been used throughout implementation phase to fulfill expected

requirements in terms of features, usability, reliability and safety.

Chapter 5: The fifth chapter describes the design and implementation of

new applications and customizations made to native ones.

Chapter 6: It analyses the performance of the implemented Infotainment in

order to evaluate how much it can be further improved even in terms of adding

new features that can require a higher amount of resources. This analysis will

test system reactiveness and the reliability of the Info-Cluster, one of the

critical components in a vehicle because it provides car related data useful also

in guaranteeing users safety.

Chapter 7: Final chapter highlights strength and weakness points, deriving

conclusive considerations on the results obtained. Finally it outlines future

work ideas in order to further improve the system.

1

Chapter 1

Introduction

2

1.1 The origins of In-Vehicle Infotainment

A modern trend is to equip almost any technological device with a graphical

user interface that allows humans and machines to interact in a clever and

easy way by simplifying the interpretation of outputs and the input for

commands. These are usually called Human-Machine Interfaces (HMI) and

are essentially the natural evolution of the old PLCs (Programmable Logical

Unit). The substantial divergence with respect to PLC, is not just in

functionalities and possibilities that they provide, but also in the attention

placed to User Experience and design while developing it, coming from

years of researches in the field of ergonomics and human behavior.

In recent years, the design and development of Human-Machine Interfaces

has become a fundamental process to win over competitors and gain a larger

market share by attracting consumers.

Even in vehicles, HMIs deployment has been successful obtaining growing

importance. For automakers is a way to make the various models on the list

increasingly attractive and able to intrigue the younger generation too in

search of a fully connected and technological car, that can nearly resemble

the trendsetting smartphones experience.

The history of what today has gained the name of “In-Vehicle Infotainment”

is not so recent and has initiated when software did not even exist in cars.

In 1930s the automotive industry begun to understand the importance of

enhancing not just the driving experience but the living experience in cars

by providing information, entertainment and safety to drivers and

passengers.

3

At that time, car infotainment was just an AM Radio and nothing more. It

evolved in the 1950s into record players with vinyl. They had the advantage

to let the driver play whatever song he wanted to hear, but did not last long

because of road bumps that affected audio quality. In 1960s, they were

replaced by modern stereo using two audio streams instead of one and being

able to play music from 8-track cassette tapes introduced in vehicles thanks

to Ford and Motorola.

In the 1981, the very first in-car navigation system was introduced in Japan

with the Toyota Celica. Meanwhile, the automotive industry witnessed the

first deployment of software in cars to control the engine and, in particular,

the ignition. The first software-based solutions were strictly local,

functionally and technically isolated, and did not relate to one another.

These independent and unconnected pieces of software (usually written in

C or machine code) used to run on single dedicated controllers called

Electronic Control Units (ECUs) that typically ran a few kilobytes code.

Formerly, only a minimum of abstraction was applied and the focus was

mainly on minimum resource consumption. [1]

In the early 2000s, the Bluetooth connectivity was introduced in cars,

allowing hands-free calls and music reproduction from mobile devices.

Even the introduction of touch screen systems integrated with GPS

navigation started gaining popularity, but it was still far from today’s

concept of In-Vehicle Infotainment (IVI):

“The combination of vehicle systems that uses audio/video interfaces,

touchscreens, keypads and other types of devices, as well as vehicle voice

commands and other types of interactive audio or video.” [2]

4

Figure 1. Diagram of UI, HMI and UX relationship

1.2 The growing importance of software in the Automotive
Industry

As time passed, software kept gaining importance in vehicle design.

Undoubtedly, without the help of software innovations, not just the

infotainment as we know would not have been possible, but automakers

could not easily meet tightening emissions standards, fuel-efficiency and

most of the safety systems in cars would not exist. The estimation confirms

that almost 90% of new cars functionalities introduced in recent years uses

software solutions.

New high-end cars are among the most sophisticated machines on the

planet, with 100 million or more lines of code, more than the Large Hadron

Collider (about 50 million LOC) or even Facebook (about 60 million LOC).

[3] In automotive industry software’s size is growing faster than any other

5

system in modern years moving from hardware to software-defined

vehicles.

A concrete example that shows the importance of software are the effort put

in autonomous cars. Software actually represents 10 percent of overall

vehicle content today for a D-segment, or large car (approximately $1,220),

and the average share of software is expected to grow at a compound annual

rate of 11 percent, to reach 30 percent of overall vehicle content (around

$5,200) in 2030. [4]

Graph 1. Comparison of the evolution of LoC (lines of code) for various

systems categories in past years.

This graph explains how, along with hardware and semiconductor

evolutions, software is considered crucial for innovations in cars.

10^5

10^6

10^7

10^8

10^9

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Evolution of Loc (Lines of Code) in various systems categories

Space flight control Automotive Switching systems

Li
n

es
 o

f
co

d
e

6

Contrary to this direction, software innovations in last decade did not focus

on Infotainment, but mainly on safety systems like Anti-block Brakes

(ABS), Traction Control or Electronic Stability Control (ESC).

IVI design has gained importance just in the recent years according to

increased consumers demand for in-car technology:

“Automotive HMI design has become a focal point and battleground

for brand differentiation for all automotive segments. It is not only

the arrival of the connected cars but it is perhaps more important the

arrival of information technology and software that enables next

generation multimodal, multi-touch and multi-zone HMI design.

Safety remains the key cornerstone in HMI design. Minimizing

driver distraction whilst optimizing the driver and passenger

experience and at the same time exploiting the potential of new

interaction schemes is a real opportunity for intelligent design

concepts”. [5]

Moreover, there are other several factors that are moving the demand; one

of these are the governmental restrictions on using mobile phones while

driving, which pushes consumers to search for hands-free ways of

communication.

Definitely, software has become one of the backbones of the automotive

industry. It powers applications from infotainment to advanced driver

assistance systems and autonomous driving.

7

1.3 In-Vehicle Infotainment design paradigms for safety and
distraction avoidance

The entertaining functionality of an In-Vehicle Infotainment does not fit the

concept of safety that is one of the key aspects in vehicle design process.

Infotainment software design differentiates from other car systems

modeling because it is the only human-machine interface in a modern car

on which the user has full control (differently from all the other fully or

partially automated systems such as the engine cooling system). For this

reason, IVI design must take into consideration the user experience,

easiness and safety of use along with the bundle of functionalities that it

should offer through OEM or third- party applications.

Some studies revealed that even IVI could be origin of distractions if not

well designed. A source of information to date on the causes of crashes

comes from a 100-car study conducted by the Virginia Technology

Transportation Institute. This study monitored 100 cars for 13 months using

in-vehicle video cameras and extensive vehicle instrumentation. It recorded

over 42,000 hours of driving, 761 near-crashes, and 72 crashes. Nearly 80%

of all crashes involved driver distraction in the three seconds prior to the

incident. Mobile phones and other in-vehicle driver controls were

associated with the highest frequency of distraction-related crashes and

near-crashes. [6]

According to a 2015 survey conducted by AT&T [7] with a sample of over

2,000 US respondents, "7-in-10 people engage in smartphone activities

while driving".

Smartphone activities included:

 Text (61%)

8

 Email (33%)

 Surf the net (28%)

 Facebook (27%)

 Snap a selfie/photo (17%)

 Twitter (14%)

 Instagram (14%)

 Shoot a video (12%)

 Snapchat (11%)

 Video chat (10%)

Use of smartphones while driving has become one of the major issues for

safety; this is why the automotive industry tried to integrate those devices

in a safe manner. Most recent car infotainments allow smartphones and

laptops to connect to the vehicle for hands-free passengers use, also

implementing security features as preventing drivers from using any video

services or other distracting system elements while vehicle is in movement.

When designing In-Vehicle Controls, visual and cognitive or even manual

distractions should be prevented using appropriate design architectures and

user interaction schemes. [8][9]

Today, there is no standard architecture or reference implementations for

IVI to issue these and other problems. Different actors are trying to develop

a scalable architecture that could merge together usability, safety and

innovative features, increasing end-user satisfaction, reducing costs and

defining some kind of paradigms to be followed.

9

One of these actors is the GENIVI Alliance, a community built in 2009

between automotive experts and industry leaders (even content providers or

mobility companies) that are collaborating to produce adoptable standards

and open source code.

In Europe, ESoP (European Statement of Principles) has established

recommendations [10] for HMI design goals to meet some safety standards:

 The system supports the driver and does not give rise to potentially

hazardous behavior by the driver or other road users

 The allocation of driver attention to the system displays or controls

remains compatible with the attentional demands of the driving

situation

 The system does not distract or visually entertain the driver (Visual

entertainment may occur by visually displaying images which are

attractive because of their form or content. It is of particular relevance

in the driving context because of the importance of vision for safe

driving).

 The system does not present information to the driver that could

result in potentially hazardous behavior by the driver or other road

users.

 Interfaces and interaction with them is intended to be used in

combination by the driver while the vehicle is in motion are

consistent and compatible.

In absence of legitimate standards, some common approaches can be found

coming from different vendors and IVI development companies that aim to

user safety while driving. They can be grouped in to the following three

areas:

10

 Avoid distraction through clever architectures and screens

positioning

 Avoid distraction through clean UI design and interaction schemes

 Avoid distraction through fast input mechanisms

1.3.1 Avoid distraction through clever architectures and screens
positioning

For distraction avoidance, even hardware architecture can do the difference.

Positioning displays and hardware buttons in a clever way can maintain

cognitive attention and focus on the road while reducing IVI interaction

times to what is strictly necessary.

In past years, infotainment consoles were located at the center of the

dashboard. Displaying information just in the center console needed

constant attention of the driver away from the on-road viewing area. This

raised a concern regarding driver distraction due to adopted screens

location.

Actually, the prevailing approach for IVI hardware architecture prescribes

the usage of multiple digital screens: a cluster and a head-display.

Clusters are usually set in front of the driver behind the steering wheel

ensuring reliable information delivering about vehicle data (such as

speedometer, tachometer, temperatures, doors or lights status and various

vehicle data usually taken directly from CAN bus), in addition to

infotainment data summary that is a replication of main display information

coming from radio, media or navigation.

11

They were born as analog tachometers but evolved as part of In-Vehicle

Infotainment when small LCD screens have been placed as “add-on

display”, along with electromechanical needles-based gauges, showing

additional digital data.

In recent years, high-end cars adopted completely digital clusters that

replace mechanical gauges with 2D-3D computer graphics and entirely

managed by software. Current challenge is to give the user the same feel

and experience of traditional clusters showing safety critical information

that gets onto displays such as belt indicator, tire pressure level,

temperatures or rear camera view along with miscellaneous information

such as navigation, media been played or ongoing calls.

Figure 2. A digital cluster from Ford Mustang 2018

Cluster operating system usually is real-time based (an example is QNX

Neutrino, a real-time Unix-like POSIX-compliant OS for embedded

systems) different from the core O.S. on which the infotainment system

runs. This is necessary because it needs to be lighter and faster then head

unit that usually has slower booting times (this is true mainly at startup

12

because an Android system needs in average 40 seconds to boot). While

slow boot time are acceptable for a mobile device that rarely gets shut off,

it becomes a bigger problem in a vehicle. Since most people immediately

begin driving after turning on the car, a long IVI system boot time would

result in drivers pulling up a map or a play list while the vehicle is in motion

– further adding to distractions while driving.

A solution to this problem is the use of virtualization that allows running

multiple OSs on the same System-On-Chip (SoC) separated from each

other. Besides centralized management and cost reduction due to less

hardware devices, it provides memory, CPUs and peripheral sharing. [11] In

this way a hybrid architecture controlled by a hypervisor, allows developers

to build IVIs without compromising functionality, security or reliability of

the vehicle’s operation software. Critical components such as vehicle

sensors, diagnostics, and emergency services would never be impacted by

third-party application, as they would be completely enclosed within their

own respective operative system. [12]

Figure 3. A type 1 Hypervisor architecture

13

1.3.2 Avoid distraction through design and clean interaction
schemes

In any way, user interactions with the In-Vehicle Infotainment that requires

sustained attention are dangerous and must be avoided because they can be

source of distractions. An interface that has tiny, hard to find buttons, either

physical or hidden under several layers of options or menus, is likely to get

driver in a danger.

Thus, is important to design simple and clean user interfaces in terms of

easiness to use and access, avoiding complex menus that could take driver’s

focus off the road. The main goal is to decrease user’s brain load while using

vehicle controls with the aim to help reaction to alarm signals quicker and

understand the whole process better. [13]

Even in IVI User Experience Design, smartphones UXD is a good idea to

be followed despite they see a higher number of interactions compared to

IVIs; is better to model Infotainments through shortcuts for frequently used

scenario reducing interaction time to few seconds.

Smartphones UI have come far away with the definition of several User

Experience Design (UXD) paradigms. One of the latest and successful

paradigm is the “Material Design”, developed by Google. It redefines

shapes, colors and element positions on the screen, based on psychology

studies, in order to get a clean, easy and fast to use interface. [14]

14

1.3.2 Avoid distraction through fast input mechanisms

Common approach in vehicle applied user interactions prescribes the use of

traditional buttons on the steering wheel or around the infotainment screen.

A more recent trend is the adoption of touch sensitive screens in cars that

could support multi-touch and gestures. Even though touchscreens allow

faster interactions, they can bring to distractions while driving because they

require visual attention of the driver.

For this reason, touch-physical controls hybrids have been implemented in

all cars combining touch screens with buttons, knobs or even rotary or

mouse-like controls. Physical controllers can improve the ease of scrolling

through menus and, in addition to haptic feedback that recreates the sense

of touch by applying forces, vibrations or motions to the user, they can

drastically lower distraction possibilities. In recent years, even voice control

systems have been deployed in cars thanks to improvements in technology’s

ability to understand human speech, which enormously helps drivers focus

on the road.

Figure 4. A rotary knob for In-Vehicle Infotainment interactions

15

1.4 From automakers Infotainments to software companies
solutions

Since 2000s, the In-Vehicle infotainment has always been part of vehicle

design for the automakers. They developed their own Infotainment systems

from scratch and, observing actual market, there are several proprietary IVIs

examples such us Uconnect from FCA, MyLink from GM or Sync by Ford.

The biggest drawback in having proprietary software is that it limits quicker

innovations and makes the infotainment landscape fragmented. Even in

Personal Computers manufactory, if each system had its own operating

system would have caused that application developers needed to assure that

software works with each version of them; moreover, PCs manufactures had

to drastically limit the attention to hardware innovations. Instead, having a

common system in many different vehicles reduces third-party application

development complexity as it happens with mobile smartphones. This is

what happened in recent years with In-Vehicle Infotainment market:

For most automakers, the development of a custom Infotainment OS is not

worth the investment of time and resources. It requires significant

researches and expertise in HMI design because it must be both intuitive

and attractive. [15]

These issues initially drove the sight to demand the Infotainment

development to external automotive components suppliers and then to adopt

third-party technology company operating systems also in cars.

Software companies and other digital-technology players are leaving their

current tier-two or tier-three positions to engage automakers as tier-one

suppliers because In-Car Infotainment market is expected to garner $33.8

billion by 2022, pointing out how important this system is.

16

When it comes to software solutions, the biggest leaders in IT market will

not stay outside.

Google and Apple, in the last years, developed their own in-car infotainment

systems (respectively Android Auto© and CarPlay©) implementing

smartphone projection modes via USB or Bluetooth connection. They

enable mobile devices to be operated in vehicles through the dashboard head

unit so that the vehicle occupants do not manipulate their devices directly,

but use an interface they are familiar with, and spend more time with their

eyes on the road. [16]

Figure 5. Google Android Auto

Figure 6. Apple CarPlay

17

These systems have been successful deployed on a wide range of vehicles

from different automakers, taking the IVIs to a new level of functionalities

and possibilities but losing the capability to retain brand identity through

customization of the GUI. The lack of personalization that, in the past years,

made each automaker competing for the best-looking and endearing HMI

as part of the vehicle design is one of the biggest drawbacks. Moreover, they

are just secondary interfaces that projects mobile phone content and for this

inherently limited.

