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Abstract

Long short-term memory networks, referred as LSTMs, are a notable kind of recur-
rent neural networks. They allow you to overcome vanishing gradient problem. Some
of the different applications of LSTM include speech recognition, handwriting gener-
ation and recognition, music generation and composition, etc. FPGA-based hardware
accelerators have been used recently due to their good performance in terms of power
and flexibility. In this thesis, hardware accelerators have been implemented, synthe-
sized and optimized for LSTM while performing extensive fixed-point data type opti-
mization’s using the Vivado HLS tool. The data types used are fixed point - 16, float
and double. One of the bottlenecks faced during the synthesis is sigmoid activation
function which is non-linear. A piecewise linear approximation is used for sigmoid
function to overcome this issue. Different optimization’s and directives are applied
to explore different micro-architectural solutions. Pragmas like loop pipe-lining and
unrolling, array partitioning etc. are applied during the synthesis process to find the
optimum solution. Co-simulation is performed to check the functionality and validity
of generated RTL as the precision and the functionality may change after the synthe-
sis. The synthesized module can be export as an Intellectual Property (IP) and used in
other Xilinx tools. As the target is small embedded platform, therefore, the data type
fixed-point 16 are being used which have almost the same precision and accuracy re-
sults with respect to data types float and double.
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Chapter 1

Introduction

Artificial Intelligence will have a greater effect on our daily basis life to the extent that
not every human being realize. Machine Learning is one of the branches of this tree,
perhaps the most important one. It gives the power to a computer to learn from experi-
ence and and improve in the future. Basically, a computer can learn on its own. Neural
Networks are kind of networks which are being inspired from the human brain. They
are being used for many machine learning algorithms to train them for complex data.
Long Short Term Memory, LSTM, networks are one of the type where this approach is
used. They fall under the umbrella of Recurrent Neural Networks. They are being used
in number of applications in our daily life. To use these in the applications, a powerful
computational units are needed. Whether it is during the training or inference, a pow-
erful hardware is needed. The high complexity of the computations limit the software
implementation as it will take a long time. To make the computations faster, one can
use Graphical Processing Units or multi-core Central Processing Units. But these tar-
get platforms are not cheap and consumes a lot of proper. Also, they are not ideal for
an embedded platform. An alternative solution is to use a custom hardware accelera-
tor which is specialized for the specific algorithm. This specialized accelerator can be
implemented on an embedded system like FPGA’s which consumes less power and are
cost-efficient.

In this thesis, this work has been depicted by designing a customized hardware
accelerator for the LSTM by using a High-Level Synthesis.

1.1 Design Flow

In this thesis, this work has been depicted by designing a customized hardware acceler-
ator for the LSTM by using a High-Level Synthesis. The tool is provided by Xilinx which
is called Vivado HLS. This accelerator needs to be implemented on a board. For this,
PYNQ-Z2 board has been chosen. It has a dual-core Cortex A9 processor. Chapter 2
will explain the theory of LSTM and how this network works. Chapter 3 will present the

1



1 - Introduction

what is High-Level Synthesis and how you can use Vivado HLS tool to design a custom
accelerator. Chapter 4 will tell how different hardware accelerator have been designed
for different data types and what is the bottleneck problem in designing them for the
LSTM. Chapter 5 will show the different solutions for different data types in terms of
synthesis and optimizations. Finally, Chapter 6 will present final results and the ac-
celerator chosen for LSTM and how these results are compared with C.RU. and G.PU.
platforms.



Chapter 2

LSTM

When there is a larger network through time, gradient decays quickly during back
propagation. This is called Long-Term dependency problem. Recurrent Neural Net-
works, commonly called RNNs, are not able to handle long term dependencies [1].
Long Short Term Memory networks are capable of learning long-term dependencies.
Long Short Term Memory, referred as LSTM, networks are a kind of Neural Networks
first proposed by Sepp Hochreiter and Jurgen Schmidhuber [2]. They allow to alleviate
the vanishing gradient problem. A simple LSTM model has one hidden layer while a
model, which is needed for applications with a larger target, has multiple hidden lay-
ers. A major issue in deep neural networks is that the gradient gets smaller with each
layer until it reaches a point where it is too small to affect the deepest layers. LSTM
consist of memory elements that allows it to remember values for long and short time.
Because of these memory elements in LSTM, there is a continuous gradient flow. This
way, vanishing gradient issue is resolved and it enables learning from data which is
sequential and hundreds of time steps long [3]. A LSTM unit contains cells and gates
through which the information flows. A general architecture of a LSTM unit is shown
in Figure 2.1. LSTM are probably the best choice for the applications where the data is
sequential. They have been applied extensively to the applications from speech recog-
nition to data analytics.
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2.1 General Architecture

A LSTM architecture consists of a cell, an input gate, an output gate and a forget gate.
The cell acts like a memory where the data is stored over time and gates calculates an
activation of a weighted sum. LSTM, like RNNS, do have a chain of modules which are
repeated. These repeated modules have a different structure to the RNNs modules. In
LSTM, there are four neural network layers connected with each other, as shown in 2.3,
in comparison to RNNs where there is only one tanh layer, as shown in 2.4. Every single
line represents a vector from one node to the other connected node. Circle represent

the point-wise operation, like vector addition. Boxes are basically the trained neural
network layers.

Legend
—— unweighted connection
m— weighted connection
- connection with time-lag
@®  branching point
©®  mutliplication

@ sum over all inputs
gate activation function
(always sigmoid)
input activation function
(usually tanh)
output activation function
(usually tanh)

Figure 2.2 shows the notations used in LSTM and RNN modules.
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Figure 2.2: Notations for LSTM and RNN modules

[5]
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Figure 2.4: RNN Module
(5]

2.2 Fundamentals of LSTM Module

The central part of LSTM network is the memory element which is called cell state. The
cell state act like a transportation for the flow of information. It take the information
from the output of one node to the input of other node. It runs across the entire chain
of modules with some linear interactions. Figure 2.5 shows the cell state in LSTM mod-
ule.

It is possible to add or remove the information to the cell states. This is being done
by gates. Gates are a way to let information go through the network. These gates are
composed from neural net layer which is a sigmoid activation function and a point-
wise multiplication operation. The sigmoid layer gives the outputs from 0 and 1. This
describes how much each element shall be let go through the network. A Zero means
that no information is passed through and a One means that all the information is
passed.
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LSTM network has three type of gates which are called:

¢ Forget Gate

¢ Input Gate

¢ Qutput Gate

2.2.1 Forget Gate

In this gate, it is decided what information needs to be thrown away from the cell gate.
This is decided by a sigmoid layer which is called forget gate layer. 1t reads the cur-
rent input x; which is given to it and output h;-; of the previous LSTM module and
gives us a output from 0 to 1 for each element in the cell state C;—;. A value of one
means that this information is kept completely while the value of zero represents that
the whole information is discarded. This helps in keeping away the unnecessary infor-
mation which can be released into the network. Figure 2.6 shows how the forget gate
is implemented in the LSTM unit.
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Figure 2.6: Forget Gate
[5]

2.2.2 Input Gate

It is decided which new information is needed to be stored in the cell state in this step.
This is done in two parts. First of all, a sigmoid layer, which is called the "input gate
layer", decides what values will be updated. Secondly, a tanh layer is used to create a
new vector for new value C,. This vector is added to the cell state. Figure 2.7 shows
how this is done in the LSTM module.

ig =0 (Wi-lhe—1, 2] + by)

C; = tanh(We-[he—1, 2¢] + be)

Figure 2.7: Input Gate (1)
[5]

Once the first part is done, then it’s the time to update the old cell state C;_; to a
new cell state C;. The old cell state C;_; is multiplied by forget gate’s activation vector f;
and added to i,*C;. i, represents input gate’s activation vector. This is new the value,
which is scaled by how much we decided to update every cell state value. Figure 2.8
represents this operation in LSTM module.

