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Introduction

Since the production of the first Ford in 1908, the automotive industry has thrived
all over the world and it has become one the bedrocks for the economy of the
wealthiest countries. The use of a vehicle has quickly turned from an expensive
object for the rich to an essential means of transport for everyone. Although the
automobile identifies a great breakthrough and an engineering masterpiece, it is
undeniable that, throughout the decades, it has undergone impressive change not
only in terms of sales but also external features and inner functionality. Rather
than a pure mechanical conveyance, today vehicles can be compared to high-tech
devices where electronic systems guarantee a safer and more secure environment
for the driver and millions of lines of code are run in a short period.

Within this context, the main goal of the thesis is to follow each single step
behind both the software development of the Fuel Level Control vehicle function
and its integration in an automotive electronic control unit (ECU). Overall, the
whole project consists of five sections that intend to provide a top-down approach.
In fact, starting from the description of the automotive environment, the body
of the thesis brings out the software modelling phase without forgetting, in the
final part, the importance of the test cases to attest the correctness of the imple-
mentation.

The first chapter highlights the difference between the software development
process before and after the birth of AUTOSAR. In particular, this section ex-
plains the reasons that made car-makers and vendors think about a common
standard and how this dramatic change had been achieved successfully. There-
fore, the AUTOSAR bedrocks together with future objectives are analyzed in
depth in order to illustrate the evolution of this consortium and the path that
the automotive world endeavors to follow in the foreseeable future.

The AUTOSAR description and, in particular, the software architecture en-
able to focus on how a vehicle function is implemented. Consequently, the center
of attention of the second chapter deals with the functionality description in terms
of requirements, sensors and transfer functions. For this reason, understanding
how the logic of the Fuel Level Control works, describing its mode of operation
and studying all the interconnections are accurately covered in this part. Obvi-
ously, it aims to provide a high-level sketch where the most important transitions
and states of the vehicle function are figured out.

The idea to follow a top-down analysis is particularly evident in the third
chapter where requirements and objectives are matched with the V-model pur-
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pose. As a consequence, what is clearly evident from this section is that the path
to follow for the Fuel Level Control development is the result of a well-defined
scheme rather than accidental events. In fact, the main goals are not only to link
the first phases of the V-model scheme with the information provided before but
also to justify the choice of the Matlab/Simulink environment for the model based
design approach and the use of the Stateflow chart for the logic implementation.
Thereby, while the output of the second chapter was a sketch on paper of the
vehicle function, at the end of this section it turns into a proper software model.

The fourth chapter continues to discuss the remaining V-Model phases. In
particular, it deals with the rising side of the diagram that takes into consideration
each stage from the code generation to the final integration on the hardware
target. In order to provide a clear idea of how to handle the code on a hardware
device, all the required software that allow the code to be compiled and checked
during a bench test are deeply discussed. Finally, the fifth chapter compares the
outcomes of identical test cases that will be performed both in the simulation
and bench tests with the aim of achieving marginal and expected differences that
witness all the study conducted before.
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AUTOSAR

At the beginning of 2000, the consistent progress in the field of electronic systems
and the ongoing importance of the software brought on revolutionary change in
the automotive world. The need not only to integrate software applications and
new components but also to exploit technological progress in favor of safer, more
efficient and more secure automobiles provoked a great breakthrough in the ve-
hicle software development.

Although in that period software development processes had already been re-
alized by some automotive companies, the main drawback was that these were
single development strategies. In addition to this, the collaboration with third
parties would have only increased the complexity of the software without guaran-
teeing a long-lasting and reusable solution for future applications. In this scenario,
the urgency to come up with a standardized outcome became a priority in order
to lay the foundation for the future car development.

1.1 The idea of AUTOSAR

1.1.1 Difference with the past

In 2003, the worldwide partnership of automotive stakeholders and vendors founded
AUTOSAR (AUTomotive Open System ARchitecure): a standardized and open
software architecture for automotive electronic control units (ECUs). Since then,
this collaboration has been focusing on using software to control car applica-
tions and managing growing system complexity. In order to achieve these goals
while keeping costs affordable, AUTOSAR has defined a set of specification for
the description of software architecture, application interfaces, and methodology.
Whereas, from the beginning the representatives of this partnership delineated a
set of main aims to standardize out of competitiveness:

• Safety requirements;

• Redundancy activation;

• Scalability to different platforms variants;

• Implementation of basic functions;

• Transferability of functions from an ECU to another ECU;
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1.1. THE IDEA OF AUTOSAR

• Integration of functional modules;

• Maintenability throughout the entire product life cycle;

• Software updates and upgrades;

However, the critical differences between previous and present software archi-
tecture were both the internal structure of an ECU and the way through which
ECUs of two distinct sub-domains 1 communicate on the network (table 1.1).
Before AUTOSAR, because of the absence of a common standard, both the ECU
internal structure and the communication among ECUs developed accordingly
to the past evolution of each sub-domain. Therefore, functional requirements
to hardware and software were assigned to a one-on-one basis. This approach
implied several negative consequences: first, any kind of change or improvement
raised complexity and costs, secondly, this type of solution was difficult to re-use
or integrate in other applications.

On the contrary, AUTOSAR aims to turn temporary into long-lasting solu-
tions and to standardize the communication between the nodes2 of the automotive
network. By means of a layered structure, the ECU is essentially decomposed in
three independent layers which make use of a dedicated virtual address space and
interact each other through a specific interface. In this way, the level of abstrac-
tion proves to be the key factor that allows developers to overlook how to deal
with the signal coming from the BUS but, simply, to handle the received data.
Concerning the communication, AUTOSAR consortium has always preferred to
take into consideration what has been already realized instead of inventing from
scratch. For this reason, the easiest way to create a standard is to make a choice
among current alternatives (LIN, CAN , etc.) or to set up a cooperation with
standardization groups whose(Flex-Ray, MOST , etc.). It is undeniable that be-
fore making this decision, AUTOSAR members carried out a considerable number
of research projects.

1Sub-Domain: nowadays, a modern vehicle network consists of about 50-70 ECUs. They
are grouped in 5 different categories: Power Train, Vehicle Safety, Comfort, Infotainment,
Telematics.

2Node: On a vehicle network, the term node stands for a single ECU.
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1.1. THE IDEA OF AUTOSAR

Powertrain It includes all systems related to the propulsion of the vehicle
such as engine management and transmission control. The
ECUs of this sub-domain are highly safety critical because
a failure might make the driver lose control of the car.

Vehicle Safety It provides safety assistance to the driver and includes sys-
tems that deals with the position and movement of the four
wheels (anti-lock, braking systems, tire pressure monitoring,
adaptive cruise control, airbag, and collision avoidance sys-
tems). Similarly to the Powertain domain, these ECUs are
highly safety critical.

Comfort It is mainly focused on driver assistance. For instance, elec-
tronic suspension, thermal management and parking assis-
tance, air conditioning etc. are part of this set. Obviously,
a failure might not affect the safety of the driver.

Infotainment It includes control units associated to audio and video sup-
port in the automobile allowing information exchange be-
tween electronic system and the driver (digital broadcasting
TV, audio streams, TFT displays, traffic and weather infor-
mation systems).

Telematics In comparison to the Infotainment sub-domain, Telematics
takes into consideration systems that allow information ex-
change between the vehicle and the outside world (radio,
navigation systems, payment, the internet).

Table 1.1: Sub-Domains in a modern vehicle network.

1.1.2 ”Cooperate on standards,

compete on implementation”

The AUTOSAR motto ”Cooperate on standards, compete on implementation”
explains which direction the world of automotive was taking perfectly. Competi-
tors rather than playing off one against the other, they laid down the rules of the
game in order to play a valid match.

So far, the entire work of AUTOSAR can be grouped in 5 phases: Initializa-
tion, Phase I, Phase II, Phase III and Post Phase III (table 1.2). Between 2002
and 2003, the Initialization stage involved: the discussion on objectives to follow,
the development of the AUTOSAR platform and the definition of the guidelines
to take up Phase I. Whereas between 2003 and 2006, the Phase I saw the realiza-
tion of first tools, generators and 42 out of 46 Basic software components. During
Phase II, the delivery of the release 3.0, 3.1 and 4.0 broadened the AUTOSAR
architecture and methodology through the integration of new features such as
functional safety and communication. Over the Phase III period, release 3.2, 4.1
and 4.2 focused on maintenance and selected improvements, in particular, par-
tial networking and compatibility analysis. Finally, the release 4.3.0 (belonging
to the Post Phase III ) extended cryptographic functionality and made further
improvements on Diagnostic information and Rapid Prototyping. Regarding the
role of AUTOSAR in our days, goals and objectives will be discussed in section

CHAPTER 1. AUTOSAR 8



1.1. THE IDEA OF AUTOSAR

1.3.

Phase Members
Initialization 6

Phase I 113
Phase II 166
Phase III 170

Post Phase III 191
Today 262

Table 1.2: AUTOSAR Phases and
Members.

What is clearly evident from the table
1.2 is that the number of AUTOSAR mem-
bers has undergone a remarkable upward trend
throughout the whole period from the be-
ginning to our days. Since the Phase I,
the worldwide automotive standard has rock-
eted the components of its partnership. In
fact, they went from 113 to 262 compa-
nies, within 15 years, and they are ex-
pected to keep rising in the foreseeable fu-
ture.

However, it is worthwhile to point out that companies of this worldwide part-
nership play different roles according to their position in the AUTOSAR hierarchy
that is divided in 4 main groups (figure 1.1):

CORE PARTNERS They are 9 companies: BMW Group, Bosch, Continen-
tal, Daimler, Ford, General Motors, PSA Group, Toyota and Volkswagen
Group. All of them have organizational, administrative and control respon-
sibilities and their inner structure is organized in 5 working groups:

1. Executive Board: deals with the definition of the overall strategy.

2. Steering Committee: is responsible for the coordination of non-technical
operations and planning of long term goals.

3. Project Leader Team: devises financial plans and rules for the working
groups.

4. Legal Team: focuses on legal issues.

5. Communication Team: manages internal and external communications
(press, web-site, etc.).

Each singular team meets regularly in order to define AUTOSAR specifi-
cations that are handled by Work Packages (WPs). Members of WPs are
not only part of the Core Partners but also to other groups.

PREMIUM MEMBERS are part of the WPs and have access to current in-
formation.

ASSOCIATE MEMBERS have access to finalized documents.

DEVELOPMENT MEMBERS are part of the WPs.

ATTENDES even though they are part of the WPs, attendes participate through
academic collaboration and non-commercial projects.

CHAPTER 1. AUTOSAR 9



1.2. THE AUTOSAR BACKBONE

Figure 1.1: Autosar Members

1.2 The AUTOSAR Backbone

Although in the first part outlined the idea and the change behind AUTOSAR,
we hardly mentioned the real core and bedrock of this partnership. Therefore,
this section will give technical details to answer to questions such as ’How was a
so abrupt change in the automotive industry possible without wasting time and
money?’ or ’How has the integration of external solutions to the AUTOSAR
architecture been possible?’ and, finally, ’How does the model take care of ECU
and System constraints during the software development process?’.

All these questions find an answer through the descriptions of the four AU-
TOSAR milstones: architecure, methodology, application interface and accep-
tance tests.

