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Abstract

This work presents a methodology of design and control in real time using
low cost hardware and working with a real robot and its simulated model in
a coordinated way.
Since the robot was already built, the methodology starts in the control phase
using Matlab R© and Simulink R© as integration platfroms, which are widely
used in engineering design and control tools.
As robotic prototype, the robot SIDEMAR of 2 degrees of freedom is used,
which has been designed as a service robot prototype.
In addition, the second step of the project will present a 3 DoF robotic
arm designed and build totally from the beginning. The methodology of the
second robot starts with the design phase using 3D CAD tool Solidworks
which is mostly used as a design interface for mechanical projects. However,
as a second phase, the simulation and control of the 3 DoF robotic arm
have been done using ROS (Robotic Operating System), which is the most
powerful tool for simulating and analysing the behaviour of a designed robot
even before building the real prototype.
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Chapter 1

Introduction

1.1 Background

A robotic arm is a mechanical structure designed in a similar way as human
arm, it is usually programmable to replace the functionality of human arms
in many different fields such as services or industrial fields. The robot arm
might be a full mechanism itself or a part of a more complex robots (ex.
Humanoid Robots). The manipulator are made up by links, the links of
the manipulator are connected by joints (Motors), the joints can be revolute
joints (type R joints) that perform rotational motions or linear joints (type L
joints) that perform linear displacement motions. Usually each robotic arm
has an end-effector at its end, the end-effector has a similar functionality to
the human hand that is ready to do several tasks in the service fields such
as gripping, placing, cleaning, and other tasks, and in the industrial fields
such as welding, assembling, painting. For example, robot arms in automo-
tive assembly lines perform a variety of tasks such as welding and placement
during assembly.
Nowadays, robots have gained an increasing of interests from the research
areas and industries due to the benefits and facilities they provide to the
workspace. Such robot are programmed to continuously perform changing
their tasks in unstructured human environments. In coexistence way, when
the robot and the human share the same workspace, and in cooperation way,
when the robot and the human share the same tasks[16].
As robotic arms are able to work autonomously, they require wide acknowl-
edgement in many different engineering fields such as mechanical engineering,
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electronics engineering, computer science and many others.
Based on these technologies, the robotic arms in this project have been built
for study cases of actuators, sensors and control. The arms have been de-
signed to be service robots for the welfare benefits, excluding manufacturing
operations, so it is a system that cannot be used in the industries or product
manufacturing.
The following chapters will explain the reason behind working on these
projects and will also reveal the objectives and the stages of control work and
development process followed during the working time. Finally, the parts of
this document will comment how the works carried out are organized.

1.2 Motivation

This research is based upon the work on control of 2 degrees of freedom
robotic arm already designed and assembled using different sensors and dif-
ferent controllers that potentially can be used as a service robotic arm for
multi-applications and tasks.
For the same purpose a new robot will be designed and controlled with 3DOF
to perform a more complex tasks and operations. This work was developed
within the Department of System Engineering and Automation at Universi-
dad Carlos III de Madrid - Spain and with the collaboration of Politecnico
di Torino - Italy.
The main idea arises from the need to measure the variations of the angle of
the terminal part of the robotic arm constituted by two metal(Aluminium)
links, each driven by a DC servomotor.
For this purpose, it is necessary to use the appropriate electronics able to
perform these measurements easily and reliably.
The sensors that were used to this project were 9DOF Razor IMU sensor
equipped with gyroscope that allows measuring the variation of the angles
of the system. Moreover, the sensor must be connected to a microcontroller
that will be the interface between the process and the monitoring software.
The first available choice was the use of the low-cost STM32F4 Discovery
microcontroller that supports up to 140 I/O ports and however its price is
more or less 23 euros. The second choice is the use of Arduino Mega 2560
that has 54 digital I/O pins and up to 16 Analog inputs and its price is more
or less 50 euros. both controllers offer integration with the chosen software
tool (Matlab R© and Simulink R©).
Matlab-Simulink were chosen as the software to interact with the hardware,
since they offer a high level language and an interactive environment for
numerical calculation, visualization and programming, the language, tools
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available in this software allow us to find different solutions for various cases.
Moreover, this software can be used in a wide variety of application, such as
signal processing and communications, image and video processing, control
systems, tests and measurements. However, the use of Simulink R© tool, an
environment of block diagrams are available for simulations and model-based
design. it supports design and level simulation systems, automatic code gen-
eration and continuous testing and verifications of embedded-systems. In
addition, it offers graphical representations of the results simulation to carry
out more analysis.
In addition, ROS (Robot operating system) has been used to simulate and
control the 3 DoF robotic arm. This software is a powerful tool that al-
lows analysing the behaviour of the designed robot in real simulations. This
way we can ensure safety for the human since we can totally know how the
behaviour of the robot will be in real-time. However, ROS supports graph-
ical interpreting of the results and it provides the user with all the required
details regarding poses, velocities and actions of the robot.

1.3 Objectives

The main objectives are listed below:

1. Study of hardware possibilities for the control of 2 DoF robotic arm
using Matlab Simulink R©

• Study the possibility of using Arduino Mega 2560 with Simulink R©

to control the 2 DoF robotic arm.

2. Study of control strategies for the control of 2 DoF robotic arm.

3. Design and construction of a 3 DoF robotic arm using Solidworks.

4. Simulations and Control of the 3 DoF robotic arm using ROS (Robot
Operating System) and Arduino.
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1.4 Steps of the Work

The thesis work is composed of two main parts, the first part is about the
control of a 2 DoF robotic arm called SIDEMAR robot already existing in the
Robotic Lab at Universidad Carlos III de Madrid. The first step of work was
to control the robot arm using a Simulink model done by a previous student
and STM32f4 Discovery microcontroller with some changes regarding the
hardware connections and the data type of the system’s input/output. The
first step has been done to make sure that the robot hardware is working
properly; during the first step we found out that the driver of the lower
motor was not working, so we had to do the work considering the upper
motor because eventually the control work should be done for educational
purposes. The second step of work is about the use of an Arduino Mega 2560
and Simulink Matlab in order to control the SIDEMAR robot with different
control strategies (PI, PID, Fuzzy Logic Control and Adaptive controller).
The first point in the second step is to read the sensors; two sensors have been
used in the system, the first one is 12-bit programmable magnetic position
sensor responsible for measuring the angular position of the robot’s motor,
and the second sensor is 9DOF Razor IMU to measure the angular velocity
of robot’s links. Then after reading the sensors, the first control strategy
has been done using Simulink standard PID controller. However, to check
the effect of the Derivative term in practice, a designed PI controller using
Simulink blocks has been done, and finally the results of both controllers have
been recorded and compared. The third control strategy has been done using
Fuzzy Logic Control; the same control loop of PID controller has been used
but the PID controller was replaced by Fuzzy Logic Control Simulink block,
the Fuzzy Logic Control is programmed logically according to the error signal
e(t) of the system. The last control strategy has considered the Adaptive
Control. At the beginning, the problem of Adaptive control in Simulink
was storing samples of the input u(t) and the output y(t) periodically in
an array, because the stored samples have to be used in the least square
code (MATLAB, C, C + + or FORTRAN) written within a Simulink block
called S-function. The solution was to use Recursive Least Square Estimator
Simulink block that receives the input and output of the plant and produce
the values that define the control parameters. The duration of the first part
of the work was almost three Months (March 2018 to May 2018).
In the second part of the work, the idea was to design a 3 DoF robotic arm.
Firstly, a quick study of the robot structure and dimensions has been done on
the papers. Then, 3D design of the robot has been done using Solidworks.
Solidworks allows us to see the movement of the robot’s links when the
complete assembly of the robot is ready. Moreover, when the design of the
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robot was satisfying, the robot parts have been sent to the Laboratory of
Materials at Universidad Carlos III de Madrid for execution. Meanwhile, a
study for integrating and simulating the robot arm in ROS (Robot Operating
System) has been done. To do the simulation, the real simulator Gazebo has
been used, and this work has been done by connecting Gazebo with ROS to
control the robot. For the control of the robot on Gazebo, a standard PID
controller has been used. Furthermore, Moveit! has been used in order to
do the motion planning of the robotic arm. After that, the robot hardware
was totally available in the Robotic Lab, so the step was to build up the
real robot and to connect the Arduino Mega 2560 microcontroller with the
motors and drivers. The last step of the work was to control the real robot
using ROS and Arduino IDE; since we were out of time, a fast open loop
control has been done to make sure that the robot’s connections are correctly
done and the control works. The duration of the second part of the work was
almost 3 months (June 2018 to August 2018).
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Chapter 2

General Description of
SIDEMAR Robot

This chapter will briefly discuss the elements that make up the system and
the characteristic of the software used.

2.1 Hardware Description

2.1.1 Description of SIDEMAR Robot

The SIDEMAR robot exists in the Robotic Lab at Universidad Carlos III de
Madrid has been designed and implemented in a way that allows its usage as
a service robot. However, the robot’s material has been carefully chosen in
order to keep the robot’s weight light but at the same time it should have a
high resistance to external forces that the robot could expose to. Moreover,
the experimental platform was designed to carry out direct, inverse and dy-
namic studies.
To satisfy the characteristics, the used material that build up the links of
the robot was Aluminium Alloy, because it has a reduced weight compared
to other materials in the market. However, its stiffness allows it to handle
external forces and the assembly of the robot can be implemented and oper-
ated easily since this material has a sweet metallic structure which makes it
a good material to deal with.
The robot is divided into three main parts, and these parts assembled to-
gether to perform the final platform [1].
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1. Base Link: The base of the robot is fixed on a table. It is intended to
hold the entire robot (Lower Link and Upper Link) with their motors.
However, the base is divided into two parts, the part that is fixed on
the table, this part has been used to carry and resist all the external
forces that the robot could be subjected to, and a part that holds the
Lower Link’s motor of the robot [1].

Figure 2.1: Base of SIDEMAR Robot

2. Lower Link: The Lower Link is made by two circular Aluminium
plates connected by 4 hollow Aluminium tubes. The DC motor of the
Lower Link is found on its lower end and it is docked to the base of the
robot; and on its higher end, the DC motor of the Higher Link is fixed.
The lower link has a restriction in its functionality which it can’t rotate
360◦, this makes the control of the lower arm even more difficult. The
robot’s lower link is shown in Figure 2.2 [1].
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Figure 2.2: Lower Link of SIDEMAR Robot

3. Higher Link: The higher link is also made up by two circular Alu-
minium plates connected by 4 hollow Aluminium to reduce the robot’s
weight. The DC motor that controls the rotation of the higher link is
found on its first end and docked on the higher end of the Lower Link,
and the last end is set to be free. The higher link is shown in Figure
2.3 [1].
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Figure 2.3: Higher Link of SIDEMAR Robot

2.1.2 STM32f4 Discovery Micro-controller

STM32f4 Discovery belongs to the family of low-cost micro-controllers, based
on ARM Cortex -M4 32-bit RISC high performance core operates at fre-
quency up to 168 MHz. This micro-controller also features Floating Point
Unit (FPU) single precision which supports all ARM single precision data-
processing instructions and data types [2].

Figure 2.4: STM32f4 Discovery micro-controller

However, this controller incorporates high-speed embedded memories (Flash
memory up to 1 Mbyte, up to 192 Kbytes of SRAM), up to 4 Kbytes of backup
SRAM, which is very applicable for our application to run the model that
contains the SimMechanics Model that requires a large hardware mem-
ory when the system runs in External Mode. Moreover, it offers an extensive
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range of enhanced I/Os. [2]

Peripheral Features
Operating Voltage 1.8V to 3.6V

Flash Memory 1 Mbyte
Communication interfaces USB, I2C, I2S, CAN, SPI

Cristal Oscillator 32 KHz + 4 to 26 MHz

Table 2.1: Main characteristics of STM32F4 Discovery micro-controller

2.1.3 Arduino Mega 2560 microcontroller

Arduino Mega 2560 also belongs to the family of low-cost micro-controllers.
Based on the ATmega2560, it features a communications with other micro-
controllers and with computers. Arduino Mega 2560 offers high number of
facilities regarding the large number of digital and PWM (Pulse With Mod-
ulation) I/Os available in it. However, it differs from all preceding micro-
controllers in that it doesn’t use the FTDI USB-to-Serial driver chip. instead,
it features the ATmega8U2 programmed as USB-to-Serial converter (Arduino
Mega Manual [3]).

Figure 2.5: Adruino Mega 2560 micro-controller

Moreover, Arduino has enough information available and offers integra-
tion with chosen software Matlab-Simulink. On contrary, the amount of
memory available in this controller (256 Kbyte) makes some restrictions re-
garding the simMechanics model available in the complete model of the sys-
tem since it requires a large amount of memory (Arduino Mega Manual [3]).
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Peripheral Features
Operating Voltage 5V

Input Voltage(Limits) 6-20 V
Digital I/O pins 54(of which 14 provide PWM output)

Analog Input Pins 16
Flash Memory 256 Kbyte of which 8 Kbyte used by Bootloader

SRAM 8 Kbyte
EEPROM 4 Kbyte

Clock Speed 16 MHz

Table 2.2: Main Characteristics of Arduino Mega 2560 microcontroller

2.1.4 Driver

The driver used is MCDC2805, it was designed for FAULHABER DC micro-
motors. In combination with the reliable IE2-512 encoder, positioning res-
olution is up to 0.18 degrees can be achieved even at very low speeds. The
motion controller is based on a powerful 16-bit micro-controller with excel-
lent filtering quality (MCDC 2805 Datasheets).