7
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2.2.3 Output Gate

In the output gate, it is decided which information is going to the output. This out-
put is based on cell state but more of a filtered version. Here, a sigmoid layer decides
which elements of the cell state is going to output. Afterwards, this cell state state is
passed through tanh layer and multiplied by the output of the sigmoid output gate ac-
tivation function. By multiplying, it is decided which parts of the information is passed
through. Figure 2.9 shows how this is output gate is implemented in the LSTM module.

hf ‘

Eani> or =0 (Wy [hi—1, 2] + bo)

hf_ = 0 * tanh (C'r)

-

Figure 2.9: Output Gate
(5]

2.3 Applications

LSTM’s are being in the technology industry for a number of applications. They are
being used for speech and voice recognition, handwriting generation and recogni-
tion, time series prediction and data analysis. These are just some applications where
they are being chosen. Google use LSTM’s for a numerous applications for their smart
phones. Like from speech recognition on the Google phones, for the smart assistant

8
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Alloto the Google translator [6] [7] [8]. Apple use it for the QuickType keyboard and Siri
on the iPhones [9] [10]. Amazon use it for their voice assistant Alexa [11].
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Chapter 3

High Level Synthesis using Vivado HLS

High Level Synthesis is an automated design process that transforms a high level func-
tional specifications, generally in C/C++ or SystemC, to optimized RTL descriptions for
efficient hardware implementation [12]. In this thesis, Vivado HLS tool is being used
which is provided by Xilinx ®.

Xilinx High-Level Synthesis tool Vivado HLS transforms a C specifications into a
Register Transfer Level (RTL) implementations that synthesizes into a Xilinx Field Pro-
grammable Gate Array (FPGA). Users can write C specifications in C, C++, SystemC or
an OpenCL API C kernel. This FPGA provides a great parallel architecture with benefits
in terms of cost, performance and power consumption over the traditional processors
(13].

Basically, High-level synthesis works as a bridge between hardware and software
providing the following benefits:

* Improved productivity for hardware designers. It gives flexibility to the hardware
designer to work at a higher level of abstraction while creating high-performance
hardware.

* It provides possibility to develop different multi-architectural solutions without
changing the C specifications. This enables design space exploration and helps
in finding the optimal implementation.

e Improved system performance for software designers. They have the possibility
to accelerate the intensive parts of their algorithms, which take alot of computa-
tion, on a target which is FPGA.

3.1 Design Flow of Vivado HLS

Xilinx Vivado HLS tool synthesizes a C function into an IP block that can be integrated
into a hardware system. This IP block can be designed as a hardware accelerator which

11



3 - High Level Synthesis using Vivado HLS

has been done in this thesis. It is well integrated with the other Xilinx design tools and
provides language support and features for creating the optimal implementations of
the C algorithm.

Vivado HLS design flow can be explained as follows:

Compile, Execute and Debug the C algorithm. In HLS, compiling the C pro-
gram is C simulation. Executing C algorithm simulates the function to validate
whether the algorithm is functionally correct. This C function is the primary in-
put to Vivado HLS.

Synthesize the C algorithm into an RTL implementation. Optimization directives
and constraints can be added to direct the synthesis process to implement a spe-
cific optimzation.

Generate reports about hardware resource utilization to timing and analyze the
design in every aspect.

Verify the RTL implementation using a pushbutton flow. Vivado HLS uses the
C test bench to simulate the C function prior to synthesis and to verify the RTL
output using C/RTL Co-simulation.

Package the RTL implementation into a selection of IP packages.

Figure 3.1 shows the high-level synthesis design flow in Vivado HLS.

Test C, G+, Constraints/
Bench SystemC, Directives
CpenCL APl C
C Simulation C Synthesis
RTL Vivado HLS WVHDL
Adapter Verilog
RTL Simulation Packaged IP
Vivado Xilinx
Design Gseﬁfar:nr Platform
Suite Studio

Figure 3.1: Vivado HLS Design Flow
[13]
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3.2

Limitations of Vivado HLS

Vivado HLS supports a wide range of the C language but there are still some constructs
which are not supported. Therefore, these constructs cannot be synthesized and can
result in errors during the design flow. For the design to be synthesized, following
changes must be done in the code.

C function must contain the entire functionality of the design.

None of the functionality can be performed by system calls to the operating sys-
tem.

C constructs must be of a fixed or bounded size.

Implementations of those constructs must be unambiguous.

Following are the constructs which cannot be synthesized in Vivado HLS.

System Calls: These cannot be synthesized as they are the actions that relate
to performing some task upon the operating system in which the C program is
running. Vivado HLS ignores system calls that have no impact on the execution
of the algorithm. Examples are getc(), printf(), sleep() and time().

Dynamic Memory Usage: Memory allocation system calls must be removed from
the design code before synthesis. Any system calls that manage memory alloca-
tion within the system, like, alloc, free() and malloc() are using resources that
exist in the memory of the operating system and are created and released during
run time.

Pointer Limitations: Vivado HLS does not support general pointer casting, un-
less it between native C types. Function pointers are also not supported. But
pointer arrays are supported for synthesis, provided that every pointer points to
scalar, not to the other pointers.

Recursive Functions: These cannot be synthesized. This applies to those func-
tions which form endless recursion. This also applies to tail recursion in which
there is a finite number of function calls.

Standard Template Libraries: Many of the C++ standard template libraries use
dynamic memory allocation and function recursion. Therefore, these cannot be
synthesized as well. It is a good practice to create a local function which exhibits
the same identical functionality but don’t use the above previously mentioned
characteristics.

13



3 - High Level Synthesis using Vivado HLS

3.3 Optimization Methodology

Vivado HLS provides a number of optimization’s that are applied to C/C++ code through
the use of directives and pragmas in the code. There are two flows for optimizing the
hardware functions.

e Top-down flow

¢ Bottom-down flow

In this thesis, second flow has been used. In this flow, the hardware functions are
optimized in isolation from the system using the Vivado HLS compiler provided in the
Vivado Design suite. The hardware functions are analyzed, optimization directives can
be applied to create an implementation other than the default, and the resulting opti-
mized hardware functions are then incorporated into the SDSoC environment [14].

Figure 3.2 shows the detailed optimization methodology for hardware functions in
Vivado HLS.

Simulate Design - Validate The C function

Synthesize Design - Baseline design

- Define interfaces (and data packing)

1: Initial Optimizations : :
3 - Define loop trip counts

2: Pipeline for Performance - Pipeline and dataflow

- Partition memories and ports

3: Optimize Structures for Performance 2
- Remove false dependencies

4: Reduce Latency - Optionally specify latency requirements

5: Improve Area - Optionally recover resources through sharing

Figure 3.2: Vivado HLS Methodology
[14]

In order to get the optimize design, in terms of reducing the latency, improving
the throughput, reducing the device resource utilizations of the resulting RTI code, dif-
ferent pragmas can be applied directly to the source code of the design. Some of the
pragmas which have been used in this thesis are:

14



3.4 - RTL Verification and Export

* Array Partition: This pragma partitions an array into smaller arrays or even in-
dividual elements. This results in RTL with multiple small memories instead of
one large memory. It increase the amount of read and write ports. It potentially
improves the throughput of the design. This is also requires more memory ele-
ments or registers on the FPGA.