In this perspective, trying to overhaul aforementioned drawbacks, Google

started to think a new open source operating system based on the mobile

widespread mobile system Android. It provides extendible capabilities to

allow users to install whatever application they want and developers to

customize the entire system and native applications. In addition, it does not

implies to have a mobile device connected to the car unless for phone calls

guaranteeing less distractions while driving and increasing driver and

passengers safety.

18

Chapter 2

Android automotive OS

19

2.1 Android Software Stack

Android Automotive OS, currently still a prototype, has been initially

released in 2016 as a modified version of Android 7.0 N with the

introduction of APIs for vehicle network interfaces and is being improved

each year with new updates introducing additional features. The official

Android Automotive OS development timeline in the following

demonstrates how the system is becoming more and more integrated with

the vehicle in order to completely the next operative system for cars:

Figure 7. Android Automotive development timeline

It has been successfully installed in production infotainments as primary or

even in conjunction with other operating systems such as Linux (through

the hypervisor, that acts as a coordinator between guests OS on the same

SoC. A further explanation about the hypervisor will be provided in the

latter).

20

Android, from which automotive version derives, is a mobile operating

system that provides mobility features along with multi-tasking, speech

recognition/synthesis, connectivity and a 3D graphics engine based on the

OpenGL library.

A scheme about the Android Software Stack is shown below:

Figure 8. Android Software Stack

21

In the following a brief description for each layer of the Android Software

Stack will be provided in order to understand which tasks they accomplish.

2.1.1 Linux Kernel

Android is based on the Linux Kernel that occupies the bottom part of the

software stack; it is the core that provides the lowest level of abstraction for

the hardware along with processes, memory, threading and hardware

devices management.

According to Google Developers divulgement [17], the Linux Kernel has

been slightly modified adding drivers, porting to ARM architecture and

making low-level code changes. Some of the key changes are:

 Ashmem (Android Shared Memory), a memory sharing system based

on files

 Binder, an inter-process communication system (IPC) and Remote

Procedure Call (RPC)

 Logger, an optimized in-kernel logger

 Paranoid Networking, a mechanism to limit I/O on network for

specific processes

 Pmem (Physical Memory), a driver for memory mapping in user-

space

 Viking Killer, a substitute for OOM Killer that implements the Last

Recently Used (LRU) logic in case of lacking free memory.

 Wavelocks, the Android default power manager.

22

2.1.2 Hardware Abstraction Layer (HAL)

The HAL is an abstraction layer for hardware communication between the

Android framework and the Linux kernel libraries (drivers) regardless of

the physical transport layer used. It consists in multiple library modules

written in C/C++ that implements interfaces for specific hardware, such as

camera, radio or GPS that usually GNU Linux device drivers does not

support consistently.

Another motivation for which HAL has been implemented in Android

Stack, is that Kernel device drivers have General Public License (GPL),

meaning that source code for drivers must be disseminated along with the

binaries. OEMs of Android devices often use proprietary hardware and

related software drivers that they will not share. Adding drivers in user-

space HAL relieves them from releasing their source code

In the Automotive version it has been improved by enabling the system to

interconnect to the vehicle network in order to access and act on vehicle

data controlling physical components and sensors.

2.1.3 Android Runtime (ART)

Each application running on an Android system is an instance of the

Android Runtime (ART, previously Dalvik), a runtime engine software that

provides services for application execution.

It is in charge of running multiple virtual machines by executing DEX files

(a bytecode Android-specific format). It grants:

23

 Ahead-of-time (AOT) and just-in-time (JIT) compilation;

 Optimized garbage collection (GC) with parallel execution;

 Better debugging support;

 Sampling profiler;

 Improved diagnostic detail in exceptions and crash reports;

 Threading and synchronization mechanisms.

2.1.4 Java API Framework

Many core Android system components and services, such as ART and

HAL, are built from native code that require native libraries written in C

and C++; a choice motivated by the will to not limit performances while

guarantee developers productivity.

The Android platform provides Java framework APIs that exposes the

functionality of some of these native libraries to apps and forms the building

blocks needed to create Android applications. It includes:

 View system to build application’s user interfaces

 A Resource Manager that provides access to resources like

strings, images and layout files

 A Notification Manager that handles custom alerts and

notifications

 An Activity Manager that regulates application’s lifecycle

 Content Providers that enable applications to access share

application’s data with other software running on the same

system.

24

 Services, application components that can perform long-

running operations in the background without providing any

user interface.

 Broadcast Receivers that can catch events of interest (custom

broadcast messages or system notifications) and automatically

act performing some particular tasks.

 Concurrency (handlers, messages, runnables, AsyncTask)

Android’s Native Development Kit (NDK) allows the implementation of

apps and services using native C/C++ code. Using the NDK, even on

portions of code, can help enhance performance by minimizing latency,

maximizing throughput and save system resources.

Some of the Android Native C/C++ libraries are:

 System C library

 Surface Manager

 Media framework

 FreeType

 WebKit

 OpenGL ES, SGL

 SQLite

 SSL

25

2.1.5 System applications

Applications are what the end-user will interact with. The stock version of

Android comes with some built-in applications such as Dialer, Email and

internet browser but the system supports the installation of user applications

creating an easily extensible environment.

2.2 Android key-features: Why is expected to be adopted in
Automotive industry?

In the following will be listed some of the key-features of Android

Automotive that can bring benefits to the Infotainment market justifying the

expectations about its adoption:

2.2.1 Open Source

Android is an open-source platform. Open-Source software enables rapid

innovation, better security and cost effectiveness. Collaborating on non-

competitive pieces of technology frees up resources, enabling companies to

focus more on developing new products and services.

Moreover, an open source piece of software, means transparency;

programmers can get full visibility into the code base while testing and

sifting it to find bugs and eliminate them. Actually, the open source concept

26

powers about 90% of the internet and rapidly gets adopted across major

enterprises.

2.2.2 Customizable and extensible features

Having an open source system enables automakers and third-party suppliers

to customize the system to their own needs, not just esthetically but also

functionally by modifying native applications and adding new ones.

Considering the functional aspect of Infotainments, users are familiar with

smartphone-like behaviors, which have always been better, less frustrating

and more satisfying than an IVI experience, not just in terms of usability but

even for the multitude of different applications that modern mobile phones

allow users to install and use, expanding mobile possibilities beyond simply

making calls. A recent survey shows driver’s desire to have external third-

party applications installed into the vehicle infotainment system, in addition

to OEM applications:

Graph 2. User’s interest in having third-party applications in IVIs.

4%

4%
17%

32%

43%

Installing third-party applications

Very Undesiderable

Undesiderable

Neutral

Desiderable

Very Desiderable

27

A system like Android Automotive lets drivers install and use their own

applications just as a smartphone does, extending IVI possibilities.

2.2.3 Use of a standard and well-known environment

A standard and widespread platform such as Android gives end-users the

feeling of a well-known and easy to use system they are familiar with,

reducing time required to familiarize with it.

Having a standard system helps also application developers, who no more

need to produce ad-hoc versions for different systems (even if different

layouts of the same application could be needed, taking into consideration

the various display screen possibilities in different cars).

2.2.4 Real multi-tasking environment

Actually Android Auto allows one only application window at a time,

drastically limiting infotainment possibilities; for instance, the user can not

monitor the vehicle status information as well as navigation to a destination

at the same time.

This obliges the driver to constantly interact with the infotainment each time

it needs a different application, increasing distraction possibilities.

28

Android Automotive, being an autonomous operating system, allows multi-

tasking by enabling the possibility to run different applications at the same

time, exploiting what a common Android OS does on mobile devices.

Multi-tasking, and in particular Android native software components like

Broadcast Receivers and Content Providers, lets IVIs makers to produce

applications that can reuse other running applications information by

collecting and showing them. For instance, it is possible to have a

“homepage” in the system that shows an overview about car status, media

actually being played, navigation information and so on.

2.2.5 Built-in Vehicle APIs

One of the missing features in Android Auto was the possibility to retrieve

data from car and act on the vehicle systems from the infotainment itself.

Commonly, many car subsystems interconnect with each other and the in-

vehicle infotainment (IVI) system via various bus topologies. The exact bus

type and protocols vary widely between manufacturers (and even between

different vehicle models of the same brand); some examples include

Controller Area Network (CAN) bus, Local Interconnect Network (LIN)

bus, Media Oriented Systems Transport (MOST), as well as automotive-

grade Ethernet and TCP/IP networks such as BroadR-Reach.

This vehicle HAL is the interface for developing Android Automotive

implementations.

29

It is based on accessing (read, write, subscribe) “properties”, which are

abstractions for specific hardware functions. System integrators can

implement a vehicle HAL module by connecting function-specific platform

HAL interfaces (e.g. HVAC) with technology-specific network interfaces

(e.g. CAN bus). Typical implementations may include a dedicated

Microcontroller Unit (MCU) running a proprietary real-time operating

system (RTOS) for CAN bus access or similar, which may be connected via

a serial link to the CPU running Android Automotive. Instead of a dedicated

MCU, it may also be possible to implement the bus access as a virtualized

CPU. It is up to each partner to choose the architecture suitable for the

hardware as long as the implementation fulfills the interface requirements

for the vehicle HAL.

2.2.6 Updatability and connectivity

Having a system as Android integrated into the vehicle opens to the

possibility to have a “connected car” with an internet connection, whether

it be through the smartphone or other way. More consumers are demanding

for connectivity inside the vehicle and Android, being mobile oriented

operating system, natively provides it supporting 3G/4G modules for

internet access.

In this way, cars not only can offer entertainment and navigation assistance

(such as real-time traffic or weather information), but they can also update

their software or offer mechanics diagnosis, through IVI itself. This is

something already introduced by newcomer automakers like Tesla, which

has been able to extend the range of its cars through simple software updates

30

aimed to improve powertrain capabilities, vehicle dynamics and provide

new onboard services.

This possibility is important as it keeps the system well updated and enables

with newer features to provide longer life to the In-Vehicle Infotainment.

31

Chapter 3

Android automotive IVI:
Hardware architecture design and

implementation

32

3.1 Hardware architecture and components

As discussed in the introduction chapter, while developing an In-Vehicle

Infotainment there are numerous requirements to be addressed such as

usability and safety. Hardware architecture contributes to create a solid,

reliable and safe to use system and for this reason must be carefully

designed.

In this chapter will be explained the proposed hardware architecture, design

choices and implementation of the Android Automotive In-Vehicle

Infotainment developed in Magneti Marelli.

A scheme of the system’s hardware architecture is shown below. For each

of the meaningful elements a detailed description about the technology and

design choice reason will be further provided along this chapter.

CLUSTER

DISPLAY

INFOTAINMENT

DISPLAY

QUALCOMM DEV

BOARD

LVDS BOX LVDS BOX

ENTRYNAV

BOARD

RASPBERRY PI 3

ROTARY

CONTROLLER

DISPLAY

SWITCH

33

3.2 Chipset and processor

Given the set of requirements discussed in previous chapters, ranging from

connectivity to information processing in a multitasking environment, the

choice of a reliable and feature-full chipset is important.

The chipset chosen to develop the Infotainment system is a second-

generation Snapdragon™ Automotive Development Platform (ADP) based

on the Qualcomm® Snapdragon™ S820Am processor from Qualcomm®

Technologies, Inc. (QTI).

Figure 9. Qualcomm Snapdragon S820Am

The S820Am Snapdragon processor includes four Kryo™ CPUs (with

clock speed up to 2.1 GHz), a Qualcomm® Adreno™ 530 GPU and

Hexagon™ 680 DSP (for image processing and computer vision). It

provides four GB LPDDR4 DRAM, 64GB eMMC 5.1 Flash Memory and

supports expandable memory by using SD cards or USB storage devices.

34

Such memory is enough for partitioning it in two parts both suitable for the

Android environment and QNX Neutrino O.S. with cluster logic.

Given that connectivity is one of the features required for this system, this

ADP features rich connectivity. It provides X12 LTE modem (supporting

4G LTE up to 600 Mbps in download and 150 Mbps in upload), and

802.11a/b/g/n/ac WI-FI, Bluetooth 4.1 and GNSS RF receiver for time

device location data using multi-satellite frequency bands (Glonass, BDS,

Galileo) with Ethernet AVB and CAN support.

It even supports multiple camera sensors that can be useful not just for

parking sensors or rear camera view, but also for applications in the field of

computer vision and autonomous driving.

It provides a video output up to 4K resolution at 60 fps through four HDMI

2.0 connections supporting multiple touchscreen displays.

ADP brings an optimized application development environment for rapid

deployment of high performance and power efficient connected automotive

infotainment offerings. [18]

35

3.3 In-car displays

This infotainment architecture prescribes the use of three different screens

in order to provide user with all the necessary information in a clever and

comfortable way. Screens placement follows the standard approach to

displace them around the driver, in a way that makes them easily reachable

and visible.

Cluster display: placed in front of the driver, past the driving wheel. It is a

12.3” (1920x720 pixels) Amoled display without any interaction

possibilities. It just delivers visual information about speed, torque and

other car data to the driver, like any other cluster does with the only

difference that our implementation does not impose any physical gauges,

following actual trend to have a full digital cluster made in 3D computer

graphics that exploits the GPU potential of the ADP.

Infotainment-display: placed in the center of the cockpit. It is the same 12.3”

(1920x720 pixels) Amoled display of the info-cluster but coupled with a

touch screen by Amtel. The Android interface resides on it and, along with

the “Magic Rotary”, it is the main interaction interface between the system

and the user.

For both Info-Cluster and Head-Display, the choice of an Amoled screen is

the trade-off between costs, high visual quality and energy efficiency.

Amoled, that stands for Active matrix organic light emitting diode, is a

display technology based on organic light-emitting diode that produces

electroluminescence in response to an electric current and where each pixel

has its own transistor and capacitor to actively maintain the pixel state (this

is what creates so called active matrix) without requiring any screen

backlighting.

36

An Amoled screen is more energy efficient than a common LED or LCD,

has higher contrast and deeper blacks (because a black pixel corresponds to

an off pixel) but is difficult to be viewed under direct sunlight unless the

substrates are closer each other, requiring higher production costs.

The vertical positioning of Cluster and Infotainment displays makes

sunlight harder to reach directly the screens. This is not true for Rotary

screen that instead is placed horizontally near the gear shift, because it is

thought to be used while driving and needs to be easily accessible to interact

with the In-Vehicle Infotainment.

For this reason, it has been integrated a 6.5” TFT (Thin-Film Transistor –

variant of LCD) display which offers good visibility even under direct light.

It supports touch and force-touch interactions and is equipped with a

rotating wheel in contact with the display used to scroll through menus and,

by means of rotary pushes, to select menus items. It provides also haptic

feedback in order to let the user know that the system has recognized

required action.

3.4 Raspberry PI and Rotary controller

The software that enables Rotary controller logic runs on a Raspberry PI.

It is a single-board computer developed to host Linux Kernel or other RISC

OS and provides a Broadcom based SoC that incorporates an ARM

processor, a VideoCore IV GPU and up to 1 GB of RAM memory. It does

not use any Hard Drive, but a SD card for boot and non-volatile memory.

37

In particular, for this IVI implementation, a Raspberry PI 3 Model B has

been used to run a QML software for magic rotary functionality in the

Raspbian OS environment.

Figure 10. Raspberry PI 3 Model B

Its video output is directly connected to the Rotary screen through an HDMI

connection while touch control hardware (both capacitive and force-

sensitive) communicates with raspberry through common USB

connections.

The rotary controller is essentially a 7 inches display (800x480 resolution)

with a physical knob bonded over it. It furnishes haptic feedback generated

through a solenoid on X axis and can be perceived during:

 Display touch;

 Rotary knob operations;

 Force touch interaction (over three bottom buttons).

38

3.5 EntryNAV system as gateway for CAN/V-MOST Bus

In modern vehicles, most of the electronic components and systems

communicates each other or with Control Units (there can be more than 30

CUs in a modern car) through an enormous amount of wires and busses.

One of the most important vehicle network is the CAN (Controller Area

Network) introduced by BMW in 1986 that allowed to reduced vehicle

wiring by almost 2 Kilometers and a communication speed up to 1 Mbps
[19].