Figure 2.6: FAULHABER MCDC2805 motor driver

This intelligent motion controller performs the following tasks:

1. Velocity Control

2. Velocity Profiles

• Ramping, triangle, trapezoidal and more complicated velocity pro-
files

3. Positioning Mode

4. Torque controlling

5. Saving and running program sequences
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2.1.5 Sensors

12-bit Programmable Magnetic Position Sensor AS5045B

As a general description of this sensor, this sensor measures the angular
position through a contactless magnetic position sensor. It is able to measure
angular positions for a full revolution of 360◦ [4].
The measurements of the absolute angles provide a current indications of the
angular positions of magnets with 4096 positions per resolution. The digital
data is available as a PWM signal that can be read directly by the used
micro-controller [4].
This sensor is compatible for usage in several applications such as elevators,
robotics, automation, motor control and optical encoder replacement.

Figure 2.7: 12-bit programmable Magnetic Position Sensor AS5045B

9DOF Razor IMU

To achieve the correct measurements of the angles of rotation, the free end
of the Upper link and the base docked end of lower link have two Razor IMU
sensors connected.

Figure 2.8: 9DOF Razor IMU sensor
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The 9DOF Razor IMU incorporates three sensors - an ITG-3200 (system
3-axis electromechanical micro gyroscope), ADXL345(3-axis accelerometer)
and HMC5883L(Triple-axis magnetometer) to give nine measurements de-
grees inertial. The output of all the sensors are processed by an ATmega328
of a board and output through a serial interface (9 Degrees of Freedom -
Razor IMU Datasheet).

2.2 Software Description

2.2.1 Matlab

Matlab R© figure 2.9 is a high performance technical calculation environment
for numerical calculation and visualization. It integrates numerical analysis,
matrix calculation, signal processing and graphics in an easy-to-use environ-
ment, where the problems and the solutions are expressed as they are written
mathematically, without the traditional programming[5].
With this software we are able to communicate with different hardware and
to analyse, calculate and find different solutions to different problems numer-
ically and in a very easy and interesting way [5].

Figure 2.9: Matlab R© Logo
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2.2.2 Simulink

In this project, Simulink R© is the working interface and the main program-
ming software used. It allows us to simulate, generate automatic codes,
continuous testing and verify our embedded systems. Also it is a data flow
graphical programming tool for modelling and simulations of multi-domain
dynamics systems[6].

Figure 2.10: Simulink Library Browser

However, it provides graphical and numerical representations of the em-
bedded systems. This software is integrated with Matlab R© which allows the
user to export and import data from and to Matlab R© algorithms. The blocks
library supported by Simulink R© are customizable and can be edited by the
user to fit their applications[6].
Moreover, Simulink R© offers supports packages for different kinds of micro-
controllers (Arduino Family, ARM Cortex) which allow us to interact, read,
write, and to generate automatic code and then to compile the entire system
into the used hardware.

Figure 2.11: Simulink R© Support Packages for Arduino Hardware
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2.2.3 Faulhaber Motion Manager

Faulhaber Motion Manager is a software intended to configure and operate
FAULHABER motors. The control of the system motors can be connected
directly into the computer via different interfaces. The software provides a
user interface with the connected motors and it allows changing, reading and
reloading parameters (Faulhaber Motion Manager Datasheet[7]).

However, with this software we are able to change and modify the pa-
rameters of the driver, and to change the mode of the motor in such a way
to keep all the parameter compatible with the hardware and motors used in
the system.

Figure 2.12: Faulhaber Motion Manager connections with the hardware

To summarize, this software is designed for the following tasks[7]:

• The configurations of device functionalities and parameters.

• Devices operations via various interfaces (USB, CAN, etc..)

• Input command for motor control.

• Creating programs for motor configurations.
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• Providing dynamic setting for controlling the parameters of the con-
trollers.

• Analysing graphically the performance of the drivers.
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Chapter 3

Hardware Connections and
Control Tests with STM32f4
Discovery Microcontroller

3.1 General Overview

This chapter explains the Hardware connections and control tests of the real
robot with the STM32f4 discovery micro-controller, the main objective of
this work is to let the robot’s arm follow a reference signal required (in our
case we used a square waveform).
This work has been done in two stages:

• Hardware Connections: In this stage all the hardware required (driver,
9DOF razor IMU, 12-bit magnetic position sensor, power supply) to
perform the control test have been connected to the micro-controller.
Moreover, the driver required an external circuit to perform a voltage
conversion from 3 to 5 Volts, since the driver’s voltage that controls
the speed is 5 Volts. Figure 3.1 shows the entire system connections
with the STM32f4 micro-controller.
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Figure 3.1: Hardware connections with STM32F4 micro-controller

• Control Models: The Simulink R© control model for this micro-controller
is done by a previous student, some changes have been required regard-
ing the received data types of the sensors and the frequency of the entire
system. The complete control model is divided into two sub-models:

– The first sub-model is embedded in the micro-controller and it
is responsible for receiving data from the sensors and transmit-
ting data to the micro-controller through USB VCP STM32F4
Simulink R© blocks.

Figure 3.2: Simulink R© First Sub-model
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– The second sub-model is in charge of controlling the robot; this
sub-model connects the simulation with the real robot, the data
transmitted by the control blocks are received in this sub-model
to close the loop, then the error signal (which is the difference
between the reference signal and the data received by the sensors)
is the input to the standard PID controller. The output of the
PID controller is received by a zero cross comparator Simulink
block that produces a digital signal 0 or 1 to control the direction
of the motor and an absolute value Simulink block that transmit
data to control the speed of the motors.

Figure 3.3: Simulink R© Second Sub-model

3.2 Hardware Connections

3.2.1 Connections with the Driver

Faulhaber MCDC2805 driver has three main connections with the micro-
controller in order to control the motor’s speed and direction.
The three connections are the following:

• Analog Input signal(AnIn): This signal is connected to the power pin
(5 V) of the micro-controller, the functionality of this pin is to control
the motor’s speed.
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Figure 3.4: Driver connection with STM32f4 micro-controller

• Fault Output: This signal is Digital signal input to the driver that
reads values 0 or 1, when signal reads the value 0, the motor rotates
clockwise, otherwise, the motor rotates counter clockwise.

• AGND: is the Analog ground signal and it is simply connected to the
ground pin of the micro-controller.

3.2.2 Connections with the Sensors

The sensors are connected due to their Datasheets. Each pin of the sensor
is intended to receive and transmit data to the micro-controller.
The sensors are powered up by the power pins of the micro-controller (3.3 V
for the 9DOF razor IMU and 5 V for the 12-bit magnetic position sensor).
Moreover, the magnetic position sensor requires the following more 3 signals
to be connected[4]:

• SCK: Clock frequency signal provided by the micro-controller to the
sensor.

• Chip Select (CSn; active low) selects a device within a network of
AS5045Bs and initiates serial data transfer when the logic signal is
low. When CSn is set to high the serial data transfer terminates.
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• DO: Digital output, is the Data output of synchronous serial interface,
this signal is a Pulse With Modulated output(PWM), whose duty cycle
is proportional to the measured angle. For angle position 0 to 4094.

Figure 3.5: Sensors connections with the micro-controller

3.3 Control Tests and Results

Once the hardware connections are done, the Simulink R© blocks for sensors
and actuators that allow to perform movements and sense the position of the
model are used.
These blocks allow us to receive data from the sensors and to transmit them
into another model that is intended to do the control of the real robot.
Control Blocks related to the hardware that connects the simulation with
the real robot are used to control the real robot.
In our case, a standard PID controller as shown in Figure 3.6 has been used
to control the robotic arm.
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Figure 3.6: Simulink full model with Hardware Blocks

The model of the robot is included in the sub-system1 block.

Figure 3.7: SIDEMAR model in Sim-MechanicsTM

The outputs of the micro-controller are received by the Host Serial Rx
comes from the USB connection in order to close the control loop.
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However, the outputs of the PID block is connected to DC motors through
an Analog signal ranging from 0-3.3 Volts, which is the working range of the
I/O signals of the micro-controller. Moreover, a zero crossing comparator
produces a digital signal 0 or 1 to activate the switch to change the motor
rotation direction, which is connected to the fault signal of the driver.
To test the performance of the system, the control test of the real robot has
to be done.
Figures 3.8a and 3.8b show the response of the arm to the reference signal.
When the reference signal is low level the upper arm of the robot follows it
until the error is almost zero as shown in Figure 3.8a, and the same response
happens when the reference signal is high level, the upper link of the robot
changes its direction to follow the reference signal.

(a) Reference signal is low

(b) Reference signal is high

Figure 3.8: Robotic Arm Response
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Chapter 4

Hardware Connections,
Simulink Blocks and Control
Strategies with Arduino Mega
2560

4.1 General Overview

This chapter explains in details the connections of the Hardware SIDEMAR
with Arduino mega 2560, also the Simulink R© blocks used in order to read
the data coming out from the magnetic position sensor using the SPI li-
brary. Moreover, the different control strategies (Standard PID controller,
PID control design using Simulink R© blocks, Fuzzy Logic Controller, Adap-
tive Controller) used in order to control the robotic arm.

4.2 Hardware Connections with Arduino Mega

2560

The connections of Arduino mega 2560 with the Driver and the Magnetic
Position Sensor have been done with a way to keep the hardware working in
the correct mode also in real-time.
As Arduino mega 2560 doesn’t support Analog output, the characteristic of
the driver that has the Analog Input (AnIn) has to be configured in order to
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be able to control the speed of the motor. This characteristic is provided by
the software FAULHABER MOTION MANAGER that allows us to configure
the characteristics of the driver, whose able to work under several conditions
and modes.
Figure 4.1 shows the characteristics of the Command Source(SOR) changed
in order to provide the driver with PWM signal supported by Arduino Mega
2560

Figure 4.1: MCDC 2805 driver’s Configuration

On the other hand, as the Magnetic Position Sensor provides two digital
output signals A and B; these signals can be used in order to read the data
from the sensor, the logic states of the signals depend on the CSn (Chip
select signal). If the chip select signal CSn is at logic high when the system
is powered up, the two incremental outputs A and B will remain at logic
high until the chip select signal CSn goes into logic low state. When the
two incremental outputs A and B are at high logic, the control requests data
from the sensors. The direction of the motor depends on the state of the two
signals, when signal A leads signal B, the direction is clock-wise; otherwise,
the direction of the motor is counter clock-wise[4]. Figure 4.2 shows the In-
cremental Modes of A and B.
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Figure 4.2: Incremental Outputs A and B modes[4]

After testing the Simulink R© blocks shown in Figure 4.3 (where pin8 is
CSn signal, pin 32 and 34 are signals A and B respectively), this method has
been avoided due to the problem of zero-position, because when the robot
arm moves and then the system is stopped, we have to manually calibrate
the position of the arm into the programmed zero-position shown in Figure
4.2.

Figure 4.3: Simulink Blocks for Incremental Outputs A and B

In order to avoid manual calibration, the solution was to read the data
from the sensors using the SPI library, since Arduino mega 2560 supports
SPI (Serial Peripheral Interface) blocks that allow reading and writing to SPI
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devices connected to Arduino R© hardware, this method has been followed.

Typically, the Arduino microcontroller (Called Master device) initiates
the communication and supplies the clock to the sensor (Called Slave device)
which controls the data transfer rate[8].
To clarify, in the SPI system there are 4 signal lines[8].

• Master Out, Slave In(MOSI) - which is the data going from the master
to the slave(From micro-controller to the sensors).

• Master In, Slave Out(MISO) - which is the data going from the slave
to the master(data received by micro-controller from the sensors).

• Serial Clock(SCK) - when this toggles both the master and the slave
sample the next bit.

• Slave Select(SS) - this tells a particular slave to go ”active”.

Figure 4.4 shows the way the data is exchanged as one byte is sent.

Figure 4.4: SPI data exchange
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However, these pins are multi-provided by the Arduino mega 2560 as
shown in Figure 4.5. ICSP header can be also used (the one shown inside
the red box in Figure 4.5).

Figure 4.5: Arduino Mega 2560 SPI pins

According to the magnetic position sensor Datasheet, the 4 signals to be
connected with the SPI pins are:

• Vss: Ground or Negative supply Pin connected to the ground pin of
the micro-controller.

• VDD5V: Positive supply pin (5V) connected to the 5Volts pin of the
micro-controller.

• DO: Digital Output of the sensor is connected to the MISO(Master In
Slave Out) pin of the micro-controller.

• CLK: Clock Input to the sensor is connected to the SCK of the micro-
controller.

• CSn: Chip Select is connected to the SS(Slave select) pin of the micro-
controller.