* Dependence: This pragma provides additional information that can overcome
loop-carry dependence and allow loops to be pipelined. Vivado HLS automati-
cally detects dependencies within loops or between different iterations of a loop.

* Interface: It specifies how RTL ports are created from the function definition
during interface synthesis. The

* Pipeline: It reduces the initiation interval for a function or loop by allowing the
concurrent execution of operations. It is also possible to specify the initiation
interval through the use of the II option for the pragma.

e UNROLL: It transforms loops by creating multiples copies of the loop body in the
RTL design, which allows some or all loop iterations to occur in parallel. It also
allows the loop to be fully or partially unrolled. Fully unrolling the loop creates a
copy of the loop body in the RTL for each loop iteration, so the entire loop can be
run concurrently. Partially unrolling a loop lets you specify a factor N, to create
N copies of the loop body and reduce the loop iterations accordingly.

3.4 RTL Verification and Export

Vivado HLS uses the C test bench to simulate the functionality of the top-level function
during the C simulation step. Afterwards, it reuses the C test bench to automatically
verify the RTL output using C/RTL co-simulation. Vivado HLS automatically generate
the files required to reuse the C test bench during the co-simulation step. When verifi-
cation completes, the console displays message SIM—1000 to confirm the verification
was successful. If the C test bench returns a non-zero value, Vivado HLS reports that
the simulation failed. Vivado HLS automatically creates the infrastructure to perform
the C/RTL co-simulation and executes the simulation using one of the supported RTL
simulators, which can be chosen independently, inside the tool.

The final step in the Vivado HLS design flow is to package the RTL output as an IP.
It is possible to export the RTL and package the final RTL output files as IP in any of the
following Xilinx IP formats:

 Vivado IP Catalog

* System Generator for DSP

15



3 - High Level Synthesis using Vivado HLS

* Synthesized Checkpoint

It is possible to execute logic synthesis from within Vivado HLS to evaluate the final
results of RTL synthesis and implementation. This confirms the estimates provided by
Vivado HLS for hardware utilizations and timing before handing off the IP package.

In this thesis work, C/RTL simulations has been performed during every single
multi-architectural solution which confirmed the functionality of the VHDL code of
each solution. Beside, the accuracy of the estimated values of hardware utilizations
and timing was evaluated before exporting the design as an IP. RTL was exported suc-
cessfully in each solution.

16



Chapter 4

Design of Hardware Accelerators using
Vivado HLS

The main part of this thesis work is to design a hardware accelerator via C-based FPGA
design tool provided by Xilinx which is Vivado HLS. The design flow, methodology and
how the tool can be used to design the hardware accelerator has been explained in
Chapter 3.

4.1 CSimulation

First of all, the C simulations were ran to validate the C++ specifications with the orig-
inal data type double. Once validated, it was important to convert the data type from
double to float and fixed-points 16. The reason behind was that the hardware accel-
erators, needed to be designed, were for embedded platform. To be specific, these
hardware accelerators were being designed for "signal processing and trajectory recon-
struction in an indoor locationing application using capacitive sensors". After convert-
ing into data types float and fixed-point 16, C simulations were ran again to validate
the C++ specifications.

4.2 Testing of the LSTM algorithm

Once the C simulations were performed and C++ specifications were validated, next
step was to create a C-based test bench in order to verify the functionality of the algo-
rithm. If there is no test bench used, the results obtained from C and RTL simulation
may be different. One of the great thing about Vivado HLS is that it re-uses the C-based
test bench to automatically verify the RTL output. This helps in saving time in terms
of writing a test bench for RTL level. The test bench basically compared the results
obtained during the C simulations with the golden output file. The golden output file

17



4 — Design of Hardware Accelerators using Vivado HLS

was generated during the training of the algorithm. Algorithm was trained with the
data type double. Hence, there was no error when the results, achieved during the C
simulation when the data type was double, compared with the output file. In case of
float, % error was 0.0133%. For fixed-point 16, % error was 0.0136%. These results were

pretty satisfying.

4.3 Pre-Synthesis

This is the most important part of the hardware accelerator design as the C code is
being translated to RTL code, which can be in VHDL or Verilog depending upon the
user preference. To perform this and implementing the accelerators, PYNQ-Z2 was
chosen as target was the embedded platform. PYNQ-Z2 have a dual-core Cortex A9
processor. THe hardware resources present on the board are shown in Table 4.1.

Resources | BRAM_18K | DSP48E FF LUT
Quanity 280 220 106400 | 53200

Table 4.1: Resources on PYNQ-Z2

where BRAM_18K stands for Block RAM, DSP48E represents the digital signal pro-
cessing slice, FF stands for flip-flops and LUT stands for Look up table.

Pre-synthesis was performed, which actually is a synthesis but it gives an estimated
values of resource utilization and timing. This showed which components were using
the most resources. Table 4.2 show the estimation results of resource usage in the case
of data type double. The minimum latency was 3028235 clock cycles. The estimated
time was 10.89 ns, which was well within the target time, 12.50 ns.

Resources BRAM_18K | DSP48E FF LUT

Total Used 35 143 20222 | 29839

Available 280 220 106400 | 53200
Utilization % 12 65 19 56

Table 4.2: Utilization Estimate for double

Table 4.3 show the estimation results of resource usage in the case of data type float.
The minimum latency was 2266635 clock cycles. The estimated time was 11.72 ns,
which was well within the target time, 12.50 ns.

Table 4.4 show the estimation results of resource usage in the case of data type float.
The maximum latency was 2391435 clock cycles. The estimated time was 11.31 ns,
which was well within the target time, 12.50 ns.
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4.4 - Implementation of PLAN

Resources BRAM_18K | DSP48E FF LUT

Total Used 19 72 8641 14772

Available 280 220 106400 | 53200
Utilization % 6 32 8 27

Table 4.3: Utilization Estimate for float

Resources BRAM _ 18K | DSP48E FF LUT

Total Used 6 10 2718 3275
Available 280 220 106400 | 53200
Utilization % 2 4 2 6

Table 4.4: Utilization Estimate for Fixed-point 16

4.4 Implementation of PLAN

By looking at the result from the pre-synthesis, it was noted that the sigmoid activation
function consumed the most resources. This sigmoid function in a non-linear. All in
all, it took 90% of the total resources used. It was important to find out a solution for
this. An efficient piece-wise linear approximation, PLAN, was used to replace it [15].
Figure 4.1 shows how it is implemented in the algorithm.

template<typename T>

const T sigmoid (const T in) {
T tmp, tmpl;

if (in < 8)
tmp = -in;

} else
tmp = in;

if ( tmp >= (T) 5)
tmpl = (T) 1;
llse if ((T) 2.375 <= tmp & tmp < (T) 5)
! tmpl = (tmp * (T) ©.83125) + (T) 0.84375;
ilse if ((T) 1 <= tmp && tmp < (T) 2.375)
tmpl = ((T) ©.125 * tmp) + (T) 0.625;
%Lse if ((T) 8 <= tmp & tmp < (T) 1)

tmpl = ((T) €.25 * tmp) + (T) 0.5;

if ( in < (T) 0)
{

tmpl = (T) 1 - tmpl;

return tmpl;
}
Figure 4.1: Piece-Wise Linear Approximation (PLAN)
(4]

After implementation of PLAN, C simulations were performed and C++ specifica-
tions were validated.
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Chapter 5

Synthesis and Optimization

This chapter explains how Vivado HLS allow to explore different solutions during the
synthesis phase. During this, by adding different directives or pragmas, it is also per-
form the optimizations for different solutions. When a new solution is created, it is
possible to copy the directives and settings of the previous solutions to the present so-
lution. User can add more directives to the present solution to get the desired result
in terms of performance. It is also possible to compare different solutions which help
in finding the optimal solution. This optimal solution can be find by comparing the
resource usage and the performance achieved.

