
POLITECNICO DI TORINO
DAUIN - DEPARTMENTS OF CONTROL AND COMPUTER ENGINEERING

Master of science degree in
Mechatronic Engineering

Master’s degree thesis

Study and implementation of lane
detection and lane keeping for
autonomous driving vehicles

Supervisor:
prof. Andrea Tonoli
Co-supervisors:
prof. Nicola Amati
dott. Angelo Bonfitto

Candidate:
Antonio Mancuso
233145

December 2018

Per aspera ad astra

Abstract

Advanced Driving Assistant Systems (ADAS), intelligent and autonomous vehicles
have the aim to improve road safety, traffic issues and the comfort of passengers.
For this purpose, lane detection and lane keeping (LK) systems are important chal-
lenges.
This thesis has been focused on the implementation of a model that is able to com-
pute information necessary to develop a lane keeping function for an autonomous
driving vehicle.
The model is composed of lane detection, trajectory generation and lane keeping
control and it has been realized with environment data coming from a camera, that
is the most frequently sensor used to implement this type of applications.
The overall system has been developed with software as MATLAB and Simulink.
In particular, the lane detection has been performed with the Automated Driving
System Toolbox that allows to develop and test ADAS and autonomous driving
systems providing computer vision algorithms.
Starting from the information obtained with the lane detection stage, it has been
possible to generate the trajectory necessary for the development of the lane keep-
ing. In this research, the trajectory has been identified by the center line of the
detected lane in the road environment.
In order to follow the trajectory, it has been realized a lateral controller which is
mainly related to the computation of front wheel steering angle. The controller has
been implemented using Model Predictive Control (MPC) theory.
Thanks to the overall model, the values of the front wheel steering angle have been
computed allowing an autonomous driving vehicle to follow a specific trajectory.

Ringraziamenti

Vorrei esprimere la mia grande gratitudine al prof. Andrea Tonoli, relatore di questa
tesi, per avermi permesso di realizzare questo progetto ed essermi stato di supporto
con i suoi suggerimenti e la sua disponibilità. Ringrazio anche il prof. Nicola Amati
e il dott. Angelo Bonfitto per l’aiuto fornitomi nel condurre e portare a termine il
lavoro.
Grazie al dott. Stefano Feraco per la sua amicizia, professionalità, ed enorme
pazienza dimostrata quotidianamente durante questo “viaggio”.
Un ringraziamento speciale va a mia madre e mio padre che, con i loro sacrifici,
hanno permesso il raggiungimento di questo traguardo. Durante il lungo percorso di
studi mi hanno sempre sostenuto, supportato e soprattutto sopportato, facendomi
crescere e diventare la persona che sono.
Grazie a mia sorella Francesca che è sempre stata al mio fianco sin da piccolo. Con
i suoi continui rimproveri, ma più di tutto con la sua dolcezza e la fiducia nei miei
confronti, mi ha continuamente spronato a dare sempre il meglio.
Ringrazio il mio “quasi” cognato Giovanni, ormai un secondo fratello, che, con i
suoi consigli e il suo affetto, mi ha permesso di non mollare mai, anche nei momenti
più bui.
Un grazie a tutti i colleghi del Politecnico che mi hanno accompagnato durante
questi anni, in particolare ringrazio Giuseppe con cui ho vissuto le gioie e i dolori
di questo periodo universitario e non solo.
Ringrazio gli amici di una vita Luciano, Andrea, Paola, Pietro, Franco, Alessandro,
Martina, Giuseppe e Irene che hanno creduto in me rendendo più facile questo
percorso.
Infine, ma non per minor importanza, voglio ringraziare la mia “seconda famiglia
pugliese” Donato, Alma, Luigi, Jessica e Irene che mi ha accolto facendomi sentire
sempre come a casa.

Contents

List of Figures iii

1 Introduction 1
1.1 Thesis motivation . 1
1.2 State of the art . 5

1.2.1 Lane detection . 5
1.2.2 Lane keeping . 7

1.3 Thesis outline . 10

2 Lane detection 11
2.1 Pre-processing . 11

2.1.1 Camera calibration . 12
2.1.2 Region of Interest (ROI) extraction 15
2.1.3 Inverse Perspective Mapping (IPM) 17

2.2 Lane detection . 19
2.2.1 Lane line feature extraction 19
2.2.2 Lane line model . 21

2.3 Trajectory generation . 25
2.3.1 Trajectory curvature computation 25

2.4 Computation of vehicle model dynamic parameters 28
2.5 Simulation and experimental results 29

3 Lane keeping 37
3.1 Vehicle models . 37

3.1.1 Kinematic model . 37
3.1.2 Dynamic model . 40

i

3.1.3 Dynamic model for lane keeping evaluation 44
3.2 Model Predictive Control for lane keeping 46

3.2.1 Overview of MPC . 46
3.2.2 MPC implementation . 49

3.3 Simulation and experimental results 53

4 Conclusions and future works 58

Bibliography 60

ii

List of Figures

1.1 SAE’s classification of autonomous vehicles 2
1.2 Overall model of autonomous driving system used in this thesis work 4
1.3 Block scheme . 5
1.4 Block scheme developed by Xu et al. [8] 8
1.5 Control system scheme [10] . 9
1.6 Block scheme of the model developed by Rafaila et al. [12] 10

2.1 Coordinates conversion . 12
2.2 Focal length description . 13
2.3 Checkerboard pattern . 14
2.4 Vehicle reference coordinate system built by the monoCamera object 15
2.5 Region of Interest selected for bird’s-eye-view image transformation

[22] . 17
2.6 Schematic illustration of the conversion from the real position of the

camera to the virtual position [3] 17
2.7 Inverse perspective mapping (IPM) transformation: (a) original im-

age, (b) bird’s-eye-view image . 18
2.8 Bird’s-eye-view image in grey-scale 20
2.9 Segmentation of lane line features image 21
2.10 Lane detection in bird’s-eye-view image (a) and original image (b) . 24
2.11 Curve α and tangential angle ϕ . 26
2.12 Demonstration that the definition 2.5 can be derived from the defi-

nition 2.6 . 27
2.13 Osculating circle and radius of curvature 27
2.14 Definition of lateral deviation and relative yaw angle with respect

the center line of the lane . 29

iii

2.15 MATLAB function block of lane detection in Simulink 29
2.16 Stereo camera ZED . 30
2.17 Calibration error . 31
2.18 Bird’s-eye-view image before (a) and after (b) camera calibration . 33
2.19 Lane detection of slightly curved line road in extra-urban (a) and

urban (b) streets . 34
2.20 Lane detection of straight line road in highway (a), extra-urban (b)

and urban (c) streets . 35
2.21 Center line, curvature, lateral deviation and relative yaw angle com-

putation . 36

3.1 Vehicle kinematic model . 38
3.2 Lateral vehicle dynamics: vehicle reference frame (a), bicycle model

(b) . 41
3.3 Tire slip angle . 42
3.4 Sign convention for bank angle ϕ 44
3.5 Block diagram for Model Predictive Control 47
3.6 Basic concept for Model Predictive Control 49
3.7 Lane keeping model developed in Simulink 54
3.8 Different scenarios to test lane keeping control 55
3.9 Results: curvature (a), lateral deviation (b), relative yaw angle (c)

and steering angle (d) . 56
3.10 Vehicle path against center line . 57

iv

Chapter 1

Introduction

1.1 Thesis motivation

All over the world, many people spend a lot of time driving and they want make
it in safety. In fact, car accidents are the main cause of death and injuries in most
countries. In particular, according to the World Health Organization (WHO)1, it is
possible to estimate that more than 1 million people lose their lives on the road due
to traffic accidents. For this reason, in the last few years many university researches
and car companies are focusing on the development of Advanced Driver Assistance
Systems (ADAS) and self-driving vehicles.

According to European Road Safety Observatory (ERSO) [1], ADAS can be de-
fined as: “vehicle-based intelligent safety systems which could improve road safety
in terms of crash avoidance, crash severity mitigation and protection and post-crash
phases. ADAS can, indeed, be defined as integrated in-vehicle or infrastructure based
systems which contribute to more than one of these crash-phases”.

Autonomous driving cars can be considered vehicles that perform the transportation
task without the human intervention, using algorithms executed by an on-board
computer to simulate the behaviour of the driver, and making decision.

1http://www.who.int/

1

1 – Introduction

In order to realize autonomous vehicles, it is needed to acquire environment infor-
mation from a variety of sensors, such as LiDAR, radar, camera, IMU and GPS.
The data coming from the different sensors is managed by a single system that takes
the name of sensor fusion. It provides the information to develop perception al-
gorithms like lane and obstacle detection, vehicle localization and 3D environment
reconstruction. The perception algorithms allow to realize path and trajectory
planning, and the control stage. They perform different functions such as lane
keeping, emergency stopping, car parking, speed reference generation and obstacle
avoidance. These functions provide the signal necessary for actuators that com-
mand the autonomous vehicle.

The SAE International (Society of Automotive Engineers) established in 2014 a
classification system to describe the progression of the automation of vehicles, as
shown in Figure 1.1. The United Nations and the US Department of Transfor-
mation have adopted SAE J3016 guidelines, that is today considered the industry
standard.

Figure 1.1: SAE’s classification of autonomous vehicles

The classification is based on the amount of responsibility and attentiveness re-
quired by the driver. Six levels are defined accordingly, from a situation in which
everything is controlled by the human (Level 0) to the full automation of the ve-
hicle under all driving conditions (Level 5). The definition of each level takes into

2

1 – Introduction

account the specific role played by the driver, the driving automation system and
by other vehicle systems and components that might be present.
SAE’s levels are descriptive and informative rather than normative, and technical
rather than legal, they clarify the role of the ADS which are progressively included
in the vehicles. ADS is the acronym of Automated Driving Systems. It refers to
both hardware and software tools collectively capable of performing dynamic driv-
ing tasks (e.g. driving environment monitoring, longitudinal and lateral motion
control, maneuver planning).
The six levels can be defined as:

• Level 0 - No automation: steering or speed control may be momentarily
assisted by the vehicle, but the human driver is in charge of all the aspects
of driving;

• Level 1 - Driver assistance: longitudinal or lateral support under well-defined
driving scenarios (e.g. highway) are guaranteed, because the vehicle takes
over either the speed or the steering control on a sustained basis;

• Level 2 - Partial automation: both speed and steering control are taken over
by the vehicle, therefore continuous longitudinal and lateral support under
well-defined driving scenarios are guaranteed. A Level 2 vehicle is equipped
with a wider set of ADAS;

• Level 3 - Conditional automation: the vehicle becomes capable of taking full
control under well-defined driving scenarios, but the driver must be always in
the condition of suddenly taking back control when required by the system;

• Level 4 - High automation: human interaction is not needed anymore, the
vehicle takes full control and complete a journey in full autonomy under
limited driving scenarios. Pedals and steering wheel are likely to be still
present to guarantee the possibility to drive in scenarios that go beyond the
defined uses cases (e.g off-road);

• Level 5 - Full automation: the vehicle takes full control under all driving
scenarios, no more provisions for human control are present. The concept of
journey will be disruptively innovated, the entire vehicle design revolutionized.