Figure 4.6 shows the connections of the magnetic position sensor, driver and
the power supply with the micro-controller.
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Figure 4.6: Arduino Mega 2560 connections with the Hardware

However, to make sure that the position sensor is correctly working. A
fast manual test has been done by moving the upper robotic arm manually
and see how the position sensor is responding due to the rotation of the arm.
Figure 4.7 shows the response of the sensor to the manual random movement
of the upper arm, we can see that range of working angle is between 0 and
4094 (0◦ to 360◦)

Figure 4.7: Magnetic position sensor response to manual random test
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4.3 Control Strategies with Arduino Mega 2560

and Simulink R© Matlab

For controlling the 2 DoF robotic arm, a Simulink R© model has to be de-
signed. For this, Simulink R© offers a support packages for Arduino R© hard-
ware, these packages contain I/O blocks, SPI library, Wireless blocks and
Ethernet blocks that allow to work on different projects with various pur-
poses.
The designed model contains blocks related to I/Os of the system, the com-
munication interfaces with the control model of the robot and other hardware
issues. The micro-controller is connected to the control model of the robot
via USB.
The input block includes reading data from the encoder (Slave device) using
the SPI block as shown in Figure 4.8.

Figure 4.8: Read data via SPI block from Magnetic position sensor

The output blocks include a PWM signal and Digital Output signal to
the speed and direction control of the robot’s DC motor as shown in Figure
4.9
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Figure 4.9: Output Blocks to Arduino Mega 2560 micro-controller

Once the inputs and the outputs of the system are defined, the data type
of the system have to be similar. So, data type conversion blocks have been
added to the input of the model to convert a uint16 data type comes out
from the sensor into a double data type to be the inputs of the controller.
Moreover, to test the system, a standard PID controller in Simulink has been
used as shown in Figure 4.10

Figure 4.10: Control Model with Standard PID Controller
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The aim of this test was to check if the arm is able to follow the square-
wave reference signal used in the Simulink Model in Figure 4.10.

4.3.1 Experimental Results with Standard PID Con-
troller

The result of the Simulink standard PID controller is shown in Figure 4.11.

Figure 4.11: Responce of the Upper Arm to the Standard PID controller

The Simulink standard PID controller uses the compensator formula P +
I 1
s

+D N
1+N

(where N is the filter coefficient), the compensator formula has a
low-pass filter on its derivative term. The low-pass filter used in the standard
PID controller is to smooth the controller output signal (CO). In the next
section, a designed PID controller is used. The Derivative term of the PID
controller is set to zero, so the controller has been working as PI controller.
The results of both tests are compared in the next section.
The designed PID controller follows the formula:

Kpe(t) +Ki

∫ t

0

e(t)dt+Kd
de(t)

dt

Figure 4.12 shows the Simulink R© blocks for the designed PID controller
with standard discrete Simulink R© blocks.
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As Kp, Ki and Kd are constants, a standard gain block have been used in
Simulink R©, and a discrete integrator and derivative blocks are used to the
integration and derivative of the error respectively.

Figure 4.12: Control system with designed PID controller

4.3.2 Experimental Results with Designed PID Con-
troller

Figure 4.13 shows the results of the control system with designed PID con-
troller when the Derivative term is set to zero.
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Figure 4.13: Upper Arm response to the designed PID controller

Comparing the results of both tests, we can see that the PID controller
has somewhat shorter rise time and smaller overshoot. The comparison is
shown in Figures 4.14a and 4.14b

(a) PID (b) PI

Figure 4.14: Response Characteristics to PID and PI Controllers
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4.4 Fuzzy Logic Control

4.4.1 General Overview

The purpose of this work is to build a fuzzy logic control model for a dy-
namic system on a robotic arm example. The software used in this work was
Matlab R© 2018a with Simulink R© environment that provides a Toolbox for
the Fuzzy Logic Control.
Fuzzy controllers are used in many different fields to control products such
as autonomous robots, washing machines, video cameras and many other
applications. Fuzzy Control is based on fuzzy logic that is simply described
as controlling with words rather than controlling with numericals values. It
is generally defined as ”control with sentences rather than equations”; How-
ever, it is based on defining logic inputs with conditions ”if” and producing
outputs according to the pre-defined inputs[9]. For example, we can take a
typical fuzzy controller as the following:

• If error e(t) is Negative then the output is A.

• If error e(t) is Positive then the output is B.
...

These logic conditions are called rule base. These rules are defined with
the conditions if-then format, The if-side refers to condition and then-side
refers to Conclusion[9]. The purpose here is to define different conditions
and situations for the input error and produce the output that controls the
motor’s directions and speed according to the pre-defined input.
As Fuzzy controllers are very simple conceptually. They consist of 3 stages.
An input stage, a processing stage and an output stage as shown in Figure
4.15.
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Figure 4.15: Stages of Fuzzy Logic Controller

The input stage maps sensors or other inputs, to the appropriate mem-
bership functions and truth values. The processing stage invokes each ap-
propriate rule and generates a result for each, then it combines the results of
the rules. Finally, the output stage converts the combined results back into
a specific control output value.

4.4.2 Rules, Conditions and Simulink Blocks

Our Fuzzy control takes the error signal e(t) = Yr−Yp as input and produces
the voltage and direction as output.

Figure 4.16: Control Scheme of a Fuzzy Logic Controller

The proposed system has 3 conditions:

Error Voltage Direction
Error = [−350, 0[ Voltage = [−3.3, 0[ Direction [−0.6, 0[

Error = 0 Voltage = 0 Direction = 0
Error = ]0, 350] Voltage = ]0, 3.3] Direction ]0, 0.6]

Table 4.1: conditions for inputs and outputs of Fuzzy Controller
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However, Fuzzy control provides rule viewer that confirms the character-
istic and the rules of your system, these viewer is shown in figures 4.17a,
4.17b and 4.17c

(a) Error negative (b) Error zero

(c) Error positive

Figure 4.17: Conditions For Error Signal

Finally, after defining all the conditions and the rules for this controller,
the only change that has to be done for the Simulink R© model is to replace
the PID controller with Fuzzy Logic Controller Simulink R© block and to
define the name of the fuzzy controller in the ”FIS name” in the Block pa-
rameters box.
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Figure 4.18 shows the Fuzzy Logic Controller Simulink model.

Figure 4.18: Simulink Model with Fuzzy Logic Controller

4.4.3 Experimental Results and Conclusion

Once the control model is ready, the robot arm should follow the reference
signal. Figures 4.19a, 4.19b, 4.20 show the response of the robotic arm with
respect to the reference signal.
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(a) Situation 1 (b) Situation 2

Figure 4.19: Response of Robotic Arm to Fuzzy Logic Controller

Figure 4.20: Control response of robotic arm
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However, the voltage, Direction and Error signal have been recorded to
show the movement of the arm depending on these values.

Figure 4.21: Voltage, Direction, Error signal of the Fuzzy Logic Controller

As conclusion, we find from the previous figures that when the error
signal is negative the robot arm regulates its positions until the error signal
is almost equal to zero with some vibrations. However, when the reference
signal changes its level from low to high, the difference between the feedback
(sensor’s data) and the reference signal increases, this way the robot arm
changes its direction to follow the reference signal until the error signal is
also equal to zero. As we discussed during the tests, the vibrations might be
due to the old hardware used in the system.
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4.5 Adaptive Controller

4.5.1 General Overview

Adaptive Control is a set of different techniques that automatically adjust
the control parameters of the systems in real-time; the adaptive controllers
keep changing the control parameters in order to maintain the desired per-
formance when the plant dynamic model’s parameters are changing and/or
unknown in time[10].

Consider the first case when the plant dynamic model’s parameters are
changing in time; this case may occur either because the conditions of the sur-
rounding environment change (the dynamical characteristic of a robot arm)
or because considering a simplified linear model for non-linear systems[10].

In the second case when the plant dynamic model’s parameters are un-
known in time but constant, the controller structure does not depend on
the plant model parameters; however, it requires a knowledge in the control
parameters in order to tune them. the adaptive controller can automatically
tune the control parameters in a closed loop but the effect of adaptation may
vanish when the time increases and the procedure of the adaptation may
require a restart when the operation conditions change[10].

However, achieving a good performance in the control system for both
cases requires the consideration of adaptive controller approach.
Moreover, the case considered for our system requires a control scheme as
shown in Figure 4.22, where a typical closed loop is shown. In addition, a
second loop is added to identify the system parameters and to calculate the
adaptive controller parameters.

Identifying the plant model requires measuring the input/output of the
plant model. However, the data collected from the system allow tuning and
designing the controller. Figure 4.22 shows the implementation procedure of
an adaptive controller in real-time, where the data collected from the plant’s
input and output are input to the system identification process and tuning
of the controller parameters is done according to the data collected.
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Figure 4.22: General Scheme Overview of The Adaptive Control

4.5.2 Equations

The controller used in the model identification adaptive control is PID con-
troller with adaptive parameters, the reason behind this is that PID con-
troller is much used in control loops. Its parameters are need to be adjusted
in function of the control process and remain unchanged during its regular
activities.
On contrary, this kind of adaptive controllers has a disadvantage or a diffi-
culty in the controller start-up service, since it is necessary an observation
period to survey with greater certainty the controller performance, or is more
difficult to adjust the regulators without actually knowing the exact system
dynamic.
The robot model is a damped second order system with input and output
linearities to count for different response times at different arm positions.
The regulator parameters are calculated using the pole placement technique
(R. Barber, 1997). The pole placement technique’s equations are[11]:

u(t) =
r(t).(g0 + g1 + g2)− y(t).(g0 + g1.z

−1 + g2.z
−2)

1− z−1
(4.1)

However, the plant is assumed to have the following expression:

y(t) =
b0.z

−1

1 + a1.z−1 + a2.z−2
u(t) (4.2)

The closed loop equation considering equations (4.1) and (4.2) is:

y(t) =
b0.z

−1.(g0 + g1 + g2)

(1− z−1).(1 + a1.z−1 + a2.z−2) + b0.z−1.(g0 + g1.z−1 + g2.z−2)
r(t)

(4.3)
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The values g0, g1 and g2 are found using the settling time and damped natural
frequency equations.
Therefore, the characteristic polynomial equation for a system behaves as a
second order is the following[11]:

P = 1 + t1z
−1 + t2z

−2 (4.4)

where t1 and t2 are:

t1 = −2e−ζ.ωn.T.cos(T.ωn

√
(1−ζ2))

t2 = e−2.ζ.ωn.T

where ζ is the damping factor, ωn is the natural frequency and T is the sam-
pling period of the system.
Equations (4.2) and (4.4) should be equal since they have the same roots.

(1− z−1).(1 + a1.z
−1 + a2.z

−2) + b0.z
−1.(g0 + g1.z

−1 + g2.z
−2) = 1 + t1z

−1 + t2z
−2

(4.5)

So, the gains of the controller g0, g1 and g2 are:

g0 =
t1 + (1− a1)

b0

g1 =
t2 + (a1 − a2)

b0

g2 =
a2
b0

Finally, the transfer function of the PID controller is defined by the expression
(4.6):

u(k) = u(k − 1) + r(k).(g0 + g1 + g2)− (g0.y(k) + g1.y(k − 1) + g2.y(k − 2))
(4.6)
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4.5.3 Implementation in Simulink R© and Matlab R©

At the beginning, the implementation of the Adaptive controller has to be
done using the S-function (System-Function) in Simulink R©. This is a de-
scriptive language writing within a block of Simulink R© in MATLAB R©, C,
C++ or FORTRAN, becoming a powerful mechanism for extending the ca-
pabilities of Simulink R©.
The main problem with this type of User-defined functions is the creation of
the .tlc files, which is a complex work that has to be done manually. More-
over, this kind of Simulink blocks cannot work directly in External Mode on
a target hardware as required for our work.
So, an idea of using standard Simulink blocks has to be followed. Figure
4.23 shows the implementation of the standard Simulink blocks for expres-
sion (4.6).

Figure 4.23: PID controller Simulink Blocks

Furthermore, the equation of the discrete system that models our robot
is shown in expression (4.7):

yn = b0.un−1 − a1.yn−1 − a2.yn−2 (4.7)

For this model, the values b0, a1 and a2 will change when the inertia of
the robot changes.
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The terms un, un−1 and yn−1 are the inputs and outputs of the plant, these
data are collected in real-time. However, the values b0, a1 and a2 are the
values to be found in order to identify the system. The method used to find
these values is recursive least square method.
The terms un, un−1 and yn−1 are the model regressor and inputs to the
recursive least square block that estimates the b0, a1 and a2 values. The
implementation of the model regressor in Simulink is shown in Figure 4.24
[12].

Figure 4.24: Model regressors for recursive least square estimator

The regressor’s ouput is the input to the Recursive Least Square Estima-
tor block in addition to the output signal of the system yn, the output of the
Recursive Least Estimator block are the estimated values b0, a1 and a2 of
the system when the inertia changes. The Recursive Least Square Estimator
block is configured as follow[12]:

• Initial Estimate: None. By default, the software uses the value 1

• Adaptation Gain: 3. b0, a1 and a2

• Sample Time: 0.001

To set the estimation options[12]:

• Estimation Method: Normalized Gradient
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• Number of parameters: Adaptation gain, it is specified as a real
positive scalar. it is directly proportional to the relative information
content in the measurements

• Normalization Bias: Bias in adaptation gain scaling, Bias, specified
as a real non-negative scalar. The normalized gradient algorithm scales
the adaptation gain at each step by the square of the two-norm of
the gradient vector. If the gradient is close to zero, this can cause
jumps in the estimated parameters. Bias is the term introduced in the
denominator to prevent these jumps.