Following are the different solutions which were explored during the work. It was
kept in mind that the PYNQ-Z2 have a limited number of hardware resources.

5.1 Solutionl

This solution is for data type double. In this solution, no directives were added in the
design. The timing achieved after post synthesis was 11.04 ns and after post-implementation
wa 11.65 ns. The minimum number of clock cycles were 2977305 c.c. The execution

time was 37.21 ms. Table 5.1 shows the resource usage in this solution.

Resources | Used (VHDL)
SLICE 4561
LUT 13336
FF 11651
DSP 113
BRAM 30

Table 5.1: Summary of Resources Utilized

Figure 5.1 and Figure 5.2 shows the total resources utilization % after implementa-
tion and the power consumption.
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5 — Synthesis and Optimization

Utilization Fost-Synthesis | Post-lmplementation
Graph | Table
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BFRAM 11
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Figure 5.1: Utilization % Post-Implementation
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Figure 5.2: Power Consumption

5.2 Solution 2

This solution is for data type float. In this solution, no directives were added in the de-
sign. The timing achieved after post synthesis was 11.32ns and after post-implementation
wa 11.64 ns. The minimum number of clock cycles were 2250635 c.c. The execution
time was 28.13 ms. Table 5.2 shows the resource usage in this solution.

Resources | Used (VHDL)
SLICE 8980
LUT 12224
FF 24084
DSP 84
BRAM 13

Table 5.2: Summary of Resources Utilized

Figure 5.3 and Figure 22 shows the total resources utilization % after implementa-
tion and the power consumption.
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5.3 - Solution 3

Utilization Post-Synthasis Post-Implementation
Graph | Table
LuT 13
LUTR.AM
FF -
BRAM
DsP
0 25 50 75 100
Utilization (8

Figure 5.3: Utilization % Post-Implementation

Power Summary On-Chip

Dynamic: 0.130 W

1% Clocks:  0.025 W

55% 29% Signals 0037 W

19% Logic: 0,024 W

14% M BRAM; 0,018 W

19% DsP 0.026 W
45% Static: 0.105 W
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Figure 5.4: Power Consumption

5.3 Solution 3

This solution is for data type fixed-point 16. In this solution, no directives were added
in the design. The timing achieved after post synthesis was 10.48 ns and after post-
implementation wa 12.37 ns. The minimum number of clock cycles were 625635 c.c.
The execution time was 7.82 ms. Table 5.3 shows the resource usage in this solution.

Resources | Used (VHDL)
SLICE 3417
LUT 6354
FF 11880
DSP 75
BRAM 0

Table 5.3: Summary of Resources Utilized

Figure 5.5 and Figure 5.6 shows the total resources utilization % after implementa-
tion and the power consumption.
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Utilization Fosi-synthesis | Post-Implementation
Graph | Table
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LUTRAM
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ERAM
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Figure 5.5: Utilization % Post-Implementation
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Figure 5.6: Power Consumption

5.4 Solution 4

This solution is for data type double where the directives were added to the design to
optimize it. As there are memory elements in the LSTM unit, therefore,"ARRAY PAR-
TITION" directive was added. By adding this directive, arrays were divided into small
arrays to have multiple read and write operations. This resulted in increase of resource
usage and reduction of latency and execution time. The timing achieved after post
synthesis was 11.042 ns and after post-implementation was 12.27 ns. The minimum
number of clock cycles were 1733767 c.c. The execution time was 21.67 ms. Table 5.4
shows the resource usage in this solution.

Figure 5.7 and Figure 5.8 shows the total resources utilization % after implementa-
tion and the power consumption.
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5.4 - Solution 4

Resources | Used (VHDL)
SLICE 13058
LUT 24888
FF 49116
DSP 144
BRAM 18

Table 5.4: Summary of Resources Utilized

Utilization Fost-Synthesis Post-Implementation
Graph | Table
LuT i7
LUTRAM 4 1
FF
BR.AM
DsP
25 s0 75 100
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Figure 5.7: Utilization % Post-Implementation

Power Summary On-Chip
Dynamic: 0.454W
24% Clocks:  0.107 W
Signals 0173 W
38%
80% | | Logic: 0,105 W
23% B BraM; 0,014 W
P s 0,056 W
12% : 22
Static 0.110wW
20% 100% PLStatic;  ©0.110W

Figure 5.8: Power Consumption

Directives like pipelining and unrolling were added to this design to explore more
possibilities but in vain. The results achieved during the pre-synthesis, the estimated
results, showed us that it would required more resource usage in comparison to the
available ones on the board. The timing constraints were not met as well. As the target
was the embedded platform, therefore, it wasn’t possible to explore more solutions for

data type double.
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5.5 Solution 5

This solution is for data type float where the directives were added to the design to
optimize it. "ARRAY PARTITION" directive was copied from the previous solution5.4.
"PIPELINE" directive were also applied to smaller loops as well. This would help in
reducing the initiation intervals of the loops. This resulted in increase of resource usage
and reduction of latency and execution time. The timing achieved after post synthesis
was 11.32 ns and after post-implementation was 11.63 ns. The minimum number of
clock cycles were 1452137 c.c. The execution time was 18.15 ms. Table 5.5 shows the
resource usage in this solution.

Resources | Used (VHDL)
SLICE 8980
LUT 12224
FF 24084
DSP 84
BRAM 13

Table 5.5: Summary of Resources Utilized

Figure 5.9 and Figure 5.10 shows the total resources utilization % after implemen-
tation and the power consumption.

Utilization Post-Synthasis Post-Implementation
Graph | Table

LUT
LUTRAM
FF

BRAM
DSP

25 s0 75 100
LUtilization &)

Figure 5.9: Utilization % Post-Implementation
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5.6 — Solution 6
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Figure 5.10: Power Consumption

Pipelining was applied to bigger loops and unrolling was also applied to the design
to explore more solutions to have better performance. The results achieved during the
pre-synthesis, the estimated results, showed us that it would required more resource
usage in comparison to the available ones on the board. As the target was the embed-
ded platform, as in the previous solution, it wasn’t possible to explore more solutions.

5.6 Solution 6

This solution is for data type fixed-point 16 where the directives were added to the
design to optimize it. The directives were copied from the previous solution 5.5. This
resulted in increase of resource usage and reduction of latency and execution time.
The timing achieved after post synthesis was 9.02 ns and after post-implementation
was 10.14 ns. The minimum number of clock cycles were 542337 c.c. The execution
time was 6.77 ms. Table 5.6 shows the resource usage in this solution.

Resources | Used (VHDL)
SLICE 3166
LUT 4998
FF 10170
DSP 16
BRAM 0

Table 5.6: Summary of Resources Utilized

Figure 5.11 and Figure 5.12 shows the total resources utilization % after implemen-

tation and the power consumption.
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Utilization Fosi-Syntheszis | Post=lmplementation
Graph | Table
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Figure 5.11: Utilization % Post-Implementation
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Figure 5.12: Power Consumption

By looking at the results, it was realized that the design for fixed-point 16 could be
more optimized to find optimal solution as there were a lot of hardware resources still
available. The next mentioned solutions explored this case.

5.7 Solution 7

This solution is for data type fixed-point 16 where the directives were added to the de-
sign to optimize it. The directives were copied from the previous solution 5.6. "PIPELINE"
directive was also applied to all the loops except the outer-most loop. This resulted in
increase of resource usage and reduction of latency and execution time. The timing
achieved after post synthesis was 10.48 ns and after post-implementation was 12.37
ns. The minimum number of clock cycles were 24737 c.c. The execution time was 0.30
ms. Table 5.7 shows the resource usage in this solution.

