
POLITECNICO DI TORINO

Corso di Laurea Magistrale in Electronic Engineering

Tesi di Laurea Magistrale

Intelligent Scheduler for
Heterogenous Systems on a Chip

Relatori:
Prof. Mariagrazia Graziano
Prof. Amit Trivedi, University of Illinois at Chicago

Candidato:
Andrea Ciccardi

Dicembre 2018

Acknowledgments

Firstly, I would like to thank prof. Amit Trivedi, that gave me the opportunity of
working in this challenging problem, in his lab, with special people. His determi-
nation in working in problems that will affect the future of this world was of great
inspiration to me.

I am deeply thankful to Prof. Mariagrazia Graziano, her point of view always
gave me a different way of thinking that helped me solving some of the challenges
encountered during my thesis. Thanks to her classes, my interest in the subject
grew incredibly and she gave me a precise path to follow for my future.

I would also like to thank Suraj and all the Clock Team at Nvidia. They boosted
my practical knowledge and gave me inspiration during the internship.

I am extremely grateful to my family. They have always given me the full support
in whatever was needed to pursue my dreams.

I would also like to extend my deepest gratitude to all my friends in Chicago,
you have been like a family during this period of study abroad and you made the
experience impressive, as well as to all the people that supported me from Italy.

I would like to extend my sincere thanks to Ahish, he has given me great help
when I needed someone to confirm my ideas and he helped a lot in making the work
less painful in that areas that are not my first expertise.

I

Summary

This thesis presents the design of an intelligent scheduler for heterogeneous systems.
The quest for performances require the heterogeneity of the systems, but in the
meantime, this may represent a problem from the power point of view. In this
complex scenario, the scheduling of the tasks becomes vital. Being the scheduling a
NP -complete problem, the core idea is to move all the complexity to an offline phase,
train a modeled neural network and exploit it to supply the sub-optimal scheduling
during online use. The solution proposed consists of a hardware binarized neural
network that, in negligible time with respect to the running time of the tasks, is able
to provide with an address to point a memory containing the sub-optimal scheduling
for that combination of the inputs. Inputs to the system are the condition of the
running execution unit, in particular, the number of clock cycles that each machine
would take to complete each task and the communication cost between resources.
In fact, this system is the final end of a more complex structure used to provide the
neural network with the necessary inputs. Since the hardware is massively parallel
the new scheduling can be computed in few nanoseconds. The efficiency of this work
resides in the fact that, given the speed of the accelerator, this can be used both to
adapt the scheduling to the running conditions and to compute the real scheduling
every time, lowering the amount of work the operating system has to do. This would
imply a slight modification in the way the system works normally, but in general,
would provide the target computer with a lot more computation power and in the
meantime lower the amount of work of the operating system or who is in charge of
the scheduling.

II

Table of contents

Acknowledgments I

Summary II

1 Introduction and Theoretical Background 1

1.1 Multiprocessor Scheduling problem 2

1.2 Classification of the existing solutions 5

1.3 HEFT . 6

1.4 Binarized Neural Network . 7

2 Overall system and Validation of the Idea 8

2.1 Neural Network . 9

2.1.1 Output format and size . 10

2.1.2 The training . 13

2.1.3 Training-set creation . 13

2.1.4 Training the network with backpropagation 16

2.1.5 Testing the network on a new test set 17

2.2 The results with full precision . 18

3 Moving to Hardware 23

3.1 Differences with respect to Courbariaux Binarized Neural Network . . 24

3.2 The Binarized Neural Network Training phase 27

3.3 How to move each structure to Hardware 28

3.3.1 Multiplication . 30

3.3.2 Digital Structure . 30

3.3.3 Mixed-Signal Structure . 32

3.3.4 All the possible trades-off between the two structures 36

3.3.5 Output layer . 37

3.4 Pipelining the structure . 40

3.4.1 Pipeline with digital activation function 41

3.4.2 Pipeline with mixed-signal activation function 41

3.5 Multi-TaskGraph Problem . 43

3.5.1 The computer architecture solution 43

III

4 Hardware Realization and Overall Perfomances 46
4.1 The Final Network . 46
4.2 The complete generalization of the verilog code and the folder structure 47
4.3 Performances Results . 49

4.3.1 One’s Counter . 50
4.3.2 Comparator . 51
4.3.3 One’s Majority . 53
4.3.4 Scheduler without pipeline . 57
4.3.5 Scheduler with pipeline . 58

5 Conclusions 61
5.1 Future Work . 61

Bibliography 66

IV

List of figures

1.1 The whole system . 2
2.1 Overall system . 8
2.2 Direct scheduling output. 11
2.3 Encoded version of the output and its decoding for memory addressing. 11
2.4 One-hot version of the output and possible selection of the schedules. 12
2.5 All the output values with the optimal system. 12
2.6 MSE decreasing with the training . 17
2.7 Number of misclassification decreasing with the training 17
2.8 DAG for the FFT Problem . 20
2.9 DAG for the Baseband Problem . 20
2.10 DAG for the Balanced Problem . 20
2.11 DAG for the Gaussian Elimination Problem 20
2.12 Fft taskgraph: scheduling performances 22
2.13 Baseband taskgraph: scheduling performances 22
2.14 Balanced taskgraph: scheduling performances 22
2.15 Gaussian Elimination taskgraph: scheduling performances 22
3.1 Activation function for the output layer of the binary neural network 26
3.2 Final binarized neural network. 27
3.3 Block scheme of the final neural network. 27
3.4 MSE for the training of the BNN. 28
3.5 Misclassification for the training of the BNN 28
3.6 8 bit One’n Counter . 32
3.7 Hidden activation function . 33
3.8 Timing hidden layer: explain it better in the final version 34
3.9 Analog Comparator . 35
3.10 Output comparator . 38
3.11 Single comparator . 39
3.12 Hardware Realization for the Activation Function 40
3.13 Pipeline inserted in the digital structure 42
3.14 Timing of the mixed signals structure with pipeline 42
3.15 Timing diagram for the analog structure 43
3.16 Generalized solution . 44
4.1 Folder structure . 48
4.2 Performances Graphs for Different Size One’s Counters 51
4.3 Time for One’s Counters with 25÷ 1000 inputs 52
4.4 Critical waveforms for the One Majority structure with 51 inputs . . 55

V

4.5 Critical waveforms for the One Majority structure with 306 inputs . . 57
4.6 Pipeline for achieving the operating frequency of 1GHz 59
5.1 Not Partitioned taskgraph. 63
5.2 Partitioned taskgraph. 63

VI

Chapter 1

Introduction and Theoretical

Background

Modern-day high-performance computing (HPC) systems increasingly comprise dis-

parate computing platforms (Fft processor, video processor, DSP processor, etc.)

and a large number of general purpose cores. For many high throughput applica-

tions, HPCs need to run multiple applications in parallel, where each application is

broken down to several tasks and multiple tasks are concurrently executed. However,

given increasing heterogeneity of HPCs (many computing cores can run a task, but

not all are always available) and complexity of workloads (increasing randomness due

to memory access dependence, inter-task dependency, user and cloud-dependency,

etc), scheduling of tasks becomes a challenging problem. In fact, the level of uncer-

tainty in the execution time for every task opens to a variety of solutions that in

general result in completely different performances.

Several papers [1][2][3] present and refer to works that state the importance of

heterogeneity of the systems, where different cores are able to perform different

applications with different performances. Briefly, the impact of heterogeneous ar-

chitecture is related to both power consumption and speed of the system. In fact [1],

[2], and [3] claim that from the power consumption point of view, the application

should run the high speed resources only when needed, preferring the low power

ones every time it is possible. Anyway, having specialized processors helps for both

the aspects.

According to [4], the multiprocessor scheduling is considered an NP -hard prob-

lem, and the growing number of execution units even increases the complexity of the

problem to a great extent and various trade-offs between speed and accuracy of the

algorithm has to be found. With this approach, we try to move all of the complexity

to the offline execution of the program, allowing a reliable method for the real-time

1

1 – Introduction and Theoretical Background

^ƚĂƚŝĐ��ŽŵƉŝůĂƚŝŽŶ�ŽĨ�^ƚĂƚŝƐƚŝĐĂů�ƚĂƐŬ�ĨĞĂƚƵƌĞƐ

ZƵŶƚŝŵĞ�WƌĞĚŝĐƚŝŽŶ�ZĞĨŝŶĞŵĞŶƚ

ZĞĂůͲdŝŵĞ�^ĐŚĞĚƵůĞƌ

Figure 1.1: The whole system

scheduling, that requires almost no time. For this reason, we present an hardware-

driven approach where a dedicated accelerator proactively updates task schedules

under varying resource availability and workload to maximize the throughput of

HPC.

This thesis enters inside a bigger system made up of several parts. In particular,

the proposed solution aims to be the last stage of the whole system presented in 1.1.

The first two steps are part of the future works.

Before getting into the details of the proposed solution, the statement of the

problem, a brief state-of-the-art for the solutions, and the technical background are

given.

1.1 Multiprocessor Scheduling problem

When referring to an algorithm, in most of the times the best way of representing

it is by means of a graph that specifies all the dependencies between the tasks. For

computer applications, this graph is the Directed Acyclic Graph (DAG), generally

referred to as taskgraph. A DAG G = (v,e) is a set of v nodes and e edges. Each

2

1.1 – Multiprocessor Scheduling problem

ei→j is the edge that connects the node vi to vj. In this case, i is named as parent

for the node j, and j is a child for node i. Every node that does not have any parent

is the source or entry node, while every node that does not have any child is a sink

node. Every edge is associated with a non-negative weight, that defines the amount

of data that have to flow between one node to the other for the correct computation

of the output. Moreover, this communication cost is not used if two consequent

tasks run in the same execution unit. In this case data are already available in the

resource.

Together with the DAG, the scheduling problem requires two more matrices, PC

and MC :

• PC : given the number of execution units where the program to schedule can

run, this matrix represents the number of clock cycles that each task would

take on each execution unit. Its size is then:

sPC = nv · nEU (1.1)

and the matrix is like: 
pc0,0 · · · pc0,nEU

...
...

...
...

...
...

pcnv ,0 · · · pcnv ,nEU



• MC : if two consequent tasks run in the same execution unit, then all the

data are available in that execution unit without any additional time. But

if those tasks run on different execution units, the data transfer time has to

be considered. This matrix represents the rate in which data flow between

one execution unit to the other. Its size is then defined from the number of

resources available as:

smc = n2
EU (1.2)

3

1 – Introduction and Theoretical Background

And the matrix will have the following shape:
0 mc0,1 · · · mc0,nEU

mc1,0 0 · · · mc1,nEU

...
.

...

mcnEU ,0 mcnEU ,1 · · · 0


Assuming a taskgraph with T tasks and P processors, the total time to compute

the algorithm (makespan) is given by the finish time of the last executed task,

written as:

TfinishT
= TstartT + PC(T,pT) (1.3)

The goal of the scheduling problem is to make this time the smallest possible. pT

represents the assigned resource for the last task.

As written in [4], the start time of each task j is defined as:

Tstart(nj,pj) = max{Tfree(pj),Tready(nj,pj)} (1.4)

where Tfree(pj) is the time when the chosen resource is ready to execute a new task,

that means when the last task allocated to that machine finishes the execution.