(a) Model Parameters (b) Algorithm and Block options

Figure 4.25: Block Parameters: Recursive Least Square Estimator

So, after we get the values b0, a1 and a2, the controller gain has to be
calculated following the expressions of g0, g1 and g2. Figure 4.26 shows the
implementation in Simulink R© and Matlab R©.
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Figure 4.26: Controller Gain Calculation

Finally, the full model of the Adapitve controller is the chain connecting
all the previous sub-systems with additional to the simulink blocks related
to the input and output of the system. The full Adaptive controller model
is shown in Figure 4.27.

Figure 4.27: Full Adaptive Controller Control Model
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4.5.4 Experimental Results

The first test carried out by checking the response of the upper robotic arm
by changing the inertia of the robot when the lower arm is moving down.
Figures 4.28a and 4.28b show the first response.

(a) First response to adaptive controller (b) Real robot response

Figure 4.28: Adaptive Control First Test

It is obvious that we have a vibration in the arm when the control signal
achieves the set point. So, it was important to take into account the sampling
frequency of the system to be compatible with the PWM signal frequency
(268 Hz) of the magnetic position sensor, so the sample period has changed
from 0.01 to 0.001s. The result is shown in Figure 4.29.

Figure 4.29: Second Response with changing sampling time
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Moreover, it is important to detect the inertia changes by checking the
output values b0, a1 and a2. The following test has been done and the arm
positions and changes of system values are shown Figures 4.30 and 4.31
respectively.

Figure 4.30: Response of robotic arm to the adaptive controller

The graphical representation of values b0, a1 and a2:
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Figure 4.31: b0, a1, a2 and system response to the inertia changes
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Chapter 5

Study, Design and Simulation
of 3 DoF Robotic Arm for
Mobile Robot Usage

5.1 Introduction

Robotics represent a complex area of applications for research and education
purposes[13]. The word robot was coined by a Czech novelist Karel Capek
in 1920 play titled Rassum’s Universal Robot (RUR), and it represents a
word for worker or servant. As a general definition of robot, it is a repro-
grammable, multifunctional manipulator designed to move materials, parts,
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tools or specialized devices through variable programmed motions for the
performance of a variety of tasks (Robot Institute of America, 1979).
The main purpose of mobile robots is to build a full autonomous and intelli-
gent mobile robots[13] ready to replace the human’s work in dangerous areas
and in factories and even to help human in many different field like offices,
house work, kitchen, etc...
Nowadays, mobile manipulation robot are a major subject in research and
development environment. The mobile manipulation robots are composed
of two different systems, manipulation robot arm and mobile robots. This
system offers a wide range of workspace for the robotic arm to work in. How-
ever, the environment that the robot arm works in is unstructured, which
makes it a very difficult task to do.
In the faculty of System Engineering and Automation at Universidad Car-
los III de Madrid, engineers are educating with automations specializations
in the area of robotics. It is based on the research results from the area
of Mechatronics systems and mobile robotic systems to be specific. The
research area are focused on automation systems, sensors system, control
systems, communications systems, mobile manipulator control.
In Robotics Lab of the Department of System Engineering and Automations,
there was a TurtleBot mobile robot, a student Ximena de Diego was develop-
ing a voice control for the mobile robot to work inside the robotics lab. The
idea was to design a 3 DoF robotic arm to be mounted over the TurtleBot
mobile robot and integrate the control of both systems to cooperate together.
The systems have to deal with cameras, sensors and actuators to work on
both systems synchronously.

5.2 Study of 3 DoF Robotic Arm Parameters

and Design

A 3 DoF robotic arm has been chosen to be the target of the study in our
project. Figure 5.2 shows the 2D kinematic model representation of the
robotic arm that is going to be designed.
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Figure 5.2: Kinematics Model of 3 DoF Robotic Arm

The serial manipulator shown in Figure 5.2 has three joints (n=3), each
joint is a revolute joint with 1 DoF. However, each joint connects 2 Links
(so number of Links = n+1 = 4 including Link0). As a general form, the
number of DoF for any serial manipulator can be found using the following
formula:

DOF = 6(NumberOfMovableLinks)− 5(NumberOf1DoFJoints) (5.1)

Where in our case we have 3 movable links and 3 (1 DoF) joints.
Moreover, defining the parameters of the robotic arm is an important task to
know the kinematics of the robot. For that, Denavit-Hartenberg convention
has been applied, this convention defines only 4 parameters (2 translations
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and 2 rotations) and these parameters are defined as follow (where Ri is the
reference frame for the joint i):

1. Parameter di: it defines the translation along the motion axis ki−1,
between the origin of Ri−1 and the intersection of the axis defined by
ki−1 and ii.

2. Parameter θi: it defines the rotation angle around axis ki−1 such that
ii−1 overlaps ii. Sign follows the RHR.

3. Parameter ai: it defines the minimum signed distance between axis
ki−1 and ki along the common normal, measured along ii.

4. Parameter αi: it defines the rotation angle arount motion axis ii such
that ki−1 overlaps ki. Sign follows the RHR.

Referring to the robotic arm in Figure 5.2. Table 5.1 shows the parameters
that define the kinematic model of the robotic arm.

Link di θi ai αi
1 0 q1 0 90◦

2 0 q2 Link2=30 cm 0◦

3 0 q3 Link3=30 cm 90◦

Table 5.1: Denavit-Hartenberg parameters for 3 DoF Robotic Arm

Where qi are the angles of rotations around the axis of motion of each
joint.

5.3 Design of 3 Dof Robotic Arm using Solid-

works

Figure 5.3: SolidWorks
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Solidworks is a 3D CAD software that enables the user to bring their
imagination to life. However, this software allows you to create your own
design, edit, visualize and make-up any type of CAD drawing. Moreover, it
provides the conversion of your designed project into many different formats.
One of the main reason of using Solidworks for designing the robotic arm is
that solidworks provides an exporter from solidworks to URDF format, this
exporter is an add-in that allows the convenient export of Solidworks parts
and assemblies into URDF files. The exporter will create a ROS-like package
that contains directory for textures, meshes and URDF file that describe the
robot parts, dimensions and joints. The exported package is not directly able
to be used in ROS (Robotic Operating System). However, some changes that
we will talk about in the next section have to be done.
The design of the 3 DoF robotic arm has different parts, these parts are con-
nected with joints (motors) and at the second end of the arm is the gripper.

1. Base Link: Base Link is two circular plastic plates connected by Alu-
minium hollow tubes, this link is intended to hold the entire system.
Also, The first motor that controls the rotation of the first link (Link 1)
is attached to its upper plate. The design of the base link allows it to
carry some weights in order to keep the arm stationary in case of arm
centre of mass is far away from the centre of base link.

Figure 5.4: Base Link
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2. Link1: This link connects base link and link 2, it holds the second
motor that is in charge of controlling the rotation of link 2. However,
this link is simply a plastic circular plate that rotates the arm in the
xy-plane.

Figure 5.5: Link1

3. Link2: Link 2 connects Link 3 with Link 1, it carries the third motor
that is in charge of controlling the movement of Link 3. Link 2 is two
Aluminium rods connected by 8 Aluminium hollow tubes and 2 ball
bearings to allow the rotation of the other sides of Link 2 and Link 3
as shown in Figure 5.6.
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Figure 5.6: Link2

4. Link3: Link 3 connects Link 2 with the Gripper, it is made up by 2
Aluminium rods connected by 6 Aluminium hollow tubes as shown in
Figure 5.7.

Figure 5.7: Link3

5. Gripper: The gripper is the wrist of the robot; it is in charge of
grasping objects. The gripper is totally made up by plastic material
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and printed out using the 3D printer machine. The design of the gripper
contains one brushed DC motors that controls a prismatic joint to open
and close the gripper. Figures 5.8a and 5.8b show the design of the
gripper when it is opened and closed.

(a) Gripper Close

(b) Gripper Open

Figure 5.8: Gripper

Finally, the design of each part of the robotic arm has been finished and
the complete robot assembly is shown in Figure 5.9.
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Figure 5.9: Complete Robotic Arm assembly

5.3.1 Robot 3D dimensions

1. Base link:

Figure 5.10: Dimensions Base link
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2. Link 1:

Figure 5.11: Dimensions Link 1

3. Link 2:

Figure 5.12: Dimensions Link 2
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4. Link 3:

Figure 5.13: Dimensions Link 3

5. Gripper:

Figure 5.14: Dimensions Gripper

5.4 Exporting SolidWorks project to URDF

Packages

Now that the complete robot assembly is done, the robot is ready to be
exported as URDF (Unified Robot Description Format) supported by Solid-
Works extensions, thanks to SolidWorks to URDF exporter that allows to
specify and name the links that make up the robot and to specify the joints
that connect two links and choose the type of each joint (Revolute, Prismatic,
Continuous)[14].
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However, exporting your robot into URDF files will create texture, launch,
config, meshes and urdf directories as shown in Figure 5.15. The URDF
directory contains a file with .urdf format that characterizes the entire struc-
ture and connections of the robot. However, it calls the meshes directory
that contains .STL format files that include the 3D models of each part of
the robot. Note that naming the entire package should contain only small
letters.

Figure 5.15: SolidWorks to URDF exporter package

On the other hand, the .urdf file created by the exporter is not ready to be
used with ROS (Roboting Operating System), because one of the problems
of the exporter is that it doesn’t give appropriate inertias of the robotic parts
and it produces numbers with values 10E-17 and less. Figure 5.16 shows a
part of the .urdf file created by the exporter.
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Figure 5.16: Inertias in the exported .urdf file

This problem arises when using the URDF files in Gazebo Simulator, the
robot will collapse. However, changing the inertias requires a software able
to read .STL model files included in the mesh directory and also able to
measure and compute the interias of these files. The software used for this
target is MeshLab, this software is an open source which provides several
tools for meshes. However, the tool we used to find the inertias of the models
is ”Compute Geometric Measures” which calculates the Principal axes matrix
as shown in Figure 5.17.

Figure 5.17: Pricipal Axes Inertia Matric Created By MeshLab

The Principal axes matrix form is the following:Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz


The inertia values are taken from the principal axis matrix and replaced in
the .urdf file directory.
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In addition, it is also important to pay attention for adding joint limits (max-
imum and minimum rotation for the joint) in the urdf file in order to make
your robot movable. The urdf file comes with zero values for the joint limits
which means the joint can not rotate. Since we have chosen Revolute joints,
they should have limits for rotation (Upper limit and Lower limit) unlike the
continuous joint that rotates 360◦ continuously. The .urdf file automatically
comes with joint limits tag that includes effort: which means the maximum
force supported by the tagged joint, lower and upper: to assign for the lower
and upper limit for joint rotation respectively and they are measured in ra-
dian/revolute joints, and velocity: which enforces the joint to a maximum
velocity.
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5.4.1 Visualizing the Robot 3D Model on Rviz

Rviz is a 3D visualization environment, it lets us view what the robot is do-
ing, seeing and thinking. Rviz lets you look at the world through the robot
size through cameras, lasers and coordinate frames. It is a powerful tool for
debugging robot applications[14].

Before visualizing the 3D model on Rviz, we can check graphically whether
we have any error or any syntax mistyping by using the urdf to graphiz which
generates a pdf file with the structure of robot as shown in Figure 5.19.

Now that we made sure that there are no errors in the urdf files, we can
visualize the robot 3D model on Rviz by running display.launch file created
by Solidworks to URDF exporter; this file contains joint state publisher GUI
(Graphical User Interface) that will open an Rviz interface window with
sliders as shown in Figure 5.18, each slider controls one joint movement
according to the limits defined in the urdf file[14].

Figure 5.18: Visualization of Robot 3D model on Rviz
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Figure 5.19: Graphical representation of robotic arm
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5.5 Simulation of Robotic Arm in ROS

5.5.1 Integration of ROS with Gazebo Simulator

The simulation of robotic arm in ROS has been done using GAZEBO.

Figure 5.20: GAZEBO LOGO

Gazebo is a 3D simulation software that allows robotic developers to
simulate their robots in a realistic way. Moreover, simulating the model
movement and interaction requires the integration of Gazebo with ROS, in
this way ROS is used as an interface for the robot[14].

In addition, Gazebo allows using multi-robots simulations, adding sen-
sors, cameras and objects in 3D world. However, the data generated by the
sensors are realistic[14].