Another important vehicle bus is the MOST (Media Oriented Systems

Transport), a high-speed multimedia network technology based on daisy-

chain or ring topology to transport audio, video, voice and data signals via

plastic optical fiber or electrical conductor.

The EntryNAV system is the original IVI placed in test car that directly

communicates with ECU and other in car systems through the vehicle CAN

(Controller Area Network) bus and MOST to retrieve car data such as speed,

torque, temperatures, gears and so on. In our implementation, it is used as

gateway for CAN/V-MOST to our Android Infotainment Ethernet network

to provide information that are consequently forwarded to the Info-Cluster

or shown in Android “MyCar” application, a custom Android application

that will be described in the chapter 5.

The choice to use the EntryNAV for car data is a way to simplify the

information retrieval without affecting too much the original test car

architecture. In future development, car data retrieval will be done

independently from the EntryNAV, by implementing a vehicle HAL to let

the In-Car Systems communicate directly with the Android OS.

39

3.6 Peripherals and other devices

The communication between each part of the implemented system is

Ethernet based and each data flow passes through a LAN Switch placed in

between of Qualcomm devKit, Rasperry PI and EntryNAV.

An USB Hub allows the Head-Display touch panel to interface with the

Android Qualcomm board and exposes USB port for peripherals connection

(such as USB flash drives) in order to reproduce user’s media.

Other in-car components used for the implementation are:

 RADAMES: HW Audio/tuner development board by Magneti

Marelli;

 Original car speakers: speakers from test car connected to the

original EntryNav system. The audio output from the ADP is

convoyed through an AUX connection to the EntryNav, as if it would

be an external audio source for the original EntryNav. In-Car audio

is not just used for media reproduction but even for navigation turn-

by-turn voice instructions and audio feedbacks during system use.

This, in combination with microphone use, avoids user distraction

during drive-by use.

 Original car Microphone: for user phone calls and Infotainment

vocal instructions.

 LVDS boxes with FDP-Link: low-voltage differential signaling

with the FDP-Link (Fiat Panel Display Link) standard is an interface

for high-speed digital video transmission from GPU to the display

40

that supports a wide range of screen formats, refresh rates and pixel

depths. They are used in the automotive infotainment industry to

provide a digital plug and play interface that minimizes number of

required wires and electromagnetic emissions to connect a video

source to the display device. Moreover, they eliminate any kind of

image fidelity loss that can result from the conversion into analog

form of the signal from the source to the destination (screen panel).

41

Chapter 4

Android automotive IVI:
An overview about system requirements,
proposed architecture and development

process

42

Chapter overview

This chapter will depict requirements that the system must provide and will

focus on the description of the proposed high-level architecture, design

patterns and choices in order to develop it.

In the following, a high view of the development process will be provided

to clarify the tools and techniques that have been used throughout

implementation phase to fulfill expected requirements in terms of features,

usability, reliability and safety.

It is important to notice that the system is a prototype and some features are

still in development, while many others will be implemented later on (as

described in the last chapter).

4.1 Current stage requirements definition

According to prototype requirements, at current stage, the Infotainment

system was expected to at least:

 Provide an Overview application that collects infotainment data into

a single layout, including Navigator data;

 Furnish a Multimedia player which is able to reproduce data from:

o USB,

o Bluetooth Streaming (through a connected mobile device),

o WebRadio player (through internet connection via Wi-Fi);

 Implement a Radio player with AM/FM tuner and automatic/manual

seek;

43

 Provide connectivity features for Hands-Free calls;

 Implement a navigation application;

 Furnish a MyCar application which collects vehicle data from CAN

and allow the user to control in-vehicle systems and sensors;

 Enable the possibility to customize System UI colors combination

and stream them to the Cluster and Rotary components;

 Integrate a Rotary controller with Haptic Feedback, force touch and

a physical knob;

 Integrate a 3D full digital Cluster showing real vehicle data;

 Provide Hypervisor functionality in order to protect the Cluster from

Android OS possible crashes (increasing Cluster reliability).

In order to implement these functionalities, a choice between two possible

approaches was necessary:

 Implement a monolithic HMI application on top of the Android OS

that provides required functionalities.

 Customize and extend the Native Android Automotive OS

implementing new functionalities through the development of

multiple applications.

By analyzing both solutions advantages and drawbacks, the choice fell on

extending the Native Android Automotive OS. In the following the two

approaches are explained and examined in order to justify the choice:

44

Monolithic HMI application for Android Automotive OS:

Figure 11. Android HMI Monolithic architecture

This solution is tailored for legacy projects reuse; an example can be the

migration to Android of old non-Android systems by implementing their

logics inside a single application. This approach enables the possibility to

use different development technologies (such as HTML5 or QML) but

requires higher effort while integrating 3rd party applications because of

HMI coherence issues.

Native Android Automotive OS customization:

Figure 12. Native Android Automotive OS customization

45

Instead, this solution is Android Automotive compliant and provides a

seamless 3rd party applications HMI integration (exploiting Android

extendibility features). Moreover, each application runs in its own “sand-

boxed” environment increasing system safety and is a cost-effective

solution due to availability of Android built-in standard service and

applications (some of required functionalities were already present in the

native Android Automotive OS and required just customization). Finally,

from the customer point of sight, provides a better end-user learning curve

because system usage is based on mobile experience.

4.2 Development process

For the development of the infotainment system, the Android Studio SDK

has been exploited, including a completely emulated android environment

provided by the multi-device android emulator. By this approach,

customizations and developed functionalities have been previewed first on

PC, then on the Target (the Qualcomm Development Board).

Figure 13. Development environment

46

An iterative development approach has been followed. It breaks down the

software development of large applications in smaller chunks and iterates

over design, implementation and test phase. At each iteration, design,

development and test of additional features is possible until reaching a fully

functional software ready to be deployed to customers. It is a key practice

in Agile development methodologies.

Figure 14. Iterative development model

Some of the advantages this approach provides are:

 Potential defects are spotted and dealt with early

 Functional prototypes are developed early in the project life cycle

 Less time spent on documenting and more on designing phase

 Progress is easily measured

 Changes are less costly and easier to implement

 Most risks can be identified during iteration

 Successive iterations can be managed easily as milestones

 An operational product is delivered with every iteration

In order to provide versioning, organization, ease of access and code sharing

a common approach is to set up a shared server between each project

47

involved party. A versioning system based on Git has been used to manage

the development mainline and work on features or proposals on different

branches.

The parties involved in this project can be grouped in four categories:

 UX designers

They define visual style and create mockups, animations, transitions

and user interactions. Collaborate in optimizing graphical design to

fit real implementation.

 HMI designers

They are responsible for ergonomics and usability of the HMI.

Define user interaction schemes and control/approve the look and

feel of the product.

 HMI Developers

The undergraduate belongs to this team. They implement visual

states, graphics in chosen graphical engines, application code and

business logics. They connect data to User Interface and validate

design performance and applicability. Finally, they optimize system

performance and execute tests.

 Management and Validation

They monitors the whole co-design process and verify or approve

compliance with respect to expected product features and

requirements.

48

4.3 Proposed high level Infotainment architecture

Figure 15. Infotainment High-Level architecture

Cluster Display

Guest OS or SW

Hypervisor

COLOR CODE

Display

Hardware

Kanzi HMI IVI Android 8.1
Automotive

Hypervisor

Rotary Display

Raspbian OS
with Rotary

HMI

QNX OS

SnapDragon 820A ADP

ETH

CAN – ETH

Gateway Server

EntryNAV
Hardware

CAN

Raspberry PI

Infotainment
Display

49

The whole system is made of several software components that interact each

other enabling all the required functionalities expected by this infotainment.

A brief description of each component will be provided throughout this

chapter.

The software architecture can be split in these main elements:

 Hypervisor running two guest OS:

o QNX Neutrino OS for Kanzi HMI (Info-Cluster);

o Android 8.1 Automotive OS core for Infotainment. It includes

 Android Applications (native and custom ones);

 WebSocket/Socket service;

 EntryNAV Gateway server.

4.3.1 QNX Hypervisor 2.0

In the first chapter has been outlined the need of a hypervisor to separate

safety-critical components from non-safety critical ones in different guest

operating systems. This is a common approach in automotive HMI

development and, in our implementation, it enables separation of the Info-

Cluster (which provides safety-critical data) from the Android Core but

running on the same SoC, reducing costs by sharing resources.

To implement this logic, the QNX® Hypervisor 2.0 has been chosen. It is a

Type 1 real-time priority-based microkernel built for managing virtual

machines actually present in many safety-critical areas such as air traffic

control systems, medical devices and nuclear power plants as long as in

infotainment systems. Some of its main features are:

50

 Virtual CPU model (vCPU model): the hypervisor uses a portion of

the physical CPU cycle and allocates it to a vCPU assigned to a VM.

The vCPU should be considered as a share of the time in the

processor’s core.

 Share cores and resources among virtual machines based on priority

 64-bit/32-bit guests: QNX Neutrino, Linux, Android, RTOS

 Shared memory

 Failure detection and restart of guests

 TCP/UDP networking between virtual machines to let them work

cooperatively

 Virtual machines can render graphical output to shared or separate

displays by sharing GPU and graphics.

Figure 16. Hypervisor architecture model

Our infotainment implementation used two guest operating systems above

the hypervisor: Android OS as core Infotainment system and QNX Neutrino

OS to run the software for the Info-Cluster logic that reads messages from

the Ethernet channel, interprets them and updates the cluster UI.

51

4.3.2 QNX Neutrino OS for Kanzi HMI (Info-Cluster)

QNX Neutrino is the operating system running as guest OS over the

hypervisor, along with Android OS. It executes the Info-Cluster software

written in C++ that powers a 3D user interface designed in Kanzi Studio, to

provide data such as speed, RPM, external/internal temperatures, engine

temperature, gears and fuel level.

Its adoption as OS for the Info-Cluster is justified by its fast boot times

and the highly customizable environment it provides; in fact, the

microkernel can be up and running even in 250 milliseconds. This is due

to the large flexibility it offers because based on a modular architecture

where each component is extremely independent from the others allowing

developers to activate just the ones needed, making easy to rearrange the

system startup sequence to suit specific design needs. This approach also

allows the system to meet faster audio/video startup or accessing hardware

or in vehicle networks (such as CAN) in smaller times. [20]

4.3.3 EntryNAV Gateway server

Android Automotive OS provides a built-in Hardware Abstraction Layer

that, as already mentioned, permits OS to be agnostic about lower-level

driver implementations and enables a software interface for communication

with the hardware.

At current prototype status of our infotainment system, it does not interact

with vehicle hardware, thus no HAL was implemented. Anyway, the system

52

is able to read vehicle data from the CAN bus through the original

EntryNAV system of the demo car. In order to enable this logic, the

EntryNAV has been modified implementing a server constantly sending out

data coming from ECUs and other control systems, solely acting as a

gateway for CAN bus.

Our android service application created to implement a communication

protocol (previously adverted and later on explained in detail), is in charge

of instantiating a client that connects to the EntryNAV server and retrieves

data to be forwarded Info-Cluster side.

4.3.4 Android Automotive OS, Android Applications and
WebSocket/Socket service

In our Infotainment implementation, the main core is Google Android

Automotive OS. The implemented version is 8.1 Oreo and, because of

partial support at current Android stage of cluster mirroring and rotary

interactions, we decided to do not adopt a Full-Android infotainment

software architecture and opted for a solution using two other different

systems (as already presented, QNX Neutrino OS and Raspbian OS) for

managing Info-Cluster and Rotary logics.

In order to let the Rotary control the infotainment and implement In-Vehicle

data repetitions, which makes the system more usable and reduces driver

distraction possibilities, a client-server messaging protocol has been

implemented. An Android service application (in the following named

SocketService) takes the role of server, collecting data from bound

53

applications and forwarding them through a Socket and a WebSocket. Its

clients can be of three types:

 Infotainment applications: They furnish their data binding to the

service and sending messages through the interface provided by the

service itself, once the application is bound.

 CarClient: It is a client thread started by the service itself, that listens

for data from the EntryNAV server (which provides vehicle data

coming from CAN bus) and forwards it to the SocketService.

 Info-Cluster and Rotary controller: They connect respectively to the

Socket and WebSocket on which data is emitted by the

SocketService. In particular, through the WebSocket which exposes

a HTTP-based communication, the Rotary controller can request data

(by means of GET requests) and forwards control messages to the

infotainment (by POST requests).

A further explanation about the SocketService messaging protocol is

provided in the Chapter 5 – Section 4.4 and in Appendix A.

An additional layer to the Infotainment software architecture is provided by

its applications (described in the next chapter).

Android Automotive OS comes with some native applications such as the

Radio player, Media player and Phone. For them business logics were

provided by Android Automotive and have been partially inherited from it,

extended or eventually customized. Other applications required completely

new business logics implementation and user interface design in order to

accomplish system feature requirements.

54

4.4 The Android software architecture

The main target of this section is to provide information about our custom

Android infotainment architecture. This information will serve as basis for

the detailed applications description held in Chapter 5.

Figure 17.Android Infotainment software architecture

The Android Automotive OS is furnished with native middleware and

automotive services. They are not real applications but packages of APIs

very linked to the Android system itself. In Automotive OS, many services

are available such as Google Play Services, Google Assistant and Google

Maps but, for this implementation, complementary middleware services

have also been developed (such as the SocketService messaging protocol).

IV
I-

IC
 C

o
n

n
ec

ti
o

n
 L

ay
er

Android Infotainment

Custom MM HMI

Third
party
App

Media
App

Phone
App … System

UI
Google

Automotive
Services

Complementary middleware
services

Android Automotive OS

Android middleware services

Android MM
Custom

Android Native

Third Parties

COLOR CODE

55

Along with the customization and extension of built-in apps, many other

applications have been implemented to bring required features.

One of the most important aspects in a system is the coherence among each

rendered user interface. For an infotainment such this, that runs many

different applications even from third party, it becomes a key aspect to be

considered. Each user interface that the system renders has to be coherent

with the others and, because one of the expected features is the possibility

to customize system UI colors, a common substructure for each application

is required.

With this objective, two techniques have been exploited making

development easier by providing a common starting point for each

application:

 Implementation of a custom user interface library providing classes

and methods for managing UI and other common applications

functionalities such as the Drawer menu.

 Definition of a common scheme in order to support UI theme

customization of system colors among each application by

exploiting the data binding and Android viewModel logic,

implementing the Model-View-ViewModel architectural pattern.

56

4.5 Custom User Interface library: mm_ui_lib

Before moving on to applications, it is useful to explain for which purposes

a custom library has been implemented. The library, called mm_ui_library,

exposes some classes and methods useful in the development of almost any

application implemented in the Infotainment system.

It furnish a custom activity called BasicDrawerActivity, an extension of the

android native AppCompatActivity, which provides a drawer menu

implementation and some methods to handle its animations, addition or

deletion of menu entries (elements rendered as independent fragments

added through a drawer menu adapter) and rotary control commands.

Figure 18. Drawer usage example in the Media application to enable source selection

In fact, with the aim to make the system usage faster and reduce driver

distraction possibilities, the Rotary controller allows to navigate through

menus items. The exchange of messages between the Android OS and

Rotary (in both directions) goes through the SocketService application (in

next chapter explained in detail) that implements a service managing a

57

messaging protocol for infotainment components communication (Cluster

and Rotary).

The BasicDrawerActivity provides methods for handling rotary interaction

messages by binding to the service. Its onCreate() callback executes a

bindService() function that binds the current application (the one extending

BasicDrawerActivity) to the service.