3

1 – Introduction

This thesis refers to the development of lane detection and lane keeping functions
that allow an autonomous driving vehicle to recognise the lane in front of the car,
and follow a specific trajectory generated with information of road environment.
In order to perform the project, a stereo camera has been used as sensor to acquire
the road data, precisely the ZED camera produced by StereoLabs2, but only one
image has been processed to implement the work.
The overall autonomous driving system has been implemented with MATLAB and
Simulink3 and it has been divided in two parts which are lane detection block and
lane keeping control block connected to each other, as shown in Figure 1.2.

Figure 1.2: Overall model of autonomous driving system used in this thesis work

The first block deals with the development of the lane detection stage. In this phase,
the model processes the images coming from the camera, performs the lane detec-
tion, computes the trajectory and the variables needed by the controller (curvature
κ, lateral deviation ey and relative yaw angle eΨ). The lane detection function has
the aim to recognize the white lines of the road and fit them to a parametric model.
In this work, the generation of the trajectory consists in the computation of the
center line of the lane.
The lane keeping control block uses Model Predictive Control (MPC) theory to im-
plement the controller for the lane keeping function. Its goal is to keep the vehicle
in its lane, and to follow the curved road by controlling the front wheel steering
angle. In order to compute the steering angle, the MPC controller has to minimize
a cost function that accounts for lateral deviation and relative yaw angle.

2https://www.stereolabs.com/
3https://it.mathworks.com/

4

1 – Introduction

1.2 State of the art

In recent years a lot of researches have been focused on autonomous driving and,
for this reason, an overview of the existing projects has been done at the beginning
of this work. In particular, the state of the art regarding the development of the
lane detection and the lane keeping has been analysed.

1.2.1 Lane detection

In general, the lane detection is not developed with a single specific approach. In
order to have a more complete view of the possible methods that can be used, the
following researches have been investigated: these present different characteristic
features.
A vision-based lane detection approach is presented by Assidiq et al. [2]. Their
method is able to reach real-time operations with robustness to lighting change
and shadows. Figure 1.3 shows the block scheme of the algorithm developed in this
research. As shown in the block scheme, the image coming from a camera is con-
verted to gray scale and processed making a noise reduction. After these process,
the Canny algorithm has been executed to search the edges of lanes. In order to
extract and fit the found lanes, Hough transform and hyperbola fitting approach
have been used.

Figure 1.3: Block scheme

5

1 – Introduction

A different method to execute the lane detection has been explained by Dory and
Lee [3]. Their system is focused on realize a method that finds curved lane bound-
aries with higher precision: this is possible thanks to the integration of Hough
transform technique, a parabolic model and a least-square estimation. The first
technique has been used to find straight lines, while the others two have been
adopted to detect the curved line in near and far view sections respectively. An-
other improvement of the detection is due to the transformation of the original
camera image in a top view space. This is similar to the approach developed in
this thesis because the same image transformation has been adopted: this will be
explained in section 2.1.3.
A detection of road lanes system that applying stereo vision algorithms has been
presented by Taylor et al. [4]. Their system uses a parametrized model that cap-
tures the position, orientation and width of the lanes in highways environment.
The results show how their work is able to recover and track lane markers in real
time even if the lane features extracted from images are not clear.
An hard real-time vision system that is able to recognize and track the lane bound-
aries and other vehicle on the road has been developed by Betke, Haritaoglu and
Davis [5]. The particularity of this system is that works on colour videos collect
from a car driving on a highway, instead of gray scale frames. In order to realize
the lane detection and tracking, and the vehicle detection, their system combines
colour, edge and motion information.
In 2010, Lopez et al. [6] have been implemented a reliable detection of lane based
on ridges detection for the extraction of image feature. This approach is different
with respect to the common edges detector such as Canny, Sobel or Prewitt, and
this work demonstrates that such method is better suited for lane features extrac-
tion. In order to fit the image features as a parametric model, RANSAC algorithm
has been used. The detector used here is the same developed for the system imple-
mented in this thesis, as shown in section 2.2.1.
A robust and real-time method to detect lane marker in urban streets has been
described by Aly [7]. Their approach is divided in five steps:

1. Inverse Perspective Mapping (IPM) in which the original image coming from
a camera is transformed in a top view of the road;

2. Filtering and thresholding in which the transformed image is filtered using

6

1 – Introduction

two dimensional Gaussian kernel;

3. Line detection in which Hough transform technique and RANSAC algorithm
are combined in order to perform an optimal detection;

4. RANSAC spline fitting in which the candidate lines found in the previous are
refined to give the final detection.

5. Post-processing in which the output of the previous steps is processed in order
to try to better localize the spline and extend it in the image.

Since this approach consists in fitting the lane in a top view of the road using
RANSAC algorithm, it is the most similar to the one used for the work developed
in this thesis.

1.2.2 Lane keeping

A study of the possible methods for developing lane keeping system has been con-
ducted, as done for the lane detection problem. Some of the most interesting
approaches are reported below.
The work of Xu et al. [8] is focused on the realization of a controller to implement
a lane keeping system using Model Predictive Control (MPC) theory. Figure 1.4
shows how the controller is developed in this research. The output is the optimal
steering angle of the front wheel computed minimizing the cost function of the
MPC controller. The cost function is composed of the steering angles and the error
between the reference and the predictive trajectory. The generation of the reference
trajectory is performed fitting five preview points coming from sensors. In order
to demonstrate the effectiveness and robustness of the approach, a co-simulation of
MATLAB/Simulink and CarSim has been executed.

7

1 – Introduction

Figure 1.4: Block scheme developed by Xu et al. [8]

A linear MPC controller that realizes a lane keeping and an obstacle avoidance
systems for low curvature roads has been presented by Turri et al. [9]. The control
developed in this work has been divided in two successive stages: the first stage
computes a braking or throttle profiles based on the prediction horizon; the second
stage realizes the MPC using the linear time-varying models of the vehicle lateral
dynamics derived by the profiles of the first stage. The MPC estimates the steering
angle command based on the optimal breaking or throttle command.
A different approach to perform a path following for autonomous vehicle is described
by Marino et al. [10], in 2009. Their method refers to develop a nested PID steering
control that uses vision system. The control input is the steering angle of the front
wheel: it is designed on the basis of the yaw rate and the lateral offset. The first
parameter is measured by a gyroscope, while the second is computed by the vision
sensor as the distance between the center line of the road and a virtual point fixed
with respect to the vehicle. As shown in Figure 1.5, the controller is split in two
nested control blocks: C1 is a PI controller that has to ensure the tracking of a yaw
rate reference signal based on the yaw rate error, while C2 is a PID controller that
generates the yaw rate reference signal on the basis of the lateral offset. The first
control is used to reject constant disturbances and the effect of parameter variations
during the computation of the steering angle, while the second control has the aim
to reject the disturbances on the curvature.

8

1 – Introduction

Figure 1.5: Control system scheme [10]

M. Bujarbaruah et al. [11] propose to solve lane keeping problems with an adaptive
robust model predictive control. In this work the longitudinal control is considered
given and the longitudinal velocity is assumed constant. For this reason, the work
are focused only on the development of the lateral control. The goal of MPC
controller consists in the minimization of the lateral deviation from the center line
and the steady state yaw angle error, while satisfying respective safety constraints.
These constraints refer to the steering angle offset present in the steering system.
In order to estimate and adapt in real-time the maximum possible bound of the
steering angle offset from data, they use a robust Set Membership Method based
approach. The results of this control show that is well-suited for scenarios with
sharp curvatures on high speed.
A non-linear MPC strategy to control steering of autonomous driving vehicle has
been presented by R. C. Rafaila and G. Livint [12]. The MPC is developed as a
NMPC, since the lateral dynamic model takes into account the most important
non-linearities, such as the lateral tire forces. Figure 1.6 shows the scheme of the
model implemented: the optimization algorithm computes the optimal front wheel
steering angle minimizing the cost function that refers to the future lateral position
tracking error.

9

1 – Introduction

Figure 1.6: Block scheme of the model developed by Rafaila et al. [12]

1.3 Thesis outline

The thesis is organized as follows:

• Chapter 2 : the lane detection block are presented. The developed system
has been divided in four phase: pre-processing, lane detection, trajectory
generation and vehicle model dynamic parameters computation. At the end
of the chapter the experimental results are shown;

• Chapter 3 : vehicle model and MPC theory for lane keeping are introduced. In
particular, the kinematic and dynamic vehicle model are described focusing
on the model used to develop the controller, and the MPC implemented for
this work is explained. Some results are shown;

• Chapter 4 : final chapter in which conclusions and future works are reported.

10

Chapter 2

Lane detection

According to the the block scheme in Figure 1.2, in this chapter the lane detection
block has been presented.
Lane detection is a well-research area of computer vision that allows to realize
functions for ADAS and autonomous vehicles. One of these functions is the lane
keeping, and the lane detection presented in this thesis has been developed to give
reliable information to implement it.
As mention in section 1.1, the overall system has been implemented in MATLAB
and Simulink. In particular the detection of road lanes has been performed following
a visual perception example included in the MATLAB documentation [13], that
uses Automated Driving System, Computer Vision System and Image Processing
toolbox.
The lane detection function has been divided in four steps:

• Pre-processing;

• Lane detection;

• Trajectory generation;

• Computation of vehicle model dynamic parameters.