As Gazebo is now an independent simulator from ROS, the integration
of ROS with Gazebo requires a set of ROS packages called gazebo ros pkgs,
these packages provide necessary interfaces for simulating the robot in Gazebo
using ROS services, messages, plugins and dynamic reconfigures. Figure 5.21
shows the entire packages supported by gazebo ros pkgs[14].
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Figure 5.21: Gazebo ROS Interfacing Packages

5.5.2 GAZEBO-ROS Control

After interfacing ROS with Gazebo, ROS requires a control packages that
will set-up different controllers to actuate the joints of the robot; for that,
ROS-control package provides controllers for simulating the robot in Gazebo
with simple gazebo plugin adapters. Figure 5.22 shows the relationship be-
tween the simulations, controllers, transmission and hardware.
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Figure 5.22: Relationship between Gazebo, ROS and ros-control

5.5.3 Usage of ROS-Control with URDF File

In order to be able to use the ros-control in your robot, several elements have
to be added to the URDF file of your robot[14].

1. Adding Transmission Elements To The URDF File: The trans-
mission element is responsible for adding actuator for each joint by
defining the joint name, type of transmission and hardware interface
(position, velocity or effort interfaces). Effort interface are used for our
robot as shown in Figure 5.23.
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<transmission name="tran3"> 

<type>transmission_interface/SimpleTransmission</type> 

<joint name="R2"> 

<hardwareInterface>EffortJointInterface</hardwareInterface> 

/<joint> 

<actuator name="motor3"> 

<hardwareInterface>EffortJointInterface</hardwareInterface> 

<mechanicalReduction>1</mechanicalReduction> 

/<actuator> 

/<transmission> 

Figure 5.23: Transmission element in URDF file

2. Adding gazebo-ros-control Plugin: A Gazebo plugin has to be also
added to the URDF file, the plugin parses the transmission tags and
loads the appropriate hardware interface and controller managers. The
default plugin added to the URDF file is shown in Figure 5.24.

<gazebo> 

<plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so"> 

   <robotparam>/robot_description</robotparam> 

   <--<robotNamespace>/ROBOT</robotNamespace>--!> 

   <--<updateRate>100.000</updateRate>--!> 

    /<plugin> 

/<gazebo> 

Figure 5.24: Gazebo Plugin

3. Creating a .yaml Control File: A .yaml file has to be created in
the config directory in order to define the PID controller gains and the
control settings for the joints. This file has to be called by a launch file
that will be created in the next step. The .yaml file is shown in Figure
5.25.
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#Publish all joint states 

joint_state_controller:     

  type: joint_state_controller/JointStateController 

  publish_rate: 50 

 

#Position Controllers 

     R0_position_controller: 

     type: effort_controllers/JointPositionController 

     joint: R0 

     pid: {p: 100.0, i: 0.1, d: 10.0} 

 

R1_position_controller: 

     type: effort_controllers/JointPositionController 

     joint: R1 

     pid: {p: 100.0, i: 0.1, d: 10.0} 

 

R2_position_controller: 

     type: effort_controllers/JointPositionController 

     joint: R2 

     pid: {p: 100.0, i: 0.1, d: 10.0} 

 

GL_position_controller: 

     type: effort_controllers/JointPositionController 

     joint: GL 

     pid: {p: 10.0, i: 0.01, d: 1.0} 

 

GR_position_controller: 

     type: effort_controllers/JointPositionController 

     joint: GR 

     pid: {p: 10.0, i: 0.01, d: 1.0} 

 

 

 

Figure 5.25: Joint position PID control of robot joints

4. Creating a Launch File: Now that the controller settings and the
PID gains have been defined, a launch file has to be created in the
Launch directory. The launch file calls the .yaml control file and spawn
the urdf model to open in Gazebo. The launch file is shown in Figure
5.26.
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<?xml version="1.0" encoding="UTF-8"?> 

<launch>  

<param name="robot_description" command="cat '$(find 
my_gripper_arm)/urdf/my_gripper_arm.urdf'" />    

<arg name="x" value="0.0" />  

<arg name="y" value="0.0" /> 

<arg name="z" value="0.0" /> 

<!-- load joint controller confgurations from YAML file to parameter server --> 

<rosparam  file="$(find my_gripper_arm)/config/my_gripper_arm_control.yaml" 
command="load"/>   

<node name="controller_spawner" pkg="controller_manager" type="spawner" 
respawn="false" 

 output="screen" args="arm_controller GL_position_controller GR_position_controller 
joint_state_controller"/> 

<node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model" respawn="false" 
output="screen" args="-urdf -model my_gripper_arm -param /robot_description -y -0.1"/>   

<!-- now convert joint_states to TF transforms for Rviz, etc --> 

<node name="robot_state_publisher" pkg="robot_state_publisher" 
type="robot_state_publisher" respawn="false" output="screen"> 

<remap from="/joint_states" to="/joint_states" /> 

</node> 

</launch> 

Figure 5.26: Arm Control Launch File

The PID gains chosen in the .yaml control file are random values. Con-
sequently, rqt reconfigure has to be used to test if the chosen PID gains
are good for the robotic arm behaviour. The rqt reconfigure allows us to
calibrate the PID gains on runtime until we find the correct behaviour of
the robot. With the PID gains chosen initially in the .yaml control file, the
robotic arm showed a bad behaviour; it was unstable and the rotations of the
links were affected by vibrations. After tuning the PID gains, we found out
that p=1000, i=10 and d=100 are good gains for the robotic arm behaviour.
The rqt reconfigure command window is shown in Figure 5.27.
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Figure 5.27: Tuning PID gains

Controlling Joints Position Manually

Now that the PID gains have been tuned, we can control each joint position
manually by publishing a joint command on the joint topic. The joints topics
are available after running the robot control launch file, the topic list is given
in Figure 5.28.

Figure 5.28: Joint Position Controllers
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However, the data (joint commands) will be published on the pre-defined
joint topics with general form /”joint name” position controller/command,
where ”joint name” is replaced by the joint name that we want to publish
data on. Figure 5.29 shows the response of the robotic arm.

Figure 5.29: Manually controlling robot joint position
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Publishing Commands Through GUI Window

Figure 5.30: GUI message publisher

The GUI (Graphical User Interface) window allows us to send joint com-
mands very fast. Moreover, it provides a way to move all the robot joints at
the same time (either by publishing constant commands or by waves), also it
is possible to publish a sine wave command at the robot’s exact joint limits
by publishing expression (5.2) as a command.

sin(i/rate ∗ speed) ∗ diff + offset (5.2)

where:

- i: The RQT time variable

- rate: the frequency that the sin wave is evaluated. usually 100 is used.

- speed: speed of the joint actuation.

- diff: upper limit - lower limit /2.

- offset: upper limit - diff.

The results of the sine wave commands to the robot joints through the GUI
window message publisher are shown in Figure 5.31.
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Figure 5.31: GUI Joints Message Publisher

Connecting Gazebo with Rviz

After using ROS-control to send commands to the robot in real simulation
Gazebo, it is also important to see what our robot is doing in visualizing tool
Rviz. With ROS control Joint State Controller, Rviz can read the robot’s
state from the real simulation gazebo and broadcast the state in Rviz. This
step is important for future work when we want to connect the real robot
hardware with ROS, then we should be able to visualize the robot movements
and actions in real life in the same way we are using it in the real simulation
Gazebo. Figure 5.32 shows the movements in Gazebo and at the same time
visualizing the same movements on Rviz.
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Figure 5.32: Robot Control with Gazebo and Rviz
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Chapter 6

Robot Arm Motion Planning
with Moveit! and Gazebo

6.1 General Overview

Figure 6.1: Moveit! Software Logo[14]

Moveit! is a software for building robot applications, integrating the
state of art and motion planning, kinematics, collision checking and dynamic
3D environment representation[14].
The Moveit! setup assistant allows you to easily configure Moveit! for any
robot using GUI. The generated founds by setup assistant allow you to start
visualizing and interacting with the Robot in Rviz quickly[14].
In this chapter, we are going to see how to configure Moveit! for our own
robot, which is a very simple task provided that the URDF file that describes
our robot is available. However, we will also use the Moveit! configuration
tools to define motion planning and we will see how to plan and execute
motion for the robot joints whether by using Moveit! planning group or
programmatically using C++ or Python code.
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Moreover, what we call motion planning, is to be able to move the end effector
from its current position into a desired one, which is a non trivial task, since
every joint in the robot should follow a sequence of values in coordination
with other joints[14].
As it is simpler for robots with high degrees of freedom to be able to reach
a specific pose for its end effector, and as Moveit! deals with high degrees
of freedom robots, some restrictions regarding planning of the end-effector
to a specific poses and grasping actions has occurred, and this is due to the
low degrees of freedom we have in our robot. Figure 6.2 shows the Moveit!
architecture.

Figure 6.2: Moveit! Architecture[14]

We can see at the centre of Figure 6.2 the move group element, the idea
is to define joints groups to implement moving actions using motion planning
algorithms.
Using definition languages (URDF, SDF or YAML) and with Standard ROS
tools, a group can be defined. Two joints groups have to be defined, the first
one is the group that define the joints of the arm chain with the joint limits,
and in the same way, the joints for the end effector group has to be defined.
And then in order to get the output of the motion planning on the robot
simulator (Gazebo in our case) or even a real hardware robot, the controller
to be used is JointTrajectoryAction. Moreover, the /joint states tool is also
needed to monitor the execution of the plans by means of the robot state
publisher.
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6.2 Steps to Integrate the Robotic Arm In

Moveit!

In this section we are going through different steps in order to get our robotic
arm working with Moveit!. As mentioned in the previous section, the URDF
file that describes the robot or a Collada file should be available for the robot.
Moreover, to get the robot working also with gazebo, some additional files
have to be added to the created package by Moveit!.

1. Opening Up Moveit! Setup Assistant Window: After Moveit!
Setup Assistant is launched, it will request the URDF or Collada file
that describes you robot as shown in Figure 6.3. Then once the robot
model is successfully launched we will go through different steps to
define robot groups and positions as we will see in the next steps.

Figure 6.3: Moveit! setup assistance

2. Self Collision: Fortunately, Moveit! Setup Assistant provides a colli-
sion checking between the robot links by generating a Collision Matrix ;
this matrix contains information about when the links of the robot col-
lide to improve the performance of the motion planning.
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Figure 6.4: Moveit! Collision Matrix

3. Adding Virtual Joint: Adding virtual joint is not important in our
case, because this joint represents the motion of the robot base in a
plane, but we have a fixed-base robotic arm. This joint is usually used
for mobile robots.

Figure 6.5: Virtual Joint tab

4. Planning groups: In this step we are going to define two planning
groups (arm and gripper) for the robotic arm (Figure 6.6) by defining
the joints that build up each group, also we are going to define the
Inverse Kinematic solver provided by the setup assistant. This solver
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is in charge of finding Inverse Kinematic solution when we plan to move
the gripper from one position to another.

Figure 6.6: Planning Groups for Robotic Arm

5. Robot Poses: This step allows us to define known poses of the robot
arm and gripper in order to be able to call them in later work. These
poses are quite important especially when working with real robots be-
cause it is crucial to define a start or home position for the robot where
it is safe to store it. However, we can define poses for the gripper in
open and close mode as we can see in Figure 6.7.
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Figure 6.7: Robotic Arm Pre-defined Poses

6. Defining Robotic Arm End-effector: So as it is known, every
robotic arm has an end-effector in charge of doing different tasks. In
this step we are going to define the end-effector to our robot by defining
its name, related group and the parent link connected to it.

Figure 6.8: Gripper End-effector

93



7. Specify Author Information: The information specified in this step
are not necessarily true. We can specify different invalid names and
email address, but without this step the package is not going to be
generated, because Moveit! requests author details for its package.xml
file. However, the information we defined are correct.

Figure 6.9: Author Information

8. Generating The Package: The package to be generated should be
named in the following form ”Robot Name” moveit config, so our robot
is named my gripper arm and the generated package has the name
my gripper arm moveit config.
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Figure 6.10: Moveit Setup Package

6.3 Integrating the Robotic Arm Moveit! Pack-

age Into Rviz

Rviz plugin provided by Moveit! allows the user to perform various actions,
such as planning different goals, adding and removing objects from the scene
and so on.
The setup assistant generates different launch files, and the one in charge
of launching Rviz plugin, fake controllers and Moveit! as well is called
demo.launch.
However, when Rviz is successfully launched, a ”planning” and ”scene ob-
jects” tabs are going to appear in the Rviz interface, the Planning tab is in
charge of planning different goals, also executing the planned goals if Moveit!
Rviz is connected with the real simulator Gazebo or with the real robot. Con-
sequently, we know that Moveit! provides two different functions, the first
one is to create the plan from current position into goal position and see how
the arm is going to move (See Figure 6.11), and the second one is to send
the plan to the robot in simulation (or in the real robot). In this section we
are going to deal with the first function.
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Figure 6.11: Planning into desired goal in Moveit! Rviz

6.4 Integrating the Robotic Arm Moveit! Pack-

age Into Gazebo

After we have performed the plan for the robot and we visualize the plan
in Moveit! Rviz, it is time to send the plan to the robot in real execu-
tion; this step requires defining the controller to be used for the manipulator
joints (arm and gripper) in .yaml file inside Moveit! config directory. In
this case, the configured controller is JointTrajectoryController provided by
ROS control package, because the output messages provided by the motion
plans are of that type of controllers. Consequently, we need to define two
controllers: arm and gripper as shown in Figure 6.12.
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Controller_list: 

- Name: arm_controller 

action_ns: "follow_joint_trajectory" 

type: FollowJointTrajectory 

default: true 

joints: [R0, R1, R2] 

allowed_execution_duration_scaling: 1.2 

allowed_goal_duration_margin: 0.5  

 

- Name: gripper_controller 

action_ns: "follow_joint_trajectory" 

type: FollowJointTrajectory 

default: true 

joints: [GL, GR] 

allowed_execution_duration_scaling: 1.2 

allowed_goal_duration_margin: 0.5  

 

Figure 6.12: Manipulator Joint Trajectory Controller

Moreover, it is also necessary to define the joint names of the two con-
trollers in a .yaml file shown in Figure 6.13.

controller_joint_names: [R0, R1, R2, GR, GL] 

Figure 6.13: Controller Joint Names

Moveit! setup assistant creates an empty launch file with name
”robot name” moveit controller manager.launch.xml, this file should call the
controllers defined for the manipulator and also should contain the parame-
ters to run the Moveit! controller manager as shown in Figure 6.14.