A service connection interface provides two callbacks in order to set a

Messenger once the connection is established:

The Messenger, by using a messages handler, interprets rotary commands

and eventually acts on the implemented drawer menu to open, close or select

items by calling drawer methods such as openDrawer() and closeDrawer().

private ServiceConnection mConnection =

 newServiceConnection(){

 public void onServiceConnected

 (ComponentName className, IBinder service){

 mService = new Messenger(service);

 mBound = true;

 notifyConnection();

 }

 public void onServiceDisconnected (ComponentName

 className){

 mService = null;

 mBound = false;

 }

};

58

In addition, the Rotary controller must be aware of the current drawer state

when it gets opened or closed, by interacting with the main display clicking

on the drawer menu icon instead of using the Rotary. This explains the call

to the method sendDrawerStateToService() when drawer open or close gets

invoked:

The library also provides classes (such as the ColorsHelper interface) and

methods to interact with a content provider for system UI colors in order to

protected void openDrawer()

{

 if (drawerOpened) { return; }

 if (drawerStateChangeListener != null) {

 drawerStateChangeListener.OnChangeState(true);

 }

 drawerOpened = true;

 sendDrawerStateToService(drawerOpened);

 binding.setDrawerOpened(true);

 applyDrawerAnimation(0);

}

protected void closeDrawer()

{

 if (!drawerOpened) { return; }

 if (drawerStateChangeListener != null) {

 drawerStateChangeListener.OnChangeState(false);

 }

 drawerOpened = false;

 sendDrawerStateToService(drawerOpened);

 binding.setDrawerOpened(false);

 applyDrawerAnimation(-elemSizeParams.width);

 setBasicLayoutVisibility(View.VISIBLE);

 currentSelectedItem = null;

}

59

inform each application of the colors combination chosen by the user

(settable through the Preferences application, further explained in details)

making the system appearance consistent in any application the user

interacts with.

Apart from various utility classes, it offers an additional extension of the

BasicDrawerActivity class called BasicDrawerMediaActivity. This activity

adds methods for loading into the drawer menu, items corresponding to the

four audio source possibilities, setting for each of them the related intent to

be called in order to start the right application (among USB, Bluetooth,

Radio or WebRadio).

4.6 Model-View-ViewModel (MVVM) architectural pattern for
system UI colors customization

As aforementioned, one of the features that the infotainment system

provides is the possibility to customize system UI colors through the

Preferences application.

From the coding perspective, a fast and reliable logic to let each

application’s UI elements update with new colors combination had to be

implemented. In order to accomplish these needs, two Android native

support libraries have been exploited:

 The Data Binding Library: Allows developers to bind UI

components in layouts to data sources in the application by using an

XML declarative format rather than programmatically. Binding

components in the layout file makes possible to remove many UI

60

framework calls in activities, making them simpler and easier to

maintain. This approach also improves applications performance

and helps prevent memory leaks and null pointer exceptions. [22]

 ViewModel Library: this class is designed to store and manage UI-

related data in a lifecycle conscious way. It allows declaring

“observable” objects capable of notifying observers about changes

in their data.

With this solution, it has been possible to implement the Android

architecture pattern named MVVM – Model-View-ViewModel. In this

scheme, the ViewModel component exposes a stream of states to which the

View can bind to, in order to get notified when changes in ViewModel’s

data happen. This means that the View keeps references of the ViewModel

but not vice versa.

This mechanism of synchronization between the ViewModel and View is

kept alive by the data binding through a declarative syntax in the View itself.

This implies that modifications to bound data in the ViewModel are

automatically reflected into the Views without particular burden from the

developers. Doing so, we ensure that the View always displays current state

of data in the ViewModel.

By default, a binding class is generated based on the name of the View

layout file, named in CamelCase, removing underscores and suffixing

“Binding”. An object of this class gets instantiated when

DataBindingUtil.inflate() method is called to tell the targeted activity to

bind to a given layout. In order to enable the automatic generation of the

binding class at compile time, the XML android layout file must have a

specific format:

61

 It must enclose in the <layout> tag both layout elements and a

<data> tag containing one or more <variable> children.

 Each <variable> tag defines an object to be bound to the layout by

specifying a variable name and its class path. The attributes from the

bound object are accessed by using the syntax

@{VariableName.attribute}.

In our implementation, each layout file that needs to adapt to system colors

has the following format:

<layout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto">

 <data>

 <variable

 name="colorsViewModel"

 type="com.magnetimarelli.mm_car_ui_lib.

 theme.ColorsViewModel"/>

 </data>

 <!-- Layout elements here. They will use the

 @{colorsViewModel.atributeName} syntax

 in order to reference data in the viewModel.

 For instance, a button will have a background

 color defined as:

 android:backgroundTint =

 @{colorsViewModel.accentColor};

-->

</layout>

62

where ColorsViewModel is the entire ViewModel binded to the View. It

exposes four Observable attributes:

 backgroundGradientColors: is an array of two elements representing

start and end color for the background;

 accentColor: for highlighting buttons, icons or texts;

 primaryColor: mainly used to color large areas;

 textColor: standard text color (usually white).

Once specified data to which the View must be bound, it has been necessary

to implement a mechanism to keep updated colors in the ViewModel,

represented as the ColorsViewModel class, with user settings.

Our choice has been to let the ViewModel observe changes into a

ColorsHelperImpl (deeply depicted in the section about Preferences

application and theme logic description) class that handles interactions with

the implemented Colors content provider, a unique system repository for

the chosen color combination from which any application can read actual

theme data, by referencing upcalled helper. The ColorsViewModel class

attaches the following observer to an instance of the ColorsHelperImpl class

(that implements the Observable interface):

private final Observer colorsObserver = new Observer() {

 public void update(Observable observable, Object arg)

 {

 ColorsViewModel.this.loadColors();

 }

};

63

Whenever a change is notified from the ColorsHelperImpl, this observer

calls the loadColors() method in the ViewModel that queries (through the

helper) the content provider in order to update ViewModel colors

attributes.

The ColorsHelperImpl registers the following ContentObserver that

notifies when changes in the provider data happen (after user has set a new

theme):

Any of the applications that will be described in following sections will

implement the MVVM pattern by getting an instance of the

ColorsViewModel from the ViewModelProvider and binding its View to the

ViewModel by executing the following lines in the MainActivity creation:

private final ContentObserver contentObserver = new

ContentObserver(new Handler()) {

 public void onChange(boolean selfChange) {

 super.onChange(selfChange);

 ColorsHelperImpl.this.colors =

 ColorsHelperImpl.this.queryColors();

 ColorsHelperImpl.this.setChanged();

 ColorsHelperImpl.this.notifyObservers();

 }

};

ColorsViewModel theme = ViewModelProviders.of(this)

 .get(ColorsViewModel.class);

MainActivityBinding binding =

DataBindingUtil.inflate(inflater,

R.layout.main_activity_layout, container, false);

binding.setColorsViewModel(theme);

64

The framework automatically provides, in the generated binding class,

getters and setters for the binding variables declared in the XML layout. As

we bind the whole ViewModel, a setColorsViewModel() method is available

in the binding class, accepting a ColorsViewModel object.

65

Chapter 5

Android automotive IVI:
Infotainment applications design and

implementation

66

Chapter overview

This chapter will depict design and implementation of Android software

applications that enable all the functionalities offered by the Infotainment

system describing also user interfaces design to develop an easy and fast to

use system contributing to meet safety requirements. To understand better

the logic behind the applications, portions of significant code will be

introduced and explained.

In addition, this part will cover two services that were needed to implement

required functionalities:

 The logic behind the Stream service, that allows other software

components to provide their data to the Overview application in

charge of summarizing infotainment data to support driver with

useful information while minimizing distraction possibilities.

 The service that enables communication between Android system

and infotainment “appendices” (Info-Cluster and Rotary controller)

not just to provide In-Vehicle Infotainment repetitions guaranteeing

data consistency among these systems and reduces driver distraction

possibilities, but even for transmitting HMI control commands from

the Rotary to the Android Infotainment and vice versa.

67

5.1 Overview application

Figure 19. Overview application layout

The Overview application is thought to bring a summary of all the possible

information that the infotainment can provide to the user in a clean and

clever layout. It has the target to be as much condensed as possible, making

easy for the driver to get enough information from a single layout without

necessarily requiring interactions with the Infotainment. With this

approach, we accomplish cognitive distraction avoidance.

It exploits CardViews, design elements introduced with Google material

design guidelines, to show five different blocks of information. The absence

of complex menus is obtained by enabling the possibility to click on each

of the cardViews, taking the user to the related application with just one

interaction; in addition, some cards support more than just simple click

interactions making possible to operate on the application itself without

opening it.

Two of the cardViews are created by the service application Stream (further

explained), which collects data coming from the following applications:

68

 Media/Radio/WebRadio: providing data about current media track or

radio station. It displays a cover image (or a default placeholder) and

allows to play/pause the current audio source that is being played;

 Dialer: phone and eventually data about on-going or recent calls;

At Overview startup, the bindStreamService() method operates the binding

to the Stream service by setting the appropriate component intent and

executing the following line of code

passing a mConnection object that is an instance of

StreamServiceConnection in order to register two callbacks:

 onServiceConnected(): retrieves an mService interface

exposed by the onBind() method of the Stream service.

 onServiceDisconnected(): retries the connection to the service

in case it is lost.

The mService object provides methods to access the StreamCards generated

by the Stream service and, once connected, Overview starts fetching

available cards loading corresponding data into related cardViews.

Vehicle data cardView is filled with car information (this data in future

implementation will be taken from the CAN bus, but actually is just

simulated). It exploits a tabLayout with ViewPager, a native Android layout

element that supports switching horizontally through multiple pages

(usually rendered as independent fragments). The weather cardView takes

data from an internet service (in presence of an internet connection).

bindService(intent, mConnection, BIND_AUTO_CREATE);

69

Phone cardView offers a recycleView dinamically loaded with recent calls

contacts taken from a connected mobile phone (via bluetooth). In particular,

this card gets its data from the Stream service and is enabled just when a

phone is actually connected showing a profile picture related to phone user

and the device name (bluetooth name). If no phone is connected, a

placeholder text is shown and, after a cardView tap, the

ConnectivityFragment from the Preferences application is opened (refer to

section Preferences - ConnectivityFragment).

The right most card contains just a map overlay to show current navigation

data if any, otherwise a placeholder is presented to do not add useless

overhead to actual system memory usage by starting an application that is

not actually necessary for the driver.

As any other infotainment application, it exploits the MVVM architectural

pattern to be always consistent with system colors.

70

5.2 Preferences application

Preferences application exposes some settings to personalize user interface

aspect in terms of colors and to manage system connectivity and volumes.

From the user interface point of view, it is made of a tabLayout composed

of three different tabs rendered as independent fragments:

 Themes Fragment: enables the possibility to customize system

colors;

 Connectivity Fragment: exposes settings for Bluetooth and WiFi

connectivity;

 Volumes Fragment: provides sliders for system volumes settings.

5.2.1 Themes fragment

Figure 20. Preferences – Themes Fragment layout

The themes fragment renders five elements representing standard themes

plus a customizable one where background gradient is on a black scale and

71

accent color is settable by using a seekBar, a native Android sliding bar

design element working as color selector.

Enabling a personalization of colors is not just a matter of tastes but it can

make the system usage more comfortable: in nighttime darker backgrounds

are better while, under sunlight, brighter colors are preferable.

Of particular interest is the logic behind system colors setting and how this

information gets forwarded to any other application. In fact, the chosen

theme must be known to each application in order to set the right colors

combination when rendering their layout. In order to have a common

element from whom access to data a content provider has been

implemented. Access to its data is provided through the methods of

ColorsHelperImpl class, implementing an interface defined in the custom

mm_ui_lib library.

A content provider manages access to a central repository of data. A

provider is part of an Android application, which often exposes its data

(stored in some manner that can range from a Json file to persistent data

storage as databases or shared preferences) to other applications by using a

provider client object. Together, providers and provider clients offer a

consistent, standard interface to data that also handles inter-process

communication and secure data access. [21]

The preferences application implements its own content provider and, by

the use of up called custom library, any other application can use a provider

client to access data it exposes.

The content provider stores data in one or more tables similar to the ones

found in a relational database.

Preferences application implements its own content provider by the

ColorsProvider class. The data inside this content provider is identified by

72

a content URI, which is the union of provider symbolic name (called

authority, unique android-internal identifier) and the path to the table or file.

An optional id part points to an individual row in a table. Every method to

access content provider data requires a URI.

The authority for the ColorsProvider is specified in the library itself through

the ColorContract class which contains, along with other attributes, these

two lines:

The content provider exploits the UriMatcher convenience class to map

URI paths to integer values and evaluate the corresponding action to be

taken when it receives a query request (retrieve data from the provider

returning a Cursor object):

public static final String AUTHORITY =

 "it.zirak.automotive.colorpicker.provider";

public static final Uri AUTHORITY_URI = Uri.parse(

 "content://" + AUTHORITY);

@Nullable

@Override

public Cursor query(@NonNull Uri, @Nullable String[]

 projection, @Nullable String

 selection, @Nullable String[]

 selectionArgs, @Nullable String

 sortOrder)

{

 MatrixCursor returnValue;

 switch (uriMatcher.match(uri))

 {

 case MATCHED_COLOR:

 returnValue = new MatrixCursor(

 new String[]{

73

The query method returns a MatrixCursor loaded with provider’s stored

colors taken from shared preferences by calling the method

addRowIfValueExists(), passing the MatrixCursor reference and a color

key.

Another important method overridden in our ColorsProvider

implementation is the insert() which provides the insertion of colors values

 ColorsContract.Color.COLUMN_KEY,

 ColorsContract.Color.COLUMN_VALUE

 });

 addRowIfValueExists(returnValue,

 ColorsContract.Color.KEY_ACCENT);

 addRowIfValueExists(returnValue,

 ColorsContract.Color.

 KEY_BACKGROUND_GRADIENT_BEGIN);

 addRowIfValueExists(returnValue,

 ColorsContract.Color.

 KEY_BACKGROUND_GRADIENT_END);

 addRowIfValueExists(returnValue,

 ColorsContract.Color.KEY_PRIMARY);

 addRowIfValueExists(returnValue,

 ColorsContract.Color.KEY_TEXT);

 break;

 default:

 throw new IllegalArgumentException(

 "Unsupported uri " + uri);

 }

 return returnValue;

}

74

for accent, text and backgrounds gradient colors in our provider shared

preferences:

@Nullable

@Override

public Uri insert(@NonNull Uri uri, @Nullable

ContentValues values) {

 if (values == null) {

 return null;

 }

 switch (uriMatcher.match(uri)) {

 case MATCHED_COLOR:

 Context context = getContext();

 assert context != null;

 SharedPreferences.Editor editor =

 sharedPreferences.edit();

 String key =

 values.getAsString(ColorsContract.

 Color.COLUMN_KEY);

 int value =

 values.getAsInteger(ColorsContract.

 Color.COLUMN_VALUE);

 editor.putInt(key, value);

 editor.apply();

 context.getContentResolver()

 .notifyChange(uri, null);

 broadcastAllColors();

 break;

 default:

 throw new IllegalArgumentException(

 "Unsupported uri " + uri);

 }

 return null;

}

75

This method instantiates a shared preferences editor that allows putting or

modifying values. A call to this method always corresponds to a new setting

of colors for the UI; this is the reason why the method broadcastAllColors()

is called. It essentially broadcasts new theme colors to infotainment

applications and to the SocketService application used to forward data to

Cluster and Rotary controller (this service application will be further

explained in details).

private void broadcastAllColors() {

 Context context = getContext();

 Bundle colorBundle = new Bundle();

 assert context != null;

 Intent intent = new Intent();

 intent.setAction("it.zirak.automotive.colorpicker");

 addExtraIfValueExists(intent,

 ColorsContract.Color.KEY_ACCENT);

 addExtraIfValueExists(intent,

 ColorsContract.Color.KEY_BACKGROUND_GRADIENT_BEGIN);

 addExtraIfValueExists(intent,

 ColorsContract.Color.KEY_BACKGROUND_GRADIENT_END);

 addExtraIfValueExists(intent,

 ColorsContract.Color.KEY_PRIMARY);

 addExtraIfValueExists(intent,

 ColorsContract.Color.KEY_TEXT);

 context.sendBroadcast(intent);

 int secondary, primary, bg_begin, bg_end;

 secondary = intent.getIntExtra(

 ColorsContract.Color.KEY_TEXT,0);

 primary = intent.getIntExtra(

 ColorsContract.Color.KEY_ACCENT,0);

76

It is possible to notice that an intent is created by adding some Extras values

and sent in broadcast to the whole Android system. It actually notifies the

system UI (and any other application that registered an Intent Filter to catch

it) to change its colors adapting to the user selected theme.