2.1 Pre-processing

Pre-processing is always mandatory as the initial stage of image processing. The
aim of pre-processing phase is to improve the input image in order to give more

11

2 – Lane detection

useful data for the development of the lane detection.

2.1.1 Camera calibration

The first step of pre-processing is the calibration of a camera. It is needed in or-
der to compute the extraction of Region of Interest (ROI) and Inverse Perspective
Mapping (IPM), that will be explained in the following sections.

Camera calibration performs the computation of intrinsic and extrinsic parame-
ters. They allow to convert the coordinates information of images from world to
pixel coordinates as show in Figure 2.1.

Figure 2.1: Coordinates conversion

Intrinsic parameters are used to link the pixel coordinates of an image point with
the corresponding coordinates in the camera reference frame. They are internal
and fixed to a particular camera and include:

• Focal length;

• Principal point.

12

2 – Lane detection

“Focal length is the distance between the center of the sensor or film of the camera
and the focal point of the lens or mirror [14]”, as shown in Figure 2.2.

Figure 2.2: Focal length description

“The principal point is the point on the image plane onto which the perspective
center is projected. It is also the point from which the focal length of the lens is
measured [15]”.

Extrinsic parameters define the location and orientation of the camera reference
frame with respect to a known world reference frame. They include:

• Pitch, yaw and roll angles;

• Height of the camera with respect to ground.

These parameters can also be written as a rotation matrix R and a translation
vector T.

In order to estimate intrinsic and extrinsic parameters, a lot of methods have been
developed in literature, but in this work MATLAB Camera Calibrator app by Im-
age Processing and Computer Vision toolbox has been used [16].
The Camera Calibrator app needs a calibration target and the most useful is a
checkerboard pattern (Figure 2.3).

13

2 – Lane detection

Figure 2.3: Checkerboard pattern

A not square checkerboard is required: one side has an even number of squares
and the other side has an odd number of squares. This criteria allows to compute
the orientation of the pattern. The longer side of the checkerboard is considered
the x-direction by the calibrator. The minimum requirement to generate a result
is three images, but for a best result ten to twenty images need to collect [17] [18]
[19] [20].

From the camera calibration, the intrinsic parameters have been taken and stored
in cameraIntrinsics object of MATLAB.
The input arguments required by this object are the following [16]:

• Focal length defined as a vector of two elements [fx, fy] in pixel unit, where:

fx = F × sx (2.1)

fy = F × sy (2.2)

In the formulas above, F corresponds to the focal length in world units, while
sx and sy are the number of pixels per world unit in the x and y direction
respectively;

• Principal point provided as a two-element vector in pixels coordinate [cx, cx];

The extrinsic parameters, instead, refer to the position and orientation of the cam-
era mounted on the vehicle. The position is related to the height of the camera
from the ground, while the orientation is related to the roll, pitch and yaw angles.

14

2 – Lane detection

Both intrinsic and extrinsic parameters are stored in the monoCamera object that
is used to set the camera as a sensor in MATLAB and Simulink environment. This
MATLAB object defines a very specific vehicle reference frame, as shown in Fig-
ure 2.4. In this new coordinate system, the x-axis is set in the direction in which
the vehicle moves; the y-axis is set perpendicular to the x-axis and points to the
left side of the vehicle, and the origin of the coordinate system is set on the ground,
below the camera center.

Figure 2.4: Vehicle reference coordinate system built by the monoCamera object

Furthermore, monoCamera object includes imageToVehicle and vehicleToImage
functions to transform the location of a point from image coordinates to vehi-
cle coordinates and vice versa. These functions allow to estimate distances from
the camera mounted on the vehicle to points located on a flat road surface applying
projective transformations, called also homography. A homography is an invertible
mapping h from a projective plane P 2 to itself such that three points x1, x2 and
x3 lie on the same line if and only if their mapped point h(x1), h(x2) and h(x3) are
also collinear, as specified by Hartley and Zisserman [21].
In the following section the monoCamera object is used to develop the Region of
Interest extraction and the Inverse Perspective Mapping.

2.1.2 Region of Interest (ROI) extraction

The extraction of Region of Interest (ROI) is an important step in pre-processing
phase. It consists in select only the relevant part of the image which includes the
lane of the road. In fact, the definition of a Region of Interest gives the possibility
to exclude light poles, pedestrians, trees and vehicles that are foreign voices in the

15

2 – Lane detection

lane markers detection. Moreover, set a ROI allows to reduce the detection range
in order to decrease the surrounding noise and the computational cost due to the
processing time.
In the system developed for this thesis, the Region of Interest has been computed
in a geometric way. It consists in select the relevant area in front of the vehicle to
send to the function that transform the image in the bird’s-eye-view, as explained
in the following section. In order to select the area, three parameters have been set
as follows:

• Distance ahead of sensor: the horizon in front of the vehicle;

• Space to one side: the distance from the camera to the left and the right side
of the vehicle;

• Bottom offset: the distance from the camera to the first point on the road to
visualize.

These parameters are set in unit meters, as determined by the monoCamera object
property, and collected in a vector used by the function that perform the transfor-
mation of the images in bird’s-eye-view.
This vector is specified as a four-element vector of the form [xmin xmax ymin ymax],
where:

• xmax is equal to the value of distance ahead of sensor;

• ymin and ymax are equal to the value of space to one side;

• xmin is equal to the value of bottom offset.

Figure 2.5 shows how the values of the vector are used to select the area to transform
in bird’s-eye-view.

16

2 – Lane detection

Figure 2.5: Region of Interest selected for bird’s-eye-view image transformation
[22]

2.1.3 Inverse Perspective Mapping (IPM)

The last step of pre-processing phase is Inverse Perspective Mapping (IPM). This
method has been used to transform a real image coming from a camera into a bird’s-
eye-view image that allows to have a top view of the road. In order to have the
new view, the real position of the camera is converted into a new virtual position
[3], as shown in Figure 2.6.

Figure 2.6: Schematic illustration of the conversion from the real position of the
camera to the virtual position [3]

17

2 – Lane detection

The transformation of the image in bird’s eye view is necessary for the following
part of the function since the detection phase requires that the lines are parallel,
straight and relatively clear. This transformation allows to obtain images in which
this requirement is satisfied thanks to the removal of the perspective effect.
In this work, birdsEyeView object developed by Automated Driving System tool-
box of MATLAB has been used to perform the Inverse Perspective Mapping. It
is necessary to take monoCamera object coming from the camera calibration (Sec-
tion 2.1.1) and the vector coming from the extraction of ROI (Section 2.1.2) to
create the object. birdsEyeView object uses his internal function, transformImage,
in order to compute the image transformation from the original to the new 2D im-
age. This function uses imwarp function by Image Processing toolbox that applies
the geometric transformation indicated by the birdsEyeView object to the image.
Figure 2.7 shows the transformation of the original image into the bird’s-eye-view.

Figure 2.7: Inverse perspective mapping (IPM) transformation: (a) original
image, (b) bird’s-eye-view image

18

2 – Lane detection

2.2 Lane detection

After pre-processing phase, detection stage has been developed and it has been
divided in two parts:

• Lane line feature extraction;

• Lane line model.

2.2.1 Lane line feature extraction

“A feature is defined as an interesting part of an image, and features are used as a
starting point for many computer vision algorithms [23]”.

The extraction of feature is a branch of computer vision and image processing
area. It is used to compute relevant information in a image and representing them
in the least possible space.
Lane line feature extraction consists in identifying pixels that belong to the white
line of the road and eliminating the marking pixels of non-lane line, in bird’s-eye-
view images that coming from the previous phase.
The extraction is developed using an approach that is based on the observations of
pixels contrast compared between the lane markings and the road pavement. The
recognition of lines is implemented by searching for pixels that are “lane-like”. This
type of pixels are groups of points with a very different colour contrast with respect
to the adjacent points on both sides.
The approach developed to this purpose is called ridge detection that tries to iden-
tify ridges, or edges, in an image. Ridge detection technique has been chosen for its
simplicity and relative effectiveness. It is based on tensor field construction of first
order derivatives and it is able to get the response of gradient directions that makes
it easier to remove anomalous values if their directions deviate too much from the
expected lane line direction [24].

In order to improve the lane line feature segmentation, the method requires to
transform the bird’s-eye-view images from RGB to grey-scale, as shown in Fig-
ure 2.8.

19

2 – Lane detection

Figure 2.8: Bird’s-eye-view image in grey-scale

Automated Driving System toolbox provides a function that uses a ridge detector
to extract the lane line feature, segmentLaneMarkerRidge.
This function receives in input the bird’s-eye-view image in grey-scale intensity,
the birdsEyeView object created in the Inverse Perspective Mapping phase and a
scalar value that indicates the approximate width of the features of the lane line to
detect. The last value allows the function to determine the filter used to threshold
the intensity contrast. segmentLaneMarkerRidge can receive an additional input
arguments, the lane sensitivity, a non-negative scalar factor that allows to define if a
value needs to be retained or not. This value improves the detection and extraction
of features [25] [26].
As output, the function returns a binary image with true pixels representing the
information about lane features, as shown in Figure 2.9.

20

2 – Lane detection

Figure 2.9: Segmentation of lane line features image

2.2.2 Lane line model

After the feature extraction, the lane line model fitting has been developed. This
step allows to create a parametric model of the lane detected to the visualization
of the features extracted in the image. The main purpose of this phase is to get
a compact high level representation of the path, which can be used for decision
making [27].

The fitting of parameter models very often has to work with noisy boundary points
coming from the image, in the form of missing data and a large relative amount of
anomalous values. For this reason, the most common algorithm that allows to fit
the model is RANdom SAmpling Consensus (RANSAC) because it is able to detect
anomalous values and create a model with inliers only.

21

2 – Lane detection

Inliers are data whose distribution can be characterized by a set of parameters of
a model [28].

The RANdom SAmple Consensus algorithm proposed by Fischler and Bolles [29]
in 1981 is an iterative method with the aim to estimate parameters. It is developed
to work with a large proportion of outliers in the input data.
This algorithm was born inside of the computer vision community, while the most
common robust estimation techniques are taken from the literature, for example
M-estimators and least-median squares.
RANSAC method is able to generate a possible solution with the use of a minimum
number of data in order to estimate the parameters of the model. For this reason
it is a re-sampling technique very different from those common in the literature [30].