Figure 5.13 and Figure 5.14 shows the total resources utilization % after implemen-
tation and the power consumption.
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5.8 — Solution 8

Resources | Used (VHDL)
SLICE 3417
LUT 6354
FF 11880
DSP 75
BRAM 0

Table 5.7: Summary of Resources Utilized

Utilization Fost-Synthesis | Post-lmplementation
Graph | Table
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Figure 5.13: Utilization % Post-Implementation
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Figure 5.14: Power Consumption

The results obtained were incredible. The execution time and latency were de-
creased 22x and 23x respectively. The resource utilization were increased though.

5.8 Solution 8

This solution is for data type fixed-point 16 where the directives were added to the
design to optimize it. The directives were copied from the previous solution 5.7. Beside
the directives from previous solution, "UNROLL" directive was applied to the outer
most loop by the factor of 4. The timing achieved after post synthesis was 10.48 ns and

29



5 — Synthesis and Optimization

after post-implementation was 12.28 ns. The minimum number of clock cycles were
23887 c.c. The execution time was 0.29 ms. Table 5.8 shows the resource usage in this
solution.

Resources | Used (VHDL)
SLICE 3862
LUT 6886
FF 11990
DSpP 75
BRAM 0

Table 5.8: Summary of Resources Utilized

Figure 5.15 and Figure 5.16 shows the total resources utilization % after implemen-
tation and the power consumption.

Utilization Fost-Synthesis | Post-lmplementation
Graph Table
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Figure 5.15: Utilization % Post-Implementation
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Figure 5.16: Power Consumption

Latency and Execution time were decreased but not so much. Utilization of hard-
ware resources were increased a bit as well.
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5.9 - Solution 9

5.9 Solution9

This solution is for data type fixed-point 16 where the directives were added to the
design to optimize it. The directives were copied from the previous solution 5.8. Beside
the directives from previous solution, "UNROLL" directive was applied to the outer
most loop by the factor of 8. The timing achieved after post synthesis was 10.48 ns and
after post-implementation was 12.34 ns. The minimum number of clock cycles were
22930 c.c. The execution time was 0.28 ms. Table 5.9 shows the resource usage in this

solution.

Resources | Used (VHDL)
SLICE 3797
LT 7172
FF 12184
DSP 75
BRAM 0

Table 5.9: Summary of Resources Utilized

Figure 5.17 and Figure 5.18 shows the total resources utilization % after implemen-
tation and the power consumption.

Utilization

LUT
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FF
DsP
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Figure 5.17: Utilization % Post-Implementation
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Power Summary On-Chip
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The increase of resource usage was barely minimal. The latency and execution time
were decreased by 957 c.c. and 0.01 ms. By applying different other directives, either
the resource usage would increase more than the available on the board or there wasn’t
much significant change in the latency and execution time.
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Chapter 6

Conclusion

6.1 Summary

The work of this presented thesis is to design a hardware accelerator for the embedded
platform in order to reduce the execution time and increase the throughput of the de-
sign. This Hardware accelerator is being designed for signal processing and trajectory
reconstruction in an indoor locationing application using capacitive sensors.

6.2 Results

During this work, as explained in Chapter 5, different optimizations were performed
for different data types to evaluate the latency and execution time.

For double data type, the optimal solution, considering the constraint in terms of
hardware resources on the PNYQ-Z2, is Solution 4 in the chapter 5. The latency and
execution time were decreased 2x.

For float data type, the optimal solution, considering the constraint in terms of
hardware resources on the PNYQ-Z2, is Solution 5 in the chapter 5. The latency and
execution time were decreased 4x and 2x respectively.

For fixed-point 16 data type, the optimal solution, considering the constraint in
terms of hardware resources on the PNYQ-Z2, is Solution 9 in the chapter 5. The la-
tency and execution time were decreased 27x and 28x respectively.

LSTM was also implemented and optimized on C.PU. as well to calculate the exe-
cution time for different data types. The C.PU., on which this was performed, was Intel
core i7-6900K @ 3.20 GHz. The results are shown in Table 6.1.

As the target is small embedded platform, therefore, specialized accelerator adapted
is of data type fixed-point 16 which have almost the same precision and accuracy re-
sults with respect to data types float and double. The design space was explored while
performing extensive fixed-point 16 data type optimizations using the Vivado HLS tool.
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6 — Conclusion

Data Types | Execution Time (ms)
Double 0.682
Float 0.639
Fixed-Point 16 2.49

Table 6.1: Execution Time on C.PU.

The optimal solution found is the one explained in Solution 9 of chapter 5. The execu-
tion time in comparison to the C.PU. used is 9x lower.
Figure 6.1 shows how the design have been implemented on PYNQ-Z2.

Figure 6.1: Implemented Design on PYNQ-Z2

In comparison to Graphic Processing Unit (GPU), the power consumption is much
lower and the results obtained are comparable in terms of efficiency [16].
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Appendix A

Reports

A.1 Resources Usage Summary

Listing A.1: Report Utilization Synthesis
Copyright 1986-2018 Xilinx, Inc. All Rights Reserved.

Tool Version : Vivado v.2018.2.1 (1in64) Build 2288692 Thu Jul 26 18:23:50 MDT 2018

|

| Host : shaheen.polito.it running 64-bit Cent0S release 6.10 (Final)

| Command : report_utilization -file ./report/position_utilization_synth.rpt
| Design : position

| Device : 7z020clg400 -1

|

Design State : Synthesized

Utilization Design Information

Table of Contents
1. Slice Logic

1.1 Summary of Registers by Type
2. Memory

3. DSP

4. I0 and GT Specific

5. Clocking

6. Specific Feature

7. Primitives

8. Black Boxes

9. Instantiated Netlists

1. Slice Logic

o e e Fommmm oo Fommmmm o Fommmmm oo Fomm oo +
| Site Type | Used | Fixed | Available | Utily |
oo e oo tommmmm o Fommmmo o Fommmmm oo tommmmm o +
| Slice LUTs* | 7212 | 0 | 53200 | 13.56 |
| LUT as Logic | 7119 | (O 53200 | 13.38 |
| LUT as Memory | 93 | o | 17400 | 0.53 |
| LUT as Distributed RAM | o | 0 | | |
| LUT as Shift Register | 93 | 0 | | |
| Slice Registers | 12184 | o | 106400 | 11.45 |
| Register as Flip Flop | 12184 | o | 106400 | 11.45 |
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0.00

1
1

106400

Register as Latch

F7 Muxes

.68
.08

26600
13300

448

R e it S e e ittt s o

144

F8 Muxes

1.1 Summary of Registers by Type

R ittt e e 2l

| Clock Enable | Synchronous | Asynchronous

Total

Memory

2.