In the onCreate() method of ThemesFragment class a colorsHelper object

of the ui_library class ColorsHelperImpl gets instantiated.

This class is in charge of:

 querying for colors the ColorsProvider;

 bg_begin = intent.getIntExtra(

 ColorsContract.Color.

 KEY_BACKGROUND_GRADIENT_BEGIN,0);

 bg_end = intent.getIntExtra(

 ColorsContract.Color.

 KEY_BACKGROUND_GRADIENT_END,0);

 colorBundle.putString(MessagesHelper.COLOR_PRIMARY,

 String.format("#FF%06X", (0xFFFFFF & primary)));

 colorBundle.putString(MessagesHelper.COLOR_SECONDARY,

 String.format("#FF%06X", (0xFFFFFF & secondary)));

 colorBundle.putString(MessagesHelper.COLOR_BG_BOTTOM,

 String.format("#FF%06X", (0xFFFFFF & bg_end)));

 colorBundle.putString(MessagesHelper.COLOR_BG_TOP,

 String.format("#FF%06X", (0xFFFFFF & bg_begin)));

 sendBundleToService(colorBundle);

}

77

 registering a Content Observer in order to detect changes in the

provider content (new settings of colors) and notification to eventual

observers;

 requesting for new colors insertion in provider database.

Current color combination is retrieved by the method queryColors() which

involves content provider query() method previously described:

@NonNull

private Colors queryColors() {

 int accentColor = Colors.DEFAULT_ACCENT_COLOR;

 int backgroundGradientBeginColor =

 Colors.DEFAULT_BACKGROUND_GRADIENT_BEGIN_COLOR;

 int backgroundGradientEndColor =

 Colors.DEFAULT_BACKGROUND_GRADIENT_END_COLOR;

 int primaryColor = Colors.DEFAULT_PRIMARY_COLOR;

 int textColor = Colors.DEFAULT_TEXT_COLOR;

 Cursor cursor = application.getContentResolver().

 query(ColorsContract.Color.

 CONTENT_URI, null, null,

 null, null);

 if (cursor != null) {

 int columnKeyIndex =

 cursor.getColumnIndex(

 ColorsContract.Color.COLUMN_KEY);

 int columnValueIndex =

 cursor.getColumnIndex(

 ColorsContract.Color.COLUMN_VALUE);

 while (cursor.moveToNext()) {

 String key = cursor.getString(columnKeyIndex);

 int value = cursor.getInt(columnValueIndex);

 switch (key) {

78

ThemesFragment can request new theme’s colors insertion by calling the

putColors method which implies the insert() method to be executed from

the ColorsProvider already depicted:

 case ColorsContract.Color.KEY_ACCENT:

 accentColor = value;

 break;

 case ColorsContract.Color

 .KEY_BACKGROUND_GRADIENT_BEGIN:

 backgroundGradientBeginColor = value;

 break;

 case ColorsContract.Color

 .KEY_BACKGROUND_GRADIENT_END:

 backgroundGradientEndColor = value;

 break;

 case ColorsContract.Color.KEY_PRIMARY:

 primaryColor = value;

 break;

 case ColorsContract.Color.KEY_TEXT:

 textColor = value;

 break;

 }

 }

 cursor.close();

 }

 return new Colors(accentColor,

 backgroundGradientBeginColor,

 backgroundGradientEndColor, primaryColor,

 textColor);

}

79

@Override

public void putColors(@NonNull Colors colors) {

 insertColor(ColorsContract.Color.KEY_ACCENT,

 colors.accent);

 insertColor(ColorsContract.Color.

 KEY_BACKGROUND_GRADIENT_BEGIN,

 colors.backgroundGradientBegin);

 insertColor(ColorsContract.Color.

 KEY_BACKGROUND_GRADIENT_END,

 colors.backgroundGradientEnd);

 insertColor(ColorsContract.Color.

 KEY_PRIMARY, colors.primary);

 insertColor(ColorsContract.Color.

 KEY_TEXT, colors.text);

}

private void insertColor(@NonNull String key, int value) {

 ContentValues contentValues = new ContentValues();

 contentValues.put(ColorsContract.Color.

 COLUMN_KEY, key);

 contentValues.put(ColorsContract.Color.

 COLUMN_VALUE, value);

 application.getContentResolver().insert(

 ColorsContract.Color.

 CONTENT_URI, contentValues);

}

80

5.2.2 Connectivity fragment

Figure 21. Preferences –Connectivity Fragment layout

The connectivity fragment operates on system connectivity management

through native APIs provided by android. It lets the user enable Bluetooth

or Wi-Fi connection and scan for visible devices or networks. Once

fragment view is created, it instantiates a WifiController and a

BluetoothController.

WifiController constantly scans for available networks by implementing

WifiTracker.WifiListener interface, an android native element that internally

registers a BroadcastReceiver in order to be notified from the system when

new results are available.

Found networks are then loaded into a listView as AccessPoints objects.

Once the user clicks over one of the items, an AccessPointClickListener

calls the onWifiClicked() passing the selected AccessPoint object as

parameter. This method, from the WifiController class, checks the security

level of the AccessPoint to understand if selected network is public and

eventually directly connecting to it. Otherwise, if it is an already known

private network (whose authentication data has been previously specified)

81

tries the connection, else asks for credentials by showing a “credential”

fragment and, after correct user input, it connects.

In the following the portion of code for the onWifiClicked() method:

 @Override

 public void onWifiClicked(AccessPoint accessPoint) {

 // for new open unsecured wifi network, connect to

 it

 if (accessPoint.getSecurity() ==

 AccessPoint.SECURITY_NONE &&

 !accessPoint.isActive()) {

 mCarWifiManager.connectToPublicWifi(accessPoint,

 mConnectionListener);

 }

 else

 {

 if (!accessPoint.isSaved() &&

 !accessPoint.isActive())

 {

 Bundle accessPointState = new Bundle();

 accessPoint.saveWifiState(accessPointState);

 WifiCredentialFragment credentialFragment =

 new WifiCredentialFragment();

 credentialFragment.setArguments(accessPointState);

 mFragmentManager.beginTransaction()

 .add(com.magnetimarelli.mm_car_ui_lib.R.id

 .basic_activity_container,

 credentialFragment,

 "wifi_credentials_fragment").commit();

}

else

{

mWifiManager.connect(accessPoint.getConfig(),

 mConnectionListener);

 }

 }

 }

82

BluetoothController component is instead based on the use of a

LocalBluetoothManager that provides a simplified interface on top of a

subset of the Android Bluetooth API. Like the WifiController, it scans for

available devices by registering a BroadcastReceiver. Each new found

device is loaded into a listView as CachedBluetoothDevice objects. An

object of this type represents a remote Bluetooth device containing

attributes like address, name and RSSI.

Once the user clicks over an available device in the list, the

BluetoothClickListener in its onClick() callback retrieves from the adapter

the related CachedBluetoothDevice. Three conditions are then evaluated:

 The device is actually connected so a disconnection is executed.

 The device is a known paired one; a straight-forward connection is

accomplished.

 The device is not paired; a pairing fragment is shown in order to pair

the device and, on success, eventually connect.

5.2.3 Volumes fragment

The system volumes fragment lets the user set media, phone and

notifications volumes by just interacting with three seekBars. Three

VolumeControllerPresenter objects, are instantiated in the

onViewCreated() callback of the volumes fragment, one for each seekBar

slider, setting the relative StreamType that can take the following values:

 AudioManager. STREAM

 AudioManager.STREAM_VOICE_CALL

83

 AudioManager.STREAM_NOTIFICATION

The VolumeControllerPresenter controls UI interactions with the sliders by

registering listeners on their progress changes, accordingly modifying

system volumes by acting on an AudioManager object, instance of a class

that provides APIs for managing system volumes and ringer profiles (silent,

vibrate, loud).

At fragment startup, the AudioManager retrieves current and maximum

volume levels, in order to set seekBars maximum values and current

progress, by means of the following lines of code:

Listeners registered on the seekBars react to interactions by calling the

onProgressChanged() callback that sets the current StreamType volume as

following (notice that each of the three VolumeControllerPresenter has its

own StreamType set at construction time):

mSeekBar.setMax(mAudioManager.

 getStreamMaxVolume(StreamType));

mSeekBar.setProgress(mAudioManager.

 getStreamVolume(StreamType));

mAudioManager.setStreamVolume(mStreamType,

 progress, AudioManager.FLAG_PLAY_SOUND);

84

where progress is an integer value corresponding to the actual progress

level of the touched seekBar and AudioManager.FLAG_PLAY_SOUND is

a flag that indicates to play a sound while changing the volume as

feedback for the user.

In order to create a better user interaction scheme for acting on infotainment

volumes with the aim of reducing user distractions while driving, the Rotary

controller allows to change volumes using its knob. The SocketService itself

acts on the STREAM_MUSIC volume when a related message is received

from the Rotary.

5.3 Stream service

In android automotive the system is natively able to generate, through the

Stream service, StreamCards, parcelables carrying data and used for

communication between various components. StreamCards are available to

all the applications that implement the interface IStreamConsumer in order

to bind to the service and get notified when new StreamCards are produced.

For each application that should post some of their data, a StreamProducer

must be implemented. It is in charge of fetching data from given

application’s controllers or managers, and post the generated StreamCard to

the Stream service in order to forward it to registered consumers.

As already said, the Overview application presents data coming from

various apps and for this reason it must be notified when new data is

available. Overview app is a consumer for the Stream service, implementing

the IStreamConsumer interface in order to retrieve data from three

85

applications. In particular, in our Infotainment system, four producers have

been implemented:

Radio: RadioStreamProducer connects to the RadioManager in order to

retrieve current radio band and channel frequency.

Media: MediaStreamProducer which is bound to the

MediaPlaybackMonitor service connected to a MediaStateManager to

retrieve media updates (track playback state and metadata).

Telephone current active call: CurrentCallStreamProducer listens for

active call events to produce a StreamCard. In particular it starts a Broadcast

Receiver (an android component which allows to register for system or

application events) called CurrentCallActionReceiver, to be notified for

current call events.

private class CurrentCallActionReceiver extends

BroadcastReceiver

{

 @Override

 public void onReceive(Context context, Intent intent)

 {

 String intentAction = intent.getAction();

 if(!TelecomConstants.

 INTENT_ACTION_STREAM_CALL_CONTROL

 .equals(intentAction))

 return;

 String action =

 intent.getStringExtra(

 TelecomConstants.EXTRA_STREAM_CALL_ACTION);

 switch (action) {

86

Telephone recent calls: RecentCallStreamProducer loads, from the

connected phone, the call log to produce a StreamCard. In particular, it

creates a CursorLoader that once started queries android native CallLog

content provider:

 case TelecomConstants.ACTION_MUTE:

 mInCallService.setMuted(true);

 break;

 case TelecomConstants.ACTION_UNMUTE:

 mInCallService.setMuted(false);

 break;

 case TelecomConstants.ACTION_ACCEPT_CALL:

 acceptCall();

 break;

 case TelecomConstants.ACTION_HANG_UP_CALL:

 disconnectCall();

 break;

 default:

 }

 }

}

private CursorLoader createCallLogLoader()

{

 StringBuilder where = new StringBuilder();

 List<String> selectionArgs = new ArrayList<String>();

 String selection = where.length() > 0 ?

 where.toString() : null;

 Uri uri = CallLog.Calls.CONTENT_URI.buildUpon()

 .appendQueryParameter(CallLog.Calls.LIMIT_PARAM_KEY,

 Integer.toString(CALL_LOG_QUERY_LIMIT))

 .build();

87

Once CallLog has been loaded the onLoadComplete() callback is invoked.

From the actual call, number and date are extracted and a StreamCard is

created.

 CursorLoader loader = new CursorLoader(

 mContext, uri, null, selection,

 selectionArgs.toArray(EMPTY_STRING_ARRAY),

 CallLog.Calls.DEFAULT_SORT_ORDER);

 loader.registerListener(0, this

 /*OnLoadCompleteListener*/);

 return loader;

}

@Override

public void onLoadComplete(Loader<Cursor> loader, Cursor

cursor) {

 if (cursor == null || cursor.moveToFirst()) {

 return;

 }

 int column = cursor.getColumnIndex(

 CallLog.Calls.NUMBER);

 String number = cursor.getString(column);

 column = cursor.getColumnIndex(CallLog.Calls.DATE);

 long callTimeMs = cursor.getLong(column);

 // Display if we have a phone number, and the call was

 // within 6 hours (to display just calls in last 6

 // hours).

 number = number.replaceAll("[^0-9]", "");

 long timestamp = System.currentTimeMillis();

 long digits = Long.parseLong(number);

88

5.4 SocketService application

As already anticipated, a messaging protocol has been implemented in order

to exchange data among infotainment applications and external hardware

components like Rotary controller and Info-Cluster. The SocketService

enables in-vehicle infotainment repetitions to maintain data consistency in

information brought to the user on the various in-car displays and, in

addition, provides the transmission of control commands coming from the

rotary controller to the Android OS and vice versa.

An example about its utility is given if we consider the selection of a new

theme for the IVI user interface from the Preferences application. When the

user chooses a theme, the new color combination must be notified to the

Info-Cluster and Rotary in order to update their layout and be consistent

 if (!TextUtils.isEmpty(number) &&

 (timestamp - callTimeMs) < RECENT_CALL_TIME_RANGE)

 {

 if (mCurrentStreamCard == null || mCurrentNumber !=

 digits)

 {

 removeCard(mCurrentStreamCard);

 mCurrentStreamCard = mConverter.createStreamCard(

 mContext, number, timestamp);

 mCurrentNumber = digits;

 postCard(mCurrentStreamCard);

 }

 }

}

89

with the user choice. This is just one of the information SocketService

forwards. In the following, a terse list of data that this service handles and

sends to connected clients, in order to underline its role and importance in

the whole software architecture:

 Source messages: audio source that is currently active (one among

radio, media or phone);

 Menu control messages: drawer menu current state (open/closed)

and rotary commands to allow menus navigation;

 Rotary volume commands: the service interprets volume control

commands coming from the rotary and sets system volume

accordingly;

 Colors messages: current system UI color combination;

 Media messages: current track metadata, timing and cover (if any).

This data is shown both on Cluster and Rotary;

 Tuner messages: current radio station data and cover (if any);

 Phone messages: call data, elapsed time, contact image (if any) and

call state;

 Car messages: data about vehicle status;

 Time messages: current date and time taken from the Android

system and forwarded to the Cluster.

If necessary, a deeper list about exchanged messages is available in the

Appendix B section at the end of this thesis.

The service dispatches incoming messages (sent by applications using a

Messanger interface exposed by the service itself) to:

 SocketServer on which the Cluster connects, transmitting raw data

formatted in TLV (Type-Length-Value) encoding scheme.

90

 WebSocketServer for rotary controller connection based on HTTP

communication.

They both get instantiated the first time an infotainment application binds

to the service, in particular in the service’s onBind() callback. In fact, in

Android environment, a “bound service” gets started and lives until another

component is connected (so bounded) to it.

This callback is also in charge of instantiating a DataCenter object, whose

task is to keep a snapshot of current infotainment data state.

In particular, it stores:

The same is done for vehicle data that is kept in a different object named

CarData, containing following values:

private MediaData mMediaData;

private TunerData mTunerData;

private PhoneData mPhoneData;

private DataColors mDataColors;

int pCarSpeed // current speed

int pLongitudinalAcc // longitudinal cceleration

int pTransversalAcc // transversal acceleration

int pGearValue // current gear

int pDoorLockState // current doors lock state

int pDriverDoorState // driver door open/close

int pPassengerDoorState

int pBehindDriverDoorState

int pBehindPassengerDoorState

int pTrunkDoorState // trunk door open/close

int pOilLevel // oil level

int pTorque // current torque

int pInternalTemp // internal temperature

91

The SocketService opens a client thread (named MyCarClient) to read data

from the server in the EntryNAV that plays the role of gateway for the CAN

bus.