The algorithm can be summarized with the following five steps:

1. Select randomly a sample subset with the minimum number of data necessary
to fit the model parameters from the input dataset. Call the subset selected
hypothetical inliers;

2. Compute the fitting model and the corresponding parameters of the model
using only the elements selected in the previous step;

3. Find all the points of the entire dataset that are able to fit the estimated
model well, according to a predefined tolerance. Collocate these points in the
consensus set;

4. If the number of points in the consensus set exceeds a predefined threshold,
the parameters model is improved by re-estimating it using all the points of
the consensus set and the algorithm terminates;

5. If not, repeat maximum of N times steps 1 to 4.

The number of iterarions N is defined as follows:

N = log(1 − p)
log(1 − km) (2.3)

22

2 – Lane detection

This equation derives from the following equality:

1 − p = (1 − km)N (2.4)

Where:

• p is the probability that RANSAC gives a correct result. This happens if
in the first step of the algorithm at least one of the random sample subset
contains only inliers.

• k represents the probability of finding an inlier in any selected point;

• m are the minimum number of points required to estimate a model and they
are selected independently.

Therefore:

• 1-p is the probability that RANSAC never provides a correct result;

• (1 − km)N is the probability that the algorithm never finds a set of m points
in which is not present an outlier.

In this thesis work the built-in findParabolicLaneBoundaries function has been used
to fit the lane line model. This function uses RANSAC algorithm to find the lane
line boundaries. As the function name suggests, the model created is a parabolic
model that fits a set of boundary points and an approximate width. The selected
boundary points correspond to inliers only if they fall into the boundary width.
The final parabolic model has been obtained using a least-squares fit on the inlier
points.
The function receives in input the candidate points in vehicle coordinate from the
features extraction phase and it provides array of parabolicLaneBoundary objects
for each model. The returned array includes the three coefficients [a b c] of the
parabola, like a second-degree polynomial equation ax2+bx+c, and in addition the
strength, the type, and the minimum and maximum x positions of the computed
boundary. The last three parameters are used to reject some curves that could be
invalid using heuristics [31]. For example, in order to reject short boundaries, the
difference between the minimum and maximum x positions has been compared with
a specific threshold, if the minimum threshold is not reached, the found boundaries

23

2 – Lane detection

are rejected; or, to reject weak lines, the value of the strength has to be higher than
another threshold set ad hoc.
The founded lane line models in vehicle coordinate have been inserted to the bird’s-
eye-view image and to the original image taking from the camera, as shown in
Figure 2.10.

Figure 2.10: Lane detection in bird’s-eye-view image (a) and original image (b)

24

2 – Lane detection

2.3 Trajectory generation

The trajectory generation phase consists to find the trajectory and compute its
curvature based on the information of the lane line model coming from the previous
step. This phase refers to the problem of trajectory planning, also called motion
planning, in automotive context, that has the purpose to find a trajectory feasible
for the vehicle, and safe and comfortable for the passenger.
The motion planning for an autonomous vehicle is based on the same theory handled
in robotics area. In fact, as in the field of robotics, it is necessary to provide
and distinguish some definitions such as path and trajectory, and global and local
planning.
Firstly, it is significant to give the definitions of path and trajectory and underline
that they have two different meanings:

• Path is the pure geometric description of motion;

• Trajectory is the merge of the path and the time laws (velocities and acceler-
ations) required to follow the path.

The other significant definitions are global and local planning:

• Global planning means the generation of the path or trajectory knowing the
entire environment and its information such as the position of the obstacle
and the lane boundaries;

• Local planning means, instead, the computation of the path according to
sensor data that represent local environment information.

In this thesis, for the sake of simplicity, no strict distinction has been adopted to
distinguish path and trajectory when needed.
Moreover, the indication of the trajectory (or similarly path) is defined as a local
path as mention in the previous definitions.
The trajectory computed for this work consists of the center line of the lane. It is
computed like the average between the left line of the lane and the right ones.

2.3.1 Trajectory curvature computation

The controller of the lane keeping needs to receive the curvature of the trajectory
like input to perform the control action on the steering angle.

25

2 – Lane detection

“The curvature of a curve parametrized by its arc length is the rate of change of
direction of the tangent vector [32]”.

Considering a curve α(s), where s is the arc length and the tangential angle ϕ,
computed counterclockwise from the x-axis to the tangent T = α′(s), as shown in
Figure 2.11, the curvature κ of α is defined, following the definition, as:

κ = dϕ

ds
(2.5)

Figure 2.11: Curve α and tangential angle ϕ

The curvature can be also defined as the value of the turning of the tangent T(s)
along the direction of the normal N(s), that is:

κ = T ′ · N (2.6)

It is easily to derive the first definition 2.5 from the second 2.6 (Figure 2.12), as
follows:

κ = T ′ · N = dT

ds
· N = lim

∆s→0

T (s + ∆s) − T (s)
∆s

· N = lim
∆s→0

∆ϕ · ∥T∥
∆s

= dϕ

ds
(2.7)

26

2 – Lane detection

Figure 2.12: Demonstration that the definition 2.5 can be derived from the
definition 2.6

To perform the measure of how sharply the curve bends, the absolute curvature of
the curve at a point has been computed and it consists of the absolute value of the
curvature |κ|.
A small absolute curvature corresponds to curves with a slight bend or almost
straight lines. Curves with left bend have positive curvature, while a negative cur-
vature refers to curves with right bend.

With the second definition 2.6 it is possible defined that the curvature of a cir-
cle is the inverse of its radius everywhere. For this reason, the radius of curvature
R has been identified as the inverse of the absolute value of the curvature κ of the
curve at a point.

R = 1
|κ|

(2.8)

The circle with radius equal to the curvature radius R, when κ /= 0, and positioning
at the center of curvature is called osculating circle, as shown in Figure 2.13. It
allows to approximate the curve locally up to the second order.

Figure 2.13: Osculating circle and radius of curvature

27

2 – Lane detection

The curvature can be expressed in terms of the first and second derivatives of the
curve α for simplicity in the computation, by the following formula:

κ = |α′′|
[1 + (α′)2]

3
2

(2.9)

In order to compute the curvature in this thesis work, the Geom2d toolbox in MAT-
LAB has been used. This toolbox provides the polynomialCurveCurvature function
that allows to compute the local curvature at specific point of a polynomial curve.
It receives in input the curve in parametric form x = x(t) and y = y(t) and the
point in which the curvature has to be evaluate.
The function polynomialCurveCurvature computes the curvature following the for-
mula 2.9 that becomes:

κ = |x′y′′ − x′′y′|
[(x′)2 + (y′)2]

3
2

(2.10)

2.4 Computation of vehicle model dynamic pa-
rameters

The last phase of the lane detection algorithm refers to the computation of vehicle
model dynamic parameters. These values are necessary in order to achieve the goal
of the control stage for the lane keeping. The controller has to minimize the values
of lateral deviation and relative yaw angle in order to compute the optimal steering
angle.
Lateral deviation and relative yaw angle are defined as follow:

• Lateral deviation is the distance of the center of mass of the vehicle from the
center line of the lane;

• Relative yaw angle is the orientation error of the vehicle with respect to the
road.

These parameters are computed geometrically after a 2D reconstruction of the road
(Figure 2.14): the lateral deviation is considered the distance between the camera
mounted at the center of the vehicle that is become the origin of the new reference
frame created by monoCamera object, and the center line computed in the previous

28

2 – Lane detection

phase; while, the relative yaw angle is identified as the angle between the vector of
the longitudinal velocity and the tangent to the center line.

Figure 2.14: Definition of lateral deviation and relative yaw angle with respect the
center line of the lane

2.5 Simulation and experimental results

In this section some results of the lane detection are shown. As mention before, the
lane detection system developed in this thesis has the aim to provide reliable infor-
mation necessary to create a controller that perform the lane keeping. In order to
achieve this goal, a MATLAB function has been created, as shown in Figure 2.15.

Figure 2.15: MATLAB function block of lane detection in Simulink

29

2 – Lane detection

This block receives images acquired by the camera, and provides the equation of
the center line, its curvature, lateral deviation and relative yaw angle of the vehicle
with respect to the center line using the method explained in the previous sections.

In order to make the simulation, set of videos has been collected using the ZED
stereo camera (Figure 2.16).

Figure 2.16: Stereo camera ZED

This camera captures images at 60 frames per second (fps) with the dimension of
1280x720 pixels.

Videos for the simulation have been taken in the highway, and in the extra-urban
and urban roads of Turin during daytime. In particular, videos of the highway
and the urban roads have been taken up early in the morning, while videos of the
extra-urban street at midday, so that the function has to consider different lighting
conditions.

The first step performed for the simulation is the calibration of the camera. As
stated in section 2.1.1, in order to develop this step, the Camera Calibrator app by
MATLAB has been used, and fourteen images of a 4 cm size square checkerboard
pattern has been collected.
All the images have been accepted by MATLAB app, but those with projection
error that larger than 0.5 pixels have been removed. At the end, thirteen images
have been final selected with overall 0.28 pixels mean error, as shown in Figure 2.17.

30

2 – Lane detection

Figure 2.17: Calibration error

After the calibration with the MATLAB app, the information about intrinsic pa-
rameters (focal length and principal point) are taken, and they present the following
values:

Focal length = [755.5817, 753.7248];
Principal point = [636.0162, 330.2918].

Extrinsic parameters can be represented as the rotational matrix R and the transla-
tion vector T. The rotational matrix has been computed like a calibration between
camera and vehicle using the formula 2.11:

Rcamera−vehicle = R(yaw) · R(pitch) · R(roll) =

⎡⎢⎢⎢⎣
cos(yaw) − sin(yaw) 0
sin(yaw) cos(yaw) 0

0 0 1

⎤⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎣
cos(pitch) 0 sin(pitch)

0 1 0
− sin(pitch) 0 cos(pitch)

⎤⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎣
1 0 0
0 cos(roll) − sin(roll)
0 − sin(roll) cos(roll)

⎤⎥⎥⎥⎦
(2.11)

31

2 – Lane detection

The three angles have been computed after the positioning of the camera that has
been turned manually according to the bird’s-eye-view image. The following angles
values have been obtained:

• Pitch = 2 degree;

• Yaw = -3.5 degree;

• Roll = 0 degree.