Tready(nj,pj) is instead the time when the machine pj is ready to execute the task

nj. This means that this time is equal to:

Tready(nj,pj) = maxnk∈parents(nj){Tfinish(nk) +
wei→j

MC(pk,pj)
} (1.5)

where the first term of the max argument is the finish time for the parent node and

the second one represents the communication cost. In particular, the communication

cost is equal to the amount of data over the data transmission rate between the

execution units.

This results in a recursive operation, up to the entry node, that will have Tstart =

0.

As it can be seen, the complexity of problem is really high, and it increases

with the number of tasks and the heterogeneity of the architecture where to run the

taskgraph.

4

1.2 – Classification of the existing solutions

1.2 Classification of the existing solutions

Given the problem presented in the previous section, the approaches for the solution

can be divided in two different big classification methods, based on the moment

when the scheduling is done and the quality of the solution with respect to the time

implied to find it.

In general, depending on the time when the scheduling is performed, the algo-

rithm may be:

• Static: if the scheduling is computed at the compilation time (therefore, rigid

and not-adaptive to dynamically varying workload and computing resources);

• Dynamic: if the allocation of each task to a resource is done at the run-time.

This work enters in the dynamic scheduling class, even though exploiting static

scheduling algorithm. In particular, the system suggested tries to emulate the best

solution computed statically, in a real-time fashion.

As remarked in [4], another classification of the scheduling algorithm relies on

the speed-quality of schedule trade-off:

• Heuristic-based approach: the solution is not necessarily optimal, but it is

always found in an efficient way. Sometimes, the result is not even acceptable;

• Stochastic-based approach: the solution is always performing good, but this

is paid in time efficiency for providing the scheduling.

The solution that we are presenting enters in both the classes. In fact, it exploits

learning architectures to provide real-time scheduling, and, depending on the ref-

erence algorithm used for learning, it provides better or worse results in term of

makespan.

Basing on the first classification method, the approaches to run the schedule on

each CPU are slightly different. In fact, considering the static scheduling, it is done

at the compilation level, meaning that every time the executable has been called,

it already contains the resource information for each task. In this kind of systems,

according to [2], the scheduling is performed by the operating system, that creates

a single running queue for each core and then moves the control to the core itself for

5

1 – Introduction and Theoretical Background

the real execution. Instead, an example of dynamic schedule is in [5]. Ramamritham

et al. use the OS to create a global job queue and then, basing on the availability of

task and resources and on the priority of each task, they update this queue assigning

each task to each resource. Nevertheless, the way the scheduling is moved to the

hardware is similar.

Given this, the reference method used during the thesis and the neural network

model to implement the solution are briefly introduced.

1.3 HEFT

In the time, several methods have been found. The goal of this introduction is not

to present all of them, but to present the most significant one, meaning the one used

as a reference in most of the papers, as well as in this thesis. It is the HEFT. This

is not the best solution present in the market, but it represents a good reference for

all the papers related to scheduling.

Again, the goodness of the outcome for this work has to be found in the hardware

accelerator developed, the new approach, and the solutions proposed, hence the

relative performances will always be given with respect to the reference algorithm.

This reference algorithm may influence the optimal makespan in general, but we

believe that the network is able to learn the problem not depending on the reference

algorithm used. This is the reason why the HEFT has been used, even though it

does not represent the most efficient algorithm in term of the makespan outcome.

Heterogenous Earliest Finish Time (HEFT) is an heuristic algorithm that splits

the computation of the scheduling in two processes:

• Prioritizing the tasks ;

• Assigning each task to an execution unit.

The prioritization of the tasks is done in the following way:

• The node is a leaf: the rank is the mean of the execution time in all the

machines, that means the average of the values of the row relative to that

node in the PC matrix;

6

1.4 – Binarized Neural Network

• The node is not a leaf: the rank is given as the average cost of the node summed

up with the maximum over all the children of the average communication cost

and the rank of the child. Written in formula, this means:

r(ni) = pci + max
c ∈ children

{mc+ r(nc)} (1.6)

After each node has a rank, this rank is seen as a priority and the task with the

highest priority is the one scheduled first in the execution unit that gives the lowest

finish time. After that, every task will be scheduled on the machine that gives the

lowest finish time, considering the dependencies with all the previous tasks.

This does not always result in the optimal scheduling, but it is easy enough to

use during the design for the training of this structure.

1.4 Binarized Neural Network

The last technical background needed to fully understand the proposed model is

the Binarized Neural Network. This is a neural network that has both weights and

activation constrained to one bit numbers, meaning that it represents the perfect

fit for the hardware realization. As Courbariaux et al. in [6] claims, this network

is able to learn with almost the same performances as the full precision ones. They

work exactly as a standard neural network, with the difference that, during the

training, the binarized activation and weights are used for computing the gradient,

but a full precision weight is stored and use for upgrades. In general, the learning

of the network happens when there is a change in sign of the not-binarized value,

that is the one being updated every time. Both the weights and the local fields are

binarized only considering the sign of the output value. Hence, they have value −1

and 1. Moreover, since each layer is going to be binarized, the output of each neuron

will be one bit only.

What they do not specify is the behavior of the input layer, but this will be one

of the differences that the network realized in this thesis have with the original one.

A more detailed model is presented in chapter 3, when the implementation of it is

explained as well.

7

Chapter 2

Overall system and Validation of

the Idea

The aim of this project is to exploit learning architectures to solve the scheduling

problem presented in the previous chapter. The main idea is to train a neural

network on a finite number of reference schedules that allows the minimum possible

loss in performances. The HEFT algorithm is used to find a fixed number of sub-

optimal schedules for a variety of input configurations that are used for training. The

neural network will provide with an ID that maps in real-time the input configuration

to a stored scheduling. Hence, the overall system, shown in 2.1, is made up of two

blocks:

• The neural network learning the scheduling ID;

• The memory being pointed from the neural network.

Generalizing the problem for all the applications would have meant to increase

a lot the complexity of the problem, hence the schedule is performed for a single

application architecture firstly.

NN Stored
Scheduling

Scheduler

Figure 2.1: Overall system

8

2.1 – Neural Network

Before starting with the explanation of the solution, an aspect must be pointed

out. During the thesis, performances will be mentioned several times. There are

two types of performances that matter in this case:

• Schedule performance: this is the performance of a schedule with respect to

another. It can be seen as the difference in makespan between two schedules

with the same PC and MC.

• Hardware performance: this is the performance that an hardware can achieve

in term of operation frequency and number of clock cycles taken to provide

the output, or simply, the critical path from any input to any output of the

hardware structure.

Where not specified, the type of performances we are referring to can be intended

from the context for most of the times. Sometimes, it has to be intended as both the

performances. In any case, the reader has to think about which kind of performance

is the one that a certain decision improves, to get a full understand of the problem

and the relative solution.

2.1 Neural Network

Since the goal is to perform the scheduling as fast as possible, the neural network

should be the simplest: a multi-perceptron neural network with input layer, one

hidden layer and output layer. The number of neurons for each layer is defined by

the needs that come up during the developing of the project:

• Input layer: to reduce the number of input neurons, it is possible to get rid of

all the fixed matrix for each application. That means that both the taskgraph

and the data matrices are not considered as inputs to the system. The only

real inputs that change the output schedule are PC and MC matrices. Hence,

their dimensions (1.1 and 1.2) fix the complexity of the input. Although, for

what concerns the MC matrix, it is possible to get rid of some entries of it: if

a parent and a child tasks are executed in the same execution unit, data do

not have to flow. For this reason, the part of the MC matrix that is passed to

9

2 – Overall system and Validation of the Idea

the neural network is:

sMC = nEU · (nEU − 1) (2.1)

The number of inputs to the network is then:

nI = sPC + sMC = nEU · (ntasks + nEU − 1) (2.2)

For example, for an application with 15 tasks, to run on three different execu-

tion units, the input size will be:

nIfft = 3 · (15 + 3− 1) = 51

• Hidden layer: Matlab simulations demonstrate how, for a variety of appli-

cations, nH = 50 hidden neurons are sufficient.

• Output layer: the number of output neurons nO is fixed and it is chosen as

a power of two number. This decision came from a study performed at the

beginning of the work. This is going to be explained in the next session.

2.1.1 Output format and size

When developing the project, three different ideas on the output format came out:

• Direct Scheduling Output : The output already represents the scheduling ma-

trix. The size of the output in this case would be:

nO = 2 · ntasks

Each task has the correspondent execution unit.

However, this solution is not able to ensure correctness in task dependencies.

For this reason this solution (2.2) has been discarded since the very beginning.

• Encoded Output : The output number represents the encoded unsigned ID for

the output. This number can be directly used for addressing the memory of

10

2.1 – Neural Network

+
b1

+

f

f

v1

bhl

...x1

xN

+
b1

+
b5

...

f

f

......

vhl

v1

v5

O1

ON

O
U
TP
UT

Figure 2.2: Direct scheduling output.

+
b1

+

sigm

sigm

v1

bhl

...x1

xN

+

b1

+
blog(N)

...
Sigm

sigm

......
vhl

v1

Vlog(N)

Step(O-0.5)

Step(O-0.5)

...

O1

Olog(N)

...
Hardwired Saved Schedules

OUTPUT

Figure 2.3: Encoded version of the output and its decoding for memory addressing.

the stored schedules. This solution can be implemented in the easiest way in

hardware, resulting in a speeder system, but it would require the decoding of

the output when selecting the correct schedule. A sketch of the structure is

presented in 2.3.

• One-hot Encoding of the output : There are nO = 2n wires, each one directly

corresponds to a stored schedule. In the output of the neural network, the one

with maximum value is chosen and its correspondent output wire asserted. All

the other wires are zeros.

Beside the first choice, that cannot be carried out because of the incorrect na-

ture of its output, the second and the third solutions are both feasible. Between

them, the third one was chosen, because it ensured higher hit rate and lower loss

in performances during the testing process. Moreover, it converges to a solution in

less time during training.

11

2 – Overall system and Validation of the Idea

Figure 2.4: One-hot version of the output and possible selection of the schedules.

Hence, the final neural network is the one in 2.4.

The number of output wires has been evaluated looking at performances inserting

an optimal block that always computes the best output between the saved ones. In

this way it is possible to understand which one is the best trade-off between all the

choices. From figure 2.5 and table 2.1, the following behavior has been highlighted:

Table 2.1: TRADE-OFF BETWEEN THE NUMBER OF OUPUTS.

Output wires 4 8 16 32
Performances: -4.14% -1.00% -0.15% 0.50 %

Figure 2.5: All the output values with the optimal system.

From figure 2.5 it can be seen as the change in performances is not marked

12

2.1 – Neural Network

while changing from eight to higher output layers. This is expected because, in-

creasing the number of stored scheduling, it is easier that, for each new scenario,

one of the reference schedules provide a makespan that is close, or even better, than

the one provided from the HEFT. Moreover, it is important to specify one more

time that, being HEFT an heuristic algorithm, it does not always provide the min-

imum makespan. With a rigorous algorithm as reference method, the situation of a

makespan shorter than the reference method could be avoided, but, since the main

goal of this essay is to validate the idea, the HEFT was a good reference method

to utilize, because easy and fast to apply. In a situation where the neural network

training takes a lot of time, the first aim was to optimize all the other timings,

exploiting the available time in the best possible way.