Along with these initializations, the service starts a BroadcastReceiver for

system time changes detection in order to send through the SocketServer

current date and time, to be displayed on the Info-Cluster.

The service is thought to forward a new message to connected clients each

time new data is available, so when an application posts a message through

the Messanger interface returned by the service’s onBind() method. The

Messanger defines a Handler named IncomingHandler to interpret

incoming messages by the HandleMessage method which retrieves the

message type by reading the “what” attribute, a user-defined message code

among one of those specified in a MessageHelper class.

Forwarding a new message just when new data is posted to the Messanger

caused infotainment appendices to be not consistent with Android OS at

system startup. Data like colors could not be sent until the user explicitly

changed the theme selection through the Preferences application.

int pExternalTemp // external temperature

int pEngineTemp // engine temperature

int pEngineOilTemp // engine oil temperature

// GPS data from CAN

int pCanLatitude

int pCanLongitude

int pCanGPSSpeed

int pCanGPSHeading

int pCanGPSAltitude

// data integrity check

int pCrc

92

This problem was solved by using DataCenter and CarData objects. Both

have some methods to retrieve and store all possible data from the Android

system (such as current system color combination taken from the color

content provider) in order to have a “snapshot” ready to be sent to clients.

When a new client connects to the SocketServer and WebSocketServer,

they send all the data available in DataCenter and CarData. In this way, at

system startup, both Rotary and Cluster display data consistent with current

infotainment status.

5.5 Media application

The system natively provides the media player application to bring just

entertaining functionalities originally coming from two sources:

 from an external USB storage or local media,

 from a connected Bluetooth device.

A third source has been added in order to support web radio. The webRadio

application plays audio from internet podcasts when the IVI is connected to

internet via wi-fi (for instance using a mobile device tethering

functionality).

Once media application is open, it starts a MetadataService. It is a service

that we implemented for exchanging current track metadata with

infotainment appendices through the SocketService by binding to it. This

enables In-Vehicle repetitions of media data.

93

To make it possible to be aware of current track being played and to retrieve

its attributes and information, the MetadataService, once started, gets an

instance of the MediaManager, an Android class that manages which audio

source the application should bind to, and registers a listener for media app

changes.

The MediaManager instantiates a MediaBrowser object that operates as a

client for a second native Android service performing two main tasks:

 It connects to a MediaBrowserService, a service able to get the root

node of the content hierarchy in order to fetch available media

items.

 Once connected to the MediaBrowserService, it creates a

MediaController for managing UI interactions.

With this approach, the MediaBrowser can traverse the content hierarchy

obtaining a list of MediaBrowser.MediaItem objects. Each of these items

has a type (BROWSABLE or PLAYABLE) and a unique ID. When the

MediaBrowser is asked to browse or play an item, the corresponding ID is

used.

Figure 22. Media– CardView for media player

94

Media application renders a layout based on a cardView which welcomes

current track metadata (song, album, artist name and current timing), skip

backward or forward, shuffle, repeat, play and pause buttons, along with

eventually the album cover (if not present a default cover placeholder is

shown).

The MediaController handles interactions with UI elements and registers

callbacks for Playback state (playing or paused) and metadata changes by

sending corresponding informational messages to the SocketService in order

to update rotary and cluster displays with consistent data.

5.6 Radio application

The native radio application provided by Android Automotive has been

customized both in layout and functionalities.

It has been modified by extending the custom BasicDrawerMediaActivity

to provide a drawer menu and binding to system UI colors. In its onCreate()

method a RadioController object is instantiated. This class manages the

display of metadata on the UI based on current radio station. Moreover, it

creates two other objects:

 RadioDisplayController that controls the appearance state of some

UI elements such as the favorite list on the bottom of the layout;

 RadioStorage for persistent storage of radio data such as the favorite

stations list.

95

The RadioDisplayController is also in charge of registering some listeners

in order to react to user interactions with UI elements. Of particular interest

are the interaction possibilities offered by the favorite stations list:

 A long press over one of its buttons records the current station being

played as favorite by saving its name and frequency (station name

and current program/track name are taken from the RDS – Radio

Data System whose support was already integrated in Android

Automotive). In case pressed button was the one already being

playing, a long press deletes the favorite from the list.

 A short press over its buttons (if not empty) plays selected favorite

station by synchronizing the radio on its frequency.

The bottom favorite bar has been graphically implemented as a

LinearLayout; it contains six clickable boxes always rendered as

LinearLayout and filled with two TextViews representing station name and

frequency.

The data about favorite stations is managed by the RadioStorage class that

operates addition and removal of presets from a persistent storage

implemented as SQL Database through the RadioDatabase class that

extends a helper class SQLiteOpenHandler natively provided by Android.

At application startup, the favorite stations are also loaded into a listView

available through the drawer menu. From the same menu, along with source

selection fragment (pre-loaded through the implementation of the

BasicDrawerActivity as already depicted), a ManualTunerFragment is

accessible; it enables the possibility to manually tune the radio on a valid

frequency by interacting with a graphical numeric pad.

96

RadioStorage is also in charge of loading pre-scanned channels in a list of

available radio channels found during tuner seeking or by using a secondary

tuner antenna (if provided by the vehicle) that constantly scans radio band.

5.7 Dialer application

The Dialer application comes natively with android automotive OS but it

has been modified both in user interface and functionalities.

Figure 23. Dialer – Main application layout

To be functioning it requires a mobile device connected to the In-Vehicle

Infotainment through a Bluetooth connection, to share its contacts and other

data. In fact, it acts as a common mirror link application where all the data

comes from the phone itself and the IVI offers a clean and fast to use

interface to make or answer phone calls by using the provided numeric pad,

search for recent contacts and manage on-going calls.

97

As any other infotainment application, the main activity TelecomActivity

extends the BasicDrawerActivity class from our mm_ui_lib and loads the

drawer menu with two fragments: “Recent calls” and “Lost calls”. In both

cases, a listView is dynamically loaded with the recent calls made or

received on the connected phone. For each of the items in the lists the

contact name (if any), the number, the typology (mobile, home, office) and

eventually a contact image (or the default android placeholder) are

provided. A tap on one of the listViews items starts a call.

In order to retrieve contacts data from the phone, the native class

PhoneLoader calls methods that perform asynchronous queries to a phone

content provider. They are asynchronous calls in order to do not overload

the main thread UI that is in charge of rendering layouts and managing user

interactions.

TelecomActivity also binds to an opportune service called

PhoneDataService that exposes callbacks for dialer state changes. It has

been implemented with the purpose to periodically send updates to the

SocketService by binding to it, in order to forward phone data to Info-

Cluster.

Each callback is activated by an instance of the UiCallManager, a class that

handles interactions with the user interface enabling telecom functionalities.

In particular the logic behind the PhoneDataService is:

1. When an incoming call is received the onCallAdded() callback is

executed.

98

It receives a UiCall object, an abstraction of a single call; it sends call

information to the SocketService (type 1 stands for “ringing”),

retrieves contact image from the phone’s content provider and, if any,

its bitmap is also sent.

2. Once an outgoing call starts or and incoming one is accepted the

onStateChanged() is called:

@Override

public void onCallAdded(UiCall call) {

 super.onCallAdded(call);

 Log.d("#### DIALER INFO" , "CALL ADDED" +

 call.getNumber());

 sendCallInfo(1,call.getNumber());

 Bitmap contactImage = TelecomUtils

 .getContactPhotoFromNumber(

 getContentResolver(),call.getNumber());

 if(contactImage!=null){

 sendContactBitmapToService(contactImage);

 }

}

@Override

public void onStateChanged(UiCall call) {

 super.onStateChanged(call, state);

 Log.d("#### DIALER INFO","STATE CHANGED"+state +

 "STATE TIME"+call.getConnectTimeMillis());

 sendCallInfo(2, call.getNumber());

 if(timer==null) {

 timer = new Timer();

 timer.schedule(new TimerSenderTask(

 call.getConnectTimeMillis()),

 0, milliStep);

 }

}

99

It receives a UiCall object, an abstraction of a single call; it sends call

information to the SocketService (type 1 stands for “ringing”),

retrieves contact image from the phone’s content provider and, if any,

its bitmap is also sent. It sends a new message to the SocketService

with counterpart phone number and type 2 meaning call is

“Accepted”. In case a timer has not been scheduled, it instantiates a

new one which each second will keep the SocketService updated

about current call timing.

3. When a call ends, the onCallRemoved() is executed:

It sends a new call information message to the SocketService with

type 3 that equals to “Declined” and cancels the timer.

@Override

public void onCallRemoved(UiCall call) {

 super.onCallRemoved(call);

 Log.d("#### DIALER INFO","CALL

 REMOVED"+call.getNumber());

 sendCallInfo(3,call.getNumber());

 if(timer!=null){

 timer.cancel();

 timer=null;

 }

}

100

5.8 MyCar application

MyCar application provides vehicle information rendered in a tabLayout,

managed by a viewPager that loads three different fragments. Each

fragment shows various information about vehicle such as mileage, current

trip data, fuel level or tires pressure through animated gauges and graphs.

Figure 24. MyCarApp – First tabLayout fragment

Figure 25. MyCarApp – Third tabLayout fragment

Moreover, the application supports controlling vehicle components and

sensors through various settings accessible in the drawer menu:

101

 Lights controls

 Unit settings for distances (Km or miles), temperatures (C° or F°),

pressures and fuel consumption.

 Safety related controls for speed limiter, lane departure warning and

rear view or park sensor.

 Doors and Locks controls

 Cluster settings

Each of the settings pages extends the abstract class BaseSettingPage that

binds a RestoreFragment to a “Reset” textView. This fragment asks for

confirmation to restore default values in the current settings page when the

user presses on the aforementioned textView.

In order to save and retrieve current user’s settings a

SettingsSharedPreferences class has been implemented. It exposes methods

to get and put values from the car_settings_preferences by providing just

the key and the value (in case it is a get operation, the passed value is the

default one returned if the required key is absent from the storage).

At current implementation status this application just simulates vehicle data

by means of a random generator but, in future development, these

information will be taken from the CAN network by implementing a vehicle

HAL. The vehicle HAL will be necessary also to enable controlling vehicle

components like sensors, doors and lights.

102

5.9 Navigation application

Actual navigator implementation uses a proprietary application from Mireo,

a company specialized in GPS navigation software solutions. It features

turn-by-turn navigation and voice guidance supporting multiple languages.

In order to provide the infotainment system with navigation data, the

SocketService application after receiving GPS data generated from the

vehicle built-in sensor (forwarded through the CAN bus along with other

car data as already explained) sets a mock location in the Android system

as follows:

Location lMockLocation = new

Location(LocationManager.GPS_PROVIDER);

if (lMockLocation != null) {

 long lTime = System.currentTimeMillis();

 long elTime = SystemClock.elapsedRealtimeNanos();

 lMockLocation.setLatitude(mCurrentCarData

 .getRealNavLatitude(mCurrentCarData

 .getCanLatitude()));

 lMockLocation.setLongitude(mCurrentCarData

 .getRealNavLongitude(mCurrentCarData

 .getCanLongitude()));

 lMockLocation.setAccuracy(1);

 lMockLocation.setAltitude(0);

 lMockLocation.setTime(lTime);

 lMockLocation.setElapsedRealtimeNanos(elTime);

 lMockLocation.setBearing(mCurrentCarData

 .getRealCanGPSHeading(mCurrentCarData

 .getCanGPSHeading()));

 lMockLocation.setBearingAccuracyDegrees(1);

103

By setting a mock location, the system is tricked thinking it is in a given

location.

 try {

 mLocationManager.setTestProviderLocation(

 LocationManager.GPS_PROVIDER,

 lMockLocation);

 } catch(SecurityException excp) {

 Log.i(TAG, "It seems this app is not allowed

 to access MockLocation!");

 }

}

104

Chapter 6

System performance evaluation

105

Chapter overview

This chapter will analyze the performance we obtained with our

infotainment implementation, in order to define if it can be further improved

even in terms of additional features that can require a higher amount of

resources. This analysis will test system reactiveness and the reliability of

the Info-Cluster, one of the critical components in a vehicle because it

provides car related data useful also in guaranteeing users safety.

At the end, a table that summarizes the features of the Infotainment system

will be provided.

6.1 Memory and CPU usage

As already depicted in chapter 3, our infotainment system uses a hypervisor

to enable the same SoC to run two different OS that share hardware

resources like CPU and memory. In our implementation, we reserved about

two gigabytes of RAM (out of the four gigabytes available on the

Qualcomm development board) to the Android OS to run its environment

and applications. This means that the multi-tasking environment we created

has a limit and that, at a certain point, the Android OS will start to terminate

applications and free memory based on its native Garbage Collector when

it requires additional resources. This android component is able to identify

unused data references and reclaim memory from an application or, if

necessary, entirely kill it (if the driver has put the application in background

or is not actually using it) in order to free up memory for urgent tasks.

106

The mean usage of CPU and memory is a good metric to be considered in

order to understand how much the system is further enlargeable in terms of

features, still having a reactive and reliable system without requiring it to

kill applications that maybe, even if not actually in foreground, the driver

needs. By profiling processes, we can understand how to increase overall

system performance and even applications loading and response time.

Human engagement studies have shown that actions that responses under

100 milliseconds are perceived as instant, where actions that take a second

or more allow the human mind to become distracted. [23]

In March 2015, HP published a study that shows customers react to slow

applications the same way they do with applications that crash (Graph 3).
[24]

 Graph 3. Customer reactions to bad applications behaviors

The android environment furnishes various tools to profile the system

running the OS and to exhibit data and statistics. Two useful tools for our

analysis are:

https://www.oreilly.com/library/view/high-performance-android/9781491913994/ch01.html#figure-crashVsPerf

107

 ADB – Android Debug Bridge: a command-line tool that facilitates

a variety of device actions, such as installing and debugging

applications, and that provides access to a UNIX shell to run other

commands.

 Android Profiler: an Android Studio integrated tool to analyze real-

time data on how applications use CPU, memory network and

battery.

By executing the command “adb shell dumpsys meminfo” is possible to

retrieve data about memory usage by all the processes running on the

system. [25] In particular, some interesting data about free and used RAM is

available:

Where the “Lost RAM” value is computed as difference between the Total

RAM and the sum of Used and Free memory. Even if the value reported is

relatively low and does not affect the correct behavior of the system and its

applications, it can suggest some orphaned allocations of memory to be

further inspected in order to improve performance.

In addition, dumpsys provides a list of used memory per process. An extract

is shown below:

Total RAM: 1,858,344K (status normal)

Free RAM: 907,421K (93,649K cached pss + 414,184K cached

kernel + 399,588K free)

Used RAM: 940,173K (774,693K used pss + 165,480K

kernel)

Lost RAM: 8,714K

ZRAM: 2,036K physical used for 3,152K in swap

 (524,284K total swap)

108

These results highlight that the system process is one of the hungriest. It

constantly runs since system startup and is in charge of handling various

tasks related to the Android environment such as job scheduling and

garbage collection. This result got confirmed while profiling infotainment

processes by using the Android Profiler which provides more precise real-

time data:

Figure 26. System process profiling graph

Total PSS by process:
94,967K: system (pid 390)
47,306K: zygote (pid 187)
41,098K: com.android.systemui (pid 767)
34,727K: logd (pid 165)
21,053K: perfd (pid 11405)
20,439K: com.android.car.media (pid 1580 / activities)
20,119K: com.zirak.automotive.overview (pid 30945 / activities)
19,066K: com.android.phone (pid 911)
16,589K: zygote64 (pid 186)
16,514K: media.codec (pid 422)
14,965K: surfaceflinger (pid 285)
12,745K: com.android.bluetooth (pid 737)

109

As suggested by the dumpsys’s processes memory usage list, two other user

area applications that require RAM the most are Overview and Media.

By profiling the process of the Overview application, the result is the

following:

Figure 27. Overview app profiling graph

Apart from the handling of interactions with some of its UI elements (from

this test, the car data tabLayout was being browsed by swiping its pages)

the CPU is often unused. Moreover, no data gets exchanged on the network

because, as previously explained, it collects information it needs from the

Stream service to which this application is bound to. Memory usage is also

low and it is mainly dedicated to graphical memory in order to render user

interface elements.