R ettt e e e it e o

Utily% |

Available |

| Fixed |

Used

Site Type

R et e I T it s

0.00

0
0

140
140
280

Block RAM Tile

R et e e i L o

.00

RAMB36 /FIF0*

RAMB18

.00

DSP

Rt e e i e

Utily |

Available |

| Fixed |

Used

R e i e e et s

Site Type

34.09

220

0

75

DSPs

R it o e o it o

75

DSP48E1 only

I0 and GT Specific

4.

g g

Utily |

Available

Used | Fixed |

Site Type

_REF

PHASER

Bonded IOPADs

Bonded IOB
Bonded IPADs
PHY_CONTROL
OUT_FIFO
IN_FIFO
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| IDELAYCTRL | 0 | 0 |

| IBUFDS | 0 | 0 |

| PHASER_OUT/PHASER_QOUT_PHY | o | (O

| PHASER_IN/PHASER_IN_PHY | o | 0 |

| IDELAYE2/IDELAYE2 _FINEDELAY | 0 | o |

| ILOGIC | 0 | 0 |

| 0LOGIC | (O 0 |
e tommm oo tomm oo Fomm oo -
5. Clocking

P oo tomm oo e e +
| Site Type | Used | Fixed | Available | Utily |
P oo tomm oo e e oo +
| BUFGCTRL | 0 | 0 | 32 | 0.00 |
| BUFIO | (O 0 | 16 | 0.00 |
| MMCME2_ADV | 0 | 0 | 4 1 0.00 |
| PLLE2_ADV | (O o | 4 | 0.00 |
| BUFMRCE | o | o | 8 | 0.00 |
| BUFHCE | 0 | 0 | 72 | 0.00 |
| BUFR | o | o | 16 | 0.00 |
SR tomm oo Fomm oo Fomm o - tomm oo oo +
6. Specific Feature

S tomm - e tom e - oo oo
| Site Type | Used | Fixed | Available | Util¥%
P tommm - oo S oo oo
| BSCANE2 | 0 | 0 | 4 | 0.00
| CAPTUREE2 | 0 | 0 | 1| 0.00
| DNA_PORT | 0 | 0 | 1| 0.00
| EFUSE_USR | 0 | o | 1| 0.00
| FRAME_ECCE2 | o | o | 1| 0.00
| ICAPE2 | 0 | 0 | 2 | 0.00
| STARTUPE2 | o | o | 1| 0.00
| XADC | 0 | 0 | 1] 0.00
P tommm - oo B P, oo oo
7. Primitives

[ SR, Fomm e oo R +

| Ref Name | Used | Functional Category |

[ R, Fomm o R +

| FDRE | 12174 | Flop & Latch |

| LUT6 | 2364 | LUT |

| LUT3 | 2074 | LUT |

| LUT2 | 1482 | LUT |

| LUTS | 1168 | LUT |

| LUT1 | 740 | LUT |

| CARRY4 | 635 | CarrylLogic |

| MUXF7 | 448 | MuxFx |

| LUT4 | 357 | LUT |

| MUXF8 | 144 | MuxFx |

| DSP48E1 | 75 | Block Arithmetic |

| SRL16E | 72 | Distributed Memory |

| SRLC32E | 21 | Distributed Memory |

| FDSE | 10 | Flop & Latch |
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Listing A.2: Report Utilization Routed
Copyright 1986-2018 Xilinx, Inc. All Rights Reserved.

Tool Version : Vivado v.2018.2.1 (1in64) Build 2288692 Thu Jul 26 18:23:50 MDT 2018

[

| Host : shaheen.polito.it running 64-bit Cent0S release 6.10 (Final)

| Command : report_utilization -file ./report/position_utilization_routed.rpt
| Design : position

| Device : 7z020clg400 -1

[

Design State : Fully Placed

Utilization Design Information

Table of Contents

1. Slice Logic

1.1 Summary of Registers by Type
2. Slice Logic Distribution
3. Memory

4. DSP

5. I0 and GT Specific
6. Clocking

7. Specific Feature

8. Primitives

9. Black Boxes

10. Instantiated Netlists

1. Slice Logic

oo oo tommmmo o tommmmo o Fommmmmo o tommmmo o +
| Site Type | Used | Fixed | Available | UtilY |
o m oo tommmmo o tommmmoo Fommmmmooo - tommmmo o +
| Slice LUTs | 7172 | 0 | 53200 | 13.48 |
| LUT as Logic | 7083 | 0| 53200 | 13.31 |
| LUT as Memory | 89 | o | 17400 | 0.51 |
| LUT as Distributed RAM | (I 0 | | |
| LUT as Shift Register | 89 | 0 | | |
| Slice Registers | 12184 | (O 106400 | 11.45 |
| Register as Flip Flop | 12184 | o | 106400 | 11.45 |
| Register as Latch | 0 | 0 | 106400 | 0.00 |
| F7 Muxes | 448 | 0 | 26600 | 1.68 |
| F8 Muxes | 144 | (O 13300 | 1.08 |
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tommmm oo Fommmmm e Fom e Fom e +
| Total | Clock Enable | Synchronous | Asynchronous |
tommmmm o Fommmmm e Fomm e Fom e +
| o | _ - -
| o | _ | - Set |
| o | _ | - Reset |
| o | _ | Set | -
| o | _ | Reset | -
(0] | Yes | - -
| o | Yes | - Set |
| o | Yes | - Reset |
| 10 | Yes | Set | -
| 12174 | Yes | Reset | -
tommmmo o . Fommmmm oo P +

e e e e oo S R [P R +
| Site Type | Used | Fixed | Available | Utily |
o Fommmo Fommmm - I Fommmm - +
| Slice | 3797 | o | 13300 | 28.55 |
| SLICEL | 2627 | 0 | I [
| SLICEM | 1170 | 0 | | |
| LUT as Logic | 7083 | o | 53200 | 13.31 |
| using 05 output only | 3 1 | | |
| using 06 output only | 6013 | | | |
| using 05 and 06 | 1067 | | | [
| LUT as Memory | 89 | (O 17400 | 0.51 |
| LUT as Distributed RAM | 0 | 0 | | [
| LUT as Shift Register | 89 | o | | |
I using 05 output only | 52 | | | |
| using 06 output only | 33 | | | |
| using 05 and 06 | 4 | | | |
| LUT Flip Flop Pairs | 2612 | 0 | 53200 | 4.91 |
| fully used LUT-FF pairs | 795 | | | |
| LUT-FF pairs with one unused LUT output | 1792 | | | |
| LUT-FF pairs with one unused Flip Flop | 1733 | | | |
| Unique Control Sets | 284 | | | |

* Note: Review the Control Sets Report for more information regarding control sets.

3. Memory

oo e o Fommo - S Fommeo - +
| Site Type | Used | Fixed | Available | Utily |
o o - L R S —— LR +
| Block RAM Tile | 0 | 0 | 140 | 0.00 |
[ RAMB36/FIF0* | 0 | 0 | 140 | 0.00 |
| RAMB18 | 0 | 0 | 280 | 0.00 |
Fom e tommmoo Fommo oo S Fommo oo +
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DSP

R et ittt s e I T o

Utily |

Available |

| Fixed |

Used

R et e o i R ittt &

Site Type

34.09

220

0

75

DSPs

R et ittt i e i e o

75

DSP48E1 only

I0 and GT Specific

5.