Therefore, applying these angles to the formula 2.11, the rotational matrix R results
to be:

Rcamera−vehicle =

⎡⎢⎢⎢⎣
0.3897 −0.3508 −0.8515

−0.1460 −0.9365 0.3190
−0.9093 0 −0.4161

⎤⎥⎥⎥⎦ (2.12)

The translation vector T, instead, is
[
0 0 0

]T
, because camera has been mounted

at the center of the vehicle.

Intrinsic and extrinsic parameters are collected in the MATLAB monoCamera ob-
ject, as specified at the end of the section 2.1.1. This object requires, in additional,
the mounting height value of the camera in meter that can be directly measured
relative to ground. Its value was equivalent to 1.6 m during the simulation.
A correct calibration of the camera affects the transformation of original images in
bird’s-eye-view images, as shown in Figure 2.18.

32

2 – Lane detection

(a) (b)

Figure 2.18: Bird’s-eye-view image before (a) and after (b) camera calibration

After the camera calibration, the other two steps of the pre-processing phase have
been performed by the lane detection block.
Firstly, the Region of Interest (ROI) has been selected. It defines the area to trans-
form in bird’s-eye-view images so that it is possible to have a sufficient prediction
of the road in front of the vehicle and a suitable side view in order to see a lane.
As specified in section 2.1.2, it is necessary to set three parameters: distance ahead
of sensor, space to one side and bottom offset. For the simulation, these three
parameters have been chosen as follows:

• Distance ahead of sensor = 22 m;

• Space to one side = 6 m;

• Bottom offset = 2.

After the extraction of the ROI, the birdsEyeView object has been developed to per-
form the transformation of the original image into the bird’s-eye-view image using
Inverse Perspective Mapping, discussed in section 2.1.3. A result of this transfor-
mation can be seen in Figure 2.18b.

33

2 – Lane detection

The bird’s-eye-view image allows the function to perform the feature extraction
and the lane line model, as explained in section 2.2.

The better results of the lane detection have been found in roads with straight
line and light curves, while some limitations have been found when there are cross-
roads and roundabouts.
Results of the detection of road with slightly curved line are shown in Figure 2.19,
while Figure 2.20 shows the lane detection results of straight line road in highway,
urban and extra-urban videos.

(a)

(b)

Figure 2.19: Lane detection of slightly curved line road in extra-urban (a) and
urban (b) streets

34

2 – Lane detection

(a)

(b)

(c)

Figure 2.20: Lane detection of straight line road in highway (a), extra-urban (b)
and urban (c) streets

35

2 – Lane detection

With the information about the lane line model, the function performs a reconstruc-
tion of the road in order to computes the center line of the lane and the relative
curvature, as specified in section 2.3. Based on the computed trajectory, the lateral
deviation and the relative yaw angle of the vehicle has been calculated as described
in section 2.4. Figure 2.21 shows an example of the plot in MATLAB about these
computations.

Figure 2.21: Center line, curvature, lateral deviation and relative yaw angle
computation

The red and the green line refer to the left and the right line of the lane detected
respectively. Instead the blue line identifies the center line computed during the
trajectory generation phase. The most marked lines correspond to the lines com-
puted by the function, while the dotted lines are a projection of the computed
ones.

36

Chapter 3

Lane keeping

Referring to the overall model (Figure 1.2), this chapter provides information about
the lane keeping control block. This block has the aim to give the value of the front
wheel steering angle by controlling the values of curvature, lateral deviation and
relative yaw angle coming from the previous step.
Firstly, an overview of vehicle models has been introduced, specifying the model
used for the control function. Afterwards, the chapter deals with the Model Pre-
dictive Control theory for the implementation of the lane keeping.

3.1 Vehicle models

The introduction of lateral vehicle kinematic or dynamic model inside the MPC
controller allows to more accurately perform the control action for the lane keeping
function. In fact, during the design of MPC controller, consider reliable vehicle
model is important to have a proper autonomous driving motion control and a
precise prediction of vehicle motion changing.
In this section, both kinematic and dynamic models of lateral vehicle are presented
with their assumptions and constraints.

3.1.1 Kinematic model

Kinematics is a branch of classical mechanic that explains the motion of points,
bodies and groups of objects without considering the forces that affect the motion.
The equations of motion described by a kinematic model refer purely to geometric

37

3 – Lane keeping

relationships that control the system, for this reason kinematics is often called the
“geometry of motion” in field of study [33].
The beginning of a kinematics problem consists of the geometry description of
the system and the declaration of the initial conditions of the values that refer to
position, velocity and acceleration of system points.
As shown in Figure 3.1, the following kinematic model of the vehicle has been
considered [34].

Figure 3.1: Vehicle kinematic model

The image presents a bicycle model in which the two front wheels and the two rear
wheels are represented by one single central tires at points A and B, respectively.
The steering angle for the front wheel is indicated with δf , while δr refers to the
steering angles for the rear wheel. In this work, the vehicle model is assumed as a
front-wheel-only steering, therefore the rear steering angle δr is set to zero.
The point C in the figure represents the center of mass (c.m.) of the vehicle.
The distances from this point to the points A and B are indicated with lf and lr

respectively. The sum of these two terms corresponds to the wheelbase L of the
vehicle:

L = lf + lr (3.1)

38

3 – Lane keeping

Since the vehicle is assumed to have planar motion, three coordinates are neces-
sary to describe the vehicle motion: X, Y and Ψ . (X, Y) represent the inertial
coordinates of the location of the center of mass of the vehicle, while Ψ indicates
the orientation of the vehicle an it is called yaw angle. The vector V in the model
refers to the velocity at the c.m. of the vehicle. This vector makes an angle β,
called slip angle, with the longitudinal axis of the vehicle.
The point O refers to the instantaneous center of rotation of the vehicle and it is
defined by the intersection of lines AO and BO. These two lines are drawn perpen-
dicular to the orientation of the two wheels. The length of the line OC corresponds
to the radius of the vehicle trajectory R, and it is perpendicular to the velocity
vector V.

Applying the sine rule to triangles OCA and OCB, remembering that δr is equal
to zero, it is possible to define the following equations:

sin(δf − β)
lf

=
sin(π

2 − δf)
R

(3.2)

sin(β)
lr

= 1
R

(3.3)

After some manipulation and multiplying by lf
cos(δf) , equation 3.2 becomes:

tan(δf) cos(β) − sin(β) = lf
R

(3.4)

Likewise, multiplying by lr, equation 3.3 can be re-written as:

sin(β) = lr
R

(3.5)

Adding equations 3.4 and 3.5, the following relation has been obtained:

tan(δf) cos(β) = lf + lr
R

(3.6)

39

3 – Lane keeping

This formula allows to write the radius R of the vehicle trajectory as a function of
the front steering angle δf , the slip angle β, and lf .
If the value of radius R changes slowly due to low velocity, the yaw rate Ψ̇ of the
vehicle can be assumed equal to the angular velocity ω that is defined as:

ω = V

R
(3.7)

Therefore, the yaw rate Ψ̇ can be described as follows:

Ψ̇ = V

R
(3.8)

Using formula 3.6, the equation 3.8 can be re-written as:

Ψ̇ = V cos(β)
lf + lr

tan(δf) (3.9)

After all these assumptions, the overall equations of the kinematic model can be
defined as:

Ẋ = V cos(Ψ + β) (3.10)

Ẏ = V sin(Ψ + β) (3.11)

Ψ̇ = V cos(β)
lf + lr

tan(δf) (3.12)

3.1.2 Dynamic model

When the speeds increase and the curvatures of the trajectory change in time, it is
not possible any more to assume that the velocity vector of each wheel is parallel to
the wheel symmetry plane. For this reason, instead of adopting a kinematic model,
a vehicle dynamic model is developed to study the lateral motion.

In this section, the dynamic model is defined by a model with two degrees of
freedom, as shown in Figure 3.2: the two degrees of freedom are identified by the
lateral position y and the yaw angle Ψ of the vehicle.

40

3 – Lane keeping

Figure 3.2: Lateral vehicle dynamics: vehicle reference frame (a), bicycle model
(b)

The vehicle lateral position y is computed along the lateral vehicle axis to the point
O (center of rotation of the vehicle), while, the yaw angle Ψ of the vehicle is con-
sidered with respect to the X axis of the global reference frame.
Vx and Vy refer to the longitudinal velocity and the lateral velocity at the center of
mass respectively.

In dynamic model, it is necessary considered the influence of road bank angle,
but it will be taken into consideration later. With this assumption, the following
formula represents the Newton’s second law for motion along the y axis [35]:

may = Fyf + Fyr (3.13)

where:

• ay =
(

d2y
dt2

)
inertial

is the inertial acceleration of the vehicle at the c.m. in the
y axis direction;

• Fyf and Fyr are the lateral tire forces of the front and rear wheels respectively.

The inertial acceleration ay is composed of two terms: the acceleration ÿ that cause
the motion along the y axis and the centripetal acceleration, indicated as VxΨ̇ , as

41

3 – Lane keeping

shown in formula 3.14.
ay = ÿ + VxΨ̇ (3.14)

Substituting the formula 3.14 into formula 3.13, the equation for the lateral trans-
lation motion of the vehicle can be re-written as:

m(ÿ + VxΨ̇) = Fyf + Fyr (3.15)

Applying the Newton’s second law for motion along z axis, the equation for the
yaw dynamics is obtained as:

IzΨ̈ = LfFyf − LrFyr (3.16)

where Lf and Lr are the distances of the front and rear wheel from the center of
mass of the vehicle respectively.

After this assumption, the lateral tire forces Fyf and Fyr that act on the vehi-
cle are modelled with the value of the wheel slip angle when it is small.
As shown in Figure 3.3, the front wheel slip angle αf can be defined as the differ-
ence between the steering angle δf of the front wheel and the orientation angle of
the tire velocity vector θV f with respect to the longitudinal axis of the vehicle.

αf = δf − θV f (3.17)

Figure 3.3: Tire slip angle

42

3 – Lane keeping

In a similar way, the rear wheel slip angle is defined as:

αr = −θV r (3.18)

Therefore, the lateral tire forces for the front and rear wheels of the vehicle is
obtained as:

Fyf = 2Cαf (δf − θV f) (3.19)

Fyr = 2Cαr(−θV r) (3.20)

where Cαf and Cαr are proportional constants. These constants are called cornering
stiffness of front and rear wheel respectively. The factor 2 in the equations refers
to the fact that there are two wheels for each axle.