For this reason, since the hardware performances have to be taken into consid-

eration, only 8 outputs are chosen as tradeoff. Increasing the number of outputs

would result in an increase in performance not reflected in the hardware. In fact,

the hardware would take longer and the risk to overcome the improvements with

the slowness of the input becomes real. Moreover, with eight entries in the stored

schedules matrix, the performances are very close to the HEFT ones.

2.1.2 The training

The training of the neural network is divided into three phases:

• Training set creation;

• Real training by means of gradient descent and back-propagation;

• Testing the network on a new test-set coherent with the training.

2.1.3 Training-set creation

The training-set should provide with the optimal schedule for each input matrices.

That means that, during the training, a reference method should classify the input

in such a way that each set of input has a correspondent labeled schedule associated.

To create the training set it is necessary to know the profile of the input distri-

bution.

13

2 – Overall system and Validation of the Idea

Profiling of the application

For the purpose of this study, a real profiling of the applications should be needed.

Since the goal of this work is to validate the idea, a precise study on the profiling

of the application on each execution unit available has not been carried out. This

can be seen as a future work to further increase the confidence in this structure and

it is a needed step before using the structure in real-world problems. In fact the

profiling is one of the most important aspect to create a real training set for the

neural network.

In this thesis, gaussian distribution with respect to mean value for each applica-

tion has been used. The first PC matrix is the one used as reference and the variance

is fixed for all the applications. The training set will hence be created accordingly

to this distribution.

This is not perceived as a major problem, since it is likely that any application

will have a mean time to execute and then, depending on the current workload, it

takes more or less clock cycles, in a gaussian way. It represents the most intuitive

way the applications should perform.

Label assignment to each input

Two additional functions are needed:

1. A first one able to evaluate the makespan of the scheduling with the reference

method and the scheduling itself, for a given configuration of the inputs.

2. A second one that provides the makespan for a given input configuration and

a given scheduling.

The pseudo-code of the training-set creation is the following:

Given a taskgraph , c r e a t e a random s c e n a r i o ;

f o r i =1:1 : n samples

Compute the optimal makespan MS opt and optimal schedu le S opt with

func t i on (1) ;

f o r j =1:1 : n s t o r e d s c h e d u l e

Compute Makespan MS j correspondent to j schedu le and i inputs with

func t i on (2) ;

end

14

2.1 – Neural Network

i f |MS opt − min (MS j) |/ MS opt > t o l (u s u a l l y 5%)

Add S opt to the s to r ed schedu l e s ;

Assign the schedu le l a b e l to the s c e n a r i o ;

e l s e

Find the schedu le l a b e l correspondent to min (MS j) ;

Assign t h i s l a b e l to the s c e n a r i o

end

end

During the first phase of the research, while validating the idea, the size of

the scheduling library depended on the tolerance value: a smaller tolerance made

the schedule library larger and vice-versa. Later on, with an eye on the hardware

realization, the size of the schedule library was fixed to a power of 2. That means

that the final pseudo-code for the training set creation becomes the following.

Given a taskgraph , c r e a t e a random s c e n a r i o ;

f o r i =1:1 : n samples

Compute the optimal makespan MS opt and optimal schedu le S opt with

func t i on (1) ;

f o r j =1:1 : n s t o r e d s c h e d u l e

Compute Makespan MS j correspondent to j schedu le and i inputs with

func t i on (2) ;

end

i f s i z e s t o r e d s c h e d u l e < max output number

i f |MS opt − min (MS j) |/ MS opt > t o l (u s u a l l y 5%)

Add S opt to the s to r ed schedu l e s ;

Assign the schedu le l a b e l to the s c e n a r i o ;

e l s e

Find the schedu le l a b e l correspondent to min (MS j) ;

Assign t h i s l a b e l to the s c e n a r i o

end

e l s e

Find the schedu le l a b e l correspondent to min (MS j) ;

Assign t h i s l a b e l to the s c e n a r i o

end

end

whi le s i z e s t o r e d s c h e d u l e < max output number

en l a rg e the t r a i n i n g s e t o f ” n batch ” more un i t s

15

2 – Overall system and Validation of the Idea

Assign f o r each o f them a new l a b e l or a s s i g n each o f them to a s t o r e

schedu le (as in the prev ious f o r loop)

end

In the pseudocode, the numbers in parenthesis are referred to the functions used

for computing the parameters.

As it can be seen from the code, the size of the training set changes depending

on the number of schedule stored for a given scenario. Two possibilities happen:

• If the size of the library has reached the maximum number allowed, that

particular set of input is linked with the label providing the fastest scheduling

for that input scenario;

• If the size of the library is not big enough, since the number of scheduling is

fixed, the training set is enlarged in size in order to have at least one input for

each label in the scheduling library.

The number nbatch is a parameter the user will decide for the learning. It is

related to the batch size for the training of the neural network.

2.1.4 Training the network with backpropagation

Once the training set has been created, the network is trained. The gradient descent

along with backpropagation algorithm is used for the training.

The cost function to minimize is the MSE, but the algorithm ends when the

misclassification in the training set are below a certain threshold ε, usually fixed to

5%.

The pseudo code for the training is the following:

i n i t i a l i z e number o f epochs , MSE and weights

whi l e 1

eva luate the MSE and the number o f m i s c l a s s i f i c a t i o n

i f number misc < eps

break

end

f o r each sample in the t r a i n i n g s e t

16

2.1 – Neural Network

Evaluate forward network va lues f o r the mini−batch ;

Evaluate backward network va lue s f o r the mini−batch ;

Evaluate the d e r i v a t i v e s ;

Update the weights ;

end

end

The training process for the full precision network is pretty fast. In fact, a little

bit more of 100 epochs are needed to arrive to a precision in the training test of 4%

with a thousand inputs to learn, for the Fft problem. 2.6 and 2.7 show how the

two quantities decrease during the training.

Figure 2.6: MSE decreasing with the
training

Figure 2.7: Number of misclassification
decreasing with the training

2.1.5 Testing the network on a new test set

Once trained, the network is tested on a new set, created coherently with the profile

of the application used during the training set, as explained in 2.1.3.

The pseudo-code for the creation of the test set is the following:

1 f o r i = 1 : n t e s t s a m p l e s

2 Create a new s e t o f pc and mc f o l l o w i n g the p r o f i l e d d i s t r i b u t i o n ;

3 Evaluate the optimal makespan MS opt with func t i on (1) ;

17

2 – Overall system and Validation of the Idea

4 Evaluate the minimum makespan in the s to r ed schedu l ing to a s s i g n the

optimal l a b e l l a b e l o p t ;

5 misc = misc + (l a b e l n n == l a b e l o p t) ;

6 Use the Neural Network to f i n d the l a b e l l a b e l n n addre s s ing the

memory ;

7 Evaluate MSj with func t i on (2) ;

8 p e r f l o s s i = |MS opt − MSj |/ MS opt ;

9 end

10 Compute the average o f performance l o s s .

New PC and MCmatrices are created following the right probability distribution

and then a label is assigned to each input of the test set. Then the new scenario

is fed into the network and the output is taken. The label is used to evaluate the

number of misclassification, but the real parameter used to confirm the goodness of

the design is the percentage in loss. In fact, the proper classification of the input

does not mean everything. The output label can provide three different situations:

• Correct label : the optimal scheduling is provided as output;

• Wrong label-Low loss in perfomances : this situation is tolerated, since the

time gained during the computation of the scheduling with this approach is

way higher than the time loss for the wrong scheduling;

• Wrong label-High loss in performances : this is the worst situation, that has to

be avoided. This cause the highest loss in scheduling performances.

If the first two situations are encountered, then the loss in scheduling performances

is negligible. The training should serve to avoid the third situation as many times

as possible.

2.2 The results with full precision

The results are various. Accordingly to [7], the DAGs normally used to compare

scheduling algorithms are:

• FFT (figure 2.8)

18

2.2 – The results with full precision

• Balanced graph (figure 2.9)

• Gaussian Elimination (figure 2.10)

• Baseband Graph (figure 2.11)

The number of execution units is fixed to three, while the number of tasks in

the application changes with the different algorithm to schedule. The hidden layer

and output layer number of neurons is instead fixed to 50 and 8. The learning

parameter η is equal to the vector [1000 500], where the first number represents the

learning parameter used for the first layer of the network and so on. This is an

heuristic parameter, meaning that it has to be tuned during the different runs of

the program, to provide the fastest training in terms of number of epochs needed.

The network characteristics and performances are presented in table 2.2.

Table 2.2: NETWORK SETUP FOR DIFFERENT DAGS

Network FFT Baseband Balanced
Gaussian

Elimination
PC size [15× 3] [10× 3] [16× 3] [14× 3]
input 51 36 54 48

Performance loss wrt HEFT -1.95% -1.06% -2.9% -4.29 %
Performance loss wrt Optimal -2.65% -2.05% -1.4 % -1.69%

Miss Rate 40% 33% 20% 40%

As it can be seen in the following figures, the learning with different kind of

taskgraph is similar. The number of epochs to train is influenced from different

factors, such as learning parameter, type of taskgraph or initialization of the weights.

Said that, each run of the program converges with different number of epochs and

different shapes of the graphs, but eventually, the percentage numbers are very

similar.

2.12, 2.13, 2.14, 2.15 show how different quantities vary with the size of the

training set for each taskgraph. In these figures the four lines represent what follows:

• HEFT line: it represents the gain in scheduling performances with respect to

the HEFT result for the same input;

19

2 – Overall system and Validation of the Idea

Ϭ

Ϯ

ϯ ϰ ϱ ϲ

ϳ ϴ ϵ ϭϬ

ϭϭ ϭϮ ϭϯ ϭϰ

ϭ

Figure 2.8: DAG for the FFT Problem

Ϭ

Ϯ

ϭ

ϯ

ϰ

ϲ

ϴ

ϱ

ϳ

ϵ

ϭϬ

Figure 2.9: DAG for the Baseband Prob-
lem

Ϭ

Ϯϭ ϯ

ϰ ϱ ϲ

ϳ

ϴ

ϭϬϵ ϭϭ

ϭϮ ϭϯ ϭϰ

ϭϱ

Figure 2.10: DAG for the Balanced Prob-
lem

Ϭ

ϭ Ϯ ϯ ϰ

ϱ

ϲ ϳ ϴ

ϵ

ϭϬ ϭϭ

ϭϮ

ϭϯ

�

Figure 2.11: DAG for the Gaussian Elim-
ination Problem

• Optimal line: it represents the gain in scheduling performances with respect to

the optimal scheduling chosen between the stored ones; It is the best indicator

20

2.2 – The results with full precision

of the goodness for the trained network.

• Misc: percentage of misclassifications on the test set.

• Epochs : number of epochs to train the scheduler.

In most of the graphs, the trend is not marked. This is due to the fact that

the initialization of the weights strongly impact the behavior of the training. The

number of epochs to train generally increases with the number of inputs to learn,

but it is not strictly related. Furthermore, a trend can be found in the number of

misclassifications: in general they decrease with the increasing of training set size.