5 g

Utily |

Available

Used | Fixed |

Site Type

_IN_PHY

/PHASER

REF

PHASER
IDELAYCTRL

Bonded IOPADs
IBUFDS

Bonded IOB
Bonded IPADs
PHY_CONTROL
OUT_FIFO
IN_FIFO
PHASER_IN
ILOGIC
OLOGIC

Clocking

6.

g S

Utily |

Available

Used | Fizxed |

Site Type

_ADV

MMCME2

Specific Feature

7.

g P P

Utily |

Available

Used | Fixed |

Site Type

DNA_PORT
EFUSE_USR
FRAME_ECCE2
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oo - Fommmo oo - +
| Ref Name | Used | Functional Category |
oo - [ - +
| FDRE | 12174 | Flop & Latch |
| LUT6 | 2364 | LUT |
| LUT3 | 2074 | LUT |
| LUT2 | 1482 | LUT |
| LUTS | 1168 | LUT |
| LUT1 | 705 | LUT |
| CARRY4 | 635 | CarryLogic |
| MUXF7 | 448 | MuxFx |
| LUT4 | 357 | LUT |
| MUXF8 | 144 | MuxFx |
| SRL16E | 78 | Distributed Memory |
| DSP48E1 | 75 | Block Arithmetic |
| SRLC32E | 15 | Distributed Memory |
| FDSE | 10 | Flop & Latch |
[ SR [ oo +
9. Black Boxes

oo - Fommm oo +

| Ref Name | Used |

Fommm oo - R p—— +

A.2 Timing Reports

Listing A.3: Timing Report Synthesis

Copyright 1986-2018 Xilinx, Inc. All Rights Reserved.
Tool Version : Vivado v.2018.2.1 (1in64) Build 2288692 Thu Jul 26 18:23:50 MDT 2018

|

| Host : shaheen.polito.it running 64-bit Cent0S release 6.10 (Final)
| Command : report_timing -file ./report/position_timing_synth.rpt

| Design : position

| Device : 7z020-clg400

| Speed File : -1 PRODUCTION 1.11 2014-09-11

Timing Report

Slack (MET) : 2.018ns (required time - arrival time)
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Source: grp_feed_forward_fu_1066/grp_matMul_2_fu_204/tmp_3_fu_467_p2/CLK
(rising edge-triggered cell DSP48El1 clocked by ap_clk {rise@0.000ns fall@6.250ns period=12.500ns})
Destination: grp_feed_forward_fu_1066/grp_matMul_2_fu_204/p_Val2_29_6_fu_626_p2/C[10]
(rising edge-triggered cell DSP48E1l clocked by ap_clk {rise@0.000ns fall@6.250ns period=12.500ns1})
Path Group: ap_clk
Path Type: Setup (Max at Slow Process Cormer)
Requirement: 12.500ns (ap_clk rise@12.500ns - ap_clk rise@0.000mns)
Data Path Delay: 8.697ns (logic 5.489ns (63.115%) route 3.208ns (36.885%))
Logic Levels: 8 (CARRY4=5 DSP48E1=2 LUT2=1)
Clock Path Skew: -0.049ns (DCD - SCD + CPR)
Destination Clock Delay (DCD): 0.924ns = ( 13.424 - 12.500 )
Source Clock Delay (SCD): 0.973ns
Clock Pessimism Removal (CPR): 0.000ns
Clock Uncertainty: 0.035ns ((TSJ-2 + TIJ~"2)~1/2 + DJ) / 2 + PE
Total System Jitter (TSJ): 0.071ns
Total Input Jitter (TIJ): 0.000ns
Discrete Jitter (DJ): 0.000ns
Phase Error (PE): 0.000ns
(clock ap_clk rise edge) 0.000 0.000
Location Delay type Incr(ns) Path(ns)
0.000 0.000
net (fo=12351, unset) 0.973 0.973
DSP48E1

DSP48E1 (Prop_dsp48el_CLK_P[25])

0.434 1.407
net (fo=1, unplaced) 0.800 2.207
DSP48E1 (Prop_dsp48el_C[25]_P[10])

1.820 4.027
net (fo=2, unplaced) 0.800 4.826
LUT2 (Prop_lut2_I0_0) 0.124 4.950
net (fo=1, unplaced) 0.000 4.950
CARRY4 (Prop_carry4_S[1]1_co[3])

0.533 5.483
net (fo=1, unplaced) 0.009 5.492
CARRY4 (Prop_carry4_CI_CO0[3])

0.117 5.609
net (fo=1, unplaced) 0.000 5.609
CARRY4 (Prop_carry4_CI_CO0I[3])

0.117 5.726
net (fo=1, unplaced) 0.000 5.726
CARRY4 (Prop_carry4_CI_CO0[3])

0.117 5.843
net (fo=1, unplaced) 0.000 5.843
CARRY4 (Prop_carry4_CI_0[0])

0.232 6.075
net (fo=1, unplaced) 0.800 6.875
DSP48E1 (Prop_dsp48el_C[25]_P[10])

1.995 8.870
net (fo=1, unplaced) 0.800 9.670
DSP48E1
(clock ap_clk rise edge) 12.500 12.500

0.000 12.500
net (fo=12351, unset) 0.924 13.424
DSP48E1
clock pessimism 0.000 13.424
clock uncertainty -0.035 13.389
DSP48E1 (Setup_dsp48el_CLK_C[10])

-1.701 11.688
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required time 11.688
arrival time -9.670
slack 2.018

Listing A.4: Timing Report Routed
Copyright 1986-2018 Xilinx, Inc. All Rights Reserved.

Tool Version : Vivado v.2018.2.1 (1in64) Build 2288692 Thu Jul 26 18:23:50 MDT 2018

|

| Host : shaheen.polito.it running 64-bit Cent0S release 6.10 (Final)

| Command : report_timing_summary -file ./report/position_timing_routed.rpt
| Design : position

| Device : 7z020-c1lg400

| Speed File : -1 PRODUCTION 1.11 2014-09-11

Enable Multi Corner Analysis : Yes
Enable Pessimism Removal : Yes
Pessimism Removal Resolution : Nearest Common Node
Enable Input Delay Default Clock . No
Enable Preset / Clear Arcs : No
Disable Flight Delays : No
Ignore I/0 Paths : No
Timing Early Launch at Borrowing Latches : false
Corner Analyze Analyze

Name Max Paths Min Paths

Slow Yes Yes

Fast Yes Yes

From Clock: ap_clk
To Clock: ap_clk

Setup : 0 Failing Endpoints, Worst Slack 0.155ns, Total Violation
0.000ns
Hold : 0 Failing Endpoints, Worst Slack 0.058ns, Total Violation
0.000ns
PW : 0 Failing Endpoints, Worst Slack 5.270ns, Total Violation
0.000ns
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Max Delay Paths

Slack (MET) : 0.155ns (required time - arrival time)

Source: grp_lstm_fu_844/grp_matMul_1_fu_1459/position_mac_mulag8j_U76/
position_mac_mulag8j_DSP48_5_U/p/CLK

(rising edge-triggered cell DSP48E1 clocked by ap_clk {rise@0.000ns fall@6.250ns period=12.500ns})

Destination: grp_lstm_fu_844/grp_matMul_1_fu_1459/position_mac_mulag8j_U79/
position_mac_mulag8j_DSP48_5_U/p/C[28]

(rising edge-triggered cell DSP48El1 clocked by ap_clk {rise@0.000ns fall@6.250ns period=12.500ns})

Path Group: ap_clk
Path Type: Setup (Max at Slow Process Cormner)
Requirement: 12.500ns (ap_clk rise@12.500ns - ap_clk rise@0.000ns)
Data Path Delay: 12.028ns (logic 7.649ns (63.592%) route 4.379ns (36.408%))
Logic Levels: 2 (DSP48E1=2)
Clock Path Skew: -0.049ns (DCD - SCD + CPR)
Destination Clock Delay (DCD): 0.924ns = ( 13.424 - 12.500 )
Source Clock Delay (SCD): 0.973ns
Clock Pessimism Removal (CPR): 0.000ns
Clock Uncertainty: 0.035ns ((TSJ~2 + TIJ~2)~1/2 + DJ) / 2 + PE
Total System Jitter (TSJ): 0.071ns
Total Input Jitter (TIJ): 0.000ns
Discrete Jitter (DJ): 0.000ns
Phase Error (PE): 0.000ns
Location Delay type Incr(ns) Path(ns)
(clock ap_clk rise edge) 0.000 0.000
0.000 0.000
net (fo=12351, unset) 0.973 0.973
DSP48_X3Y16 DSP48E1
DSP48_X3Y16 DSP48E1 (Prop_dsp48el_CLK_P[25])
4.009 4.982
net (fo=23, routed) 0.974 5.956
DSP48_X3Y17 DSP48E1 (Prop_dsp48e1_C[45] _P[25])
1.820 7T.776
net (fo=23, routed) 2.274 10.050
DSP48_X2Y17 DSP48E1 (Prop_dsp48el1_C[45]1_P[25])
1.820 11.870
net (fo=23, routed) 1.131 13.001
DSP48_X2Y18 DSP48E1
(clock ap_clk rise edge) 12.500 12.500
0.000 12.500
net (fo=12351, unset) 0.924 13.424
DSP48_X2Y18 DSP48E1
clock pessimism 0.000 13.424
clock uncertainty -0.035 13.389
DSP48_X2Y18 DSP48E1 (Setup_dsp48el_CLK_C[28])
-0.233 13.156
required time 13.156
arrival time -13.001
slack 0.155