1.2.1 Architecture

The AUTOSAR architecture consists of a software structure that can be split in
two: the part below and above the RTE (figure 1.2). While the latter is mainly
employed for the development and integration of software applications, the former
focuses on providing low-level services. Obviously, the interaction among these
parts identifies a central difference with preceding results. In fact, earlier appli-
cations were able to access to low-level services directly. Whereas, AUTOSAR
introduces a middle layer (the RTE) that gives the green light to software com-
ponents for the use of module interfaces.

It’s important to stress the concept that AUTOSAR is not an operating sys-
tem but a standard that defines the software architecture of an ECU. Moreover,
what we explained can be compared to the two major architectures of an oper-
ating system:

Flat Architecture The OS components are functions that can be invoked by
any application. The critical drawback is that a crush could spread over
the whole system.

Layered Architecture The OS is divided into several layers and each of them

CHAPTER 1. AUTOSAR 10



1.2. THE AUTOSAR BACKBONE

have a dedicated virtual address space. In comparison to the flat architec-
ture, a malicious program cannot damage the kernel space.

The transition from a flat to a layered architecture has already happened in
computer science history. At the beginning of 1980, a group of four programmers
developed MS-DOS. This was an operating system based on flat architecture in
order to leverage the least space and provide most functionality. Although it was
designed just for few people, it became very popular in that period. However,
its low level of kernel protection together with the chance of any application to
access basic software services made MS-DOS vulnerable to errant programs. Con-
sequently, to decrease system crashes coming from user applications, program-
mers decided that the following MS-DOS releases should be based on a layered
architecture. To sum up, it is evident that AUTOSAR carries out a well-known
and tested solution with the purpose of adapting it to a new scenario.

Figure 1.2: AUTOSAR Architecture overview

1.2.1.1 Basic-Software

The Basic-Software (BSW) is the layer above the micro-controller that provides
services that depend on the hardware resources of the ECU. Overall, it is or-
ganized in modules that are gathered in a fixed number of layers. During the
migration to AUTOSAR, one of the greatest issues to ascertain concerned how
to fasten the migration without implementing all software modules and, conse-
quently, wasting time. In order to overcome this obstacle, the automotive con-
sortium focused on developing AUTOSAR-conform interfaces able to access to
each single module without changing its content. However, what is an interface?

This term basically describes a program that has the fundamental role not only
to abstract the hardware of a specific device but also to give access to the specific
device regardless of its hardware realization and the number of existing devices
of the same type []. An interface is made up with a set of data types, application
programming interface (API) functions and error codes returned by the API.

CHAPTER 1. AUTOSAR 11
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In order to develop proper interfaces, AUTOSAR defines three implementation
conformance classes (ICCs) to cluster BSW modules:

1. ICC1: It is the ’lowest’ implementation class. The RTE and the whole BSW
are put into one cluster. Only the interface between RTE and the ASW
and the interface to the bus must be AUTOSAR-conform.

2. ICC2: Modules and RTE are gathered into separate clusters. ICC2 enables
the integration of module coming from different vendors. For instance, the
communication stack from the vendor A and the operation system from
vendor B.

3. ICC3: This is the ’highest’ class. In fact, all BSW modules have their own
interface.

Table 1.3: BSW interface rules.

Moreover, it is worth underlining that modules
communicate with other modules in compliance to
well-defined rules. In particular, they can call in-
terfaces horizontally or vertically. What is notice-
able from the table 1.3 is that any layer could ac-
cess to the interfaces of the SW layer below but
bypassing one or more layers vertically is forbid-
den. In addition, horizontal interfaces are allowed
for the Service and ECU abstraction layer. On
the contrary, horizontal interfaces are not allowed for the micro-controller layer.
Whereas, Complex Driver may get access to all BSW modules.

(a) View of the BSW modules. (b) View of the four layers

Figure 1.3: BSW structure.

Concerning the BSW layout, it consists of four layers (figure 1.3b):

Micro-Controller Abstraction Layer is the lowest software of the BSW that
is responsible for making higher layers independent from the micro-controller.
It mainly contains internal drivers 3 and it is divided in four modules: micro-
controller drivers, memory drivers, communication drivers and I/O drivers.

ECU Abstraction Layer is above the micro-controller abstraction layer and
offers an API to access to peripherals and devices. In comparison to the the
previous layer, it includes external drivers 4 and the structure is composed

3Internal Drivers: drivers located in the micro-controller.
4External Drivers: driver that interact with external devices.

CHAPTER 1. AUTOSAR 12



1.2. THE AUTOSAR BACKBONE

by four modules: on-board device abstraction, memory hardware abstrac-
tion, communication hardware abstraction and I/O hardware abstraction.

Service Layer is between the ECU abstraction layer, the RTE and the micro-
controller. Even though this is the ’highest’ layer of the BSW, part of
the service layer communicates with the mictro-controller in order to allow
the AUTOSAR OS and the BSW scheduler to work with the hardware.
Operating system functionality, vehicle network communication, ECU static
management, memory and diagnostic services are provided by this layer.

Complex Device Driver covers the right hand-side of the figure 1.3(b) and
allows integration of device drivers that are not specified in AUTOSAR.

All in all, the BSW aims to provide basic services as:

• Input/Output: standardized access to sensors, actuators and ECU on board
pheripherals.

• Memory: standardized access to internal and external memory.

• Crypto: standardized access to cryptographic primitives.

• Communication: standardized access to vehicle network systems, ECU on-
board communication systems and ECU internal SW.

• Off-board Communication: standardized access to Vehicle-to-X communi-
cation, in vehicle wireless network systems and ECU off-board communica-
tion systems.

• System: ECU services and library functions.

1.2.1.2 Application Layer

The first noticeable difference between BSW and Application Layer is the archi-
tecture. While the former is based on a layered structure, the latter shows a
component architecture. Overall, a component represents partially or completely
a vehicle functionality that can interact with other components through ports.

However, the real benefit of ASW is the chance to implement multiple in-
stances of the same component in a vehicle system. According to the figure 1.4,
the instance of the SeatHeatingControl component is called twice for both front
right and left seat. Even though they are in two different memory locations,
instances share the same piece of code.

CHAPTER 1. AUTOSAR 13
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Figure 1.4: ASW SeatHeatingControl

Ports and Connectors

A port is the interaction point between two or more components. Each port is
matched with a port-interface that describes data or service required or provided
by an ASW []. There are five types of port-interface:

Client-Server Both client and server are software components. The Server pro-
vides operation that are invoked by several clients. For instance, the clients
A and B may ask for the same function to the server that will return the
output on the communication system.

Sender-Receiver this port-interface deals with the data exchange between two
or more components. In comparison to the previous interface where the
server offered an operation, now a sender forwards information to receivers.
The data-elements goes from integers to complex data types such as strings
and arrays. Any type of data exchange is logically atomic 5

Non Volatile Data Interface it gives access to a non volatile (NV) element.

Calibration the entry point for modules to calibration parameters.

On the whole, there are two kinds of port: RPort and PPort. Intuitively, R
and P indicate a port that receives and provides an element6, respectively. How-
ever, if the origin or destination of an element is an AUTOSAR service, the port
will be black otherwise the background colour is white.

RPorts and PPorts connection occurs through assembly-connectors that car-
ries the request or the output to the right direction. Especially, the dependency
of a component on other components leads to the difference between atomic com-
ponent and composition. While the former does not rely on other components,
a composition consists of a set of components (also defined as prototypes) and
connectors that are brought together in a single ASW. Obviously, a composition

5Atomic Operation: It is an operation that is performed entirely or is not performed at all.
In our case, this means that data mustn’t be sent partially.

6Element is either a data or an operation.
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could be the prototype of a larger composition.

In order to clarify the inner structure of a composition, the figure 1.5 shows
an average composition. In this case, the SeatHeatingControlandDrivers has 7
Rports and it is made up with 3 prototypes (ShDial, SeatHeatingControl and
SeatHeating) which exchange data such as LED value, position and HeatingELe-
ment.

Figure 1.5: AUTOSAR composition
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1.2. THE AUTOSAR BACKBONE

Components

Software components are distinguished in several types according to their
functionality:

Application Soft-
ware Component

The ASW is an atomic software com-
ponent that describes a vehicle appli-
cation. It interacts with Sensor/Ac-
tuator Software Component to use
sensor and actuator data.

Sensor/Actuator
Software Compo-
nent

Similarly to an ASW, this is an atomic
software component that handles data
and of operation coming from sensors
or actuators.

Calibration Param-
eter Component

It forwards data related to a calibration
parameter.

Composition It describes partially or completely a
vehicle function.

Service Component Component that is directly connected
to a BSW module and provides only
standardized services.

ECU-Abstraction
Component

It gives access to the ECU IO function-
ality.

Complex Device
Driver Component

This is a generalization of the ECU-
Abstraction Component.

NVBlock Software
Component

This component furnishes an entry
point for non volatile data at virtual
functional bus level that will be ex-
plained in the following.

Table 1.4: AUTOSAR components

CHAPTER 1. AUTOSAR 16
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1.2.1.3 AUTOSAR Runtime Environment and
Virtual Functional Bus

Figure 1.6: VFB connection.

The real communication between components on the bus is not achieved immedi-
ately. In order to establish a well-defined and robust path, there must be specific
steps to follow. Therefore, AUTOSAR defines two levels for testing the software
component connection.

The virtual functional bus (VFB) describes a ”system modelling and commu-
nication concept” that creates a high level infrastructure for components. The
VFB purposes are either simulating the real BUS functionality and verifying the
connection among components in a virtual environment. Due to the fact that
it does not rely on the hardware, the VFB includes some virtual low-level ser-
vices such as Complex Device Drivers, ECU Abstraction and Services (figure 1.6).

On the other hand, the AUTOSAR runtime environment (RTE) can be de-
fined as a real implementation of the VFB idea on a single ECU but with the
aim of providing a complete environment. The adjective ’complete’ indicates the
presence of mechanisms that are not taken into consideration by the VFB. In
fact, the RTE can invoke components according to scheduling algorithms, trigger
events and provide mechanisms for the synchronization of components to shared
resources.

The most noticeable difference between RTE and VFB is the number of pro-
vided services. It is undeniable that throughout the transition from a virtual to
a real situation, components may require functionality of all BSW-services. For
this reason, the RTE allows ASWs to interact with any BSW interface and to
exploit additional resources such as CPU and memory. Moreover, a further con-
trast regards the way whereby the interaction between components happens. As
you can see from the figure 1.7, the VFB mapping is realized through ports and
connectors whereas the RTE employs Intra-ECU 7 and Inter-ECU 8 mechanisms.

7Intra: the communication occurs among components of the same ECU. Therefore, there
are not external links.

8Inter: the communication occurs between components of tho different ECU. There is a link
on the bus.
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Figure 1.7: Transition from VFB to RTE.

Runnable Entity

Similarly to the link between PC program and process, the RTE does not in-
voke the entire ASW but only part of it. The piece of code that partially describes
an ASW is called runnable entity or simply runnable. More precisely, it is a is a
sequence of instructions that can be executed by the micro-controller, scheduled
by the operating system and invoked by the RTE. Consequently, whatever is the
type of ASW, there will be several runnables entities to describe its behaviour.
Overall, there are two types of runnables:

1. Type 1: set of instructions that return in a finite time.

2. Type 2: set of instructions that finish when an external event is triggered.

Even though the concept of runnable is present in the RTE, the VFB and
OS environment, their views are slightly different. From the RTE perspective,
runnables that can run in the same context are clustered in the same task while
the VFB sees a runnable as a sequence of instruction ready to be executed. On
the other hand, the AUTOSAR operting system schedules the task according to
specific algorithm (figure 1.8).