More in details, for what concerns the HEFT line, the performances and the

trend really depend on the taskgraph. There are taskgraphs for what the HEFT

works better1, while for others the neural network is able to provide a good improve-

ment with respect to the HEFT makespan. This is particularly true for the Fft. In

general, it can be seen as, even if the size of the training set changes, the schedule

performances change slightly. This suggests the fact that, during the training, the

neural network learns pretty fast how to avoid the big errors. This is likely due to

the fact that the distribution of the input is considered gaussian, hence the network

is able to easily learn the average case and to make all the similar cases converge

in that class. If the gaussian distribution does not reflect the real situation, this

statement should be revised. In general, even with a small training set, it can be

seen as the loss in performance with respect to the HEFT is negligible: −[1÷ 2%]

For what concerns the Optimal and misc lines, the trend is the one expected,

with the performances improving with the number of inputs in the training set. This

is a general statement but is not always true.

1balanced and baseband performances of the neural network never overcome the HEFT ones,
than it can be said that for thee taskgraphs the HEFT works in a good way

21

2 – Overall system and Validation of the Idea

Figure 2.12: Fft taskgraph: scheduling
performances

Figure 2.13: Baseband taskgraph:
scheduling performances

Figure 2.14: Balanced taskgraph:
scheduling performances

Figure 2.15: Gaussian Elimination task-
graph: scheduling performances

22

Chapter 3

Moving to Hardware

As seen in Chapter 2, the idea has been validated with the full precision network,

but the performances required for allowing real-time operations of the system need

the translation of the algorithm in an hardware friendly fashion, that provides the

scheduling in the shortest time possible. This chapter will introduce all the modi-

fications needed to make the structure easily moveable to hardware. The approach

followed during the work has been to write Matlab programs that emulate the

behavior of the hardware. The structure of the neural network will be completely

changed for this reason.

Moving to hardware requires to think about bits instead of full precision numbers.

The first idea was to literally translate each information embodied in the neural

network to hardware, as suggested in [8], but this would have resulted in times that

are not feasible with the problem it is aimed to solve. In fact, keeping in mind

what said in the previous chapter, each layer would have required a huge number

of multiplications and additions for each neuron. For the network configurations in

2.2, the number of multiplications for the input layer goes from 1800 for the best

case, to 2700 for the worst one. Even though all those multiplications could be done

in parallel, the total time for a single fixed precision multiplication of 8 bits is high.

After that, the summation of all the numbers would have taken even longer. This

solution was then abandoned very soon.

However, as suggested by [6], there exists neural networks able to perform clas-

sification with both binary inputs and weights, that obviously results in the fastest

solution possible, moving all the complexity to the training phase. In fact, it is

interesting to notice that the multiplication between numbers of one bits can be

represented as:

23

3 – Moving to Hardware

HHH
HHH

HH
X1

X2
-1 1

-1 +1 -1

+1 -1 +1

That, considering the -1 as logical 0 in hardware, is nothing but the xnor port.

Since, according to [6], these neural networks are able to recognize properly most

of the common artificial intelligence problem, a Binarized Neural Network has been

applied to this problem. Moreover, since each layer is going to be binarized, the

output of each neuron will be only one bit. The activation function will then result

in a counting of the ±1 coming from all the xnor operations. This is commonly

referred to as the popcount function.

3.1 Differences with respect to Courbariaux Bi-

narized Neural Network

Although the speed gain obtained by this type of network is remarkable, a choice to

better fit the network to this problem can be taken. Few points have been modified,

to ensure a faster computation of the output, in particular:

• No batch normalization layer has been used;

• The input layer has been treated in a completely different way. In fact, what

they suggest is to use just one weight for input and apply the following formula

to compute the local field:

v = x · wb v =

nbit∑
n=1

2n−1(xn · wb)

This means that an nbit bit number comes out from the xnor operation. This

number has to be summed up with all the other numbers, and a chain of adder

would be necessary. A single adder and a loop in the addition may be used as

well, but this would force the network to be stacked in a point for longer time,

vanishing the possibility of inserting the pipeline as well. Again, the quest for

24

3.1 – Differences with respect to Courbariaux Binarized Neural Network

speed requires to avoid any mathematical structure along with all the loops.

For this reason, a new approach has been used. In fact, considering that each

input will only be a group of 0s a 1s, it is possible to assign a weight to every

single bit. This way, the number of weights required grows, but with it the

degrees of freedom of the system, hence the training may be more accurate and

the final neural network in hardware will go even faster. It could be argued

that this way all the bits would have the same power, losing the information on

the MSBs and LSBs. Even though this does not represent the truth, because

the neural network trains its weights to reflect the power of each input, we

came out with a way to enforce the natural power of the numbers, that is:

varying the number of neurons that a bit influences depending on the position

of the bit. If an MSB varies all the neurons will be influenced, if an LSB

changes, only few of them will change the output value.

This solution increases the number of weights to train and to store with re-

spect to [6], but it allows to have a network with more flexibility and better

performances. This means that, once the number of hidden neurons to connect

to the least significant bit is decided, then the total number on neurons in the

hidden layer is fixed as:

nhidden = nhiddLSB
· nbinput

For the Fft problem (51 inputs), with input that can be written down in

6 bits, then, considering 21 neurons connected to the LSBs, the number of

hidden neurons is:

nhiddenFft
= 21 · 6 = 126

and the number of inputs:

ninneurons = nin · nbinput
= 51 · 6 = 306

Resulting in a total number of weights for the hidden layer of:

nInWeights = nin ·
nbinput∑
i=1

i · nhiddLSB

25

3 – Moving to Hardware

nInWeightsFft = 51 ·
6∑

i=1

i · 21 = 22491

The output weights are instead:

nOutWeights = nhidden · nout

nOutWeightsFft = 126 · 8 = 1008

• The activation function, for the last layer, is a linear ramp function with

saturation to ±1 after the input overcomes a given threshold. In fact, even if

the hidden layer will only have an output of 0 or 1, the output layer will still

need to evaluate the first highest local field between all the output neurons.

This way, whatever is saturated to an high or low output will be cut off to

the saturation value. The shape is the one in figure 3.1. In neural networks,

the edges of a function reduce the learning ability of the network. Matlab

tests demonstrate that, in this particular case, the network learns, even if more

slowly.

Figure 3.1: Activation function for the output layer of the binary neural network

The final neural network is then the one present in 3.2 and 3.3.

26

3.2 – The Binarized Neural Network Training phase

Ma
x_
De
te
ct
or

Max_ID

Figure 3.2: Final binarized neural network.

Figure 3.3: Block scheme of the final neural network.

3.2 The Binarized Neural Network Training phase

The training works exactly as explained in [6]. Considering that the network learning

comes from the change in sign of the local field, it is important to initialize the

weights very close 0. Moreover, the η has to be small as well, to keep the not-binary

weights close to 0 and foster the learning. This means that the learning will be

slower than the full precision one. Moreover, since there are only two outcomes

from the xnor port, the training is mostly not linear. In fact, as it can be seen from

3.4 and 3.5, it is very noisy. It can be noticed as the MSE decreases in a steadily way,

but the misclassifications graph has similar envelope to the one with full precision,

though the edge goes up and down.

In this example, the Fft problem has been solved. In 4.2, the results for all the

taskgraphs analyzed are presented. It can be seen as they are similar to the ones of

the network with full precision.

27

3 – Moving to Hardware

Figure 3.4: MSE for the training of the
BNN.

Figure 3.5: Misclassification for the train-
ing of the BNN

Table 3.1: SCHEDULING PERFORMANCES OF BNN

Epochs
Performances Performances

Misclassifications
wrt HEFT wrt Optimal

Fft 26520 +1.52% -2.2 % 52 %
Baseband 27700 -4.62% -3.39% 64.3 %
Balanced 25107 -4.53% -3.05% 65 %
Gaussian 9768 -1.55 % -1.26% 55 %

The training size for this kind of structure is of 200 samples, in fact the results in

performance as a classifier are not high, but it is enough for avoiding critical misses

in the test phase, as the scheduling performances results remain remarkable.

3.3 How to move each structure to Hardware

Henceforth, the detailed hardware translation of each single block is carried over.

The general structure, applicable to every network with any parameter, will be

presented. In particular, it will be covered:

1. The multiplication;

2. The block Addition + Activation for the hidden layer;

3. The block One’s Counter for the output layer;

28

3.3 – How to move each structure to Hardware

4. The comparator in output;

5. The activation function in output;

Eventually, a possible solution to tackle the multigraph problem is suggested.

Before starting the presentation it is worth to speak about the two possibilities

faced for what concern the popcount block, where it is aimed to find out wether

there are more 0s or 1s in the input vector:

• A completely digital structure: this solution fits perfectly the rest of the struc-

ture, but it may not be the best. In fact, the number of one’s to sum up is

high and this would result in the most time critical piece of hardware in the

whole system.

• A mixed-signal structure that embodies both the operations in just one clock

cycle. This kind of structure does not provide the number of ones coming out

from the xnor operation, but directly the bit corresponding to the majority in

the input vector. This will be presented in details in the following, but it is

important to mention it now, to understand the reasons behind some choices.

In the second layer, the first solution is mandatory. In fact, there is a comparison

in magnitude of the output, hence it is important to know the precise quantity of 1s

in the input vector. In the meantime, the hidden layer may exploit the second solu-

tion, to have a faster output computation. However, being a mixed-signal structure,

the transistors will be active for most of the time, resulting in a high static power

consumption. Anyway, the number of transistors for this solution is lower. This

means less capacitances switching and a lower total power consumption. Depending

on the needs, different choices may be taken. Several trade-offs has to be evaluated

any time this structure has to be finalized. They will analyzed in the following,

since a more detailed knowledge of both the structures is needed to compare and

constrast the two solutions. Moreover, it is very structure dependent, in the sense

that the number of inputs, the environment where this hardware accelerator aims

to be put on, and other factors change the specific solution from time to time.

29

3 – Moving to Hardware

3.3.1 Multiplication

The multiplication is performed by means of xnor port, massively parallel. The

output of the xnor operation goes to one of the structures explained in the following.

Due to the complex structure of the input, the user should take care about the

connections with all the layers. However, thanks to the generalization performed

in the code, and explained in the next chapter, this point does not represent a real

problem.

3.3.2 Digital Structure

The digital structure is made up of two components:

• The one’s counter;

• The comparator with the threshold;

The first structure is a Wallace Tree that sums up all the bits of the same power

together. The idea is a generalization of [9]. It consists in the usage of common

3 : 2 compressors (full-adders) and half-adders to reduce the entire vector of bits

into a vector stating the number of ones in input.

Generalizing the structure is complex. To increase the operation frequency, the

aim is to use the least number of layers, to reduce the critical path length. For this

reason, in each layer, the highest number of full adders have to be inferred. Hence,

the number of bits left for a given column has to be divided by three (the possible

input of a full adder). The possible results of this operation and the policies applied

are:

• Reminder = 0: from the given layer all the inputs go in full adders. The next

layer will have the nfa wires of the same column (sum bit of the full adder)

and nfa wires of one higher column (carry out bit of the full adder).

• Reminder = 1: from the given layer all the inputs but one go to full adders.

For those inputs, the outputs will be the same as in the previous case. The

additional wire will be forwarded without any operation to the next layer.