In order to calculate the velocity angle of the front wheel θV f and the rear wheel
θV r, the following formulas have been used:

tan(θV f) = Vy + Lf Ψ̇

Vx

(3.21)

tan(θV r) = Vy − LrΨ̇

Vx

(3.22)

Assuming small angle approximations and Vy = ẏ, the equations 3.21 and 3.22 can
be re-written as:

θV f = ẏ + Lf Ψ̇

Vx

(3.23)

θV r = ẏ − LrΨ̇

Vx

(3.24)

The state-space model ẋ = Ax + Bu can be reached substituting from equations
3.19, 3.20, 3.23 and 3.24 into equations 3.15 and 3.16 as follows:

⎡⎢⎢⎢⎢⎢⎢⎣
ẏ

ÿ

Ψ̇

Ψ̈

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0
0 −2Cαf +2Cαr

mVx
0 −Vx − 2Cαf Lf −2CαrLr

mVx

0 0 0 1
0 −2Lf Cαf −2LrCαr

IzVx
0 −2Lf

2Cαf +2Lr
2Cαr

IzVx

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
y

ẏ

Ψ

Ψ̇

⎤⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎣
0

2Cαf

m

0
2Lf Cαf

Iz

⎤⎥⎥⎥⎥⎥⎥⎦ δf (3.25)

43

3 – Lane keeping

Now, the influence of road bank angles has been considered. Therefore, the formula
3.15 has been re-written as:

m(ÿ + Ψ̇Vx) = Fyf + Fyr + Fbank (3.26)

where Fbank = mgsin(ϕ) and ϕ is the road bank angle. The sign convention of ϕ is
shown in Figure 3.4.

Figure 3.4: Sign convention for bank angle ϕ

The road bank angle does not affect the yaw dynamics of the vehicle and for this
reason the formula 3.16 remains the same even in the presence of a bank angle.

3.1.3 Dynamic model for lane keeping evaluation

In this thesis work, the goal is to implement a steering control system using MPC
controller for lane keeping function. For this purpose, it is useful to adopt a vehicle
dynamic model in terms of error with respect to the road like plant of the controller.

The lateral dynamic model described before is re-modelled in terms of lateral de-
viation e1 and relative yaw angle e2, defined in section 2.4.
In order to re-defined the dynamic model, a constant longitudinal velocity Vx and

44

3 – Lane keeping

a constant radius R have been assumed. The radius R is large enough to consider
that the angle is small as in the previous model.
Remembering that the radius R can be defined as the inverse of the curvature of
the trajectory (section 2.3.1), the desired yaw rate of the vehicle can be defined as
function of the curvature, as follows:

Ψ̇des = κVx (3.27)

Therefore, the desired vehicle acceleration can be written as:

κVx
2 = VxΨ̇des (3.28)

As determined by Guldner et al. [35], ë1 and e2 is described by the following
equations:

ë1 = (ÿ + VxΨ̇) − κVx
2 = ÿ + Vx(Ψ̇ − Ψ̇des) (3.29)

e2 = Ψ − Ψdes (3.30)

Remembering that the velocity Vx is constant, ė1 can be written as follows:

ė1 = ẏ + Vx(Ψ − Ψdes) (3.31)

Applying the Newton’s second law for motion along the y axis and z axis, the
following formulas can be written as:

më1 = 2Cαfδf + ė1

[
− 2

Vx

Cαf − 2
Vx

Cαr

]
+ e2 [2Cαf + 2Cαr]

+ė2

[
−2CαfLf

Vx

+ 2CαrLr

Vx

]
+ Ψ̇des

[
−2CαfLf

Vx

+ 2CαrLr

Vx

] (3.32)

Iz ë2 = 2CαfLfδf + ė1

[
−2CαfLf

Vx

+ 2CαrLr

Vx

]
+ e2 [2CαfLf + 2CαrLr]

+ė2

[
−2CαfLf

2

Vx

− 2CαrLr
2

Vx

]
− IzΨ̈des + Ψ̇des

[
−2CαfLf

2

Vx

− 2CαrLr
2

Vx

] (3.33)

45

3 – Lane keeping

The state-space model in terms of error variables with respect to road can be de-
fined as:

⎡⎢⎢⎢⎢⎢⎢⎣
ė1

ë1

ė2

ë2

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0
0 −2Cαf +2Cαr

mVx

2Cαf +2Cαr

m

−2Cαf Lf +2CαrLr

mVx

0 0 0 1
0 −2Cαf Lf −2CαrLr

IzVx

2Cαf Lf −2CαrLr

Iz
−2Cαf Lf

2+2CαrLr
2

IzVx

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
e1

ė1

e2

ė2

⎤⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎣
0

2Cαf

m

0
2Cαf Lf

Iz

⎤⎥⎥⎥⎥⎥⎥⎦ δf +

⎡⎢⎢⎢⎢⎢⎢⎣
0

−2Cαf Lf −2CαrLr

mVx
− Vx

0
−2Cαf Lf

2+2CαrLr
2

IzVx

⎤⎥⎥⎥⎥⎥⎥⎦ Ψ̇des

(3.34)

3.2 Model Predictive Control for lane keeping

In this section, the general knowledge of MPC theory is shown to explain the reason
why autonomous driving controllers use this theory to develop their functions such
as lane keeping.
Firstly, the main ideas behind the Model Predictive Control and the architecture
used for autonomous driving vehicle are presented. In the rest of the section, the
controller implemented for this thesis work is explained.

3.2.1 Overview of MPC

Model Predictive Control (MPC) is an advanced technique developed to automate
industrial control processes by meeting a series of operating constraints [36].
First applications of MPC have been reported in chemical industries and oil refiner-
ies during the early 1980s, and first designs have been explained by Richalet [37]
and Cutler [38]. The controller implemented by Richalet is called Model Predictive
Heuristic Control (MPHC), while the technology developed by Cutler is identified
as Dynamic Matrix Control (DMC).
In the last decades, the use of MPC controllers has been adopted in the fields of
power electronics and autonomous driving vehicles. This is due to the fact that the

46

3 – Lane keeping

main advantage of MPC is the optimization of the current time slot while the fu-
ture time slots are kept into account. Moreover, MPC presents others advantages:
the ability to anticipate future events and the possibility to take control actions
accordingly; and the better real-time performance with respect to others methods.

According to Qin and Badgwell [39], the overall objectives of a MPC controller
are:

1. Prevent that input and output constraints are violated;

2. Optimize some output variables, while others outputs are kept in a specified
ranges;

3. Prevent that the input variables have excessive movement;

4. Control the major number of process variables when a sensor or actuator is
down or is not available.

Three critical steps affect the process of a MPC controller: prediction model, opti-
mization solution and feedback correction.

A general architecture of a Model Predictive Control used for autonomous driv-
ing vehicle is given by Figure 3.5.

Figure 3.5: Block diagram for Model Predictive Control

47

3 – Lane keeping

MPC controller has three main functional blocks: the dynamic optimizer, the ve-
hicle model, and the cost function and constraints. In this work, the controller
output consists of the front wheel steering angle and it is the input of the plant.
The dynamic optimizer allows to find the optimal input that gives the minimum
value of the cost function. The plant and the vehicle model refer to the dynamic
vehicle model described in section 3.1.3. The state estimator provides the state
of the vehicle necessary to develop the new initial condition of each time step cal-
culation. Sensor task gives the information of the environment such as the lane
boundaries and the position of obstacles.

The MPC controller provides the optimal output to send to a plant based on a
finite horizon using an iterative approach. Its main goal is to calculate a sequence
of control moves, that consist of manipulated input changes, so that the predicted
output moves to the set point in an optimal manner.
Referring to Figure 3.6, y is the actual output, ŷ is the predicted output and u
consists of the manipulated input. At the current sampling time k, the initial value
of the plant state is known and the MPC computes a set of M values of the input
u(k+i-1), i = 1, 2, ..., M , where M is called control horizon. This set refers to
the current input u(k) and to (M - 1) prediction inputs, and it is held constant
after the M control moves. The inputs are computed so that a set of P predicted
outputs ŷ(k + i), i = 1, 2, ..., P reaches the set point in optimal manner. P is
called prediction horizon and consists of the number of future steps to look ahead
[41].

Usually, the values of control horizon M and prediction horizon P are equal. In
practical situations, only the first value of the whole set of P values is implemented
as the input of the system because the model of the process is simplified and inac-
curate. Moreover, this set can add disturbances or noises in the process that could
produce an error between the actual output and the predicted one.
For this reason, the plant state has to be measured again to be adopted as the initial
state for the next step. The re-measurement of the information state is reported
with a feedback to the dynamic optimizer of the MPC controller and adds robust-
ness to the control [40]. When the plant state is re-sampled, the whole process
computes again the calculations starting from the new current state. The window

48

3 – Lane keeping

Figure 3.6: Basic concept for Model Predictive Control

of the prediction horizon shifts forward at every time step. This is the reason why
the Model Predictive Control is also called Receding Horizon Control.

3.2.2 MPC implementation

The MPC controller implemented in this thesis is based on the method of multiple-
step optimization and feedback correction. Thanks to this method, the controller
has good performances of control.
The goal of the MPC controller is to compute the optimal steering angle command
to perform the lane keeping. In order to achieve this goal, the controller calculates
the steering angle by minimizing its cost function which comprises the steering
angle itself and the error between the current curvature and the predictive one
provided by the lane detection function [8].
The linear model developed in the MPC controller assumes that the longitudinal
velocity is constant. For this reason,the MPC has been modified to become an
Adaptive MPC so that it is able to update the model, predict the output and
compute the optimum steering angle in each time sample.

49

3 – Lane keeping

The description of the Adaptive MPC has been divided two parts:

• Problem formulation in which is explained how the MPC problem has been
formulated;

• Output prediction in which is defined how the predicted output has been
computed.

Problem formulation

The formulation of the MPC problem developed in this thesis starts defining a
linear state-space model like the following one:

x(k + 1) = Ax(k) + B1u(k) + B2v(k)

z(k) = Cx(k)
(3.35)

Where:

• A is the state matrix;

• B1 and B2 are the input matrices corresponding to inputs u and v respectively;

• C is the output matrix.