Figure 1.8: OS, RTE and VFB perspectives of a runnable
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Aspect VFB RTE
Application View API API
System View Centralized Distributed
Communication Ports Intra and Inter ECU
Scheduling Runnable OS Task

Table 1.5: Difference between VFB and RTE.

1.2.2 Methodology

The second crucial pillar of the AUTOSAR standard is the methodology. It de-
scribes the dependencies of activities in a work-product flow regardless of when
and how information are available. The Methodology simply outlines the avail-
ability of product in a work-product chain without defining the steps to follow or
the timeline to respect.

While the methodology gives a wide overview of the whole process, the meta-
model focuses on how something is defined. In AUTOSAR, a meta-model is a
standardized XML file that is employed not only for technical information about
electronic systems but also for the description of the software development pro-
cess.

Moreover, it is important to bear in mind that the AUTOSAR architecture
and methodology are not separate parties, on the contrary, they are strongly in-
terconnected. In fact, the methodology requires as initial input a deep description
of the system that is provided by the architecture.

Nomencalature

Before describing each singular stage of the Methodology, it is undeniable
that the meaning of the symbols needs to be analyzed in advance for a clearer
comprehension of the whole.
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Icon Name Description
Work-Product This is a piece of informa-

tion that could be the out-
put or the input of an activ-
ity. Usually, in AUTOSAR
it has a XML extension.

Activity It contains tasks and ac-
tions associated to a work-
product.

Guidance It includes further instruc-
tions to an activity.

Flow of work-product This is not properly an en-
tity but it defines the link
between work-products and
activities. According to the
figure, the arrow illustrates
the direction from the input
to the output.

Table 1.6: Types of methodology components

AUTOSAR Methodology Chain

Figure 1.9: AUTOSAR methodology

The whole chain can be split in two essential subsets: the system and the ECU
configuration. While the former includes the left-hand side of the flow that goes
from the System Configuration Input to the System Configuration Description,
the latter describes the ECU design step whose final output is an executable file
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ready to be loaded on the exact ECU.

The System Configuration Input is a work-product which provides information
about: software components, ECU resources and system constraints 9. Whereas,
the Configure System activity illustrates the exact mapping of ASW components
to the ECUs according to resources and timing requirements. The output of this
activity is the System Configuration Description that contains all system infor-
mation and defines the entry point for the ECU design part.

In that part, the Extract ECU Specific Information activity picks out just
all the information associated to a specific ECU from the System Configuration
Description and stores them inside the ECU Extract of System Configuration
file. Afterwards, the Configure ECU caters to all BSW modules requirements
and returns the ECU Configuration Description file. Finally, this file is utilized
as an input of the Generate Executable activity for the generation of the ECU
Executable that is a piece of software describing the BSW, the RTE and the
connection among components.

1.2.3 Application Interface

In order to establish a correct communication among SWC that belong to differ-
ent automotive domains, the interfaces should be able to process response and
requests via API correctly.

This process is guaranteed by the Application Interface (AI) table whose main
goal is to publish a well-defined and robust list of AIs. In fact, the AI table is
an excel file which specifies interfaces of several domains in terms of syntax and
semantics. Regarding the structure, it is organized in several working sheets
containing information about:

• Compositions from each domain

• Components

• Ports

• PortInterfaces

• Data Types

• Units

• Instances of component types

9System constraints: they mainly refer to limits of the bus signals, topology and mapping.
These constraints forbid to map a software component to the incorrect ECU.
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1.2.4 Conformance Test

As mentioned at the beginning of the chapter, one of the most important AU-
TOSAR purposes is to ease the collaboration between manufacturers and sup-
pliers. One of the advantages of a layered architecture is the chance for the
automaker to buy products from different suppliers and, then, to integrate the
various solutions in the same system. However, it is undeniable that automakers
need to verify if the purchased software is AUTOSAR-conform. This issue is
addressed by the Conformance Test. Rather than attesting the functional cor-
rectness of a product, it aims to verify its conformance through tests that relies
on the kind of ICC.

Although conformance and integration test seem to be similar procedures,
there are striking differences. In particular, the importance of the former is
to assure that the integration phase occurs among AUTOSAR-conform piece of
software. Thereby, a more efficient and reusable solution for the automaker is
guaranteed. Whereas, the integration test makes all the software solutions inter-
act properly. However, at the end of the conformance process (diagram below),
the results of the conformance tests are verified by an external party which is the
Conformance Test Agency (CTA):

Figure 1.10: Conformance test flow.

1.3 The Future of AUTOSAR

The development of the AUTOSAR standard has entailed enormous benefits in
the world of automotive and dramatic change from a business point of view. In
fact, the transition to a layered software architecture has enabled automakers to
widen the range of choice for each part of the system.

However, in the forseeable future the AUTOSAR architecture will undergo
eveident changes. In fact, the study conducted in this chapter regards the AU-
TOSAR Classic Platform (CP) but AUTOSAR is expected to move towards a
new type of architecture that is the Adaptive Platform (AP). There are several
reasons behind this migration. First, the benefits related to short development
cycles, inter-operability of the applications and a higher quality. Secondly, the
need to meet demanding requirements of vehicle functions in terms of computing
resources and safety. It is worthwhile to highlight that the AP will not take the
place of either the CP or non-AUTOSAR platform but it will communicate with
them (figure 1.11).
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A further consideration regards future applications, in comparison to actual
ASWs that are based on electro-mechanical system that don’t go through evi-
dent modification during the automobile life-span, future applications will rely on
complex algorithms that will need to be kept up-to-date frequently. Therefore,
software change is prone to occur often during the life-cycle of a vehicle. For
instance, the autonomous driving, which is one of the greatest challenges of the
automotive future, depends upon functionality such as ’image detection’ or ’path
planning’ whose algorithms are likely to be updated periodically.

Obviously, the platform upgrade needs to be supported by the hardware of
the ECU. Although ECUs are made up with multicore processors, their features
have never been exploited by the CP at all. Consequently, one of the aims of
the AP is to leverage the ECU potential through decisive key-factors like parallel
processing, safety and security.

Figure 1.11: Platforms Integration
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Fuel Level Control

The most remarkable strength of a vehicle has always been its ability to adapt
and integrate new technologies to previous versions. This has enabled carmakers
to increase the order of complexity gradually and to make the automobile the
advanced means of transport of our days. Since the first production of a wheeled
conveyance as a gift for the Chinese emperor in 1762, the automotive world has
undergone evident change especially from a business view. In fact, after Henry
Ford made the Ford Motor become one of the most profitable companies, the
automotive industry has developed into one of the bedrocks for the economies of
wealthier countries.

However, it is interesting to note that the center of attention in car production
has changed throughout the decades. In fact, it went from the realization of
powerful engines, over the whole 19th and 20th century, to the integration of
software and hardware components in the last 30 years. This migration has led
C code functions to become more and more crucial in a car development up to
take the place of mechanical applications. For instance, the comparisons of the
three different implementations of the same throttle command in the figure below,
outlines how electronics has affected vehicle function. In comparison to the past
when a long arm made the butterfly valve rotate, today a sensor detects the slope
of the gas pedal and transmits the data to the Engine Control Unit which controls
the butterfly valve rotation.

Figure 2.1: Evolution of the throttle command.
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2.1 The new perspective of vehicle func-
tion

The deep view of AUTOSAR standard and, in particular, the description of the
three layers that comprise its architecture identify a connection point between
the previous and the present chapter. In fact, a vehicle function (VF) can be
described not only as an automotive service that is provided by the system to
the driver but also as an application developed in the Application Layer through
ASWs. Overall, a VF is classified according to the level of complexity and the
priority order of the information that forwards on the vehicle network. While the
former refers to stand-alone or a complex function whose inputs could come from
other VFs, the latter lays down the execution order among VFs in the interest of
avoiding harmful consequences.

Regarding complex VF, today the Electronic Stability Program (ESP) has the
crucial role in computing the vehicle speed and sends this data to other VFs
such as the Air-Bag, the Autonomous Car Control (ACC) or, simply, the GPS.
Whereas, concerning the importance of priorities, what is inferable from the table
1.1 is that functions of ECUs of the PowerTrain and Vehicle Safety sub-domains
are likely to take precedence over VFs belonging to other domains.

Moreover, a real time1 environment has to guarantee adequate response time
and forbid the priority inversion problem2. In order to cope these issues, data
transfer rate and well-defined protocols 3 need to be properly devised and im-
plemented. In fact, it is undeniable that they have a huge impact in an efficient
communication. For this reason, the organization of the vehicle BUS in five
classes allows the system to match the application content with the necessary
transfer rate and, consequently, the right priority (table 2.1).

However, introducing five classes and four protocols means dealing with five
different message structures. Bearing in mind the ESP example, one immediately
wonders how to make all VFs receive the correct data if the receivers belong to
distinct classes. Because data are not formatted in a common always-decipherable
way, a gateway is employed on the BUS to accomplish that purpose (figure 2.2).
This is a hardware device whose task is similar to an interpreter. In fact, once
received the data from the BUS, the gateway converts it in another format and
forwards the message to the ECUs belonging to other classes. In this way, the
same variable is readable from all the VFs without mistakes.

1Real time system: it is a system whose tasks has to respond correctly within the deadline.
2Priority Inversion: some tasks are blocked by others whose priority is lower.
3Protocol: Set of rules for data exchange or transmission.
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Protocol Class Transfer Rate Description
LIN A 10 kb\s The Local Interconnect Network is a lo-

cal subsystem that guarantees the vehi-
cle network in a demarcated area of the
vehicle such as light, door and window
control. This is a cheaper solution in
comparison to the CAN and it is based
on a master-slave approach.

CAN
B 125 kb\s The Control Area Network was the

first bus system in a vehicle. In this
case, the CAN-B also defined as Low-
Speed CAN is specifically employed for
comfort and body applications like con-
trol of air-conditioning, seat adjustment
or mirror adjuster.

C 1 Mb\s The CAN-C or High-Speed CAN aims
to meet real-time constraints on Pow-
ertrain applications such as electronic
transmission control and engine man-
agement system.

FlexRay C+ 10 Mb\s Altough the FlexRay provides approx-
imately the same services of the CAN-
C, there are crucial differences in terms
of response time, ”composability” and
flexibility (analyzed in depth [bosch ref-
erence]). However, experts say that due
to FlexRay is still in development, the
silver bullet may be a combination of
these two protocol.

MOST D >10 Mb\s The Media Oriented Systems
Transport is a protocol whose data
rates is so large because it is used
only for infotainment and telematics
applications.

Table 2.1: Protocols and Classes on the BUS
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Figure 2.2: Bus communication

Within this context, the ’Fuel Level Control’ is a periodical vehicle function
of the Infotainment area with the aim of providing a reliable percentage of the
fuel regardless of any external dynamics. Although this task seems to be easier in
comparison to other functions, there are several situations to keep uppermost in
mind. Usually, the reason behind a wrong representation of the fuel percentage
could be by either a sensor failure or an external scenario. While the former
is coped asserting a variable which confirms whether the sensor measurement is
acceptable, the latter needs a robust logic able to distinguish a real decrease from
a temporary variation of the fuel. In that case, the algorithm has to go over three
main issues:

1. Fuel-Sloshing: this phenomenon generates repeated waves inside fuel-
tank. It could be the consequence of a street in bad condition or one with
a steep slope.