30

3.3 – How to move each structure to Hardware

• Reminder = 2: from the given layer all the inputs but two go to full adders.

Again, the behavior is still the same for those wires. The two remaining wires

will go into an half adder, producing one wire in the same column and one of

higher column for the next layer.

This way, looping until all the columns have only one bit, it is possible to create

the total structure.

The output layer will have more than the dlog2(nin)e necessary for representing

all the possible ones in input, but, since there is no possibility that a 1 arrives to the

last bits, it is possible to get rid of that wires, that will not be connected in output.

The following is the pseudo-code for the inferring of the structure:

1 l a y e r s [0] [0] = n in ;

2 i = 0 ;

3 miss ing = 1 ;

4 whi le (miss ing !=0){
5 I n i t i a l i z e the va lue s f o r the cur rent l a y e r

6 f o r each weight v pre sent in the l a y e r

7 Assign to next−l a y e r /same−weight number o f w i r e s : ” f l o o r (l a y e r s [i] [

v] / 3) ” ;

8 Assign to next−l a y e r /next−weight number o f w i r e s : ” f l o o r (l a y e r s [i] [

v] / 3) ” ;

9 I n f e r ” f l o o r (l a y e r s [i] [v] / 3) ” FAs ;

10 Evaluate reminder

11 i f (reminder == 1) {
12 Forward the wire to next l a y e r

13 } e l s i f (reminder == 2) {
14 I n f e r one HA with the remaining wi re s

15 }
16 }

3.6 shows the structure for an 8 bit input.

When the number of bits in input the structure becomes higher, the critical path

length increases. This increase is not linear because it depends on the number of

layers of the structure, and increasing the number of bits that number of layers does

not increase linearly.

31

3 – Moving to Hardware

FAFA

FA

HA

FA

HA

HA

Figure 3.6: 8 bit One’n Counter

The output of the counter is then fed into a comparator with a threshold that

gives 1 in output if the number is higher than or equal to nin/2.

3.3.3 Mixed-Signal Structure

With a lot of input, the digital solution may insert a long delay. That is why a mixed-

signal structure has been developed. This structure embodies both the summation

and the comparison with the threshold input. The structure is presented in 3.7.

When the number of 1′s is higher than the number of 0′s, the output is pulled

up to 1 and vice-versa to 0. The working functionality of this hardware is the

following: the n-mos and p-mos connected to the CK signal are useful to pre charge

the line. If the number of 1′s is not as high as half the number of the inputs, the

output stays pulled up to 1 and the output after the comparator will be 0. The

timing driagram in 3.8 shows how it works. In the example, the structure has 3

inputs that switch after the first clock cycle. The top line is always pre-charged to

1 and during evaluation the voltage of this line decreases with the number of ones

in input. Correctly dimensioning the transistors in the structure, it is possible to

32

3.3 – How to move each structure to Hardware

CK

CK

In1 In2 InN

Comparator Out

V_ref

V_dd

Figure 3.7: Hidden activation function

find the voltage of the required threshold Vref . That voltage is one of the input of

the comparator in output. This comparator will provide with a 1 in output when

Vtop < Vref and a 0 otherwise. Since the activation function has to set to 1 the

output when half or more of the inputs are one, the ideal threshold condition should

be put in the middle between:bnin/2c and bnin/2c − 1 if nin even

bnin/2c+ 1 and bnin/2c if nin odd

Anyway, in the next chapter it will analyzed as this does not represent the truth,

since the comparator is influenced by the rest of the circuit it is inserted in. That

is why the tuning of the Vref represents one of the key point for the functionality of

this structure. This allows to avoid also the fixed errors due to process variations

during the fabrication, but the error due to the actual condition of the chip still has

to be taken into consideration.

Moreover, the comparator works in a dynamic way as the rest of the structure.

33

3 – Moving to Hardware

Figure 3.8: Timing hidden layer: explain it better in the final version

From its nature, it evaluates on the lower level of its clock, this means that, to make

the structure work, the clock has to be inverted. To make the clock go fast enough,

a chain of inverters is needed, but to have the real inversion of the clock, the number

of inverters has to be odd. This way, the load seen from the clock is still the same,

but the switch happens faster.

Another thing that has to be considered is that this structure may not be per-

fect. Instead, it may have some noise that has to be tuned before using it. Process

variation may impact this factor as well. However, this does not impact the per-

formances. In fact, from Matlab simulations, it can be noticed as, if the noise

remains very low (a percentage of decision that is pretty low), the performances are

impacted in a very few extent.

The positive outcomes of this structure are:

• The fact that it is able to perform both the operation in almost no time;

• The area is really small, being the number of transistor negligible with respect

to the digital structure, resulting in lower total power dissipated.

However, some downsides are there as well:

• Static power consumption is important: the pmos is always active and the

comparator is analog, meaning that it is always active;

• If the output is 0, the load switches at every clock cycle, since the output is

pre-charged. If the load is high, the power consumed is high.

34

3.3 – How to move each structure to Hardware

Vref

Clk

V+ V-

Clk Clk

Vdd

VddVdd

M1

M2

M3 M4

M5 M6
M7M8M9

M10

M11

M12

Figure 3.9: Analog Comparator

• If the number of inputs is too high, the threshold between the condition is not

going to be precise, meaning that it would be impossible to divide the two

situation ideally. This means that an error may be always present.

The comparator structure is the one presented in figure 3.9. The output is

differential, but for the scope of this project, only the negated output will be taken.

During the high level of the clock the output is pre-charged and during the low one,

it will go in evaluation. From spice simulations, it came out that the threshold has

to have a precision in the order of 1mV . This comparator is totally able to cope

with this precision.

When clock is 1, the drain of the p-mos M3 and M4 is connected to ground

through M7 and M8. For this reason, both the output will be pre-charged to Vdd.

M2 makes the sources ofM3 andM4 detached from the power supply. When instead

the clock becomes 0, the p-mos M2 goes on saturation and connect the source of M3

and M4 to Vbias. At that point, depending on the difference of voltage in their gates,

more or less current starts flowing in each of it. The positive feedback, created by

M5 and M6, enhances the difference between the two terminals, moving the voltage

to the one that will be present in output. In particular, the small difference in

35

3 – Moving to Hardware

voltage will make reach the interdiction condition to one of the two n-mos (M5 or

M6), forcing even more the current in the other, that will go in saturation. The

output will reach the stable configuration and stay to that voltage up to the point

that the clock does not switch to 1 again and the output are both pre-charged to 1.

The inverter in both the outputs are more than one in the real structure, of

increasing sizes going towards the output. This is used to create a stronger and

faster signal in output. For this reason, the total number of transistors used in the

real structure is 28.

3.3.4 All the possible trades-off between the two structures

Earlier, several times the existence of trades-off between the mixed-signal and digital

structure have been mentioned. This section aims to give a guide on when to follow

the first or the second route depending on the specific number for the final structure.

In general it has to be considered that:

• Critical Path given from the output comparator: in that case there

is no need of implying the mixed-signal structure, since the way the pipeline

registers are inserted makes the comparator the bottleneck. For this reason,

the digital structure has to be preferred. This happens when the number

of output neurons is high and the comparison stage is going to take longer

than the different neuron calculations themselves. Furthermore, the digital

structure is way easier to design, since, even with different technology and

libraries to develop the physical circuit, there is nothing that needs to be re-

designed. Differently, using the analog structure, a re-design of the transistor

size has always to be carried out. Moreover, since the way connections are

created in the new Binarized Neural Network, the activation functions to re-

design would be multiple (nbitin
1). However, if the number of inputs is too

high the mixed signal structure cannot be used.

• High number of inputs: in this case the digital structure would take long.

1This is because there are nbitin different neurons in the hidden layer, and one kind of neuron
in the output layer, but the one in output always needs to be digital, and that one can be fully
generalized. Here, for kind of neuron, it is meant a neuron with the same number of inputs, that
is, a neuron that will switch after a nin/2 number of ones are fed into it.

36

3.3 – How to move each structure to Hardware

The idea of implying half-clock cycle for evaluating the output is what makes

the analog solution preferable. However, sizing the transistors becomes dif-

ficult in this condition and a very precise comparator in output is needed,

resulting in a costly structure. From experiments, with Vdd = 1.1V , this struc-

ture can be used up to 400 inputs.

3.3.5 Output layer

As aforementioned, the output layer needs to have the count of the ones coming out

from the xnor operations. For this reason, the digital structure is compulsory. After

it, the winning neuron is decided by selecting the highest local field. To detect which

is the winning neuron, it is necessary to insert one more layer to the structure: a

majority detector that is able to compare all the inputs and come out with the index

of the highest one. From the theory point of view, the activation function should be

there as well. However, from Matlab simulations, it can be demonstrated like the

performances are not changing even without applying the saturation layer. This is

due to the fact that the output are in most of the cases into the saturation limits,

then even without applying this layer, the output does not change. Again some

tradeoff on this comes out. In fact, to achieve the fastest structure two situations

may show up, but they will be covered in the future, when the structure of both the

activation function and the comparator have been presented.

The structure of the majority detector is explained in the following section.

Majority detector

After the number of ones is evaluated, the maximum has to be detected.

While the software simulations use 1 and −1, the hardware structure works with

0 and 1. This does not take to any modification, since the majority detection in

output works exactly in the same way. The winning neuron will be the one with

the highest number of 1s coming out from the xnor operation, meaning the highest

local field.

The structure of the comparator is the one presented in figure 3.10. It has a tree

of log2(no) layers. The ID of the scheduler is carried in output by means of a bunch

of multiplexers.

37

3 – Moving to Hardware

A

B

In0

In1

A<B

0

1

A

B

In2

In3

A<B

0

1

A

B

A<B

0

1

0

1

A

B

In4

In5

A<B

0

1

A

B

In6

In7

A<B

0

1

A

B

A<B

0

1

0

1

A

B

A<B

0

1

0

1

Figure 3.10: Output comparator

The single comparator is presented in figure 3.11. It compares bit-by-bit the two

numbers, due to the small amount of bits to compare.

The structure follows perfectly what the max function in Matlab does, consid-

ering the first maximum output that is found from the index 0, even if more than

one maximum is present.

Activation Function

The activation function, as presented in figure 3.1, is nothing but in = out when

the number is inside the threshold. Hence, the general structure is going to be the

one presented in 3.12.

The threshold has to be designed depending on its value.

38

3.3 – How to move each structure to Hardware

A_4

B_4

A_3

B_3

A_2

B_2

A_1

B_1

A_0

B_0

A<B

Figure 3.11: Single comparator

Activation function or not

Knowing how the structures are done, it is necessary to think about the possible

tradeoffs between the activation function and the comparator.

• If the local field has high number of bits, the comparator in 3.11 will go slower.

This enters in all the comparisons, meaning that, to find the total delay of

the output comparator, the delay in the bit-by-bit structure is multiplied by

the number of layers. In this case, it is convenient to insert the activation

function, reduce the number of bits needed in each comparison and make the

total structure go faster;

• If the number of bit in the local field is not high, Matlab simulations demon-

strate how the presence or not of the activation function does not change a lot

the results, because most of the local fields does not reach saturation. For this

reason the activation function can simply be avoided. It is important to point

39

3 – Moving to Hardware

"0"

"1"

< th

> th

nb_out

nb_in

nb_out

nb_out

nb_out

nb_out

nb_out

nb_out

Figure 3.12: Hardware Realization for the Activation Function

out how, though the structure is not required during the real-time utilization

phase, it plays a key role in the training, making it faster. In fact, without

a clipping layer between ±1, the difference to apply in the backpropagation

algorithm between the ideal and the real output would be too big and the

training phase would take longer2.