110

The adb by means of the “dumpsys activity” command also exhibits data

about services and content providers connections. For instance, about the

Stream service it is possible to confirm what has been stated in the previous

chapter:

The Stream service performs five connections with four producers and one

consumer that is the Overview application.

Of particular interest, is also the part where the dumpsys outlines content

providers connections. As expected, each application that gets open by the

user connects to the ColorsProvider in order to retrieve current color

combination:

ServiceRecord{8cb0920 u0 com.android.car.stream/.StreamService}

app=ProcessRecord{6dbcc26 1425:com.android.car.stream/u0a24}

created=-5h16m45s262ms started=true connections=5

Connections:

act=stream_consumer_bind_action ->

30945:com.zirak.automotive.overview/1000

act=stream_producer_bind_action ->

1425:com.android.car.stream/u0a24

act=stream_producer_bind_action ->

1425:com.android.car.stream/u0a24

act=stream_producer_bind_action ->

1425:com.android.car.stream/u0a24

act=stream_producer_bind_action ->

1425:com.android.car.stream/u0a24

ContentProviderRecord{99910b1 u0 com.magnetimarelli.preferences/

.colorpicker.provider.ColorsProvider}

proc=ProcessRecord{c58175:com.magnetimarelli.preferences/1000}

authority=it.zirak.automotive.colorpicker.provider

4 connections, 0 external handles

-> 1580:com.android.car.media/u0a20 s0/0 u1/1 +5h20m3s22ms

-> 30945:com.zirak.automotive.overview/1000 s0/0 u1/1

+3h58m40s311ms

-> 14287:com.android.car.dialer/u0a18 s0/0 u1/1 +8s61ms

-> 14446:com.magnetimarelli.mm_mycar/u0a21 s0/0 u1/1 +4s742ms

111

Another interesting component to be profiled is the SocketService

application. Being a service, it does not render any UI element having a low

memory usage (around 4-5 Megabytes) but instead it uses the network in

order to send data on the Socket and WebSocket.

Figure 28. SocketService profiling graph

The sawtooth-like aspect of the network curve is due to the sending and

reception of single messages on the network, that require processing and so

is not a continuous flow. It is interesting to be noticed that the amount of

outgoing data is three or four times greater than the incoming one. This is

justified if we consider that vehicle data is sent to the Info-Cluster passing

through the Infotainment (and so SocketService). As aforementioned, in

future development a vehicle HAL will be implemented; this solution will

drastically lower the outgoing SocketService network flow leaving more

bandwidth purely for Infotainment data, guaranteeing data consistency and

layout coherence between the three IVI displays.

112

At actual state, the Cluster is up and running in less than 250 milliseconds

while the Android system startup still requires an average time of 10

seconds in order to be operative. This shows that on both sides a tweaking

is required in order to lower system boot time.

For what regards applications reactiveness, for each of them a cold start

(when the application is started for the first time) requires less than 2

seconds, while a warm start (application already running in background)

needs less than 1 second making system performance comparable to what

the user are habit to with mobile devices.

Here a comparison between cold and warm start for the Media application

extracted from the android log:

Finally, the reliability of the Info-Cluster has been tested by checking that a

crash in the Android system did not affect the Cluster and verifying the

correct implementation and setting of the hypervisor. In order to do this was

necessary to terminate the process running the Android OS from the QNX

hypervisor shell.

384-537/system_process I/ActivityManager: Displayed

com.android.car.media/.MediaActivity: +1s363ms

384-537/system_process I/ActivityManager: Displayed

com.android.car.media/.MediaActivity: +870ms

113

6.2 Infotainment features

In the following, a summary of the features that the system actually provides

and, for completeness, the ones that is expected to implement in future

development:

Display

Number of Displays 3

Touch Yes for Infotainment and Rotary display.
No for Info-Cluster screen.

Multi-Touch Yes for Infotainment and Rotary display.

Hardware, sensors and connectivity

GPS Yes

A-GPS Yes (through internet connection)

Rear-camera view support Not implemented yet

Microphone Yes

GPRS Yes

3G/4G Yes

Wi-Fi Yes

Bluetooth Yes

Infotainment physical controller Yes (Rotary)

General system features

Operative System version Android Automotive OS 8.1

Updatable OS Yes

System languages English only (other languages to be implemented)

Extensible applications set Yes

Applications store To be implemented (Google Play Store)

Internet Browser Not implemented yet

Vocal Assistant To be implemented (Google Assistant)

Gestures Being implemented through Rotary touch display

Home application Yes (Overview app)

114

Car status application Yes (MyCar app)

System colors customization Yes

Media

Radio Yes

Supported bands AM/FM

Web Radio Yes

Podcasts Yes

Media player Yes (from external USB or internal storage).
Actually supports Audio reproduction only.

Supported audio formats MP3, WAV, M4A, AAC, OGG

Supported video formats No video player

Bluetooth streaming from
connected device Yes

Navigation

Software Genius Maps by Mireo (Google Maps to be
implemented, license required)

Map Yes

Voice guide Yes

Turn-by-Turn Yes

Street View No (will be available with Google Maps)

Night Mode Yes

Multi-language Yes

Communication (through connected mobile device)

Voice calls Yes

SMS or other messaging apps Not implemented yet

Recent contacts Yes

115

Chapter 7

Conclusions and future work

116

Conclusions and future work

At current implementation state, the initial requirements have been satisfied

by developing a reliable and feature-full system. In conclusion, its strength

points that make it different from what the Infotainment market actually

offers, obtained by the adoption of the Android Automotive operating

system, are summarized in these points:

 Real multi-tasking environment: This system can run multiple

applications at once and keep active many services in background

(like playing music).

 Functioning detached from a connected mobile device (apart for

phone calls) and no mirror-linking required. This solution offers a

complete hands-free usage of the Infotainment reducing distraction

possibilities and in-vehicle mobile phone usage.

 Extendible features because it allows to install external applications

like any other Android device does. This feature will be completely

available when the Infotainment will provide the Google Play Store.

 Built-in 3G/4G antennas for internet connection.

 Better end-user learning curve because based on a well-known

system like Android with millions of users.

In addition, the system offers clean user interfaces design and clever

positioning of displays and infotainment components around the driver.

Additional interaction schemes by the drawer menu usage, entirely

controllable through the rotary, drastically decreases distraction

possibilities with respect to other infotainment systems that do not provide

natively a physical controller, keeping driver focus on the road.

117

The performance analysis, provided in previous chapter, also evidences

system’s points of weakness and underlines the need of further

improvements such as obtaining lower system startup times. Although, it

has stated that there is space for adding new features without overloading

the system. As aforementioned in previous chapters, many other features

are currently in development. Here a brief extract of what is currently under

implementation:

 Shortcuts and user gestures over the Rotary controller touchscreen:

This logic, partially implemented, will enable the possibility to

interact with the infotainment by using gestures over the rotary

touchscreen, such as long tap, double tap or swipe in order to provide

commands to infotainment applications. Each application will react

in a different way to gestures based on the functionalities it provides.

One of its usage examples can be the possibility to skip media tracks

by swiping on the rotary screen to the left or right. This will enhance

distraction avoidance by not requiring driver focus on the

Infotainment screen.

 DNA functionality by means of rotary controller: At current

implementation state, the rotary renders on its display a window for

DNA functionality. In future development, through this interface the

driver will be able to select among three driving modes: Dynamic,

Normal and All Weather. Each mode intervenes on vehicle

electronics and mechanical parts with the aim of regulating road

behavior and vehicle dynamics;

 HAL implementation for vehicle data and controls: The

implementation of a vehicle HAL will be necessary in order to let the

Android Infotainment communicate directly with vehicle systems

and components.

118

Further improvements ideas that will be added in future development to the

system are:

 Implementation of the vocal Google Assistant;

 Messaging application even through vocal assistance;

 As Android guidelines declare, must be added watchdog against

denial of service attacks from the Android framework or third-party

applications. A protection of this type can protect against malicious

software flooding the vehicle network with traffic, which may lead

to malfunctioning of vehicle subsystems;

 Implementation of a Head-Up Display, a transparent display on

which data is projected without requiring users to look away from

their usual viewpoints.

As result of this analysis, it is possible to infer that the implemented

system is still highly enlargeable leaving space for numerous

customizations and add-on applications that can bring more features and

extend usage possibilities of this Infotainment.

Finally, this implementation work has confirmed that Android

Automotive OS is a cost-effective solution for implementing an

extendible and customizable system that can easily satisfy customer

requirements in terms of features and interfaces design.

a

Appendix A.

Android native elements, computer science and technical

terminology

In the following, a brief description of some Android native elements,

computer science related words and other technical terminology used

throughout the whole thesis work is provided in order to clarify their

meaning.

Activity (Android)
An android component that provides a

GUI and handles user interactions,

acquires resources and manages

notifications regarding its lifecycle. It

plays the role of controller in the

MVC pattern. An application can have

multiple activities but one only entry

point that takes the name of

MainActivity.

Activity Lifecycle (Android)
The Android system constantly sends

notifications to track the status of an

application that, for instance, can be in

background or going to be terminated.

The programmer reacts to these events

by performing some actions in

callback functions related to the

lifecycle. One of these callbacks is the

onCreate() method that gets called at

activity startup.

Adapter (Android)
An Adapter object acts as a bridge

between a View with multiple children

(such as a List or a Grid) and its

underlying data. The Adapter provides

access to the data items and it is also

responsible for making a View for

each item in the data set.

b

Bitmap
An image file format that represents

data into a bit array. In its simplest

form, for a black and white image, a

single bit represents a pixel that can be

white if its value is one, or black

otherwise.

Broadcast receiver (Android)
An Android component that allows

registering for system or application

events. All registered receivers for an

event are notified by the Android

runtime once this event happens.

Bundle
A mapping from String keys to

various parcels. A parcel is a container

for a message (data or object

references) that can be sent via

Parcelable, a high-performance

protocol for IPC transport.

Callback function
It is any executable code that is passed

as an argument to other code that is

expected to call back (execute). It can

be also a function that gets called by

the Operative system with the aim of

handle particular events (i.e. user

interactions).

CAN(Controller Area Network)
It is a multicast serial bus standard

(mainly in the automotive

environment), introduces in the

eighties by Robert Bosch GmbH, to

connect various Electronic Control

Units (ECUs).

CardView (Android)
An Android material design graphical

element that wraps its children views

inside a card-like shape.

Context (Android)
In Android, it represents current state

of the application/object. Typically, it

gets called to retrieve information

regarding another part of the program

(activity and package/application).

c

Content provider (Android)
An Android component that allows

exposing its data to other applications

by means of Content Resolver. The

Content Resolver includes the CRUD

(create, read, update, delete) methods

corresponding to the abstract methods

(insert, query, update, delete) in the

Content Provider class.

Cursor (Android)
An interface that provides random

read-write access to the result set

returned by a database query.

CursorLoader (Android)
A loader that queries the Content

Resolver and returns a Cursor.

Denial Of Service (DOS)

Is a cyber-attack in which the

perpetrator seeks to make a machine

or network resource unavailable to its

intended users by temporarily or

indefinitely disrupting services of a

host connected to the network. Denial

of service is typically accomplished by

flooding the targeted machine or

resource with superfluous requests in

an attempt to overload systems and

prevent some or all legitimate requests

from being fulfilled.

DRAM (Dynamic random-
access memory)
Is a type of random access

semiconductor memory that stores

each bit of data in a separate tiny

capacitor within an integrated circuit.

A charge state of the capacitor

corresponds to a value of 1, otherwise

means 0. The electric charge on the

capacitors slowly leaks off. To prevent

this, DRAM requires an external

memory refresh circuit which

periodically rewrites the data in the

capacitors, restoring them to their

original charge. Because of this

refresh requirement, it is dynamic

memory.

Drawer menu (Android)
A menu common in Android

applications that easily provides

shortcuts and informational data.

d

DSP (Digital Signal Processor)
A specialized microprocessor

optimized for the operational needs of

digital signal processing. The goal of

DSP is usually to measure, filter or

compress continuous real-world

analog signals.

ECU
Is any embedded system in automotive

electronics that controls one or more

of the electrical systems or subsystems

in a vehicle.

EntryNAV
Original infotainment system in a

vehicle.

Fragment (Android)
An Android element born to simplify

the task of adapting an interface to

various screens by dividing it in

smaller blocks. A Fragment is an

object that, conceptually, stands

between Activity and View because

has a lifecycle and can be directly

inserted in a layout XML file.

Garbage Collector
In computer science, garbage

collection (GC) is a form of automatic

memory management. The garbage

collector, or just collector, attempts to

reclaim garbage, or memory occupied

by objects that are no longer in use by

the program.

GPS (Global Positioning

System)
A satellite-based radio-navigation

system owned by the United States

government and operated by the

United States Air Force. Is a global

navigation satellite system that

provides geolocation and time

information to a GPS receiver

anywhere on or near the Earth where

there is an unobstructed line of sight to

four or more GPS satellites.

GPU(Graphics Processing Unit)
A specialized electronic circuit

designed to rapidly manipulate and

e

alter memory to accelerate the creation

of images in a frame buffer intended

for output to a display device.

Handler (Android)
A Handler is a class that allows

sending and processing Message and

Runnable objects associated with a

thread's MessageQueue. Each Handler

instance is associated with a single

thread and that thread's message

queue.

IPC
The Inter-Process communication is

a mechanism that an operating system

provides to allow the processes to

manage shared data. Typically,

applications can use IPC, categorized

as clients and servers, where the client

requests data and the server responds

to client requests.

LinearLayout (Android)
A view group that aligns all children

in a single direction, vertically or

horizontally.

ListView (Android)
A view group that displays a list of

scrollable items. The list items are

automatically inserted to the list using

an Adapter that pulls content from a

source such as an array or database

query and converts each item result

into a view that is placed into the list.

Log
In computer science, is an instrument

for administration and monitoring of a

system or application that exhibits

statistics, error messages and other

informational data.

MVC (Model – View –
Controller)
Is an architectural pattern commonly

used for developing user interfaces

that divides an application into three

interconnected parts. This is done to

separate internal representations of

information from the ways

information is presented to and

accepted from the user. The MVC

design pattern decouples these major

f

components allowing for efficient

code reuse and parallel development.

PLC
A Programmable logical controller is

an industrial digital computer which

has been ruggedized and adapted for

the control of manufacturing

processes, such as assembly lines, or

robotic devices, or any activity that

requires high reliability control and

ease of programming and process fault

diagnosis.

PSS (Proportional Set Size)

Is a measurement of RAM usage that

takes into account shared pages across

processes. Any RAM pages that are

unique to a process directly contribute

to its PSS value, while pages that are

shared with other processes contribute

to the PSS value only in proportion to

the amount of sharing. For example, a

page that is shared between two

processes will contribute half of its

size to the PSS of each process.

RPC (Remote procedure call)
In distributed programming, is when a

program causes a procedure (or

subroutine) to be executed in a

different address space (usually

another computer or shared network)

without the need that the programmer

explicitly codes the details for the

remote interaction. It is a form of inter-

process communication where

different processes have different

address spaces.

RTOS
Is an operating system (OS) intended

to serve real-time applications that

process data as it comes in, typically

without buffer delays in tenth of

seconds or shorter increments of time.

A real time system is a time bound

system which has well defined fixed

time constraints. Processing must be

done within the defined constraints or

the system will fail. They either are

event driven or time sharing. Event

driven systems switch between tasks

based on their priorities while time

sharing systems switch the task based

g

on clock interrupts. Most RTOS’s use

a pre-emptive scheduling algorithm.

SeekBar (Android)
Is an Android layout element that

extends the ProgressBar by adding a

draggable thumb. The user can touch

the thumb and drag left or right to set

the current progress level.

Service (Android)
Is an Android application component

that can perform long-running

operations in the background, and it

does not provide a user interface.

Another application component can

start a service that will run in the

background even if the user switches

to another application. Additionally, a

component can bind to a service to

interact with it and even perform inter-

process communication (IPC). For

example, a service can handle network

transactions, play music, perform file

I/O, or interact with a content

provider, all from the background.