The inputs are separated to indicate that u correspond the steering angle δ of the
vehicle (it is the controlled input), while v indicates the longitudinal velocity mul-
tiplied by the curvature obtained from the lane detection system. In this thesis the
longitudinal velocity is assumed constant.
The output z corresponds to the lateral deviation e1 and relative yaw angle e2.
These values have to be equal to the ones measured by the lane detection, as spec-
ified in section 2.4.

Given the linear model defined in equation 3.35, the Model Predictive Control
algorithm is implemented as solving the following optimization problem at each
time step:

50

3 – Lane keeping

can be

min
u

J =
N∑

j=0
||z(k + j|k)||Rzz + ||u(k + j|k)||Ruu

s.t. x(k + j + 1|k) = Ax(k + j|k) + B1u(k + j|k) + B2v(k + j|k)

x(k|k) = x(k)

z(k + j|k) = Cx(k + j|k)

|u(k + j|k)| ≤ um

(3.36)

This optimization problem refers to find the value of input u that minimizes the
sum of the weighted norms of the predicted output vector z and the input vector u
for a defined prediction horizon N. The predicted output z has to satisfy the linear
model, while the value of u does not exceed a specified limit um.
The weighted norm of the vector z =

[
z1 z2

]T
corresponds to:

||z(k + j|k)||Rzz =
[
z1 z2

] ⎡⎣r11 0
0 r22

⎤⎦ ⎡⎣z1

z2

⎤⎦ (3.37)

where the weights r11 and r22 are tuned to provide the needed damping on the
corresponding output. The same definition is applied to the weighted norm of u.

Output prediction

The values of the predicted output z(k + j|k), j = 1, 2, ..., N , where N is the pre-
diction horizon, have been computed using the linear state-space model described
by the formula 3.35.
In particular, in order to make the computation, the following values have to be
known:

• Present output measurement z(k|k) = z(k);

• Applied input u(k|k) = u(k);

• Entire set of predicted input values v(k + j|k), j = 0, 1, 2, ..., N .

51

3 – Lane keeping

If the prediction state is defined as follows:

x(k + 1|k) = Ax(k) + B1u(k|k) + B2v(k|k)

x(k + 2|k) = Ax(k + 1|k) + B1u(k + 1|k) + B2v(k + 1|k) =

= A2x(k) + AB1u(k|k) + AB2v(k|k) + B1u(k + 1|k) + B2v(k + 1|k)
...

x(k + N |k) = Ax(k + N − 1|k) + B1u(k + N − 1|k) + B2v(k + N − 1|k) =

= ANx(k) + AN−1B1u(k|k) + AN−1B2v(k|k) + AN−2B1u(k + 1|k)+

AN−2B2v(k + 1|k) + ... + B1u(k + N − 1|k) + B2v(k + N − 1|k)
(3.38)

The prediction output can be identified by the following equations:

z(k|k) = Cx(k)

z(k + 1|k) = Cx(k + 1|k)

z(k + 2|k) = Cx(k + 2|k)
...

z(k + N |k) = Cx(k + N |k)

(3.39)

Using the equations 3.38 and 3.39, it is possible to express the predicted outputs
z(k + 1|k), ..., z(k + N |k) as a function of the predicted inputs u(k|k), ..., u(k + N −
1|k), noted that the other signals are assumed to be known as stated above.

In order to make the relation between the equations 3.38 and 3.39 clearer, the
prediction output of the future can be defined as follows:

Z(k) = Gx(k) + HU(k) + EV (k) (3.40)

Where:

• Z(k) is the augmented vector of the predicted outputs;

• U(k) is the augmented vector of the computed future inputs;

• V(k) is the augmented vector of the predicted disturbances.

52

3 – Lane keeping

These vectors are obtained by the chaining of the input and the output vectors in
the present time until the future N vectors (N - 1 vectors for the input u and v),
and they are defined as follows:

Z(k) ≡

⎡⎢⎢⎢⎢⎢⎢⎣
z(k|k)

z(k + 1|k)
...

z(k + N |k)

⎤⎥⎥⎥⎥⎥⎥⎦; U(k) ≡

⎡⎢⎢⎢⎢⎢⎢⎣
u(k|k)

u(k + 1|k)
...

u(k + N − 1|k)

⎤⎥⎥⎥⎥⎥⎥⎦ and V (k) ≡

⎡⎢⎢⎢⎢⎢⎢⎣
v(k|k)

v(k + 1|k)
...

v(k + N |k)

⎤⎥⎥⎥⎥⎥⎥⎦
The matrices G, H and E are determined in the following way:

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CA

CA2

...
CAN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0
CB1 0 0 . . . 0

CAB1 CB1 0 . . . 0
...

CAN−1B1 CAN−2B1 CAN−3B1 . . . CB1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0
CB2 0 0 . . . 0

CAB2 CB2 0 . . . 0
...

CAN−1B2 CAN−2B2 CAN−3B2 . . . CB2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.3 Simulation and experimental results

In this section, the simulation and the experimental results related to the lane
keeping has been presented.
As mention before, lane keeping model has the aim to perform the optimal front
wheel steering angle in order to keep the vehicle in its lane and follow the curved
road. The control purpose is achieved minimizing the values of lateral deviation
and relative yaw angle provided by the lane detection model. Figure 3.7 shows the
model of lane keeping implemented in Simulink.

53

3 – Lane keeping

Figure 3.7: Lane keeping model developed in Simulink

The preview curvature block computes the predicted curvatures that are necessary
in input to the MPC controller in order to develop the optimal control. The number
of the curvature to predict is equal to the value of the prediction horizon.
MPC controller has been implemented following the specific explained in section
3.2.2.

The steering angle computed by the controller is sent to a vehicle model devel-
oped like a dynamic model in terms of error variables with respect to road, as
specified in equation 3.1.3. This model refers to the plant defined in the block dia-
gram in Figure 3.5. It has been implemented like a bicycle model with the following
parameters:

• m = 1575 kg, the total vehicle mass;

• Iz = 2875 mNs2, the yaw moment of inertia of the vehicle;

• lf = 1.2 m, the longitudinal distance from the center of mass to the front
wheels;

• lr = 1.6 m, the longitudinal distance from the center of mass to the rear
wheels;

• Cαf = 19000 N/rad, the cornering stiffness of the front tires;

54

3 – Lane keeping

• Cαr = 33000 N/rad, the cornering stiffness of the rear tires.

The data performed by the vehicle model have been used to estimate the current
state of the autonomous driving vehicle. The current state is sent in feedback to
the MPC controller in order to correct the control variables in the future step time,
and to the lane detection system to allow a reliable estimation of the computed
values.
This feedback can not be provided to the lane detection system explained in chapter
2 because it uses off-line real videos, as shown in section 2.5. For this reason,
scenarios generated by automated driving system toolbox have been used in order to
test the lane keeping control. This toolbox is able to create environments similar to
real road and it can provide the same information computed by the lane detection,
such as the curvature of the center line, the lateral deviation and the relative yaw
angle of the vehicle.
Different scenarios has been created to test the lane keeping system, as shown in
Figure 3.8.

Figure 3.8: Different scenarios to test lane keeping control

55

3 – Lane keeping

Taking into account scenario in Figure 3.8(c), the controller performs the following
results (Figure 3.9).

Figure 3.9: Results: curvature (a), lateral deviation (b), relative yaw angle (c)
and steering angle (d)

Figure 3.9(a), 3.9(b), 3.9(c) and 3.9(d) show the results of curvature, lateral devi-
ation, relative yaw angle and steering angle respectively. The simulation has been
executed using a constant velocity equal to 5 m/s.
From the graphs, it can be deduced that:

• When the vehicle turns to left (time from 2 s to 7 s), the values of curvature,
lateral deviation, relative yaw angle and steering angle increase and reach
their maximum value when the car starts to curve;

• When the vehicle turns to right (time from 9 s to 20 s), the values become
negative and reach their minimum at the beginning of the curve.

56

3 – Lane keeping

However, in Figure 3.9(c), it can be seen that the relative yaw angle has an absolute
minimum value due to an unexpected steering of the vehicle.

Figure 3.10 refers to the trajectory of the autonomous vehicle: the blue line repre-
sents the center line of the lane; the red line is the trajectory of the vehicle during
the simulation.

Figure 3.10: Vehicle path against center line

From this figure, it is possible to deduce that the controller has good performances
because the red line follows the blue line with a good precision.

57

Chapter 4

Conclusions and future works

In this thesis the implementation of a system to perform lane detection function
and lane keeping system has been presented. They are some of the first systems in
order to create an autonomous driving vehicle.
The developed lane detection system has been divided in four steps that consists
of pre-processing, lane detection, trajectory generation and computation of vehicle
model dynamic parameters. Key point of the implementation is the use of the Au-
tomated Driving System toolbox provided by MATLAB. This toolbox is a modern
method able to perform a low cost lane detection in terms of computational time
and effort, that works with all type of cameras.
The other system developed in this thesis is the lane keeping. This function is
implemented using an Adaptive MPC controller that is able to control a lateral
vehicle model. The mathematical model of the vehicle has been computed in terms
of error with respect of the road.
In order to test the lane detection system, videos captured with the ZED stereo
camera have been used. The function shows good result in general but it is not
very precise when the vehicle is closed to an intersection or a roundabout, or when
the lines of the lane change their width or split during the travel.
The tests of the lane keeping control have not been performed with the informa-
tion coming from the developed lane detection because a feedback from the vehicle
model has been necessary to correct the track of the vehicle and to perform a closed-
loop test. For this reason, different scenarios has been created to provide the same
information of the lane detection system. This scenarios have been performed using

58

4 – Conclusions and future works

the same toolbox of MATLAB used to develop the lane detection. The results of
simulations show that the controller performances are good to achieve the require-
ment of the lane keeping.

Some future works can be done to improve and extend this thesis work. First
of all, the overall model will be tested with a simulator that provides in input im-
ages that simulate real road environments, and allows to have a feedback from the
vehicle model. Moreover, in order to overcome the limitation of the lane detec-
tion function using the camera (crossroads or roads without lane marking), data
coming from others sensors will be added, such as the data coming from a LiDAR.
Making sensor fusion between camera and LiDAR, the detection will be improved
in challenging scenarios. For the development of an autonomous driving vehicle,
the lane detection will be combined with others detection systems such as vehicles,
pedestrians, semaphores, traffic signs and road texts detection.