3.4 Pipelining the structure

The best way for increasing the throughput of this massively parallel structure is

to insert the pipeline. To make this, the position for the pipeline registers has to

be optimal. From this point of view, there are two different pipelines to apply,

depending on the activation function chosen. In fact, the mixed signal structure

strongly depends on the clock behavior, and then it is important to synchronize the

rest of the system to it.

2Note that the update should be very close to 0 and should not move every of the integer values
far from 0, as explained in section 3.2.

40

3.4 – Pipelining the structure

3.4.1 Pipeline with digital activation function

If the digital block has been used, then it is important to evaluate the performances

of the last stage, to compare them with the performances of the rest of the system

and find the right number of stages to divide the structure into. In fact, depending

on the speed needed, it is possible to divide the whole hardware in several stages.

In general, the structure representing the bottleneck is the one’s counter. As it

will be described in the following, the structure has been totally generalized. One

of the inputs will be the number of pipeline stages to insert and a software will

rewrite the code inserting the registers in the proper position. In fact, considering

the pseudo code analyzed before, it is possible to add a layer of registers to the whole

vector before feeding it into the next stage of full adders, half adders, or wires.

The code, detailedly presented in the next chapter, allows to structure the

pipeline as presented in 3.13. All the registers can be inserted or not just changing

a flag or a number in the structure. The N inside the registers means that the user

will indicate a number of pipeline registers that he wants to use, and the F means

Flag, saying that the user may set or reset a flag to insert or not the pipeline register.

If the engineer decides to exploit the pipeline, then he will be required to add

registers in the weights as well, considering that the user will provide all the inputs

for a specific schedule in one time, and then it will be duty of the structure to move

the numbers inside it, depending on its own timing requirements. This registers

have not been inserted in the picture for seek of clarity.

3.4.2 Pipeline with mixed-signal activation function

If the mixed-signal structure is inserted, the time is forced by this structure. In fact,

considering that the analog structure is fast enough to be able to evaluate the output

in less than half clock cycle 3, the structure must have the inputs ready before the

clock goes to 1. This means that the structure has to be as presented in figure 3.14.

In particular, the inputs to the analog structure have to be ready before the 1

arrives. To avoid to lose half clock-cycle, the input can be sampled on the falling edge

of the clock. Moreover, the output of the activation functions have to be sampled

on the falling edge as well, otherwise the value of each output would be lost.

3This assumption is valid for all the number of inputs considered in the simulations.

41

3 – Moving to Hardware

N N N

F F

Figure 3.13: Pipeline inserted in the digital structure

Figure 3.14: Timing of the mixed signals structure with pipeline

After that, the timing can be considered exactly as the one before, and it depends

on the clock speed needed. For this reason, the structure is not reported in this

picture.

A timing diagram for this structure has been report in figure 3.15

42

3.5 – Multi-TaskGraph Problem

Figure 3.15: Timing diagram for the analog structure

3.5 Multi-TaskGraph Problem

Now that the hardware structure is given, it is possible to think about the gener-

alization for different kind of taskgraphs. In fact, if the weights are precomputed,

and the inputs are given in real-time, as long as the sizes are constant, it is enough

to provide the values of the weights every time a different application needs to be

scheduled and the network will be taskgraph-specific. This allows the generalization

to every kind of taskgraph. In fact, if during the installation of an application in a

general purpose system, the network is trained with the correspondent taskgraph,

then it is enough to store the trained weights in the memory and read them every

time they are needed. This kind of solution, giving the weights always available in

the right time, does not affect in any way the speed of the accelerator.

A necessary condition for this remains that the size of the taskgraph, the number

of execution units available to each application and the number of scheduling stores

are fixed. This opens to a series of new problems that will be addressed in section

5.1. In particular, since not all the applications can have the same number of tasks

to run, the idea is to create Graph Partitioning algorithms that, if the taskgraph is

too big, splits it in two different problems, in such a way that the algorithm may be

rescheduled in two different iterations of the scheduling in the accelerator. Moreover,

considering the pipeline, the solution will be provided in just n clock cycles, where

n corresponds to the number of times the taskgraph has to be split to fit into the

network.

Nevertheless, the solution that could generalize the structure is provided in the

following section.

3.5.1 The computer architecture solution

The proposed solution (3.16) comes from the computer architecture structure.

43

3 – Moving to Hardware

PS

TaskGraph
Classifier

NN

11
12
13
1..
1Q

Scheduling Cache

21
22
23
2..
2Q

31
32
33
3..
3Q

..1

..2

..3

....
..Q

N1
N2
N3
N..
NQ

1
2
3
4
…
N

Weights Cache

TaskGraphID

ScheduleID

Figure 3.16: Generalized solution

With this solution each taskgraph that the network is able to schedule has one ID

associated and weights and reference scheduling are stored in two very fast caches.

As soon as a new taskgraph to schedule arrives, a block performs its classification

providing the ID. This is then used for two different purposes:

1. It points the weights cache;

2. It creates the first part of the address for accessing the reference-scheduling

cache.

The neural network will then compute the second part of the address for the

scheduling cache and after the whole system has performed all the calculations, the

scheduling is sent as output of the system. The inputs arrive from the previous steps

(PS), referring to the ones presented in 1.1

44

3.5 – Multi-TaskGraph Problem

As per the specified solution, the network has to be pre-trained for each specific

taskgraph and the size has to be fixed. That opens to the study on how the partition

of the taskgraph should be done when the number of a new scheduling does not

correspond with the size of the system. This point will be seen in more details in

5.1.

This system has been named Computer-architecture solution because, using

caches, it can exploit all the well-known algorithm about cache replacing and hier-

archical memory.

45

Chapter 4

Hardware Realization and Overall

Perfomances

This chapter introduces a particular solution, coming out with some real hardware

performances.

During the chapter, the type of network used, the way the verilog files are created,

and the performances results for this particular architecture will be analyzed.

4.1 The Final Network

The final network is the one that has been trained in the previous chapter as an

example. The specs are:

Table 4.1: EXAMPLE NETWORK

Taskgraph Fft
Input Neurons 306

Hidden Neurons 126
Output Neurons 8

nbit out for training 5

Then, once the network has been trained in Matlab, the weights are passed

to hardware and treated as normal inputs to the accelerator. The performances

reached are the one presented in 4.2.

The structure analyzed is fully digital, but one example of sizing for the analog

structure is provided as well.

Since the purpose of this chapter is to provide with a user guide, hereinafter,

the design flow to follow will be presented. In particular, the idea is that, given a

clock for the structure, that is fixed, the engineer wants to achieve that frequency

46

4.2 – The complete generalization of the verilog code and the folder structure

and, therefore, he needs to insert pipeline registers in the architecture. In this case,

the user should start with the synthesis of the single bottleneck structures as well as

the total structure without any pipeline. This allows him to understand the number

of pipeline stages to insert. Then, just inserting the number of pipeline registers,

the software will re-write the whole structure code, to make the frequency higher,

reducing the critical path and the throughput, paying with latency.

During this chapter, some rules of thumb for performances in the structure will

be given as well. This way the user can avoid to synthesize the structures to have

approximate numbers to use in the dimensioning of his hardware.

The goal during this chapter will be to create an hardware able to cope with an

environment that has a 1GHz clock.

4.2 The complete generalization of the verilog code

and the folder structure

All the hardware structures are massively parallels and the generalization requires

a lot of support variables. In fact, considering structures like the ones presented in

the previous chapter, it is necessary to consider power series of number that are not

easily realizable with the restrictions of verilog.

For this reason, the generalization is achieved by means of perl scripts that write

down the already unrolled verilog code. This technique allows a more readable code

(everything is already explicit in the final verilog) and gives the user a lot more power

while writing the code. Moreover, thanks to this technique, some code that was not

generalizable becomes so. This standard, massively used in tech companies, is what

made the writing of the verilog code much easier. Following the same technique,

the testbench is written down as well. In this way only the very basic verilog code

is written (registers, adders, multiplexers and so on).

Since all the structures are dependent only on a restricted number of inputs, then

this idea has been even more generalized. In fact, if all the paths are written down

in the optimal way and all the tools are installed, it is enough to give the command

run to a given terminal to produce all the files necessary for simulation/synthesis in

the verilog folder.

47

4 – Hardware Realization and Overall Perfomances

The structure of the folder is shown in 4.1.

Perl

Libraries

Inputs

Matlab

Spice

Synthesis

Verilog

v

testbench

Verilog

v

testbench

Figure 4.1: Folder structure

The folder is structured like:

• Input : it contains all the inputs for the network. All the parameters for the

network are considered input as well.

• Matlab: it contains all the matlab files. Matlab is used to compute the

weights for the network. It will then write in the Input folder all the files with

the relative inputs.

• Perl : it contains all the perl files, in particular:

– hidden neuron.pl

– comparator.pl

– one counter.pl

– one majority.pl

– scheduler.pl

– scheduler tb.pl

48

4.3 – Performances Results

Where one counter represents the digital activation function while one majority

the analog one.

• Libraries : it contains all the library files that are used during the spice simu-

lation for the analog structure and the synthesis one during by Synopsys.

• Synthesis : it contains all the synthesis files for Synopsys and the script to

run the synthesis in the easiest way.

• Verilog : it is the folder where all the verilog files are written down. The

synthesis reads the file directly from here (./v/*. Moreover, the testbench

folder contains all the testbenches for the structures.

• Spice: here the spice file and simulation results are printed down. The input

combination for the file are read from the Input folder and printed out. This

way it is possible to size the structure.

The folders that the user is supposed to touch are Inputs and Matlab. Moreover,

the user is supposed to take actions also in the verilog/testbench, spice, and synthesis

folders, but only to run simulations and dump out results.

To make the flow even faster, a script that runs all the needed programs is

created. It is the run.sh in the main folder. This goes to the perl folder and run all

the programs needed. Then it moves to the verilog folder and run the compile.sh

script, that compiles and checks for errors of all the verilog files.

Moreover, to increase the reliability of the whole process, all the files created from

a perl script have restricted writing permissions and have an header that explicitly

states not to touch them. The final user should only modify the Input folder to

create the new structure.

4.3 Performances Results

The synthesis results are provided for the single critical structures at first. After

that, results for the whole structure will be shown, for both the not-pipelined and

pipelined hardwares.

49

4 – Hardware Realization and Overall Perfomances

The synthesis process for every structure has been to create a script that, after

the analysis and elaboration of the design, goes with the compilation of the exact

map (no optimization requirements from any point of view) and, after that, dumps

out all the required power/area/time reports. For synchronous structures, it creates

the clock for the structure before the printing of the reports.