SoC (System-on-Chip)
Is an integrated circuit (also known as

a "chip") that integrates all

components of a computer or other

electronic system. These components

typically include a central processing

unit (CPU), memory, input/output

ports and secondary storage, all on a

single substrate. Systems on chip are

commonly used in embedded systems

and the Internet of Things.

Socket
Is an internal endpoint for sending or

receiving data within a node on a

computer network. Concretely, it is a

representation of this endpoint in

networking software (protocol stack),

such as an entry in a table (listing

communication protocol, destination,

status, etc.), and is a form of system

resource.

SQL
Structured Query Language is a

domain-specific language used in

programming and designed for

h

managing data held in a relational

database management system

(RDBMS), or for stream processing in

a relational data stream management

system (RDSMS). It is particularly

useful in handling structured data

where there are relations between

different entities/variables of the data.

StreamCard (Android)
Is a parcelable object that is used for

communication between various

stream components (in general

producers and consumers). Each card

is uniquely identified by a type and id.

TabLayout (Android)
An Android view element that

provides an horizontal layout to

display different tabs.

TCP
Transmission control protocol is one

of the major protocols of the Internet

protocol suite that complemented

the Internet Protocol (IP). Therefore,

the entire suite is commonly referred

to as TCP/IP. It provides reliable,

ordered, and error-checked delivery of

a stream of octets (bytes) between

applications running on hosts

communicating via an IP network.

Major internet applications such as

the WWW, email, remote

administration, and file transfer rely

on TCP.

TextView (Android)
A user interface element that displays

text to the user. The user-editable

version is the EditText.

UDP
User Datagram Protocol is one of the

core members of the Internet protocol

suite. It was designed by David P.

Reed in 1980. With UDP, computer

applications can send messages, in this

case referred to as datagrams, to other

hosts on an Internet Protocol (IP)

network. Being connectionless, prior

communications are not required in

order to set up communication

channels or data paths.

https://en.wikipedia.org/wiki/Communications_protocol
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Reliability_(computer_networking)
https://en.wikipedia.org/wiki/Error_detection_and_correction
https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/Email
https://en.wikipedia.org/wiki/Remote_administration
https://en.wikipedia.org/wiki/Remote_administration
https://en.wikipedia.org/wiki/File_transfer

i

UI

User Interface is the space where

interactions between humans and

machines occur. The goal of this

interaction is to allow effective

operation and control of the machine

from the human end, whilst the

machine simultaneously feeds back

information that aids the operators'

decision-making process.

URI
Uniform Resource Identifier (URI) is

a string of characters that

unambiguously identifies a particular

resource.

ViewPager (Android)
Is a layout manager that allows the

user to flip left and right through pages

of data, often used in conjunction with

fragments. It needs an implementation

of a PagerAdapter to generate the

pages that the view shows.

VM – Virtual Machine
Is an emulation of a computer system.

Virtual machines are based on

computer architectures and provide

functionality of a physical computer.

Their implementations may involve

specialized hardware, software, or a

combination.

WebSocket
Is a computer communications

protocol, providing full-duplex

communication channels over a single

TCP connection. The WebSocket

protocol enables interaction between a

web client (such as a browser) and a

web server with lower overheads,

facilitating real-time data transfer

from and to the server.

ZRAM

Formerly called compcache, is a Linux

kernel module for creating a

compressed block device in RAM that

be used for swap or as general-

purpose RAM disk.

j

Zygote (Android)
Is a special process in Android which

handles the forking of each new

application process (which are regular

Linux processes). It is launched by the

Android runtime, which also starts the

first Virtual Machine (VM). The VM

then calls Zygote’s main() method

which causes Zygote to preload all

shared Java classes and resource into

memory.

a

Appendix B.

SocketService messaging protocol

This appendix is oriented to detail the description of the messages exchanged by the

SocketService messaging protocol. As already depicted the service communicates on a

Socket with the Cluster, on a WebSocket with the Rotary.

For what regards the Socket communication, each message is encoded in TLV (Type-

Length-Value) format as follows:

 Int32 message ID

 Int32 payload length

 Payload

The implemented messaging protocol, at current stage, prescribes the following messages

to be exchanged:

MESSAGE NAME ID PAYLOAD DESCRIPTION

SOURCE_CURRENT_ACTIVE 101 Source id: 0 = Media, 1 = Radio, 2 = Phone

Color combination data

COLOR_CURREN_ACTIVE 401 Background color start, background color end, primary
color, secondary color

Current media data

MEDIA_CURRENT_DATA 501 Artist | Album | Track name | length

MEDIA_CURRENT_IMG 502 Base64 encoded cover bitmap

MEDIA_CURRENT_TIME 503 Current track elapsed time

b

Current radio station data

TUNER_CURRENT_DATA 601 Station name | Track/Program name | Album name

TUNER_CURRENT_IMG_ 602 Base64 encoded cover bitmap

Current phone call data

PHONE_CURRENT_DATA 701 Name and Surname | Phone Number | Call state (-1 =
invalid, 0 unused, 1 = ringing, 2 = accepted)

PHONE_CURRENT_IMG 702 Base64 encoded contact image

PHONE_ELAPSED_TIME 704 Current call elapsed time

Current vehicle data (taken from the CAN bus)

CAR_SPEED 801 Current speed

CAR_GEAR 802 Current gear

CAR_TORQUE 803 Current torque

CAR_LONG_ACC 804 Current longitudinal acceleration

CAR_TRANSV_ACC 805 Current transversal acceleration

CAR_DOOR_LOCK_STATE 806

DOOR_LOCK_STATE_INVALID = -1
DOOR_LOCK_STATE_UNKNOWN = 0

DOOR_LOCK_STATE_AT_LEAST_ONE_DOOR_UNLOCKED = 1
DOOR_LOCK_STATE_AT_LEAST_ONE_DOOR_LOCKED = 2

DOOR_LOCK_STATE_INTERNAL_ZV_MASTER_SECURED = 3

CAR_DRIVER_DOOR 807

DOOR_SWITCH_STATE_INVALID = -1
DOOR_SWITCH_STATE_UNKNOWN = 0

DOOR_SWITCH_STATE_CLOSED = 1
DOOR_SWITCH_STATE_OPENED = 2

CAR_PASSENGER_DOOR 808

CAR_BEHIND_DRIVER 809

CAR_BEHIND_PASSENGER 810

CAR_TRUNK_DOOR_STATE 811

CAR_OIL_LEVEL 812 INVALID = -1, MINIMUM = 0,
25CL_OVER_MINIMUM = 1

CAR_INTERNAL_TEMP 813 Range [0, 50] ° C

CAR_EXTERNAL_TEMP 814 Range [-40, 85] ° C

CAR_ENGINE_TEMP 815 Range [-48, 144] ° C

CAR_ENGINE_OIL_TEMP 816 Range [-48, 170] ° C

CAR_DATA_TIME 817 HH:MM DAY, DD MONTH

c

The WebSocket implements the communication between the Rotary (acting

as a CLIENT) and the Infotainment (SERVER). It provides control

messages from the Rotary to the Infotainment and informational data in the

opposite direction by means of HTTP GET or POST methods. Here a list

each available message that at current implementation the protocol supports

(Notice: the server broadcasts updated information to the Rotary client in

the same format as GET commands):

 APP selection: These messages have been implemented in order to

o Notify the Rotary which application is being currently

displayed on the Infotainment after a GET request
CLIENT {“request”:”GET/APP/current_active}

SERVER {“code”:200, “request”, “GET/APP/current_active”,

“answer”:”media”}

o Notify the Infotainment that an application has been opened

by acting on the Rotary screen
CLIENT {“request”:”POST/APP/selected”,”parameters”:”nav”}

SERVER {“code”:200, “request”, “POST/APP/selected”, “answer”:”success”}

 SOURCE: Informs the Rotary which source is currently active

(among USB, TUNER, PHONE).
CLIENT {“request”:”GET/SOURCE/current_active}

SERVER {“code”:200, “request”, “GET/SOURCE/current_active”, “answer”:”TUNER”}

 MENU:

o Informs the Rotary that the drawer menu is active
CLIENT {“request”:”GET/MENU/current_active}

SERVER {“code”:200, “request”, “GET/MENU/current_active”,

“answer”:”media”}

o The Rotary informs the IVI that the drawer button (on the

Rotary itself) has been pressed. In this case, the IVI forwards

d

the command to the current active application in order to open

the drawer menu.
CLIENT {“request”:”POST/MENU/open”,”parameters”:””}

SERVER {“code”:200, “request”, “POST/ MENU / open”, “answer”:”success”}

 SHORTCUT: The rotary informs the Infotainment that a shortcut

has been used (this functionality is currently under implementation).
CLIENT {“request”:”POST/SHORTCUT/next”,”parameters”:””}

SERVER {“code”:200, “request”, “POST/ SHORTCUT / next”, “answer”:”success”}

 COLOR: Rotary requests current color combination to adjust its

layout colors consistently with selected ones on the Infotainment.
CLIENT {“request”:”GET/COLOR/current_active}

SERVER {“code”:200, “request”, “GET/ COLOR /current_active”,

“answer”:{”background_color_top”:”#AARRGGBB”,

“background_color_bottom”:”#AARRGGBB”, “primary_color”:”#AARRGGBB”,

“secondary_color”:”#AARRGGBB”}}

 MEDIA: These messages are exchanged in order to provide In-

Vehicle Infotainment data repetitions.

o Rotary requests current media being played data
CLIENT {“request”:”GET/MEDIA/current_data}

SERVER {“code”:200, “request”, “GET/ MEDIA/current_data”,

“answer”:{“artist”:”…”, “album”:”…”, “track”:”…”,

“total_time”:”milliseconds_LONG”, “time”:”milliseconds_LONG“}

o Rotary requests current media time
CLIENT {“request”:”GET/MEDIA/current_time }

SERVER {“code”:200, “request”, “GET/ MEDIA/current_time”,

“answer”:milliseconds_LONG}

o Rotary requests current media cover image
CLIENT {“request”:”GET/MEDIA/current_image }

e

SERVER {“code”:200, “request”, “GET/ MEDIA/current_image”,

“answer”:{“file_name”:current_media_cover.png, ”file_data”:base64 encoded

image}

 TUNER: Same as Media messages, but for TUNER data.

o Rotary requests current tuner data
CLIENT {“request”:”GET/TUNER/current_data}

SERVER {“code”:200, “request”, “GET/ TUNER /current_data”,

“answer”:{“rds”:”…”, “station_name”:”…”, “frequency”:”…”}

o Rotary requests current tuner station cover
CLIENT {“request”:”GET/ TUNER /current_image }

SERVER {“code”:200, “request”, “GET/ TUNER /current_image”,

“answer”:{“file_name”:current_tuner_cover.png, ”file_data”:base64 encoded

image}

 PHONE: Same as Media messages, but for PHONE data.

o Rotary requests current phone data
CLIENT {“request”:”GET/PHONE/current_data}

SERVER {“code”:200, “request”, “GET/ PHONE /current_data”,

“answer”:{“name”:”…”, “number”:”…”, “time”:”…”,

“phone_call_state”:”[accepted | ringing | declined | invalid]”}

o Rotary requests current media time
CLIENT {“request”:”GET/ PHONE /current_time }

SERVER {“code”:200, “request”, “GET/ PHONE /current_time”,

“answer”:milliseconds_LONG}

o Rotary requests current call contact image (if any)
CLIENT {“request”:”GET/ PHONE /current_image }

SERVER {“code”:200, “request”, “GET/ PHONE /current_image”,

“answer”:{“file_name”:current_phone_image.png, ”file_data”:base64 encoded

image}

References

[1] Manfred Broy, Ingolf H. Kruger, Alexander Pretschner, Christian Salzmann:
Engineering Automotive Software

[2] JohnRobert Wilson, Koji Hamamoto, Keizo ISHIMURA, Robert New:
Development Methodology: Keeping Users in Mind – UX (User Experience).

[3] https://www.nytimes.com/2015/09/27/business/complex-car-software-becomes-the-
weak-spot-under-the-hood.html

[4] https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/
rethinking-car-software-and-electronics-architecture

[5] Telematics update (November 2013). The automotive HMI Report 2013 Extract

[6] T.A. Dingus, S.G. Klauser, V.L. Neale, A. Petersen, S.E. Lee, J. Sudweeks, M.A. Perez,
J. Hawkey, D. Ramsey, S. Gupta, C. Bucher, Z.R. Daersaph, J. Jermeland, R.R. Knipling.
Virginia Tech. Transportation Institute – Sponsored by National Highway Traffic Safety
Administration (2006). 100-Car Naturalistic Driving Study - Phase 11 - Results of the 100-
Car Field Experiment

[7] http://about.att.com/newsroom/it_can_wait_expands_to_smartphone_
use_while_driving.html

[8] National Highway Traffic Safety Administration," Department of transportation", pp.
20-21 (2012). Visual-Manual NHTSA Driver Distraction Guidelines for In-Vehicle
Electronic Devices

[9] Ksenija Udovicic, Nenad Jovanovic, Milan Z. Bjelica. In-Vehicle Infotainment System
for Android OS: User Experience Challenges and a Proposal

[10] ESoP 2005. European Statement of Principles on the Design of Human Machine
Interaction.
http://www.esafetysupport.info/0C59F991-A788-45CC-B764-F0A4C38BB61E/
FinalDownload/DownloadId-FE5154B9A8ADBE16EA15F4E9E49E1473/0C59 F991-
A788-45CCB764-F0A4C38BB61E/download/working_groups/esop_hmi_ statement.pdf.

[11] Nicolas Navet, RTaW Bertrand Delord, PSA Peugeot Citroën Markus Baumeister.
Virtualization in Automotive Embedded Systems : An outlook

[12] http://www.embedded-computing.com/embedded-computing-design/ivi-system -
sandboxing-the-next-frontier-for-in-vehicle-upgrades

[13] http://www.archer-soft.com/en/blog/what-you-need-know-about-hmi-development

[14] Ksenija Udovicic, Nenad Jovanovic, Milan Z. Bjelica. In-Vehicle Infotainment System
for Android OS: User Experience Challenges and a Proposal

[15] https://www.intel.com/content/dam/www/public/us/en/documents/brief/ automated-
driving-android-v8-business-brief.pdf

[16] from Wikipedia: In-Car infotainment

[17] https://www.chimerarevo.com/guide/android/kernel-linux-android-140263

https://www.nytimes.com/2015/09/27/business/complex-car-software-becomes-the-weak-spot-under-the-hood.html
https://www.nytimes.com/2015/09/27/business/complex-car-software-becomes-the-weak-spot-under-the-hood.html
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/%20rethinking-car-software-and-electronics-architecture
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/%20rethinking-car-software-and-electronics-architecture
http://about.att.com/newsroom/it_can_wait_expands_to_smartphone_%20use_while_driving.html
http://about.att.com/newsroom/it_can_wait_expands_to_smartphone_%20use_while_driving.html
http://www.archer-soft.com/en/blog/what-you-need-know-about-hmi-development
https://www.chimerarevo.com/guide/android/kernel-linux-android-140263

[18] https://www.qualcomm.com/snapdragon/processors/820-automotive

[19] https://canbuskits.com/what.php

[20] http://www.qnx.com/developers/docs/qnxcar2/index.jsp?topic=%2Fcom.
qnx.doc.qnxcar2.system_architecture%2Ftopic%2Fneutrino.html

[21] https://developer.android.com/guide/topics/providers/content-provider-basics

[22] https://developer.android.com/topic/libraries/data-binding/#java

[23] Jakob Nielsen (1993), “Excerpt from Usability Engineering”, “Response Times: The 3

Important Limits”. http://www.nngroup.com/articles/response-times-3-important-limits/

[24] Hp (March 2015). “Failing to meet Mobile app user expectations”

[25] https://developer.android.com/studio/command-line/dumpsys

https://developer.android.com/guide/topics/providers/content-provider-basics
https://developer.android.com/topic/libraries/data-binding/#java
http://www.nngroup.com/articles/response-times-3-important-limits/