2. Sensor Positioning: It deals with the position of the sensors in the fuel-
tank. Obviously, this issue strictly depends upon the shape of fuel-tank. In
case of an Alfa Romeo Stelvio which is horseshoe in shape, there must be
two sensors inside.

3. Not Sensibility Range: It happens when the fuel level exceeds the upper
bound or is inferior than the lower bound, 100% and 0% respectively. In
this situation, sensor data are not completely trustworthy.

2.2 Sensor Handling

Figure 2.3: Path from fuel-sensors to the VF.

A modern vehicle includes thousands of sensors whose goals are to turn measures
in electrical signals for ECUs. As indicated in the figure 2.3, before becoming a
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variable for a vehicle function, signals need to follow a well-defined path that in
case of the Fuel Level Control consists of four steps. The hardware (HW) and
software (SW) interfaces address issues related to the ’cleaning’ of the raw signal
and the conversion of the resistance value to a percentage. Whereas, the Diagno-
sis Layer attests if the sensor data is out of range. Eventually, the percentage of
the fuel level and a fail variable are forwarded to the Measurement Logic where
the entire algorithm is implemented.

2.2.1 Fuel-Level Sensor

Figure 2.4: Fuel-Level sensors.

The reasons why position sensors are widely employed in a vehicle is not only for
their property to record and detect any angular or linear displacement but also
the longer life-span in comparison to other sensors. On the other hand, one of
the disadvantages is the complication to be miniaturized due to the displacement
is an extensive variable that that depends on the size of the system (table 3.2).

It is important to note that the high number of ways whereby the measure-
ment is performed leads to several types of position sensors. In our case, Fuel
Level Sensor belongs to the potentiometer type which is a kind of sensor able to
detect any displacement through resistance values. The scientific principle that
describes its behaviour is the wiper potentiometer. More precisely, as depicted in
figure 2.5(a), the wiper extremities are always in contact with two circular resis-
tance tracks. While the inner track is made up with approximately 100 resistive
pads in a range between 50 and 1000 ohm and aims to provides the resistance
value as a function of the angle, the outer circular area protects the sensor from
overleading. Although the type and the quality of the fuel are crucial aspects
that affect the wiper dynamics, a current Ia ≤ 1 mA is applied to the circuit in
order to keep wear as low as possible and guarantee contact cleaning.

However, the link between the wiper and fuel variation is achieved through
an arm that connects the float to the wiper spring. In fact, the fuel-level sensor
design consists of a ’sealed’ and not-sealed part. The former is encapsulated in
a waterproof and dust-proof tank that includes a potentiometer with wiper arm
(wiper spring), printed conductors (twin-contact), resistor board (pcb) and elec-
trical connection. Whereas, the float and the arm (wiper liver) are fully immersed
in the fuel. When the fuel level changes, the arms moves horizontally and makes
the wiper rotates along the resistance tracks.
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(a) Wiper potenziometer principle. (b) Fuel Level Sensor.

Figure 2.5: Detailed view of the fuel-level sensor.

Advantages Disadvantages
Cheap Mechanical wear
Simple design Problems with fluids
Temperature range Expensive Testing
Calibration No miniaturization
Assembly Noise

Table 2.2: Advantages and disadvantages of potentiometer

2.2.2 Hardware Interface

Figure 2.6: Hardware interface.

During the second phase, HW interface receives row values directly from the
fuel level sensors and provides a clean data to both the Diagnosis Layer and the
SW interface. It is undeniable that the frequent use of sensors, such as fuel-
level sensors, require driving circuits able to tackle the contact aging issue. For
this reason, the injected current from the electrical connection in figure 2.5(b)
is driven by the pulse width modulation (PWM )4 rather than leaving it to flow
constantly inside the sensor circuit. The main advantages of this approach are

4PWM: it is a modulation process that regulates the power for electronic devices.
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both to limit contact corrosion and to ensure a long-lasting reliable output.

2.2.3 Software Interface

Figure 2.7: Software Interface.

In the final stage, data coming from the HW interface are managed via software
approaches. In particular, the SW interface has the primary purpose to convert
the resistance in a percentage. However, this conversion is not achieved imme-
diately but it is figured out through a specific calibration table that takes into
consideration a slight offset error. This introduces a thin difference between nom-
inal and offset value. Thereby, the 100% and 0% are indicated for a while during
a journey even though the fuel-tank is neither completely full nor empty. Obvi-
ously, the offset can be modified because it is a tuned parameter that depends on
other vehicle features like model, weight or engine size.

2.2.4 Diagnosis Layer

Figure 2.8: Diagnosis Layer.

Similarly to the SW interface, the Diagnosis Layer receives resistance value and
detects whether the H interface output is affected by an error. If a short or open
circuit is present for more than specific setting time, the error is validated and the
percentage carried out by the Software Interface will be disregarded. However,
the dynamics of the Diagnosis Layer will be reclaimed during the implementation
of the FAULT condition of the vehicle function.

2.3 Vehicle Function Interconnections

According to the figure 1.11 at the end of the AUTOSAR chapter, an ECU comm-
nicates on the BUS with other ECUs and sensors. Consequently, it is likely that
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VF inputs include not only sensor data, as described before, but also variable
related to other VFs.

In case of the Fuel Level Control, it is undeniable that the speed of the vehicle
is a fundamental feature for the logic because it makes the fuel-level indicator
decrease properly. In fact, the fuel consumption of a car that is accelerating at
a constant speed of 30 km/h is different from another at 150 km/h. Although
this aspect will be discussed in the next paragraph, it is worth outlining that the
presence among the inputs of two variables, which indicate the ’present’ fuel level
through different computations, allows the logic to overcome issues like parking
on slope, fuel loss or fuel sloshing. However, the purpose of this section is to pro-
vide a description of the all variables that are exchanged by the Fuel Level Control.

2.3.1 Inputs

Vehicle Speed : it shows the instantaneous speed of the vehicle in km/h. It is
used to move from a static to a dynamic condition. Obviously, the speed
affects how fast the fuel level decreases.

Vehicle Speed Fail Status : similarly to the output of the Diagnosis Layer,
the Vehicle Speed Fail Status attests the worth of the vehicle speed.

Fuel Consumption : the Fuel Consumption comes from another vehicle func-
tion and provides the percentage of fuel level in %/h. Due to the fact that
the fuel consumption and the output of the Software Layer contains the
same information, the logic figures out a weighted average among these two
inputs.

Fuel Consumption Fail Status : the Fuel Consumption Fail Status attests
the worth of the fuel consumption.

Key Mode : The status of the key contains essential information for the execu-
tion of the vehicle function. However, for what concerns this context there
are just three conditions to keep forefront in mind:

1. Key ON : The key is inserted and the vehicle control panel is turned
on.

2. Key OFF : The key is not inserted and the whole vehicle is turned off.

3. Key ON Engine ON : The key is inserted and the engine is running.

Key Mode Fail status : the Fuel Consumption Fail Status attests the worth
of the Key Mode.
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Fuel Level Sensors : sensors provide the percentage of remaining fuel.

Fuel Level Sensors Fail Status : is one of the outputs of the Sensor Manage-
ment that attests the worth of data coming from the sensors.

Reserve : is a threshold that is used to switch on the Low Fuel Lamp.

Soglia : when the absolute difference between two samples is higher than the
Soglia, fuel loss is detected. Overall, this is not a fixed data but it can be
changed by the supplier.

MLM min : minimum value to pass in the MLM strategy.

MLM max : minimum value to exit from the MLM strategy.

2.3.2 Outputs

Fuel Level : shows the computed fuel level percentage.

Low Fuel Lamp : if the percentage of fuel is lower than the Reserve threshold,
the spy turns on so the driver detects the need to refuel.

Fuel Level Fail status : gives information about the reliability of the fuel level
signal.

2.4 Measurement Logic

The Measurement Logic together with the Sensor Management comprise the body
of the Fuel Level Control. While the latter handles sensor data, the former has
the crucial task to deal with the implementation of the logic. It consists of four
working conditions: STATIC, DYNAMIC, RIFO and FAULT.

Therefore, the vehicle function purpose, the fuel level sensor principles and
the input/output description have been the necessary requirements for a detailed
explanation of the algorithm. However, some details about the implementation
will be hidden for company reasons.

2.4.1 STATIC

The STATIC measurement is the part of the logic that includes all the situa-
tions with the engine off. Essentially, it can be divided in ON and OFF status
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whose transition is allowed by the presence of the key in the vehicle control panel.
Clearly, this working condition takes into consideration only circumstances before
or after a journey or mission.

Thinking about a real situation, when the driver inserts the key for the first
time without rotating it (LOCK in figure 2.9), from a logic point of view, this
condition is identical to a key removed from the panel. Therefore, the logic al-
ways starts from the OFF status of the STATIC condition. Here, all the local
variables are initialized to a default value and results of previous missions are dis-
regarded. During the second phase, the driver is likely to rotate the key to turn
on the vehicle without starting the engine (ACC in figure 2.9). This provokes the
transition from the OFF to the ON status and, consequently, the computation of
the fuel level in a static situation for the first time.

Figure 2.9: Key status illustration.

The way whereby the computation is performed in the STATIC essentially
is based on a comparison between two levels in two distinct time instants. As
soon as the the ON state of the STATIC is active, a minimum sampling interval,
during which the logic cannot move elsewhere, must be guaranteed. At the end of
that interval, the logic keeps on sampling until the fuel percentage is sent to the
control panel as a result of the mathematical average of the sensor data. Alterna-
tively, there could be a transition in the OFF state. In this case, the sampling is
not interrupted but continues in the OFF state as long as the end of the interval
is reached.

In order to detect any fuel loss, the algorithm of the VF makes a comparison
between the last computed value before the end of the journey and new compu-
tation at the beginning of the next drive. If the difference between two fuel level
measurements are lower than Soglia, the percentage is updated and a scenario
like parking on a slope is filtered out.
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Figure 2.10: High-level representation of the STATIC state.

2.4.2 DYNAMIC

As soon as the driver turns on the automobile and, obviously, the engine is on
(ON in the figure 2.9), the logic of the vehicle function goes from the STATIC
to the DYNAMIC working condition. This is an essential part of the whole al-
gorithm that deals with updating the fuel level while the car is running. The
DYNAMIC comprises three filters: Pre Filter, Speed Filter and MLM Filter.

Pre Filter

Because the outputs of the Sensor Measurements are affected by interference,
noise and contact chatter, a filter able to make the signal more reliable needs to
be taken into account which is exactly the aim of the Pre Filter. This is a second
order digital filter that receives as inputs the weighted average (2.1) and returns
stable fuel level (figure 2.11). However, due to its quick dynamics and the short
sampling interval of the ON state, it is inactivated in the STATIC. Regarding the
weighted average, it is figured out through the formula:

FuelAverage = Weight1 ∗ SensorLevel +Weight2 ∗ FuelConsumptionLevel (2.1)

What is noticeable from the expression above is that it is the sum of two mul-
tiplications of a percentage coming from different sources and a mathematical
weight. The weights have a huge impact in making a decision between the sen-
sor and the Fuel Consumption input. Obviously, the weight choice relies on the
quantity of fuel level inside the fuel tank. While the Not Sensibility Range (NSR)
covers the whole percentage that goes from the ”high threshold+10” to the ”low
threshold -10”, the others are included in the Sensibility Range (SR). Although
the idea of increasing the high threshold of 10% or lowering the low threshold of
10% appears illogical, it is worthwhile to stress the concepts that they are not
nominal value and high threshold and low threshold can be chosen by the supplier.