4.3.1 One’s Counter

The synthesis is done for all the possible One’s Counter. In fact, considering six bit

inputs, there are 7 different types of one’s counter, in particular:

Table 4.2: ONE’S COUNTER ANALYZED

nbit 51 102 153 204 255 306 126
Neurons H 0÷ 20 H 21÷ 41 H 42÷ 62 H 63÷ 83 H 84÷ 104 H 105÷ 126 O

Where H means hidden and O means output.

The performances results are shown in the 4.2.

From 4.2, it can be seen as area and all the measures of power grow linearly with

the number of inputs. For this reason, to consider an approximate value of all the

powers while dealing with the structure, the following first order polynomials are

provided:

Area: areatot ' 17.48 · nin −41.15

Static Power: Pstatic ' 0.0118 · nin −0.1379

Switching Power: Pswitching ' 0.0085 · nin −0.1148

Total Power: Ptotal ' 0.0202 · nin −0.2528

Leakage Power: Pleak ' 0.1010 · nin +0.0568

Both the power consumed and the area are significant, but not high if compared

with the target structures.

However, for what concern the timing, such a trend cannot be found. For this

reason, a focused study on this has been brought on. In this case, the number of

inputs has been swiped between 25÷ 1000 and the result is 4.3.

From the picture, it can be noticed as the trend is exponential. In particular,

increasing the number of inputs, the delay increases, but then it stays fixed for a

50

4.3 – Performances Results

(a) Area (b) Power

(c) Leakage Power (d) Time

Figure 4.2: Performances Graphs for Different Size One’s Counters

given number of input. This is due to the fact that the number of layers needed is

what makes the delay higher and, when the number of inputs becomes significant,

increasing it does not increase the layers and then the delays.

Moreover, a comparator with a fixed threshold has to be added. This should add

a low level of ports, then it is believed not being a major problem while considering

where to insert the pipeline.

4.3.2 Comparator

After the one’s counter, also the comparator has been synthesized. This is because,

together with that structure, it represents the bottleneck in the total hardware, and

then it creates guidelines for the position on where to insert the pipeline.

51

4 – Hardware Realization and Overall Perfomances

Figure 4.3: Time for One’s Counters with 25÷ 1000 inputs

Differently from before, this comparator is useful to find the index of the highest

local field in the output layer. Hence, there will only be one comparator, of a fixed

number of output. In this case, the fixed number is 8.

The results are presented in the following table:

Table 4.3: COMPARATOR’S PERFORMANCES

Area 524.2081µm2

Time 1.61ns
Static Power 110.95µW

Switching Power 80.614µW
Total Power 191.56µW

Leakage Power 1.969µW

The time is again the performance to focus on. In this case, the delay is similar to

the one’s counter. Again, to achieve the goal of 1GHz, it is possible to add registers

and pipeline the structure. As shown in 3.10, the structure is regular and easy to

pipeline. For how the structure is made, it is possible to add a wall of registers

between one of the layers and to find the best tradeoff between the possible choices.

52

4.3 – Performances Results

4.3.3 One’s Majority

As mentioned before, this is just an example on how to dimension the analog struc-

ture for the one’s counter. The example will be carried out for the best and worst

cases, assuming that, if it is possible to use the structure in both the occasions, then

all the middle ground possibilities will be included.

Again, the inputs are contained in input/Params.pm. In particular, the following

quantities are the ones the user has the freedom to change:

Lnclk
Length of the NMOS connected to clock

Wnclk
Width of the NMOS connected to clock

Lboost Length of the PMOS to keep the structure high

Wboost Width of the NMOS to keep the structure high

Lstd Length of the NMOS connected to inputs

Wstd Width of the NMOS connected to inputs

V1 Positive voltage

tclk Clock period

size Flag: if 1 the inputs are set to half 1 and 0

The last variable is used to dimension the transistors. In fact, while dimension-

ing, the goal is to make the difference between the condition that should provide a

1 in output and the one that should provide a 0 as high as possible. That point is

where the threshold of the output comparator should be. Hence, the created spice

netlist will have half inputs fixed to 0, half less one to 1 and one input that switches.

This way, the threshold can be find with only one simulation and the output can be

observed in the same time.

The normal way of proceeding will then be the following:

1. Size the pull-up transistor as nin

4
· sizestd; the division by 4 is heuristic;

2. Move the size of each input transistor to change the impact of each transistor;

3. Size the clock transistor to make the decision boundary fall in the lower-mid

part of the output characteristic, where the comparator works better.

4. Tune the threshold.

53

4 – Hardware Realization and Overall Perfomances

Moreover, the clock transistor has to make all the current flow through ground.

This means that it has to be big enough in order not to be the bottleneck in the

speed. In the meantime, it does not have to be huge, to make the input transistor

have an impact on the output characteristic. This is where the trade off has to be

found for allowing a fast operation as well as a precise one.

Anyway, in the output, a comparator is needed, but the more precise the com-

parator, the more costly the structure. From the literature, it can be seen that some

comparators are able to discern between 10µV , then, the goal of the designer should

be to divide the 1 and the 0 situations with at least 1mV , so that the comparator

does not need to be very precise. Moreover, as already presented in the previous

chapter, increasing the number of inputs, the situation becomes more critical. To

understand this point, it is possible to imagine the whole output dynamic and di-

vide it into a number of levels that is equal to the number of inputs1. Increasing

the number of inputs, in general, increases the precision of the reference needed.

From the simulations, it will be seen that the theoretical threshold does not

work. In fact, the comparator implied in this solution has an offset error that

should be found depending on the different configurations. In general, this gives a

new parameter to tune.

One Majority with 51 inputs

The sizing and the results for the simplest structure are presented in 4.4 and 4.4.

Table 4.4: ONE MAJORITY COUNTER PERFORMANCES: 51 INPUTS

Lnclk
Wnclk

Lpclk Wpclk Lpullup Wpullup Lstd Wstd Vth
45nm 360nm 45nm 360nm 90nm 990nm 45nm 45nm 595mV

It can be seen as, even if the ideal threshold is at 577mV , the one that makes

the system work is 595mV .

This way, the behavior is exactly the one required. As stated before, the output

has to be sampled on the falling edge of the clock, otherwise the information will be

1This is not a precise explanation but just a rule of thumb to understand the issue. In fact, in
the output characteristic, all the other transistors (clock, pull-up) enter the game.

54

4.3 – Performances Results

Figure 4.4: Critical waveforms for the One Majority structure with 51 inputs

lost. It can be seen as there is a delay between the switching of the clock and the

reaction of the circuit, but it is very low, and the results are ready immediately.

The spice simulation makes the power estimation for the structure possible. In

this case, the power is estimated considering the output switching every other clock

cycle. The inputs are never switching in this case, but this is the situation for the

digital solution as well. The total power is evaluated considering the current flowing

in the voltage generator for the whole structure, and then multiplied for the voltage

itself. The result in this case is:

POM51 = 300.9µA · 1.1V = 330µW

The power consumption is significantly less that the digital structure, and this

is due to the low number of transistors used in this hardware with respect to the

55

4 – Hardware Realization and Overall Perfomances

digital one. In this structure, the number of transistors is:

ntrans = 3 + nin + 6 + 28 = 88 transistors

And this is because:

• The whole structure has one nmos and one pmos connected to clock. The

pull-up pmos is also there.

• There are nin nmos connected to every input;

• The clock is inverted by means of a chain of three inverters, for a total of 6

inverters;

• The comparator has 28 mos.

The power consumption for the structure is not high and this structure may be

actually used in an IC. To further reduce the power consumption of the structure,

it is possible to add a signal driving the Pull-up mos. This allows to shut the whole

structure down while not operating, further reducing its power consumption.

One Majority with 306 inputs

As expected, the same structure with an higher number of inputs result in a lower

distance between the threshold. The new parameters in this case are in 4.5 and 4.5.

Table 4.5: ONE MAJORITY COUNTER PERFORMANCES: 306 INPUTS

Lnclk
Wnclk

Lpclk Wpclk Lpullup Wpullup Lstd Wstd Vth
45nm 1.62µm 45nm 360nm 90nm 4.5µm 45nm 45nm 555mV

Again, the same comments done for the structure with 51 inputs can be done.

At this time, the total power consumption is:

POM306 = 1.109mA · 1.1V = 1.2mW

The total number of transistors is instead:

ntrans = 306 + 37 = 343 transistors

56

4.3 – Performances Results

Figure 4.5: Critical waveforms for the One Majority structure with 306 inputs

Again, way lower than the number of transistors used in the digital structure.

This is a limit case, since the division between the two voltages is not marked

and increasing the number of transistors would make the decision boundary very

small. A more precise comparator would be required in output. Nevertheless, as

said before, the structure is able to have noise tolerance if the noise is not too high.

This was demonstrated by means of Matlab simulations that consider the noise.

In general, a random noise in the order of ±5 inputs read wrongly would reduce the

scheduling performances less than 0.5%. Hence, this is not believed to be a major

problem for the design.

4.3.4 Scheduler without pipeline

Having synthesized all the critical structures, it is now possible to synthesize the

whole scheduler without pipeline. The 1GHz goal will not be met, but it will give the

engineer an idea on how chaining the whole structure deteriorates the performances.

The results are presented in the table below.

57

4 – Hardware Realization and Overall Perfomances

Table 4.6: PERFORMANCES OF THE SCHEDULER WITHOUT PIPELINE

Area 518264.44 µm2

Time 5.17 ns
Static Power 382.199 mW

Switching Power 266.843 mW
Total Power 652.199 mW

Leakage Power 3.095 mW

The structure has the expected performances, good in terms of timing, though

the area and power performances are important, even if negligible with respect to

the ideal target (for example, general purpose computers have power dissipation in

the order of tens of watts).

4.3.5 Scheduler with pipeline

It is now possible to insert the pipeline, to achieve the 1GHz goal. This is a pretty

challenging goal, but thanks to the level of automation of the code, it is possible

to achieve it without too much pain. In fact, the input/Params.pm contains the

following inputs that are used to pipeline:

• pipe in: number of pipeline registers to insert in the One’s Counter structures

in the hidden neurons;

• pipe out : number of pipeline registers to insert in the One’s Counter structures

in the output neurons;

• pipe comp: number of pipeline registers to insert in the output comparator;

• pipe onecnt to cmp: if 1 a register will be inserted between the output One’s

Counter and the output comparator.

• pipe hl : if 1, a register will be inserted between z1 and the input of the output

neurons.

The position where the program allows to put the registers is fixed, but it allows

enough freedom to the user to achieve the speed he wants. Thanks to this way of

58

4.3 – Performances Results

Figure 4.6: Pipeline for achieving the operating frequency of 1GHz

pipelining, there is technically the possibility of inserting a register every layer of

ports, just specifying a high number of pipeline registers.

This inputs are then read from the run.sh and perl/* scripts and inserted directly

in the structure.

This way, just changing a value inside an input file, the verilog files are written

down again, reflecting the inputs the user wants.

The final structure has then the following characteristics:

pipe in 1

pipe out 2

pipe comp 0

pipe onecnt to cmp 1

pipe hl 1

Meaning, one barrier of register is inserted between each layer, and inside the

counters. The total number of clock cycles the structure would take, provided that

the memory access is done is as less as one clock cycle, is 8. A timing diagram of it

is presented in 4.6.

The results achieved with this structure are presented in 4.7.