97



<launch> 

<rosparam file="$(find my_gripper_arm_moveit_config)/config/controllers.yaml"/> 

<param name="use_controller_manager" value="false"/> 

<param name="trajectory_execution/execution_duration_monitoring" value="false"/> 

<arg name="moveit_controller_manager" 
default="moveit_simple_controller_manager/MoveItSimpleControllerManager"/> 

<param name="moveit_controller_manager" value="$(arg 
moveit_controller_manager)"/> 

</launch> 

Figure 6.14: Robot Moveit! Controller Manager

And finally, a launch file that will set up the entire system for controlling
the robot has to be created. This file should launch the move group that
is in charge of communicating with the real simulator Gazebo, moveit rviz,
joint names and the joint state publisher that reads the state of every joint
periodically. The file is shown in Figure 6.15.

<launch> 

<include file="$(find my_gripper_arm_moveit_config)/launch/move_group.launch"> 

<arg name="publish_monitored_planning_scene" value="true" /> 

</include> 

<include file="$(find my_gripper_arm_moveit_config)/launch/moveit_rviz.launch"> 

<arg name="config" value="true"/> 

</include> 

<rosparam command="load" file="$(find 
my_gripper_arm_moveit_config)/config/joint_names.yaml"/> 

<include file="$(find 
my_gripper_arm_moveit_config)/launch/planning_context.launch"> 

<arg name="load_robot_description" value="true" /> 

</include> 

<node name="joint_state_publisher" pkg="joint_state_publisher" 
type="joint_state_publisher"> 

<param name="/use_gui" value="false"/> 

<rosparam param="/source_list">[/joint_states]</rosparam> 

</node> 

</launch> 

Figure 6.15: Planning Execution System Launch File
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6.5 Motion Planning with Moveit! Rviz and

Gazebo Simulator

After Moveit! Rviz is connected with the real simulator Gazebo, a very
simple test using the planning tab provided by Moveit! Rviz has to be done
in order to make sure that the robot arm is working in visualization and in
simulation as well.
This test is simply done by selecting start state and goal state in Moveit!
Rviz and then plan and execute the selected states. The state could be one
of the predefined poses (home or start) in the robot poses tab in Moveit!
setup assistant. In this simple test we are going to set home pose as a start
state and start pose as a goal state. Figure 6.16 shows the movement of the
robotic arm in Moveit! Rviz and in Gazebo simulator as well.

Figure 6.16: Simple Motion Planning With Moveit! Rviz and Gazebo

99



6.5.1 Motion Planning Programmatically Using C++
and Python Codes

Planning a Random Target Using Simple C++ Code

Before the movement of the robotic arm randomly using C++ code, it is
important to talk about the Move Group Interface that should be defined in
any C++ code in order to do specific operations. The Move Group is the
user interface in Moveit! that provides the user with a wide range of func-
tionalities for most operations. For example, setting joint values and pose
target, getting states of the robot, moving, creating random plans, adding
objects into the environment, etc...
However, the Move Group requires defining the group in charge of doing the
motion planning. This group should be defined as a chain in the Moveit!
setup assistant, which in our case is the group ”arm” defined as three suc-
cessive joints connected by links.
In the C++ code Figure 6.17, a random target created by the Move Group
is set to the robot arm.

#include <ros/ros.h> 

#include <moveit/move_group_interface/move_group.h> 

int main(int argc, char **argv) 

{ 

  ros::init(argc, argv,  "move_robot_randomly"); 

  // start a background "spinner", so our node can process ROS messages 

  //  - this lets us know when the move is completed 

  ros::AsyncSpinner spinner(1); 

  spinner.start(); 

  moveit::planning_interface::MoveGroup group("arm"); 

  group.setRandomTarget(); 

  group.move(); 

} 

Figure 6.17: Planning a Random Pose with C++ Code

Figure 6.18 shows the response of the robotic arm in Moveit! Rviz and
Gazebo into the Random Planning Code.
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Figure 6.18: Random Planning Response in Moveit! Rviz and Gazebo
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Planning a Predefined Group States Using C++ Code

As mentioned before, the Moveit! setup assistant provides a predefined group
states for the robot. These states are crucial when working with the real robot
hardware. For safety, we can position the robot in a home position every time
we operate it. In this code we ask the robot to move into its home position
and then take the start position to be prepared for operation.
In order to do so with code, it is important to read the robot state and then
update it according to the pre-defined group as shown in Figure 6.19.

#include <ros/ros.h> 

#include <moveit/move_group_interface/move_group.h> 

int main(int argc, char **argv) 

{ 

  ros::init(argc, argv,  "move_robot_randomly"); 

  // start a background "spinner", so our node can process ROS messages 

  //  - this lets us know when the move is completed 

  ros::AsyncSpinner spinner(1); 

  spinner.start(); 

  moveit::planning_interface::MoveGroup group("arm"); 

  robot_state::RobotState current_state  = *group.getCurrentState(); 

  current_state.setToDefaultValues(current_state.getJointModelGroup("arm"), 
"home"); 

  group.setJointValueTarget(current_state); 

  group.move(); 

  sleep(2.0); 

  robot_state::RobotState new_current_state  = *group.getCurrentState(); 

new_current_state.setToDefaultValues(new_current_state.getJointModelGroup("arm"
), "start"); 

  group.setJointValueTarget(new_current_state); 

  group.move(); 

} 

Figure 6.19: Planning a predefined group states for robotic arm
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Figures 6.20a and 6.20b show the response of robotic arm to the prede-
fined group states.

(a) Home State (b) Start State

Figure 6.20: Robot States

Planning Joint Position Using Python Code

One more interesting planning is setting joint values (Forward Kinematic)
to move the robot arm into a specific positions. In this code, we set up
a complete sequence for the robot joints in order to perform a process for
grasping. The process of grasping consists of four main robot positions (pre-
grasp, gripper open, post-grasp and gripper close). In pre-grasp position, the
end-effector of the robot moves toward the object to be grasped but keeps
a distance from it, then the gripper opens. After the grippers opens, the
robot’s end-effector moves so close to the object to be grasped (post-grasp
position) and then the gripper closes.
Figure 6.21 shows a part of the python code, where we have to define a groups
for the arm and for the gripper, then read the joints positions of the robot’s
current state and update them according to the desired sequence of joints
positions.
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/ !#usr/bin/env python 

import sys 

import copy 

import rospy 

import moveit_commander 

import moveit_msgs.msg 

import geometry_msgs.msg 

 

 #Setup node 

print "\nStarting setup" 

moveit_commander.roscpp_initialize(sys.argv) 

rospy.init_node('move_group_python', anonymous=True) 

 

 #setup move_group 

robot = moveit_commander.RobotCommander)( 

scene = moveit_commander.PlanningSceneInterface)( 

display_trajectory_publisher = 

rospy.Publisher('/move_group/display_planned_path ,' 

 moveit_msgs.msg.DisplayTrajectory) 

 

 #Setup arm group 

arm_group = moveit_commander.MoveGroupCommander("arm") 

arm_group.set_goal_tolerance (.0.0)  

arm_group.set_planning_time (5)  

arm_group.set_num_planning_attempts (0.)  

end_effector_link =  arm_group.get_end_effector_link)( 

 

 #Setup end effector group 

gripper_group = moveit_commander.MoveGroupCommander("gripper") 

#gripper_group.set_end_effector_link("gripper") 

gripper_group.set_goal_tolerance (.0.0)  

gripper_group.set_planning_time (0)  

gripper_group.set_num_planning_attempts (5)  

 

 #get joint values  

first_joint_values = arm_group.get_current_joint_values)( 

print "\n First arm joint values:", first_joint_values 

second_joint_values = gripper_group.get_current_joint_values)( 

print "\n First gripper joint values:", second_joint_values 

 

ARM_HOME = arm_group.get_current_joint_values)( 

print "\nARM_HOME Joint Values:", ARM_HOME 

ARM_HOME[0] = 0 

ARM_HOME[1] = 0 

ARM_HOME[2] = 0.2 

arm_group.set_joint_value_target(ARM_HOME) 

plan1 = arm_group.plan)( 

rospy.sleep (0)  

arm_group.go(wait=True) 

rospy.sleep (0)  

#moveit_commander.roscpp_shutdown)( 

 

ARM_START = arm_group.get_current_joint_values)( 

print "\nARM_START Joint Values:", ARM_START 

ARM_START[0] = 0 

ARM_START[1] = 0.5 

ARM_START[2] = -0.5 

arm_group.set_joint_value_target(ARM_START) 

Figure 6.21: Planning a Joint Positions of Robotic Arm

The response of the robotic arm is shown in Figure 6.22.
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Figure 6.22: Complete Grasping Action Process

6.6 Motion Planning Failure in Moveit!

A common problem due to inverse kinematics occurs when working with
low degrees of freedom robotic arm. When planning a goal position to the
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robot’s end-effector, the inverse kinematic solver is unable to plan any mo-
tion to reach the target goal position.

6.6.1 Fail Planning A Goal Position

In Figure 6.23 a python code has been created in order to move the robot
end-effector into a desired position, this code simply includes the positions
(x, y and z) and quaternion orientations (x, y, z and w) for the end-effector.

/ !#usr/bin/env python 

import sys 

import copy 

import rospy 

import moveit_commander 

import moveit_msgs.msg 

import geometry_msgs.msg 

 

 #Setup node 

print "\nStarting setup" 

moveit_commander.roscpp_initialize(sys.argv) 

rospy.init_node('move_group_python_interface_tutorial', anonymous=True) 

 

 #setup move_group 

robot = moveit_commander.RobotCommander)( 

scene = moveit_commander.PlanningSceneInterface)( 

display_trajectory_publisher = 

rospy.Publisher('/move_group/display_planned_path ,' 

 moveit_msgs.msg.DisplayTrajectory) 

 

 

 #setup arm group 

arm = moveit_commander.MoveGroupCommander("arm") 

arm.set_goal_tolerance (.0.0)  

arm.set_planning_time (5)  

arm.set_num_planning_attempts (0.)  

 

end_effector_link = arm.get_end_effector_link 

print "end effector link", end_effector_link 

#arm.set_Planner_id("RRTConnectkConfigDefault") 

print "current pose", arm.get_current_pose)( 

target = geometry_msgs.msg.Pose)( 

 #set position 

target.position.x = -0.05 

target.position.y = 0.14 

target.position.z = 0.17 

 

 #set orientation 

target.orientation.x = 0.87 

target.orientation.y = 0.09 

target.orientation.z = 0.05 

target.orientation.w = 0.47 

 

arm.set_pose_target(target) 

rospy.sleep (0)  

arm.go(wait=True) 

rospy.sleep (0)  

moveit_commander.os._exit (.)  

moveit_commander.roscpp_shutdown)( 

 

 

 

 

 

 

 

 

 

Figure 6.23: Planning a goal position
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However, we know that the specified goal position is reachable by the
arm, and this is done by moving the robot arm to a random position and
then getting its current pose (see the pose in Figure 6.24), then copying the
current pose into the python code, moving the arm back into a random target
and finally running the python code.

Figure 6.24: End-effector pose

The message we get from Moveit! when running the code is that the
Inverse kinematic is unable to solve the planning problem, and then the code
is unable to receive joint sequence values from Moveit! in order to move the
robot to the desired pose. The messages are shown in Figure 6.25.

Figure 6.25: Planning a goal Position error messages
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The inverse kinematics used in this test is KDLKinematicsPlugin sup-
ported by Moveit! setup assistant. This inverse kinematic is good for 6 and
7 DoF robotic arms where it is easy to find as many solutions as possible in
order to move the end-effector into a desired position. But using this Inverse
kinematic with a 3 DoF robotic arm creates a problem in finding solutions
for planning a goal position to the end-effector.
For that reason, another inverse kinematic solution called IKFast has been
used to see if this could solve the problem. According to OpenRave Wikipedia
the IKfast inverse kinematics is defined as ”IKfast is a powerful inverse kine-
matic solver that analytically solve the kinematic equations of any complex
kinematics chain”.
Using this solver with Moveit! requires using Openrave motion planning soft-
ware that generates a C++ code to be used later. However, Moveit! IKFast
tool generates IKFast kinematic plugin to be replaced in the kinematic.yaml
file generated by Moveit! setup assistant under the config directory.
Unfortunately, installing this inverse kinematic doesn’t solve the problem in
simulation, and the same message was given by Moveit!.