Beyond the goal of providing a reliable input for the Pre Filter, the weighted
average aims also to minimize the set of percentage belonging to the SR. In order
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to reach this goal, the weights are defined differently within the NSR. In fact, if
the fuel level exceeds the high threshold or lowers the low threshold, the interpo-
lation method is performed. Whereas, when the fuel is out of the NSR the Fuel
Consumption is disregarded and the weighted average is equal to the sensor data.

Range Level Weights

Not Sensibility Range
HT+10 ≥ FL ≥ HT

Weight1 = f(inter,WA)
Weight2 = 1 −Weight1

HT ≥ FL ≥ LT
Weight1 = 0
Weight2 = 1

LT − 10 ≥ FL ≥ LT
Weight1 = f(inter,WA)
Weight2 = 1 −Weight1

Sensibility Range
(FL ≥ HT + 10)k(LT ≤ LT − 10)

Weight1 = 1
Weight2 = 0

Table 2.3: Fuel Level Range.

Figure 2.11: Pre-Filter scheme.

Speed-Filter

The Speed Filter is a first order transfer function that receives as an input
the percentage calculated by the Pre Filter and estimates the fuel percentage
according to the vehicle dynamics. This means that the filter behavior is not one-
and-only but depends upon the vehicle speed. There are three possible actions:

• High Filtering : The vehicle speed is higher than the speed threshold.
This means that fuel will decrease quicker than the other circumstances.

• Low Filtering : occurs either when the vehicle is below the speed threshold
or the vehicle speed data is absent. In this scenario, τlow ≥ τhigh because
the fuel indicator decrease slower than the High Filtering situation.

• Refuel Filtering : Regardless of the engine activation, in this condition
the level of fuel rises and car is not moving. The time constant is set to
τrefuel ≥ τlow ≥ τhigh.

However, a further scenario to keep in mind concerns the failure of the vehicle
speed input, the filter acts like a vehicle running at low speed.
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Figure 2.12: Speed-Filter scheme.

MLM Filter

Figure 2.13: MLM-Filter scheme.

If the fuel level is lower than the MLMmin, the Minimum Level Management
(MLM ) is activated and the output is no longer computed by the Speed Filter.
When the fuel-tank level is almost empty, the goal of this part is to force the fuel
level indicator to reach zero within a certain time. However, in case of fuel loss,
the 0% is reached more rapidly.

How these filters interact is described in the following figure:

Figure 2.14: High-level representation of the DYNAMIC state.

2.4.3 RIFO

It is no doubt true that refuel covers a fundamental aspect throughout the jour-
ney. From the Fuel Level Control view, this means a new state where the fuel
level tends to rise up to an unspecified percentage. The RIFO condition can be
reached from both the STATIC and DYNAMIC. In fact, if a driver is waiting for
the end of the refuel and switches on the vehicle control panel (Key ON case),
from a logic point of view, there will be a direct transition from the STATIC to
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Figure 2.15: High-level representation of the DYNAMIC state.

the RIFO condition. Whereas, if the speed of the car becomes lower than a fixed
threshold the transition comes from the DYNAMIC.

Because the car could reach 0 km\h decreasing the vehicle speed slower and
slower or via a sudden hard braking, the first part of the RIFO is a dead time for
diminishing possible fuel sloshing effect. Afterwards, the first ten samples of the
sensors are used to compute the fuel level. This measurement can be defined as
a landmark not only because it will not change as long as the RIFO is active but
also it will be constantly compared to a second sampling that is performed every
couple of seconds. Thereby, the Fuel Level Control output is updated regularly.
However, entering in the RIFO working condition is not always associated with
the refuel action. For instance, if a driver is stuck in the traffic jam, the car is on
but the speed is zero most of the time. Hence, there will be continuous transitions
from the DYNAMIC to the RIFO and vice-versa without any fuel level variation.

2.4.4 OUTPUT

Although the OUTPUT is not properly a true working condition, its function-
ality is incredibly crucial for the VF purpose. As mentioned earlier, STATIC,
OUTPUT and RIFO description underlined the necessity of forwarding reliable
information about the fuel percentage and, consequently, the fuel lamp status.
In fact, if the fuel level exceeds the Reserve threshold, the Low Fuel Lamp is
turned off after a while. Whereas, when the fuel level is lower than the Reserve
threshold, the Low Fuel Lamp lights after a predefined amount of time.
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Figure 2.16: High-level representation of the DYNAMIC state.

2.4.5 FAULT

Last but not least, the FAULT condition deals with any error related to the
input variable. Most input errors do not always represent a migration to the
FAULT state simply because they are overcome by internal choice of the logic.
For instance, if the Key Mode Fail status verifies a mistake of Key Mode, the
algorithm continues its execution maintaining its last valid condition. Similarly,
when Vehicle Speed Fail Status attests the error, the Speed Filter works in the
low filtering mode and, finally, a wrong representation of the Fuel Level makes
all measurements depend just on the fuel level sensors.

As a result, the migration to the FAULT state is provoked only by the assertion
of the Fuel Level Sensors Fail Status variable. If this input remains true for the
whole validation time, the sensor error is confirmed and the Fuel Level is set
to zero. In case of Key Off event when the error is validated, the error is not
canceled accidentally because the logic will move to an independent state of the
OFF STATIC condition. In this way, at the following Key On event, the logic
goes directly to the FAULT. On the other hand, the devalidation occurs if the
Fuel Level Sensors Fail Status is false for a definite time interval.

Figure 2.17: High-level representation of the FAULT state.
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2.5 Vehicle Function Design

Similarly to thin pieces of a puzzle that need to be put together properly in order
to produce a correct image. This section brings together each single working
condition previously explained in order to provide an overview of the vehicle
function and how the parts interact each other. Starting from this preliminary
sketch, the next chapter will deal with the development of the vehicle function
via the model based approach.

Figure 2.18: High-level representation of the whole model.
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Model Based Approach

The development of a well-suited environment for the automotive software archi-
tecture is not the only requirement in the application development process. As
explained in the second chapter, the growing importance of the software has made
a much quicker way for the vehicle function implementation necessary without
forgetting essential features like efficiency and quality. Therefore, in order to be
in line with the ”Faster, Better and Cheaper” Pedro Rustan’s motto, the need to
come up with a new solution gave birth to an original methodology.

In comparison to the past, when C-code identified the one-of-a-kind approach
for the development of an application, recently the Model Based Software Design
has become the new popular alternative for modelling a system. In fact, the fall
in number of bugs together with the automated code generation are just some of
the advantages of this approach. However, from a wider view the Model Based
Software Design is part of the V-Model diagram. This is a V in shape scheme
that describes the specific steps to follow from the system requirements to the
final release of an average application. According to the figure 3.1, while the left
hand side deals with the ’implementation phase’, the rising part concerns the
’validation phase’ that will be analyzed in the fourth chapter.

Figure 3.1: V-Model scheme.
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3.1 First Half of the V-Model

Due to the first phases of the V-Model being strongly related to the description
of the application (figure 3.1), any mistake or lack of information in the function
requirements are prone to be discovered within this section. In the case of a
distributed system that exchanges data with other applications, an error could
spread over the whole structure and damage the system.

Figure 3.2: Verification Phase.

3.1.1 System Requirements

Albeit System Requirements seems to be a new concept, it was indirectly men-
tioned in the section 2.4. In particular, it concerns the exhaustive, clear and
unambiguous description of the functionality. In fact, incomplete requirements
provoke gaps that must be filled by developer’s experience. Whereas, unclear
information is the origin of a bad design and, consequently, wrong data exchange
with other functions. Finally, ambiguous explanation leads to results that differ
from the intended purposes.

Regarding the Fuel Level Control, the whole function logic is illustrated by
three files:

I/O File : the main goal of this file is to provide details about type of function
(triggered or periodical), inputs, outputs and local variable to set.

Logic File : explains how to manage data of the vehicle function, the expressions
associated to the filters and the events to move from one state to the other.
Hence, it includes the algorithm.

VF File : gives further information about the logic and the number or type of
interconnected vehicle functions.
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3.1.2 System Design

Similarly to the System Requirements, the System Design has already been seen
in the second chapter. In particular, it covers the high level design of the vehicle
function without any software tool. In this phase, there is a first passage from
the theory to a high-level modelling of the vehicle function where the main tran-
sitions and sub-systems are highlighted.

Therefore, the goal of this stage perfectly matches with the section 3.3 where
the theory of the System Requirements was sketched in order to achieve a first
prospective of the vehicle function. Obviously, the outcome of the System Design
is not definitive. In fact, if some information is overlooked or misunderstood, the
model will undergo further changes later.

3.1.3 System Description

In comparison to the first two steps, the System Description describes how the
implementation is performed from a software point of view and, consequently,
offers an alternative to the the one-and-only C-code approach. Although hand-
written programs enable developers to achieve a higher optimization in terms of
data type, variable and allocating memory, the number of disadvantages is sig-
nificant.

The most evident drawbacks are time-consuming delays to trace back the ori-
gin of a bug, difficulties to test single function of the entire program and issues
to integrate new technologies. As a result, it is undeniable that the consequence
of all these effects is a tardiness in the realization of the final vehicle function.
However, in order to overcome these obstacles and fasten the software develop-
ment, the Model Based Software Design was devised.

Overall, this is a visual method that simplifies the description of an average
mechatronic system through the design of models and interconnections. The en-
vironment, within the system is modelled, is a software with detailed features. In
comparison to the hand-written C-code, this approach enables programmers to
test single sub-systems, to generate code autonomously (C, VHDL, C++, etc.)
and to modify the model instantaneously. Consequently, it introduces a middle
layer between logic description and code generation that eases the test and im-
plementation of the whole model. Thereby, the application and physical target
become for the first time two distinct entities that cooperate once the code is
loaded on the embedded device.

However, a further difference between the C-code and Model Based Software
Design regards the way whereby the test of functionality is performed. The
V-model takes into consideration four different procedures for testing:

1. Model in the loop: test is performed in the simulation tool and enables to
check the behaviour of the program during the development stage. If the
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Figure 3.3: Controller and Plant

function worked properly, it is likely that the test on the hardware platform
would not have difficulty during the integration.

2. Software in the loop: part of the model belongs to the simulation tool and
part is in executable C-code.

3. Processor in the loop: in comparison to the Software in the loop, the exe-
cutable C-code runs on a specific hardware.

4. Hardware in the loop: part of the code runs in a real time simulator, and
the other is on a physical hardware.

While the C-code requires loading the entire code before detecting possible
mistakes, the developer immediately checks whether the implementation of a
new model behaves correctly in the Model Based Software Design. However, the
advantages of the the latter come at a price. In fact, although the graphical de-
scription results easier to understand and analyze, not only does an efficient code
generation require specific libraries but also the length of the program is higher
than handwritten C-code and, consequently, takes a longer time to be executed.