Table 4.7: PERFORMANCES OF THE SCHEDULER WITH PIPELINE

Area 555324.08 µm2

Time 1 ns
Static Power 426.32 mW

Switching Power 253.84 mW
Total Power 680.16 mW

Leakage Power 3.3756 mW

The area overhead is 7% and the power is 5%, meaning the registers are dra-

matically improving the speed of the structure, without costing a lot in the total

59

4 – Hardware Realization and Overall Perfomances

performances. Moreover, the numbers are still negligible with respect to the rest of

the hardware where the accelerator would be inserted.

It can be seen as the performances are remarkable, considering that a new result

can be provided every ns, if the pipeline is full. Comparing this number with the

reference methods speed and to speed needed to perform the algorithm scheduled,

most of the times, this fast operation is not be needed, but, inserting this accelerator

in an hardware processor will provide much more computing capability at very high

speed. In fact, referring to 1.1, most of the time in the process will be taken in

sensing the performances of the single tasks on each execution unit. In this case,

the same structure can be used as additional structure for massively parallel and

simple operations and it may be implied for completely different purposes, at the

cost of adapting the structure to fit other algorithms and adapting the algorithms

to this kind of hardware. Moreover, considering the case of multiple cores working

in parallel, it is possible to use the same scheduler for each of the core, exploiting in

a better way all of its computation capabilities.

60

Chapter 5

Conclusions

Conclusions and future works will be addressed in this chapter.

The outcome of the project goes beyond the expectation. In fact, both the

performances with respect to the HEFT and the overall speed of the system are

remarkable. The scheduling can be computed at a very fast pace, and the number

of operations to perform is way less than the number of operations needed for the

reference algorithm. This has been achieved moving most of the complexity to the

software side, but still achieving a good generalization of the structure for different

taskgraphs.

Given that, the approach to this problem is completely different, a comparison

with previous approaches cannot be done. In fact, the scheduling of real-time sys-

tems is mostly based on the availability of the task as well as the resource. In this

case, the static algorithm is applied in a dynamic way, resulting in a completely new

way of solving the problem.

Moreover, given the high generalization and computational capability, this sys-

tem may be used both for computing the scheduling the first time, making the

scheduling at the compilation time useless and adapting the scheduling to the cur-

rent conditions of the execution units. This would reduce the amount of work

the software should do, allowing it to give the control to the hardware before the

scheduling process, leaving both scheduling and dispatch to the hardware.

5.1 Future Work

This work represents a revolutionary way of solving the problem, then a lot of future

development can be carried out.

In fact, as stated in the thesis, one of the first easy way to improve the perfor-

mances of the structure is to have a reference algorithm for the scheduling that works

61

5 – Conclusions

better than the HEFT. As mentioned in Chapter 1, stochastic scheduling algorithm

can be used. This would automatically result in better performances, without any

additional work from the hardware/software point of view, other than writing the

Matlab code that describes the scheduling method and without impacting in any

way the hardware performances.

Moreover, as highlighted in the statement of the problem, the whole structure

has to be made up of a predictor able to sense the status of the machine and predict

the number of clock cycles that every task would imply in every execution unit.

This has not been implemented yet, but we do not believe this as major issue,

since hardware structures that sense the status of the execution units basing on its

Instruction per Cycle (IPC) for each application already exist.

Furthermore, to validate the idea in a stronger way, a profiling of the application

is needed. This is because the input set (for both training and testing) may not

reflect the real behavior of the applications, resulting in different training for the

network and highlighting complication or simplification in the structure. However, it

is believed that, tuning correctly all the different characteristics, this neural network

should have enough degree of freedom to be able to learn with different input set.

This kind of work needs to go along with the previous mentioned one. In fact,

while profiling the application, it is necessary to understand how those performances

change with respect to different parameters of the hosting target.

One other aspect to consider is that, being hardware, the number of input has

to be fixed, hence an efficient way of partitioning the network has to be found. This

partitioning method should result in the lowest loss in scheduling performances.

However, partitioning the taskgraph means to give inputs that are not valid at some

time to the network. For example, let us suppose that the user wants to schedule

a fifteen tasks taskgraph with a network designed for a 10 tasks taskgraph input.

In this case, the user may decide how to divide the original taskgraph, but in any

case he has to focus on the missing tasks. He could set the length of those to 0,

and make the network learn the more complex taskgraph with some tasks that will

take no time. In this case, the designer has to think also to the fact that those tasks

do not transfer any data. Nevertheless, all those considerations influence only the

training, since during the real-time usage of the accelerator there is no impact in

the speed performances.

62

5.1 – Future Work

Ϭ

ϭ Ϯ

Ϭ

ϭ Ϯ

Ϭ

ϭ Ϯ

Ϭ

ϭ Ϯ

ϯ

ϰ ϱ

ϲ

ϳ ϴ

Figure 5.1: Not Partitioned task-
graph.

Ϭ

ϭ Ϯ

Ϭ

ϭ Ϯ

Ϭ

ϭ Ϯ

Ϭ

ϭ Ϯ

ϯ

ϰ ϱ

ϲ

ϳ ϴ

Figure 5.2: Partitioned taskgraph.

One possible partition diagram approach the solution in a hierarchical way, dividing

the taskgraphs in sub-taskgraphs and scheduling the high level taskgraphs consid-

ering the outcome of the previously scheduled ones. This way, if some common

recurrent sub-taskgraphs can be found between all the taskgraphs, the number of

stored taskgraphs can decrease. 5.1 presents a possible example of a taskgraph too

big to be scheduled. The idea may be the one to divide it into several taskgraphs

and then schedule the big taskgraph taking the results of the previous runs on the

single taskgraphs as inputs for the last run.

In this example, given that the change in performance between the condition of

single task (5.1) and the condition of a group of task (5.2) are not changing in a

way the neural network cannot learn the generalized problem, only one taskgraph

has to be known, but the whole taskgraph can be scheduled in four iterations inside

the accelerator.

One more thing to consider is that the main idea has been to create a scheduler

that is able to adapt its outcome during the time the taskgraph is being executed.

Thanks to the generality of the structure, this scope has not been the main focus

of the work, but it is possible to slightly change the system considering the output

at time t as the input at time t+ 1, creating a recurrent neural network. This may

result in simplifications in the structure, since the network may exploit the previous

scheduling information as key point for the new scheduling.

This structure goes really fast, hence it really operates for a percentage of the

total time. Depending on the structure where this accelerator is inserted, there are

different possibilities to increase the percentage of usage:

63

5 – Conclusions

• The number of cores of the machine is really high: to use only one scheduler for

all the cores, increasing the percentage of usage and providing a new schedule

every clock cycle;

• The number of cores is not high: this structure, even in its simplest form,

has a lot of computational power. It could be used for any other purpose

that a computer is used for, as an additional execution unit or adapting any

other kind of high computation workload to it. It could also be exploited for

hardware security purposes.

Lastly, the integration with the environment represents a core point for the

usability of new hardwares. From this point of view a big part of the study still has

to be done, even though we do not believe this as a major issue. As shown in 1.1,

the inputs to the system would be provided from a new structure. The information

about the taskgraph can be provided directly from who is controlling the flow of

the machine. Moreover, the creation of a system that writes the running queue to

dispatch each task on a resource can be implementable. From this point of view the

ways of proceeding may be different:

• In newly designed, special purpose systems, this can be integrated writing

the new software. In fact, knowing that from the schedule on, the chain of

operations are performed in hardware, the power would be moved to the cpu

in one of the previous steps, instead of waiting for the dispatch.

• In already existing designs, a shell that takes the input the software already

gives, adapts them and directly gives them to the hardware can be created.

This would also take care of moving the result back to the dispatcher in order

to use the standard protocol that operating systems use before giving the

control to the CPU. If the dispatch instead should be done in hardware, at

this point it would be possible to take advantage of pin-mux techniques, useful

for the generalization of the problem as well. In fact, having pin-mux in input

and in output, interacting with both the hardware and the software, the neural

network could be used for scheduling and other purposes. Moreover, a simple

multiplexer could be used to decide who is in charge of writing the running

64

5.1 – Future Work

queue for every application and, in that case, be fully compatible with the

existing architectures.

65

Bibliography

[1] T. Li, P. Brett, R. Knauerhase, D. Koufaty, D. Reddy, and S. Hahn. Operating

system support for overlapping-isa heterogeneous multi-core architectures. In

HPCA - 16 2010 The Sixteenth International Symposium on High-Performance

Computer Architecture, pages 1–12, Jan 2010.

[2] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn. Efficient operating sys-

tem scheduling for performance-asymmetric multi-core architectures. In SC ’07:

Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, pages 1–11,

Nov 2007.

[3] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas.

Single-isa heterogeneous multi-core architectures for multithreaded workload

performance. In Proceedings. 31st Annual International Symposium on Com-

puter Architecture, 2004., pages 64–75, June 2004.

[4] Jiadong Yang, Hua Xu, Li Pan, Peifa Jia, Fei Long, and Ming Jie. Task schedul-

ing using bayesian optimization algorithm for heterogeneous computing environ-

ments. Appl. Soft Comput., 11(4):3297–3310, June 2011.

[5] K. Ramamritham, J. A. Stankovic, and P. F. Shiah. Efficient scheduling algo-

rithms for real-time multiprocessor systems. IEEE Trans. Parallel Distrib. Syst.,

1(2):184–194, April 1990.

[6] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua

Bengio. Binarized neural networks: Training deep neural networks with weights

and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[7] Alexandra Olteanu and Andreea Marin. Generation and evaluation of scheduling

dags: How to provide similar evaluation conditions. Computer Science Master

Research, 1(1), 2011.

[8] Z. Li, Y. Huang, and W. Lin. Fpga implementation of neuron block for artificial

neural network. In 2017 International Conference on Electron Devices and Solid-

State Circuits (EDSSC), pages 1–2, Oct 2017.

[9] R. Ramanarayanan, S. Mathew, V. Erraguntla, R. Krishnamurthy, and

S. Gueron. A 2.1ghz 6.5mw 64-bit unified popcount/bitscan datapath unit for

66

Bibliography

65nm high-performance microprocessor execution cores. In 21st International

Conference on VLSI Design (VLSID 2008), pages 273–278, Jan 2008.

67

	Acknowledgments
	Summary
	Introduction and Theoretical Background
	Multiprocessor Scheduling problem
	Classification of the existing solutions
	HEFT
	Binarized Neural Network

	Overall system and Validation of the Idea
	Neural Network
	Output format and size
	The training
	Training-set creation
	Training the network with backpropagation
	Testing the network on a new test set

	The results with full precision

	Moving to Hardware
	Differences with respect to Courbariaux Binarized Neural Network
	The Binarized Neural Network Training phase
	How to move each structure to Hardware
	Multiplication
	Digital Structure
	Mixed-Signal Structure
	All the possible trades-off between the two structures
	Output layer

	Pipelining the structure
	Pipeline with digital activation function
	Pipeline with mixed-signal activation function

	Multi-TaskGraph Problem
	The computer architecture solution

	Hardware Realization and Overall Perfomances
	The Final Network
	The complete generalization of the verilog code and the folder structure
	Performances Results
	One's Counter
	Comparator
	One's Majority
	Scheduler without pipeline
	Scheduler with pipeline

	Conclusions
	Future Work

	Bibliography