6.6.2 Fail Planning A Pick Place Action

Planning with Moveit! also provides the action of picking and placing ob-
jects, this planning also requires defining a specific position for the object to
be grasped in the simulated world. However, this process contains different
movements of the robotic arm in order to achieve the grasping action. The
first movement is to get the robot arm ready to start working (set into start
position), then moving into the pre-grasp position, post-grasp position and
finally perform the grasping of the object inserted in the simulated world and
move it into another place. Figure 6.26 shows the python code for grasping
action.
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!# /usr/bin/env python 

import sys 

import rospy 

from moveit_commander import RobotCommander, MoveGroupCommander 

from moveit_commander import PlanningSceneInterface, roscpp_initialize, 

roscpp_shutdown 

from geometry_msgs.msg import PoseStamped 

from moveit_msgs.msg import Grasp, GripperTranslation, PlaceLocation 

from trajectory_msgs.msg import JointTrajectoryPoint 

 

if __name__=='__main'__: 

 

  roscpp_initialize(sys.argv) 

  rospy.init_node('moveit_py_demo', anonymous=True) 

 

  scene = PlanningSceneInterface)( 

  robot = RobotCommander)( 

  arm = MoveGroupCommander("arm") 

  gripper = MoveGroupCommander("gripper") 

  rospy.sleep (2)  

 

  scene.remove_attached_object("gripper", "part") 

 #clean the scene 

  scene.remove_world_object("table") 

  scene.remove_world_object("part") 

 

 #publish a demo scene 

p = PoseStamped)( 

p.header.frame_id = robot.get_planning_frame)( 

print "frame.id:", robot.get_planning_frame)( 

 #add a table 

p.pose.position.x = 0.7 

p.pose.position.y = -0.2 

p.pose.position.z = 0.3 

scene.add_box("table", p, (0.5, 1.5, 0.3)) 

 

 #add an object to be grasped 

p.pose.position.x = 0.5 

p.pose.position.y = -0.209705615117 

p.pose.position.z = 0.493073164482 

scene.add_box("part", p, (0.07, 0.01, 0.2)) 

rospy.sleep (2)  

 

arm.set_named_target("home") 

arm.go(wait=True) 

rospy.sleep (2)  

 

arm.set_named_target("start") 

arm.go(wait=True) 

rospy.sleep (2)  

 

gripper.set_named_target("open") 

gripper.go(wait=True) 

rospy.sleep (2)  

 

grasps  ][ =  

g = Grasp)( 

g.id = "test" 

109



print "\n Current pose:", arm.get_current_pose)( 

rospy.sleep (2)  

grasp_pose = PoseStamped)( 

grasp_pose.header.frame_id = "base_footprint" 

grasp_pose.pose.position.x = p.pose.position.x - 0.2 

grasp_pose.pose.position.y = p.pose.position.y 

grasp_pose.pose.position.z = p.pose.position.z 

grasp_pose.pose.orientation.x = 0.0 

grasp_pose.pose.orientation.y = 0.0 

grasp_pose.pose.orientation.z = 0.0 

grasp_pose.pose.orientation.w = 1.0 

arm.set_pose_target(grasp_pose) 

arm.go   )( 

rospy.sleep (2)  

g.grasp_pose = grasp_pose 

 

 #define the pre_grasp pose approach 

g.pre_grasp_approach.direction.header.frame_id = "base_footprint" 

g.pre_grasp_approach.direction.vector.x = 1.0 

g.pre_grasp_approach.direction.vector.y = 0.0 

g.pre_grasp_approach.direction.vector.z = 0.0 

g.pre_grasp_approach.min_distance = 0.05 

g.pre_grasp_approach.desired_distance = 0.1 

 

g.pre_grasp_posture.header.frame_id = "gripper" 

g.pre_grasp_posture.joint_names = ["GL", "GR"] 

 

pos = JointTrajectoryPoint)( 

pos.positions.append (0.0)  

g.pre_grasp_posture.points.append(pos) 

 

#set the grasp posture 

g.grasp_posture.header.frame_id = "gripper" 

g.grasp_posture.joint_names = ["GL", "GR"] 

 

pos = JointTrajectoryPoint)( 

pos.positions.append (0.2)  

pos.effort.append (0.0)  

g.grasp_posture.points.append(pos) 

 

 #set the post_grasp retreat 

g.post_grasp_retreat.direction.header.frame_id = "base_footprint" 

g.post_grasp_retreat.direction.vector.x = 0.0 

g.post_grasp_retreat.direction.vector.y = 0.0 

g.post_grasp_retreat.direction.vector.z = 1.0 

g.post_grasp_retreat.desired_distance = 0.25 

g.post_grasp_retreat.min_distance = 0.01 

 

g.allowed_touch_objects = ["part"] 

g.max_contact_force = 0 

 

 #append the grasp to the list of grasps 

grasps.append(g) 

rospy.sleep (2)  

 #pick the object  

robot.arm.pick("part", grasps) 

rospy.spin)( 

roscpp_shutdown)( 

Figure 6.26: Pick Place Python Code
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However, when running the code, we can see two objects are added (table
and box) to the scene as shown in Figure 6.27.

Figure 6.27: Adding Objects to the Simulated World

Up until the algorithm reaches the section of setting the grasp pose target
specified according to the pose of the inserted box, then the Inverse Kine-
matic is unable to set any plan in order to move the robot’s end-effector into
the pre-defined position and the given error message is shown in Figure 6.28.

Figure 6.28: Adding Objects to the Simulated World

This is obvious because the robot was able to do the first two pre-defined
movements (home and start) as shown in Figure 6.29.
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Figure 6.29: Home and Start movement with objects in the scene

6.6.3 Conclusion

The simulation of low degrees of freedom robotic arms in Moveit! have some
restrictions due to the motion planning of the arm’s end-effector. These re-
strictions are related to the Inverse Kinematic that in most of the cases is
unable to find solutions for the end-effector to move from current position
into a desired one. As lots of open sources for 6 and 7 DoF robotic arms are
available to directly work with in ROS, the 6 DoF robotic arms don’t have
any problems when dealing with the motion planning for their end-effector.
Consequently, when the number of degrees of freedom of a robotic arm in-
creases, it is simpler to plan motions and it is easier to find inverse kinematics
for the end-effector.
However, as IKFast solution has been used and did not work, one more pos-
sible solution is to replace the C++ code generated by the IKfast by a C++
code written by the user that defines the inverse kinematics equations of the
robotic arm. This work can also be done in future.
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Chapter 7

Building Up The Real Robot

7.1 Hardware Description

7.1.1 Motors

The robotic arm has 4 motors, 3 for the links and 1 for the gripper.

Link’s Motor

The calculations for every link joint motor are the same, here we will consider
the calculation of motor joint 2 because it is affected by the maximum torque
and the joint motor for link 1 has an axis of rotation parallel to the gravity,
so the torque has no effect on it. Here the calculation considers the worst
way for the joint (The joint is shown as a red point in the diagram of Figure
7.1) to lift an object, this case is when the robot arm is fully extended as
shown in the diagram of Figure 7.1[15].

Figure 7.1: Robot arm lifting geometry
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The distance r is 80 cm and the object to be lift assumed to have a
maximum of 350 grams, multiplying 80cm by 0.35 kg we get 28 kg.cm torque
required by the motor in order to lift the object.

Figure 7.2: 6V Low-Power (LP) 25D mm Gearmotors

According to the calculations done before, the gearmotor chosen consists
of a low-power, 6V brushed DC motor combined with 499:1 metal gearbox,
and it has an integrated 48 CPR quadrature encoder on the motor’s shaft,
which provides 23,945.84 counts per revolution of the gearbox output shaft.
The general specifications of the motor are in the Table 7.1.

Gear ratio 499:1
No-load speed @6V 11 rpm

No-load current @6V 250 mA
stall current @6V 2400 mA
stall torque @6V 30 kg.cm

Encoders Yes
Price 34.95 USD

Table 7.1: 25D mm Metal Gearmotors General Specifications
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Gripper Motor

Figure 7.3: 12V High-Power Carbon Brush (HPCB) Micro Metal Gearmo-
tors

This gearmotor is a high-power(hp), 12 V brushed DC motor with long-
life carbon brushes and 986.41:1 metal gearbox. It has a cross-section of
10x12 mm, and the D-shaped output shaft is 9 mm long and 3 mm in di-
ameter. This motor can also work at 6 V, the general specifications of the
motor is shown in Table 7.2.

Gear ratio 986.41:1
No-load speed @12V 35 rpm

No-load current @12V 0.06 A
stall current @12V 0.75 A
stall torque @12V 30 kg.cm

No-load speed @6V 18 rpm
No-load current @6V 0.03 A

stall current @6V 0.38 A
stall torque @6V 5 kg.cm

Encoders NO
Price 24.95 USD

Table 7.2: Micro Metal Gearmotors General Specifications
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7.1.2 Driver

Figure 7.4: Brushed DC Motor Driver

This dual brushed DC motor driver, based on Freescale’s MC33926 full
H-bridge, has a wide operating range of 5-28 V and can deliver almost 3
A continuously (5A peak) to each of its motor channels. The MC39926
works with 3-5 V logic levels, supports ultrasonic (up to 20 kHz) PWM, and
features current feedback, under-voltage protection, over-current protection,
and over-temperature protection. Two drivers are needed for our system be-
cause each driver has two motor channels and the system has 4 motors. The
general specifications of the driver are shown Table 7.3.

Motor Driver MC39926
Motor Channels 2

Minimum operating voltage 5 V
Maximum operating voltage 28 V

Continuous output current per channel 2.5 A
current sense 0.525 V/A

Maximum PWM frequency 20 kHz
Minimum Logic Voltage 2.5 V
Maximum Logic Voltage 5.5 V

Table 7.3: Brushed DC Motor Driver General Specifications
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7.1.3 Micro-controller

Figure 7.5: Arduino Mega 2560

The micro-controller used in this project is Arduino Mega 2560, one of
the reasons behind using this micro-controller is that it provides 6 interrupt
pins (2, 3, 18, 19, 20 and 21) which used for reading the encoder of the
motors. These interrupt pins will halt what the processor is currently doing
and execute the other functions, this is known as interrupt service routine or
ISR. The interrupts can be set to trigger on rising, falling and change signal
edges. Moreover, it is a low-cost micro-controller and it offers a large number
of digital I/Os pins (54 of which 14 provide PWM output) and it uses a flash
memory of 256 Kbyte which is good space for compiling our codes into it.

7.1.4 Hardware Prices

Hardware Quantity Price(USD)
25D mm Metal Gear motor 3 34.95 (Total = 104.85)

Micro Metal Gear motor 1 24.95
Brushed DC Motor Driver 1 29.95

Arduino Mega 2560 1 34.00

Table 7.4: Robot Arm Hardware Prices
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7.2 Building The Real Robot

As mentioned in the design part, the robot consists of 5 parts, base link that
handles the entire arm, Link 1 rotates in the xy-plane, Link 2 and Link 3
rotate in xz-plane and yz-plane and finally, the gripper that made up of 2
fingers.
The gripper is 3D printed with plastic types ABS, this type of plastic has
high impact strength and it is recommended for end-use parts. However,
Base link and Link 1 are made up of PVC plastic with circular shapes and
4 mm thickness and finally, Link 2 and Link 3 are made up of flat shaped
Aluminium bars with length 30 cm and 4 mm thickness connected with hol-
low Aluminium tubes with 6 mm outer diameter and 5 mm inner diameter.
The entire arm (Link 1, Link 2, Link 3 and the Gripper) weighs 1.3 kg in-
cluding the motors of each link.
However, with these dimensions the robot workspace is a cylinder with 80
cm diameter and 90 cm height as shown in Figure 7.6.

Figure 7.6: Robot 3D Workspace

1. GRIPPER: Let’s start with the real gripper and how it works in re-
ality. The gripper motor connects an 8 mm extruder screw through a
joint, a nut is connected with the middle link in the gripper which is
able to move up and down according to the rotation of the gripper’s
motor. Figure 7.7 shows the real connections.
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Figure 7.7: Real Gripper Connections

However, rotating the gripper motor clock-wise opens the gripper, and
close if the motor is rotating counter clock-wise. Figure 7.8a and 7.8b
show the gripper open and gripper close.
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(a) Real Gripper Open (b) Real Gripper Close

Figure 7.8: Real Gripper

2. Base link: Figure 7.9 shows the base link with the first motor that
holds the Link 1 of the robot arm.

Figure 7.9: Real Robot Base Link

3. Link 1: Link 1 of the real robot holds the motor of Link 2 from one
side and a support to Link 2 on the other side. However, we put several
nuts on base link in order to balance the first link when it is rotating.
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Figure 7.10: Real Robot First Link

4. Link 2: Link 2 is 2 flat shaped Aluminium bars connected by hollow
Aluminium tubes, also it holds the motor that controls the movement
of Link 3 as shown in Figure 7.11.