3.2 StateFlow

For the Fuel Level Control implementation, the choice of the Simulink software
has been made. This is a graphical block diagram tool developed by Mathworks
that provides a standard library with blocks for: logic operations, mathematical
expressions, discrete or continuous transfer function, inputs/outputs ports and
programming cycles such as if-else, for, while ans so on. Overall, a block is asso-
ciated to a functionality that receives inputs by means of connectors and could
return one or more outputs.

Within the Simulink environment, a model can also include external toolbox
blocks and a StateFlow chart that plays the essential role in representing sequen-
tial decisions, like a finite state machine, via states, transitions, junctions and
graphical functions. Regarding the scheme of the vehicle function, it involves
a StateFlow chart, that carries out the Fuel Level Control logic, and Simulink
blocks to simulate inputs coming from the bus and the outputs to forward. In
addition to this, it is evident that data can be either local to the StateFlow chart
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or shared with external blocks.

3.2.1 States

A state represents an operating mode of a sequential system whose activity/inac-
tivity depends upon the transition that allows the logic to reach the state. If the
condition is verified, the transition can be performed otherwise the logic is stuck
in the same state. However, according to the hierarchical relation in the chart, a
state can be defined as superstate or sub-state. It easy to understand that their
names are related to the location of the states. In fact, while the former clusters
one or several sub-states, the latter is part of a superstate. For example, the
figure 3.4 shows a superstate A and two sub-states B and C. It is worthwhile to
underline that if there is a transition to a sub-state, the activation of the B or C
states implies that its superstate A will be active as well.

Figure 3.4: State example.

State Action

Regarding the content of a state, it tends to comprise functions to call, vari-
ables to set or events to trigger. However, the time-line of the action is scheduled
according to the type of state action. There are five actions:

Entry Action: the action is performed as soon as the state becomes active. It is
preceded by the word entry or simply en.

During Action: the action is performed until the state is active. It is preceded
by the word during or simply du.

Exit Action: when the condition of the output transition is verified, the action
is performed before the logic moves to another state. It is preceded by the
word exit or simply ex.

On Event Action: if the event happens, the action is executed. It is preceded
by the word on NAMEVENT.

CHAPTER 3. MODEL BASED APPROACH 46



3.2. STATEFLOW

Bind Action: is used to bound a variable to a specific state. In that case, the
variable cannot be modified in another part of the chart.

Decomposition

Although at the beginning of the ’State’ paragraph was outlined the bond
between the activity of a state and the associated transition, this is just one of
the possible conditions. In fact, the execution order of the states is related to the
system that is going to be developed.

For instance, the lift dynamics in a block of flats with three floors identifies
a sequential system that can be modelled as a StateFlow chart with three states
(one for each floor) whose transitions are controlled by the lift buttons as in fig-
ure 3.5(a). It is obvious that in order to reach the desired destination, all the
middle floors must be passed through. From a developing view, this means that
during the execution, there will be consecutive transitions from the origin to the
destination taking into consideration all the states in-between. In this case, the
floors are exclusive states because only one of them can be active at any time
instant and they are figured in solid rectangles.

On the other hand, if the goal of the Simulink model is to figure out the area
and volume of a square, the chart can be implemented through parallel states be-
cause area and volume are independent (figure 3.5(b)). Consequently, they can
be computed at the same instant once the side length of the square is received.
Although a parallel decomposition guarantees the execution of more states simul-
taneously, the number on the top of the state assigns the specific order to follow.
The reason behind this choice is linked to the code generation phase. In fact, this
enables to describe parallel states via if-else conditions rather than multiple tasks.

(a) Lift implementation. (b) Area and Volume implementation

Figure 3.5: Parallel and exclusive sub-state examples.
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3.2.2 Transitions

The transition is a line that connects two states. In the case of a transition with-
out condition, this is performed immediately. Therefore, a during action in the
origin state should be useless because the logic moves directly toward another
state. Whereas, in a transition with condition, the passage occurs if and only if
the condition is verified.

On the whole, a transition is described through the Transition Label. It does
not include just logical conditions but follows the structure below:

[condition]{condition action}/transition action (3.1)

• Condition: is a logical statement with or, and and not equal symbols and
is written in square brackets.

• Condition Action: is enclosed in curly braces and describes an action to
perform such as increment a counter as soon as the condition is verified.

• Transition Action: refers to a function or an event to trigger.

However, if there are several transitions to reach the same state, the developer
will set an order of priority. In order to demonstrate the benefits of transitions,
the figure 3.6 shows the Lift implementation from another point view without
writing any action inside the states:

Figure 3.6: Lift implementation through transitions.

Default Transition

According to both the figures 3.5(a) and 3.5(b), it is clearly evident the pres-
ence of the two arrows without origin and destination to one of the states of the
charts (Area Volume and Zero). This is called Default Transition and is the entry
point of the chart. Whatever is the value of the inputs, the first step of the logic
is the state connected to the Default Transition. Albeit there could be multiple
default transitions in the same chart, the treatment is exactly the same of an
average transition. This means that the developer lays down an execution order
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among them in order to avoid mistakes.

The default transition purpose shows the striking contrast between the lift and
Area Volume examples. In fact, while the latter contains two parallel sub-states
that don’t require a default transition, this is necessary for exclusive sub-states
otherwise the logic of the superstate could not be carried out.

3.2.3 Connective Junctions

Although the connective junction is not truly a milestone of the StateFlow ap-
proach, it is particularly useful for testing. In fact, rather than writing several
conditions on the same transition, junctions enable to divide the line in as many
segments as the number of conditions. In this way, if a transition is not per-
formed, the developer detects immediately where the false condition is.

However, connective junctions can be employed also to simplify the model.
When multiple transitions have the same destination, they could be divided in
two: the segments for the condition and the shared link for the destination. As
depicted in figure 3.7, junctions have the role in linking condition segments com-
ing from different states to the same destination. It is interesting to note that
the condition segment of the state A and C is divided in two parts in order to
check whether both conditions are verified during the execution of the chart.

(a) Transition with connective junction. (b) Transition without connective junc-
tion.

Figure 3.7: The use of connective junction.

3.2.4 Graphical Function

The graphical function is an element that defines a function through connective
junctions and transitions. It is a modular and reusable object which is defined
in a separate window in comparison to the chart and is called inside states or
transitions. Essentially, a graphical function consists of a default transition and
two junctions which are the entry and end point of the function.
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Figure 3.8: Graphical Function example.

Concerning inputs and outputs, they are declared in definition. For instance,
the expression below defines a function f with two inputs (inp1, inp2) and two
outputs (out1, out2). Whereas, the figure 3.8 shows a possible implementation.

[out1, out2] = f(inp1, inp2) (3.2)

3.3 Vehicle Function Implementation

According to the StateFlow rules and the logic of the vehicel function, the whole
model of Fuel Level Control function can be split in two superstate: KEY ON
and KEY OFF. While the latter deals with the initial variable setting and the
sampling of the fuel level when the engine is turned off, the former includes all the
working conditions except for the FAULT. It is important to stress the concept
that some details of the implementation will be hidden for company reasons.

3.3.1 STATIC

As mentioned in the 2.4.3 section, the STATIC has to guarantee a minimum
sampling of the fuel level and output a reliable percentage to the instrument
panel. Due to these events being independent functions, they can be modelled
with two parallel sub-states (OnInstantComputation and REFUELING CHECK )
that share just the lock variable (figure 3.11). This local data aims to make the
fuel level available as soon as the initial sampling is finished. In this way, the
output is not forwarded within that interval.

However, a further situation to bear in mind is the transition to the KEY OFF
state during the initialization sampling. In that case, the sampling of the fuel
sensor is not interrupted but continues in a sub-state of the KEY OFF and all
the required variables for the STATIC computation are update and ready to be
used later. Concerning graphical functions, they are employed in the logic of the
STATIC not only to compare fuel sensor data but also to verify the transition
among superstates.
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(a) Inizialization state. (b) AfterInitialization state.

Figure 3.9: OFF state view.

Figure 3.10: OFF state.

(a) OnInstantComputation state. (b) RefeuelCheck state.

Figure 3.11: STATIC view.

Figure 3.12: STATIC state.
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3.3.2 DYNAMIC

The typical events that provoke a transition from the STATIC to the DYNAMIC
could be both the engine starting or a really quick turning on and off of the vehi-
cle. In the latter case, the STATIC management is not taken into consideration
and the logic moves directly to the DYNAMIC. However, from an implementa-
tion perspective, there are two transitions with the same origin and destination.
Therefore the use of a connective junction perfectly suits the vehicle function
needs.

Regarding the body of the DYNAMICS, this is made up with two exclusive
sub-states. As long as the the fuel level is higher than MLM min, it is computed
in the Normal Dynamics that exploits the graphical function properties to de-
velop the dynamics of the Pre-Filter and the Speed-Filter. Whereas, when the
MLM strategy becomes active, the MLM-Filter is implemented by means of a
graphical function that computes the fuel percentage. However, as soon as the
fuel level exceeds the MLM max threshold, the logic goes back to the Normal
Dynamics.

Figure 3.13: NormalDynamics state.

Figure 3.14: MLM state.
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Figure 3.15: DYNAMIC state.

3.3.3 RIFO

The whole structure of the RIFO condition can be divided into three sequential
conditions. At the beginning, the dead time to attenuate the fuel slosh effect
is represented by a state which contains a counter that is incremented until the
transition to move in the consecutive state is true. Secondly, a reference value
is figured out through the mathematical average of the only fuel sensor samples.
The aim of the reference value is to define a landmark that will be compared to
an updated measurements of the fuel level. In this way, the driver is constantly
aware of the fuel level variation. For the sake of the knowledge, all the data ac-
quired by the sensors are subjected to the Pre-Filter dynamics for cleaning reason.

On the whole, the development consists of three sequential sub-states: Slosh-
Wait, OFFinstant1 Sampling and ONinsant1 Sampling Output (figure 3.16). How-
ever, what is noticeable from the ONinst1 Sampling sub-state is that there is a
transition whose origin and destination is identical. This is called Inner Tran-
sition and, in our case, it is used to keep the logic up-to-date with the current
fuel level. Henceforward, there could be two possible events. The refuel action is
finished but due to the car being turned on with vehicle speed equal to zero, the
logic remains in the RIFO state (figure 3.17). Otherwise, the vehicle accelerates
and the logic moves to the DYNAMIC.

(a) OnInstantComputation state. (b) RefeuelCheck state.

Figure 3.16: Parallel and exclusive sub-state examples.
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Figure 3.17: RIFO state.

3.3.4 OUTPUT

The aim of the OUTPUT is to manage the fuel lamp according to the quantity
of fuel in the vehicle. Because this functionality is required in both the DYNAMIC
and RIFO equally, an efficient implementation involves the Refuel Dynamics OUTPUT
super-state with two parallel sub-states. One for the OUTPUT and the other in-
cludes the RIFO and DYNAMIC exclusive sub-states. This allows not only to
avoid redundant functions but also to light the fuel spy regardless of which work-
ing condition is running.

Figure 3.18: OUTPUT state.

3.3.5 FAULT

The FAULT state is the alternative to the ordinary vehicle function operation.
In case of fuel sensor data mistakes for a certain period, the fault is validated
and the output is set to zero percentage. This enables the driver to detect the
malfunction and do car maintenance because the error is displayed on the body
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control until it is present.