To conclude, this thesis has contributed for autonomous vehicle research at Mecha-
tronics Laboratory LIM (Laboratorio Interdisciplinare di Meccatronica) and the
developed project can be used by future students to improve and continue the work
in this interesting field.

59

Bibliography

[1] European Road Safety Observatory (ERSO). Advanced driver assistance sys-
tems. European Commission, 2018.
Web link: www.erso.eu.

[2] A. A. Assidiq, O. O. Khalifa, R. Islam and S. Khan. Real time lane detection
for autonomous vehicles. ICCCE 2008. International Conference on, 2008, pp.
82–88.

[3] B. Dory and D. J. Lee. A Precise Lane Detection Algorithm Based on Top
View Image Transformation and Least-Square Approaches. Kunsan National
University, 2016.

[4] C. J. Taylor, J. Malik and J. Weber. A real-time approach to stereopsis and
lane-finding. Intelligent Vehicles Symposium, IEEE, 1996, pp. 207–212.

[5] M. Betke, E. Haritaoglu and L. S. Davis. Highway scene analysis in hard
real-time. Intelligent Transportation System, IEEE Conference on, 1997, pp.
812–817.

[6] A. M. López, C. Cañero and F. Lumbreras. Robust lane markings detection and
road geometry computation.International Journal of Automotive Technology.
Vol. 11, June 2010, pp.395-407.

[7] M. Aly. Real time Detection of Lane Markers in Urban Streets. IEEE Intelligent
Vehicles Symposium, Eindhoven, The Netherlands, June 2008.

[8] Y. Xu, B. Y. Chen, X. Shan, W. H. Jia, Z. F. Lu, G. Xu. Model Predictive
Control for Lane Keeping System in Autonomous Vehicle. International Con-
ference on Power Electronics Systems and Applications (PESA), IEEE, 2017,
pp. 1-5.

[9] V. Turri, A. Carvalho, H. E. Tseng, K. H. Johansson, F. Borrelli. Linear Model
Predictive Control for Lane Keeping and Obstacle Avoidance on Low Curva-
ture Roads. 16th International IEEE Conference on Intelligent Transportation

60

www.erso.eu

Bibliography

System (ITSC), The Hague, The Netherlands, October 2013, pp. 378-383.
[10] R. Marino, S. Scalzi, G. Orlando, M. Netto. A Nested PID Steering Control

for Lane Keeping in Vision Based Autonomous Vehicles. Proceedings of the
2009 Conference on American Control Conference, St. Louis, Missouri, USA,
2009, pp. 2885-2890.

[11] M. Bujarbaruah, X. Zhang, H. E. Tseng and F. Borrelli. Adaptive MPC for Au-
tonomous Lane Keeping. 14th International Symposium on Advanced Vehicle
Control (AVEC), Beijing, China, July 2018.

[12] R. C. Rafaila and G. Livint. Nonlinear model predictive control of autonomous
vehicle steering. 19th International Conference on System Theory, Control and
Computing (ICSTCC), Cheile Gradistei, Romania, October 2015, pp. 466-471.

[13] MATLAB [Online]. Visual Perception Using Monocular Camera. 2018.
Web link: https://it.mathworks.com/help/driving/examples/
visual-perception-using-monocular-camera.html.

[14] Focal length definition.
Web link: http://www.pcigeomatics.com/geomatica-help/concepts/
orthoengine_c/Chapter_44.html. Verified in 25/09/2018.

[15] Principal point definition.
Web link: http://www.pcigeomatics.com/geomatica-help/concepts/
orthoengine_c/Chapter_45.html. Verified in 25/09/2018.

[16] MATLAB [Online]. Single Camera Calibrator App. 2018.
Web link: https://it.mathworks.com/help/vision/ug/
single-camera-calibrator-app.html.

[17] Z. Zhang. A Flexible New Technique for Camera Calibration. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence. Vol. 22, Number. 11, 2000,
pp. 1330–1334.

[18] J. Heikkila and O. Silven. A Four-step Camera Calibration Procedure with
Implicit Image Correction. IEEE International Conference on Computer Vision
and Pattern Recognition. 1997.

[19] D. Scaramuzza, A. Martinelli and R. Siegwart. A Toolbox for Easy Calibrating
Omindirectional Cameras. Proceedings to IEEE International Conference on
Intelligent Robots and Systems (IROS 2006). Beijing, China, October 7–15,
2006.

61

https://it.mathworks.com/help/driving/examples/visual-perception-using-monocular-camera.html
https://it.mathworks.com/help/driving/examples/visual-perception-using-monocular-camera.html
http://www.pcigeomatics.com/geomatica-help/concepts/orthoengine_c/Chapter_44.html
http://www.pcigeomatics.com/geomatica-help/concepts/orthoengine_c/Chapter_44.html
http://www.pcigeomatics.com/geomatica-help/concepts/orthoengine_c/Chapter_45.html
http://www.pcigeomatics.com/geomatica-help/concepts/orthoengine_c/Chapter_45.html
https://it.mathworks.com/help/vision/ug/single-camera-calibrator-app.html
https://it.mathworks.com/help/vision/ug/single-camera-calibrator-app.html

Bibliography

[20] S. Urban, J. Leitloff and S. Hinz. Improved Wide-Angle, Fisheye and Omnidi-
rectional Camera Calibration. ISPRS Journal of Photogrammetry and Remove
Sensing. Vol. 108, 2015, pp. 72–79.

[21] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, second edition, 2003.

[22] MATLAB [Online]. birdsEyeView. 2018.
Web link: https://it.mathworks.com/help/driving/ref/birdseyeview.
html

[23] Wikipedia [Online]. Feature detection (computer vision). 2018.
Web link: https://en.wikipedia.org/wiki/Feature_detection_
(computer_vision).

[24] S. D. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani, Y. H. Eng,
D. Rus and M. H. Ang. Perception, Planning, Control, and Coordination for
Autonomous Vehicles. Machines, 2017.

[25] MATLAB [Online]. segmentLaneMarkerRidge. 2018.
Web link: https://it.mathworks.com/help//driving/ref/
segmentlanemarkerridge.html.

[26] M. Nieto, J. A. Laborda and L. Salgado. Road Environment Modeling Using
Robust Perspective Analysis and Recursive Bayesian Segmentation. Machine
Vision and Applications, 2011.

[27] A. B. Hillel, R. Lerner, D. Levi and G. Raz. Recent Progress in Road and
Lane Detection: A survey. Machine Vision and Applications, Vol. 25, 2014,
pp. 727–745.

[28] Wikipedia [Online]. Random sample consensus. 2018.
Web link: https://en.wikipedia.org/wiki/Random_sample_consensus.

[29] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography.
Communications of the ACM, Vol. 24, 1981, pp. 381–395.

[30] K. G. Derpanis. Overview of the RANSAC Algorithm. Image Rochester NY,
Vol 4, 2010, pp. 2–3.

[31] MATLAB [Online]. findParabolicLaneBoundaries. 2018.
Web link: https://it.mathworks.com/help/driving/ref/
findparaboliclaneboundaries.html

[32] J. W. Rutter. Geometry of Curves. Chapman & Hall/CRC, 2000.

62

https://it.mathworks.com/help/driving/ref/birdseyeview.html
https://it.mathworks.com/help/driving/ref/birdseyeview.html
https://en.wikipedia.org/wiki/Feature_detection_(computer_vision)
https://en.wikipedia.org/wiki/Feature_detection_(computer_vision)
https://it.mathworks.com/help//driving/ref/segmentlanemarkerridge.html
https://it.mathworks.com/help//driving/ref/segmentlanemarkerridge.html
https://en.wikipedia.org/wiki/Random_sample_consensus
https://it.mathworks.com/help/driving/ref/findparaboliclaneboundaries.html
https://it.mathworks.com/help/driving/ref/findparaboliclaneboundaries.html

Bibliography

[33] Wikipedia [Online]. Kinematics. 2018.
Web link: https://en.wikipedia.org/wiki/Kinematics.

[34] D. Wang and F. Qi. Trajectory planning for a four wheel steering vehicle.
IEEE International Conference on Robotics and Automation, Seoul, Korea,
May 21-26, 2001.

[35] J. Guldner, H.-S. Tan and S. Patwardhan. Analysis of automatic steering con-
trol for highway vehicle with look-down lateral reference systems. Vehicle Sys-
tem Dynamics, vol. 26, no. 4, pp.243-269, 1996.

[36] Wikipedia [Online]. Model Predictive Control. 2018.
Web link: https://en.wikipedia.org/wiki/Model_predictive_control

[37] J. Richalet, A. Rault, J. Testud and J. Papon. Model predictive heuristic
control: Applications to industrial processes. Automatica, vol. 14, no. 5, pp.
413–428, 1978.

[38] C. Cutler and B. Ramaker. Dynamic Matrix Control - A Computer Control
Algorithm. Automatic Control Conference, San Francisco, CA, 1980.

[39] S. J. Qin and T. A. Badgwell. A Survey of Industrial Model Predictive Control
Technology. Control Eng. Practice, 11, 733, 2003.

[40] F. Borrelli, A. Bemporad and M. Morari Predictive Control for linear and
hybrid systems. Cambridge University Press, Cambridge In preparation, 2015

[41] D. E. Seborg, D. A. Mellichamp, T. F. Edgar, F. J. Doyle. Process Dynamics
and Control. John Wiley and Sons, 2011.

63

https://en.wikipedia.org/wiki/Kinematics
https://en.wikipedia.org/wiki/Model_predictive_control

	List of Figures
	Introduction
	Thesis motivation
	State of the art
	Lane detection
	Lane keeping

	Thesis outline

	Lane detection
	Pre-processing
	Camera calibration
	Region of Interest (ROI) extraction
	Inverse Perspective Mapping (IPM)

	Lane detection
	Lane line feature extraction
	Lane line model

	Trajectory generation
	Trajectory curvature computation

	Computation of vehicle model dynamic parameters
	Simulation and experimental results

	Lane keeping
	Vehicle models
	Kinematic model
	Dynamic model
	Dynamic model for lane keeping evaluation

	Model Predictive Control for lane keeping
	Overview of MPC
	MPC implementation

	Simulation and experimental results

	Conclusions and future works
	Bibliography