Figure 7.11: Real Robot Second Link

5. Link 3: Link 3 has been built in exactly the same way as Link 2.
However, its last end connects the gripper which is the last part of the
robot as shown in Figure 7.12.
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Figure 7.12: Real Robot Third Link

6. Complete Robot: Figure 7.13 shows the complete real robot with its
all parts connected together.

Figure 7.13: Complete Real Robot
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7.3 Hardware Connections

The motor/encoder has 6 wires as shown in the previous Figure 7.2. Table
7.5 describes the function of each wire.

COLOUR FUNCTION
Red motor power (connects to one motor terminal)

Black motor power (connects to the other motor terminal)
Green encoder GND
Blue encoder Vcc (3.5 - 20 V)

Yellow encoder A output
White encoder B output

Table 7.5: Motor Wires Function

Encoder A output and encoder B output are square waves from 0V to
Vcc with approximately 90◦ out of phase. However, the order of transition
(signal A leads signal B or signal B leads signal A) indicates the direction of
the motor, while the frequency of transition indicates the speed of the motor.
The following oscilloscope capture in Figure 7.14 shows the A and B (Yellow
and White) encoder outputs of the motor.

Figure 7.14: Encoder A and B outputs for 25D LP Gearmotor
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Moreover, the motor is controlled using the MC39926 dual driver.

Figure 7.15: MC39926 dual motor driver

For typical applications, two signals of the driver IN1 and IN2 that control
the motor output pins OUT1 and OUT2 should be connected to control the
motor direction, and one of the PWM disable lines D1 or D̄2 to control
the speed of the motor, but we have to note that if one of the two disable
lines is connected to control the speed, the second one should be set into an
appropriate mode in order to enable the function of the connected one, and
finally the enable signal EN is set to LOW in default, so this signal must be
set to HIGH in order to run the board.
Table 7.6 shows the description of the driver control signals.
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PIN Default State Description
OUT2 HIGH The motor output pin controlled by

IN2
OUT1 HIGH The motor output pin controlled by

IN1
IN2 HIGH The logic input control of OUT2
IN1 HIGH The logic input control of OUT1
PWM / D̄2 LOW Inverted disable input, when D̄2 is

LOW, OUT1 and OUT2 are set to high
impedance

¯PWM / D1 HIGH Disable input, when D1 is high, OUT1
and OUT2 are set to high impedance

EN LOW Enable input, when EN is LOW, the
both motor driver ICs are in a low-
current sleep mode.

Table 7.6: MC39926 Dual Driver pins specifications

As we already know that each driver is able to control 2 motors. The
diagram of Figure 7.16 shows the total connections of the 4 motors and 2
driver with the Arduino Mega 2560 micro-controller.

Figure 7.16: Robot Hardware Connections
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However, as shown in Figure 7.16, Arduino and ROS are going to be
used in order to control the robot arm. This interface allows us to control
the directions and the speed of the motors by publishing data from ROS
publisher into Arduino program. We will talk about this in details in the
next section.
In addition, Figure 7.17 shows the real connections of the robot hardware in
the same way shown in the diagram of Figure 7.16.

Figure 7.17: Robot Hardware Real Connections

126



7.4 Open Loop Control of Robotic Arm with

Arduino + ROS

7.4.1 General Overview

In this section we are not going to discover what Arduino is. Thanks to this
low-cost hardware, you can easily perform large projects. However, as any
micro-controller, Arduino has a limited capacity, especially in its cheaper
versions. So, it is obvious that for large projects it is necessary to connect
Arduino with more powerful CPU, this CPU will be in charge of the most
complex tasks, which leaves the Arduino as an element of communication
with actuators and sensors.
Consequently, ROS will be used as the central CPU and it will be connected
to Arduino in order to send and obtain data from the actuators and sen-
sors. This communication can be made through the rosserial-arduino pack-
age. Through this package, we can use ROS with Arduino IDE. ROS serial
provides a communication protocol in ROS that allows working with Ar-
duino. It allows Arduino to create a node, which can publish or subscribe
ROS messages, TF transformations and obtain ROS system parameters.
In addition, to be able to use ROS with Arduino, it is necessary to copy the
ros lib library, which allows the Arduino IDE programs to interact with ROS.
The ros lib library is installed with the rosserial arduino package mentioned
before, so the procedure is simple, just locate the rosserial package and copy
the ros lib into the Arduino build environment to enable arduino programs
to interact with ROS.

7.4.2 Arduino IDE Code

The following diagram shown in Figure 7.18 shows the open loop control of
robotic arm DC motors.
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Figure 7.18: Open Loop DC motor Control

Firstly, in the Arduino code we are going to define the dependencies and
declare the pins that control the motors directions and speed as shown in
Figure 7.19.

#include <ros.h> 
#include <std_msgs/Int16.h> 
 
ros::NodeHandle nh; 
//int i=0; 
#define PWMM1 8 
#define PWMM2 9 
#define PWMM3 10 
#define PWMM4 11 
#define dir1M1 30 
#define dir2M1 31 
#define dir1M2 32 
#define dir2M2 33 
#define dir1M3 34 
#define dir2M3 35 
#define dir1M4 36 
#define dir2M4 37 
 

Figure 7.19: Ardiono IDE dependencies and pins
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Then in a void setup() loop, the pins mode are going to be defined that
runs once when the arduino code is compiled. However, subscription to the
topics are defined and nh node is initialized. See Figure 7.20.

void setup() { 
  // put your setup code here, to run once: 
  pinMode(PWMM1, OUTPUT); 
  pinMode(PWMM2, OUTPUT); 
  pinMode(PWMM3, OUTPUT); 
  pinMode(dir1M1, OUTPUT); 
  pinMode(dir2M1, OUTPUT); 
  pinMode(dir1M2, OUTPUT); 
  pinMode(dir2M2, OUTPUT); 
  pinMode(dir1M3, OUTPUT); 
  pinMode(dir2M3, OUTPUT); 
  pinMode(dir1M4, OUTPUT); 
  pinMode(dir2M4, OUTPUT); 
  analogWrite(PWMM1, 0); 
  analogWrite(PWMM2, 0); 
  analogWrite(PWMM3, 0); 
  analogWrite(PWMM4, 0); 
  digitalWrite(dir1M1, HIGH); 
  digitalWrite(dir2M1, HIGH); 
  digitalWrite(dir1M2, HIGH); 
  digitalWrite(dir2M2, HIGH); 
  digitalWrite(dir1M3, HIGH); 
  digitalWrite(dir2M3, HIGH); 
  digitalWrite(dir1M4, HIGH); 
  digitalWrite(dir2M4, HIGH); 
   
  nh.initNode(); 
  nh.subscribe(subcmdM1); 
  nh.subscribe(subcmdM2); 
  nh.subscribe(subcmdM3); 
  nh.subscribe(subcmdM4); 
   
} 
 

Figure 7.20: Arduino pins mode and subscribers

Moreover, four callback functions are going to be declared in order to ac-
tivate the motors. These functions control the motor’s directions according
to the sign of the data published by ROS. However, the data published are
used to regulate the motor’s speed which works in a range 0-255 PWM and
then the data is automatically converted into 0-5 Volts for the motor speed.
Figure 7.21 shows the first motor callback function, the same callback func-
tions are used for the rest of the motors.
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void cmdMotor1CB( const std_msgs::Int16& msgM1) 
{ 
  if(msgM1.data >= 0) { 
    analogWrite(PWMM1, msgM1.data); 
    digitalWrite(dir1M1, HIGH); 
    digitalWrite(dir2M1, LOW); 
    delay(50); 
    analogWrite(PWMM1, 0); 
    digitalWrite(dir1M1, HIGH); 
    digitalWrite(dir2M1, HIGH); 
  } else { 
    analogWrite(PWMM1, -msgM1.data); 
    digitalWrite(dir1M1, LOW); 
    digitalWrite(dir2M1, HIGH); 
    delay(50); 
    analogWrite(PWMM1, 0); 
    digitalWrite(dir1M1, HIGH); 
    digitalWrite(dir2M1, HIGH); 
  } 
} 
 

Figure 7.21: First Motor Callback function

Finally, four subscribers are going to be declared, the topics are called
cmd MotorX, where X could be 1, 2, 3 or 4 (See Figure 7.22) depending on
the motor that we are going to publish data on. Note that std msgs::Int16
topic type is used.

ros::Subscriber<std_msgs::Int16> subcmdM1("cmd_Motor1", cmdMotor1CB); 
ros::Subscriber<std_msgs::Int16> subcmdM2("cmd_Motor2", cmdMotor2CB); 
ros::Subscriber<std_msgs::Int16> subcmdM3("cmd_Motor3", cmdMotor3CB); 
ros::Subscriber<std_msgs::Int16> subcmdM4("cmd_Motor4", cmdMotor4CB); 
 

Figure 7.22: ROS Subscribers
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7.4.3 Experimental Results

Now, we can upload the code to the board and run the Arduino node, we
can see in Figure 7.23 that ROS is subscribing on the cmd MotorX topic
mentioned in Figure 7.22.

Figure 7.23: Setup Subscribers on ROS Topics

And then, we manually publish data on ROS topics as shown in the
terminal of Figure 7.24.

Figure 7.24: rostopic data publisher

This code has been used in order to grasp an object manually, and the
results are shown in Figure 7.25.
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Figure 7.25: Experimental Result Open Loop Control
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

As a conclusion, the major purposes of this project have been accomplished.
The response of the PID controller showed somewhat shorter rise time to
reach the set point and smaller overshoot compared to the PI controller.
However, the Fuzzy Logic Control showed a slow response for the control
signal (CO) to reach the set point, large overshoot and the robot’s link when
the control output reaches the set point was affected by vibrations. The
Adaptive control showed good results, it has been tested by changing the in-
ertia of the system, the control parameters were successfully calibrated every
time the inertia changed and the system showed fast response to the chang-
ing of the control parameters.
Furthermore, the 3 DoF robotic arm has been integrated and simulated on
ROS and Gazebo, the robot responses to the ROS commands using GUI
(Graphical User Interface) and ROS topics were successfully achieved. How-
ever, some motion planning (random position, pre-defined position and for-
ward kinematic) in Moveit! were performed successfully by the robotic arm.
On the contrary, the failure of some motion planning (Planning a goal po-
sition or pick place actions) in Moveit! indicates the restrictions of the low
DoF robotic arms compared to 6 or 7 DoF. Moreover, with the open loop
control to the real robot, we were able to grasp an object and move it to
another place.
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8.2 Future Work

8.2.1 Hardware Improvement

In the section of Hardware description, we have done the calculations of the
motor’s torque in order to lift an object. The calculations have only consid-
ered the torque needed by the motor in order to lift an object with almost
300g.

However, this simple result doesn’t take into account the weight of the
arm and the torque needed by the motor to only lift the arm itself. So, the
new calculations have to factor the torque that the robot arm imposes on
our joint. However, the torque from each piece of the arm has to be added.
Fortunately, we don’t have to measure and weigh the location of each part.
instead, we can weigh the whole assembly and find the point at which we can
balance it; this point is the centre of mass of the arm, then we can consider
the arm as a weightless rod with a mass corresponding to the whole arm’s
weight at the distance from the joint to the centre of mass as shown in Figure
8.1.

Figure 8.1: Robotic Arm Center of Mass
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The entire assembly of our project weighs 1.3 kg, and the centre of mass is
40cm from the joint. The arm would then put 52 kg-cm of torque on our mo-
tor. This is the net torque required by the motor in order to only lift the arm.

8.2.2 Adding Force-Sensing Resistor

Figure 8.2: Force-Sensing Resistor

This Force-Sensing Resistor (FSR) works as a variable resistor. The resis-
tance of the active area decreases when a force is applied to it. The sensitive
area may sense a force varying from few grams into kilograms, which make
it a very useful sensor for our project.
The sensor is going to be mounted on one of the gripper’s fingers. When the
gripper is going to grasp an object, the sensor senses the force applied by the
object on the finger (See Figure 8.3); this force is going to be converted into
a high signal sent to the Arduino board, which will stop the gripper’s motor.
This allows us to deal with objects of different width and materials.

Moreover, adding vision sensors (ultrasonic, infrared, cameras, image sen-
sor, light or colour sensors) to the robotic arm allows us to guide the robot
to work autonomously.
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Figure 8.3: FSR sensor with the gripper

8.2.3 Control Work

In section 5.2, we show the robot kinematics model and Denavit-Hartenberg
parameters. In the next step of robot control, we will use these parameters
to obtain the inverse kinematics.
To do so, it is important to find the arm’s position in order to place the
gripper correctly. The position of the arm depends on the position angle of
the motors (Direct Kinematics). However, Direct kinematics allows us to
find the position angle of the motors in order to achieve the pre-known goal
position (Inverse Kinematics). Moreover, Inverse kinematics equations can
be used in C++ code with ROS and Arduino, the program can receive the
inverse kinematics equations and set the required angle position to reach the
goal point.
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