From the implementation perspective, before reaching the FaultOutput, there
are two preliminary states that validates or cancel the fault. Inside the Fault-
Output state (figure 3.18), the fuel level is set to zero and fuel warning deacti-
vated. However, if the Key-Off condition occurs while the error is confirmed,
the algorithms needs to be robust enough to avoid accidental error cancellation.
Therefore, the logic moves in a specific state of the KEYOFF state until the issue
is fixed.

Figure 3.19: FAULT state.

3.4 Vehicle Function Model

Similarly to the final part of the second chapter, this section tries to give an
overall view of the implementation. For a clearer comprehension of the whole
scheme, the sub-charts serve to cluster each single state (figure 3.20). From here
on, the fourth chapter will focus on the Validation area of the V-model.

Figure 3.20: Vehicle function implementation.
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Code Generation and Integration

As introduced in the Model Based Approach chapter, one of the most significant
advantages of the V-Model has been the opportunity to outline the necessary
stages to follow for the development of a software application from the original
idea to the test on real-time devices. Although the V-Model purpose is clear, so
far the analysis has covered just the initial phases.

Since the end of the Software Design phase, the development process of a ve-
hicle function experiences a different approach regarding testing and integration.
Henceforth, the StateFlow model is the starting point of the ’Validation Phase’
that consists of four stages: Code Integration, Software Integration, Hardware In-
tegration and Acceptance Test (figure 4.1). The final goal is to provide a reliable
and tested application ready to be loaded and employed on a real-time system.

Although each phase of ’Verification Phase’ will be discussed in depth in the
body of the chapter, the choice of not presenting the other side of the V-Model in
the previous chapter has been made to pay enough attention to both the model
based approach and the integration test without causing a lot of confusion to the
reader. Therefore, dealing with these milestones of the thesis on two separate
areas guarantees to cover details that the use of just one chapter would forget.
However, it is unquestionable that ’Validation’ and ’Verification’ phase are two
sides of the same coin.

Figure 4.1: Validation Phase.
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4.1 Coding

Similarly to the Software Design, the Coding represents the other outstanding
revolution brought on by the Model Based approach. While the graphical sketch
of the application makes the logic appear clearer to the developer’s eye, the
Coding phase introduces a new perspective about the Code Generation concept.
Throughout the years, this task has been often associated to the compiler whose
goal has been to turn source code in machine code.

Albeit Code Generation allows unskillful developers to generate C codes and
companies to fasten the software development procedure, the choice of the soft-
ware for the auto-code generation is not trivial because data types, variables
definition and function calls have to be determined accurately. Therefore, it is
undeniable that Code Generation is a double edged sword whose benefits depend
upon the software features. Obviously, in order to achieve marginal differences
between a generated and a handwritten code, the program needs to be as opti-
mized as possible and easy to integrate into the system.

4.1.1 TargetLink

TargetLink is a transformation tool developed by dSpace that generates C-code
directly from the Matlab\Simulink environment. Although the decision about
the generator was influenced by company preferences and academic licenses, the
reasons behind this choice regarded mostly the great benefits in terms of code
efficiency and reliability. In fact, TargetLink guarantees test mechanisms, compli-
ance with standards and specific data dictionary that make developers detect any
kind of mistakes earlier and help programmers to manage blocks more efficiently.

However, the real bedrocks of TargetLink can be summarized in three areas:
code, control design and Standard Support. In fact, the most important objec-
tive of a software generator is to represent a valid alternative to handwritten
code. This implies that reducing time-consuming and error-prone issue have to
be tackled and overcome easily. Thereby, a more efficient and quicker results are
fulfilled. In order to see the forest for the trees, the solution proposed by the
generator needs to be not only fast but also efficient and, possibly, cheap.

Within this context, the properties of the generated code appear to be crucial
for the final development. TargetLink overflow detection allows the programmer
to find the exact line of code where the error occurs. In this way, the mistake can
be fixed rapidly. In addition, TargetLink offers an Auto-Scaling tool that enables
the developers to save a large amount of time. It is worthwhile to define the
’scaling’ process as a procedure to set the range of a variable and, consequently,
the type conversion. Whereas, Code Optimization (figure 4.2) enables the gener-
ation of a reliable ANSI (American National Standards Institute) C-code with a
slight difference in comparison to the handwritten code. The latter is a necessary
requirement for a generator because a weak code could misuse embedded system
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architecture through superfluous lines of code and useless variable declarations.

Figure 4.2: Block optimization.

Furthermore, TargetLink enhances the Matlab environment by means of spe-
cific blocks which extends the Simulink library. This facilitates a quick integration
on the vehicle function model and a more efficient code generation because of the
direct link between TargetLink blocks and generation tool. All in all, all the
Control Design features are classified in the following list:

• Supported Simulink Blocks

• StateFlow support

• TargetLink Simulation blocks

• AUTOSAR blocks

Figure 4.3: Targetlink blocks.

Regarding the relationship with the AUTOSAR standard, TargetLink offers a
set of blocks that allow developers to model application accurately. As depicted
in the figure 4.3, even though some blocks can be employed out of the automotive
goals, the others are mandatory for the application description. For instance, the
Runnable block serves to generate code in a separate C function. Whereas, the
Inports and the Outports defines the interactions of the vehicle function with
other ASW in compliance with the AUTOSAR standard. In our vehicle function,
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the figure 4.4 shows how inputs and outputs of the Fuel Level Control function
are modelled by means of the TargetLink blocks. While the logic of chart rep-
resented by the StateFlow chart remains unchanged, the TargetLink blocks take
the place of the previous Simulink blocks.

Similarly to the AUTOSAR Conformance Test Agency, the conformity of
TargetLink with international criteria are attested by the TUV SUD. This is a
German association that certifies whether TargetLink is suitable for software de-
velopment on safety-critical systems according to worldwide standards.

Figure 4.4: TargetLink block in the Fuel Level Control function.

4.2 Software and Hardware Integration

At the end of the coding phase, a source (.c) and header (.h) files are ready to be
integrated in the system. However, the precise steps to follow rely on both the
hardware target and the interaction of the vehicle function with other functions.
Due to the Fuel Level Control requires data coming from other components, there
has to be a check that certifies the right connection among the vehicle functions
in order to compile the code correctly. This means that if the developer makes a
mistake in the modelling phase, it will be forwarded in the following stages and
the software that aims to link and verify the VF interconnections will return an
error. As long as the error is present, the process is blocked here.

However, a further situation to take into consideration occurs when all inter-
connections are well-established but the VF doesn’t work as the developer expects
or, alternatively, the results differ from the simulation tests. This is a trickier
event because the origin of the mistake is unknown. In fact, it could come from
either hardware devices or the data management. In this case, a debugger to-
gether with a tool able to show transmitted data allow programmers and testers
to detect the mistake and to monitor each single step of the logic.
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4.2.1 SOFTUNE Workbench

The SOFTUNE Workbench is an integrated development environment realized
by Fujitsu which aims to compile and debug the generated code and brings to-
gether three kinds of debuggers and language tools such as compiler, assembler
and linkage kit. Overall, this program can be split in three parts: manager, de-
buggers and body. While the former deals with to code and make programs, the
choice of the debugger is made between simulator debugger, emulator debugger
and monitor debugger.

Before describing the use of this software in the thesis, it is worth underlining
the structure of the main windows. Once clicked the icon of the program, the first
window is the Main Window which is divided into three areas. The top section is
covered by the Tool Bar that allows a developer to build, make and compile the
program. The middle area consists of two sub-windows: the Project window and
the Edit window, figure 4.5(a) and 4.5(b) respectively. While the former displays
the location of the program and its structure in terms of files and folders, the
latter makes the developers interact with the running code. Finally, the bottom
part (figure 4.5(d)) depicts the Output windows which informs the user about the
result returned by the program.

(a) ALL. (b) Edit.

(c) Project window. (d) outptut window.

Figure 4.5: Workbench environment.

In this project, the use of SOFTUNE Workbench concerns both the hardware
and software integration. Initially, it has been employed to compile the generated
code and, later, to build the whole code on the hardware device. Before running
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Figure 4.6: Break-point window.

the code on the ECU, there is a middle stage that confirms the interconnections
of the Fuel Level Control and links the header file to the project. This stage is
performed by the make functions that returns a target file ready to be loaded on
the ECU. In this situation, if the output windows shows a ’no-error’ message, the
entire code can be flashed on the device definitely.

On the other hand, unexpected mistakes could appear during the integration
of the code on the hardware device. For this reason, SOFTUNE Workbench offers
both a breakpoint mechanism (figure 4.6) that enables to stop the code and to
show the value of a variable during the execution. However, it is important to
note that there is not a direct communication between SOFTUNE Workbench
and ECU. In fact, a hardware device has to be employed in the chain to establish
a correct data exchange. It is called emulator and is used not only to make SOF-
TUNE Workbench debug the code but also to load the whole project on the ECU.

4.3 Acceptance Test

In order to deliver a secure and functional application, the testing phase is the
final part of the V-Model diagram. Although the Model Based Design allows de-
velopers to perform tests during the Software Design stage, the bench test on the
hardware target aims both to act as a counter-check for the modelling tests and to
be the conclusive proof before the commercial use of the application. Therefore,
it is undeniable that test cases need to be worked out precisely and to take into
consideration all feasible situations that could occur in reality.

From a company point of view, the Testing team has the role to come up with
test cases for each vehicle function and, in case of unexpected results, send back
the errors to the Software Development team. Obviously, in this project, test
cases have the purpose to verify the accuracy and correctness of the Fuel Level
Control vehicle function without forgetting that they were not devised by a team.
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Figure 4.7: CANcase device.

4.3.1 CANAnalyser and CANCase

Regardless of the type of test, data coming from other vehicle functions have to
be simulated in order to verify all the interconnections of the vehicle function.
For this reason, a software able to show which information are floating on the
communication network together with a device that connects this software to a
hardware simulator must be employed in the bench tests.

The CANcase is a hardware device made by VECTOR that works as an inter-
face between CANanalyzer and the hardware simulator which aims to simulate
data exchange on the CAN and LIN network (figure 4.7). Obviously, the channel
combination depends upon the device features and the number of output ports.
In our case, due to the fact that the LIN was not required, two ports for the
CAN-H and CAN-L were enough for the bench test.

Concerning the software, CANanalyzer is a tool that is utilized for the network
analysis. From a graphical viewpoint, its intuitive structure enables the user to
handle data clearly and efficiently. It consists of a several windows that allow the
tester to monitor the data exchange, to plot the outputs that are forwarded on
the CAN and, finally, to change at run-time the data coming from other vehicle
functions. However, the type of testing could be performed either via a script or,
simply, changing data manually.

The figure 4.8(a) shows the Measurement Setup where a graphical representa-
tion of the data flow is displayed. More precisely, while the right hand-side shows
details about the communication like BUS statistics and graphics, the bottom
part enables to disregard unnecessary node and to specify the type of simula-
tion1. Whereas, the Trace window displays the type of message and its content
(figure 4.8(b)). Finally, the Graphic window plots the values of the signals on the
graph (figure 4.8(c)) while the Data windows shows value, unit and name of the
signal (figure 4.8(d)).

1There are two kinds of simulation: P indicates a script whereas IG is immediate simulation.
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(a) Measurement setup. (b) Trace window..

(c) Graphical window. (d) Data window.

Figure 4.8: CANanalyzer environment.

Figure 4.9: CANanalyzer image

4.3.2 Hardware Simulator

Although the CANanalyzer and the CANcase are mandatory to simulate data
coming from other vehicle functions, these products cannot represent sensor sig-
nals. Therefore, the use of a hardware simulator is necessary to provide fuel
sensor measurements to the ECU. Overall, a simulator can be described as large
metal rectangular box that is made up with pins, levers, variable resistances and
displays whose objective is to behave as much as close to real sensors in a vehicle.

As mentioned before, the connection between CANcase and simulator makes
CANanalyzer detect any change on the CAN and display the real behaviour with
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slight delays. In this specific project, the fuel sensor data are simulated through
two variable resistances that represent the sensors inside the fuel-tank. Rotating
these resistances the data received on the ECU changes as well and, consequently,
the logic will perform accordingly. The table 4.1 illustrates how variables are dis-
tributed and controlled between CANanalyzer and the hardware simulator, while
the figure (TO INSERT) illustrates the interconnection between previously de-
scribed softwares and hardware devices.

CANanalyzer HW Simulator
Vehicle Speed Fuel-Level Sensor Data

Vehicle Speed Fail Fuel-Level Sensor fail
Operational Mode
Fuel Consumption

Fuel Consumption Fail

Table 4.1: Variable distribution.

Figure 4.10: Sketch of the hardware and software interconnection for test bench.

4.4 The Final V-Model

In conclusion, taking into consideration the whole description of the first part of
the V-Model together with the deep analysis provided in this chapter, the final
V-Model diagram can be drawn as follows:
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Figure 4.11: Final V-Model
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Test Cases

Before being delivered to the user, every kind of engineering applications have
to overcome the testing phase. As mentioned earlier, the model based approach
guarantees two types of test. While the modelling test occurs after the design of
the vehicle function, the second and final tests is executed during the hardware in
the loop phase on the hardware target. Although the environment is completely
different, the results of the test cases should have marginal differences.

Regarding this project, the guidelines of the test cases were devised with the
aim of outlining the strength of the application in common scenarios and finding
out possible weakness in unusual situations. Therefore, the number of test cases
is clustered in three areas: STATIC, DYNAMIC and RIFO. Finally, the last test
case shows a complete automotive dynamics where all the previous results are
taken into account. However, it is worthwhile to highlight that simulation and
bench tests aim to verify the correctness and robustness of a vehicle function but
their results are likely to differ from a real situation.

5.1 STATIC

5.1.1 Test Case 0

In this context, the car is turned on and the fuel level is 100%. Obviously, due
to the vehicle not moving, the driver notes that the dashboard is lighted up and
the fuel indicator is stable to the full fuel icon. However, it is noticeable a slight
contrast between the figure 5.1 and 5.2 at the beginning of the graphs, the cause
is a delay related to the hardware simulator that makes the software overlook the
initial sampling time.
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Figure 5.1: Simulink STATIC test0.
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(a) STATIC bench test0.

(b) Zoom of STATIC bench test0.

Figure 5.2: Bench Test 0.
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5.1.2 Test Case 1

Although the situation is pretty identical to the Test Case 0, the goal of this
example is to verify that the lamp of the Low Fuel Warning turns on when the
key is rotated. Due to the reserve parameter is set to 16%, the driver looking at
the dashboard notes the lighted spy.

Figure 5.3: Simulink STATIC test1.
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(a) STATIC bench test1.

(b) Zoom of STATIC bench test1.

Figure 5.4: Bench Test 1.

CHAPTER 5. TEST CASES 72



5.2. RIFO

5.2 RIFO

5.2.1 Test Case 2

This condition is typical for an automobile which is stopped at the petrol station
and is going to be refueled. The purpose of this test case is both to update the
fuel level variation and to display the exact quantity of fuel inside the fuel-tank.
The whole dynamics can be split in two situations: before and after refuelling.
While the former experiences an initial percentage lower than the reserve thresh-
old, the former ends with the fuel-tank completely full. In particular, as depicted
in the figure 5.5 and 5.6, as soon as the fuel level surpasses the reserve, the lamp
is turned off.

Albeit both Simulink and bench simulations don’t have striking contrasts, it
is interesting to outline that to simulate a fuel positive variation during the test
bench, two knobs representing the variable resistances, have to be rotate slowly
otherwise a significant and sudden step should be displayed during the simulation
on CANanalyzer. Conversely, the model simulation requires just a line which de-
scribes the probable fuel variation.

Figure 5.5: Simulink RIFO test2.
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(a) RIFO bench test2.

(b) Zoom of RIFO bench test2.

Figure 5.6: Bench Test 2.
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5.3 DYNAMIC

The DYNAMIC tests take into account all the events with the engine on. How-
ever, it is important to underline that the following test cases are based on two
hypothesis. First, the FuelConsumption parameter is assumed to be zero. The
reason behind this choice is essentially the difficulty in simulating an outcome
coming from another vehicle function. In fact, because it relies on unknown vehi-
cle features, carrying out a reliable estimation of the FuelConsumption resulted
difficult to achieve and this would entail untrustworthy results.

Secondly, the fuel-tank is supposed to be completely full during the initial
sampling and, suddenly, zero after the start up phase. For this reason, as soon
as the transition to the DYNAMIC occurs, both the Pre and Speed filters de-
tect empty fuel-tank and, consequently, the computed fuel level will go through
a rapid decrease in comparison to everyday situations. Hence, the final decisions
to disregard FuelConsumption and to set to 0% the fuel level after the start-up
phase are made in order to observe the sole evolution during the DYNAMIC con-
ditions. However, a real event guarantees a reliable FuelConsumption value, a
more stable fuel measurements and, lastly, a more long-lasting simulation.

5.3.1 Test Case 3

The vehicle is accelerating at a constant speed of 27 km/h without fuel loss and
the goal is to estimate the amount of time within the fuel percentage reaches
zero. What is noticeable from the Simulink and bench test is that the car runs
out all the fuel after approximately 2800 and 2500 seconds, respectively.

Figure 5.7: Simulink DYNAMIC test3.
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(a) DYNAMIC bench test3.

(b) Zoom of DYNAMIC bench test3.

Figure 5.8: Bench Test 3.
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5.3.2 Test Case 4

The only difference with the Test Case 3 is related to the vehicle speed. In fact,
in this case the vehicle runs at 127 km/h. Therefore, the filtering action is quicker
than before and the fuel level indicator decreases more rapidly. In this situation,
both the simulation end at about 1150 seconds.

Figure 5.9: Simulink DYNAMIC test4.
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(a) RIFO bench test4.

(b) Zoom of RIFO bench test4.

Figure 5.10: Bench Test 4.
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5.4 COMPLETE

In comparison to the previous test cases, Simulink and bench test are going to
be analyzed separately. Although the purpose of these tests is the same, they are
representing the same scenario but different evolutions.

5.4.1 Test Case 5

Simulink Test

The figure 5.11(a) describes a scenario where a vehicle is accelerating at
20 km/h and the fuel-tank is completely full. Due to the vehicle speed is lower
than the SpeedThreshold, the fuel decreases according to the low filtering action
but as soon as the speed increases and reaches 100 km/h the slope of the curve
becomes steeper and the fuel falls more rapidly. Between 700 and 800 seconds,
the significant change in slope is provoked by the validation of vehicle speed fail
status that makes the filter act as in the low filtering mode. Once invalidated,
the fuel keeps on decreasing with the high-filtering pace.

Regarding the second part of the figure, the refuelling of the vehicle makes
the percentage rocket from about 4% to 100% within 1000 seconds. Henceforth,
the car speed reaches 150 km/h and the logic outputs a reliable percentage until
the level decreases to 0%. However, in order to simulate all possible input com-
binations, a fail on the sensor measurements is reproduced at 3500 seconds. In
that condition, the fuel percentage plummets suddenly to 0% so that the driver
notes the problem. In case of a temporary failure, once the issue is fixed, the
dynamics continues its evolution.
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(a) COMPLETE Simulink test5.

(b) Zoom of COMPLETE Simulink test5.

Figure 5.11: Simulink Test 5.
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Bench Test

The bench test illustrates a similar situation to the previous Simulink case.
The only difference is represented by the starting speed of the vehicle which is
70 km/h. The timeline events follow the same approach previously explained. In
fact, once decreased to 40%, the vehicle stops and the refuel is performed until
100% is achieved. Afterward, the car accelerates at a constant speed of 150 km/h
that makes the fuel level decrease according to the high filtering action. The
presence of a failure in the Sensor Management makes the percentage sink to
0%. According to the graph 5.12(b), when the error is no longer validated, the
logic works regularly as long as the car runs out all the fuel.
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(a) COMPLETE Bench test5.

(b) Zoom of COMPLETE Bench test5.

Figure 5.12: Bench Test 5.
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Conclusions

To sum up, the first chapter outlined how AUTOSAR changed the automotive
world and the significant advantages related to this standard. For this reason,
crucial pillars such as architecture, methodology, application interfaces and con-
formance test, were discussed and matched to future purposes of the consortium.
Then, the second chapter dealt with requirements, sensors and transfer functions
of the Fuel Level Control vehicle function and provided a high-level sketch of the
model where the most important transitions and states were drawn.

The third chapter introduced the relationship between the V-model and both
vehicle function requirements and objectives. In addition, the choice of the Mat-
lab/Simulink environment for the model based design approach and the use of the
Stateflow chart for the logic implementation are explained and used to realize the
software model. Whereas, the remaining phases of the V-model were discussed in
the fourth chapter where the working principle of software like TargetLink, SOF-
TUNE Workbench and CANanalyzer and hardware devices such as the CANcase
and the hardware simulator were analyzed in depth.

What is noticeable from the final chapter is that the way, whereby the test
had been worked out, follows a straight line of reasoning that goes from testing
the single conditions of the vehicle function model to a complete test case includ-
ing all the possible input variations. Although some of the test cases displays
marginal and negligible differences related to bench instruments, the outcomes
are in line with the expected results and attest all the study conducted through-
out the thesis.

However, the development and the integration of a new functionality inside an
automobile follows a different procedure in a company. In fact, people belonging
to specific teams are involved in different stages of the vehicle function implemen-
tation. From an industrial prospective, it is typical that large-sized companies,
simply labelled as customer in the figure 5.13, prefer ask suppliers for the de-
velopment of an automotive functionality. Before explaining the stages behind
this working relationship, it is important to outline that the customer could ask
for the development of a functionality either from scratch or from an already-
started implementation. Although the former enables the supplier to be free in
the working organization, this manner is much more expensive for the customer.
Conversely, providing a partial implementation is cheaper but provokes a greater
effort to the supplier who needs to keep in touch with the client regularly to
clarify any doubt. In fact, albeit the diagram illustrates just two one-side arrows
toward the customer and supplier, during the development of a vehicle function
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the contacts tend to be really frequent.

However, concerning the supplier internal organization, it mainly consists of
three groups. The Software Architecture Team aims to describe and provide a
well-detailed description of the vehicle function features and requirements. Af-
terwards, these are studied and implemented by the Developing team. However,
in case of misunderstood or lack of information, both the groups will interact in
order to tackle and fix any ambiguous description. While the Testing Team has
the role in working out specific test cases to verify the correctness of the model
carried out by the Developing team. Obviously, if there are unexpected results,
the information will be sent back to the previous team. It is undeniable that
before overcoming all the issues, the supplier chain is likely to be followed back
and forth several times and if a doubt is not clarified by any team, the customer
is advised in order to fulfill the error of the logic.

Figure 5.13: Client-Supplier relationship.
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