Min Delay Paths



A.2 - Timing Reports

Slack (MET) : 0.058ns (arrival time - required time)
Source: grp_lstm_fu_844/tmp_s_reg_7576_reg[0]/C

(rising edge-triggered cell FDRE clocked by ap_clk {rise@0.000ns fall@6.250ns period=12.500ns})
Destination: grp_lstm_fu_844/tmp_s_reg_7576_ppO_iter33_reg_regl[0]_srl32/D

(rising edge-triggered cell SRLC32E clocked by ap_clk {rise@0.000ns fall@6.250ns period=12.500ns})
Path Group: ap_clk

Path Type: Hold (Min at Fast Process Corner)
Requirement: 0.000ns (ap_clk rise@0.000ns - ap_clk rise@0.000mns)
Data Path Delay: 0.197ns (logic 0.141ns (71.611%) route 0.056ns (28.389%))
Logic Levels: 0
Clock Path Skew: 0.022ns (DCD - SCD - CPR)
Destination Clock Delay (DCD): 0.432ns
Source Clock Delay (SCD): 0.410ns
Clock Pessimism Removal (CPR): -0.000ns
Location Delay type Incr(ns) Path(ns)
(clock ap_clk rise edge) 0.000 0.000
0.000 0.000
net (fo=12351, unset) 0.410 0.410
SLICE_X63Y64 FDRE
SLICE_X63Y64 FDRE (Prop_fdre_C_Q) 0.141 0.551
net (fo=1, routed) 0.056 0.607
SLICE_X62Y64 SRLC32E
(clock ap_clk rise edge) 0.000 0.000
0.000 0.000
net (fo=12351, unset) 0.432 0.432
SLICE_X62Y64 SRLC32E
clock pessimism 0.000 0.432
SLICE_X62Y64 SRLC32E (Hold_srlc32e_CLK_D)
0.117 0.549
required time -0.549
arrival time 0.607
slack 0.058

Pulse Width Checks

Clock Name: ap_clk

Waveform(ns): { 0.000 6.250 1}

Period(ns): 12.500

Sources: { ap_clk }

Check Type Corner Lib Pin Reference Pin Required(ms) Actual(mns) Slack(ns)
Min Period n/a DSP48E1/CLK =n/a 3.884 12.500 8.616

Low Pulse Width Fast SRL16E/CLK n/a 0.980 6.250 5.270
High Pulse Width Slow SRL16E/CLK n/a 0.980 6.250 5.270
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Appendix B

LSTM C++ Code

B.1 Istm_sensor.cpp

#include "lstm_hls.h"
#include "params.h"
#include "ap_fized.h"
#include "ap_int.h"
#include "hls_math.h"
#include "hls_half.h"
#include <cmath>
#include <cstdlib>

void position(const DataType input[DataSize] [Capa_In_Size + Infrared_In_Size],
DataType pl[DataSize] [Output_Size]){

static const int InputSize = Capa_In_Size + Infrared_In_Size;
static const int LSTM_SIZE 16;

static const DataType WI[InputSize] [LSTM_SIZE * 4] ={
#include "expr_0.txzt"

s

static const DataType WS[LSTM_SIZE] [LSTM_SIZE * 4] = {
#include "expr_1.txzt"

I

static const DataType BiasS[LSTM_SIZE x* 4]={
#include "expr_2.txzt"

I
static const DataType W1[LSTM_SIZE] [Output_Size] ={
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B - LSTM C++ Code

#include "expr_3.tzt"

I

static const DataType Biasl[Output_Size]={
#include "expr_4.txzt"

s
DataType state[LSTM_SIZE];
for(int k=0; k<LSTM_SIZE;k++){

statelk] = 0;
+

DataType output [LSTM_SIZE];
for(int j=0; j<LSTM_SIZE;j++){

output[j] = 0;
}

for(int i=0; i<DataSize;i++){
lstm<InputSize, LSTM_SIZE>(input[i], state, output, BiasS, WI, WS);
feed_forward<LSTM_SIZE, Output_Size>(output, pl[i], W1, Biasl);

3

B.2 Istmh

#include <iostream>
#include <cstdlib>
using namespace std;
#pragma once

#include <cmath>
#include "ap_fized.h"
#include "ap_int.h"
#include "hls_half.h"
#include "hls_math.h"
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/*template<typename T>

const T sigmoid(const T wvalue){

T tmp
return tmp;

rx/

template<typename T>

const T sigmoid (const T in) {

T tmp,tmpl;
if (in < 0)
{
tmp
} else
tmp
if ( tmp >= (T) 5)
{
tmpl
}
else if ((T)
{
tmpl
+
else if ((T)
{
tmpl
b
else if ((T)
{
tmpl
b
if (in < (T) 0)
{
tmpl
}

return tmpl;

T(1)/(T(1) + ezp(-value));

-in;

in;

(T) 1;
.375 <= tmp && tmp < (T) 5)
(tmp * (T) 0.03125) + (T) 0.84375;
<= tmp && tmp < (T) 2.375)
((T) 0.125 * tmp) + (T) 0.625;
<= tmp && tmp < (T) 1)

((T) 0.25 % tmp) + (T) 0.5;

(T) 1 - tmpl;
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template<typename T>
const T tanh(const T in) {
T tmp;
tmp = (hls::exp(in) - hls::exp(-in)) / (hls::exp(in) + hls::exp(-in));

return tmp;
template<int H, int W, typename T>
void matMul(const T w[W][H], const T z[W], T o[H]){

T tmp;
for(int i=0;i<H;i++){

for(int j=0;j<W;j++){

if (3==0){
tmp = T(0);
}

tmp += (wl[jl[i]l = z[j1);

+
o[i] = tmp;

template<int N, typename T>
void add(const T aO[N], const T al[N], T a2[N]){
for(int i=0;i<N;i++){

a2[i] = a0[i]l + alli] ;

template<int N, typename T>
void add(const T aO[N], const T al[N], const T a2[N], T a3[N]){
for(int i=0;i<N;i++){

a3[i] = a0[i] + al[i] + a2[i]l;
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template<int INPUT_SIZE, int LSTM_SIZE, typename T>
void 1lstm(const T input[INPUT_SIZE],T state[LSTM_SIZE], T output[LSTM_SIZE],
const T BIAS[LSTM_SIZE * 4], const T WI[INPUT_SIZE] [LSTM_SIZE * 4],
const T WS[LSTM_SIZE] [LSTM_SIZE * 4]){
T gates[LSTM_SIZE * 4];
T outl[LSTM_SIZE * 4];
T out2[LSTM_SIZE * 4];
matMul<LSTM_SIZE * 4, INPUT_SIZE>(WI, input, outl);
matMul<LSTM_SIZE * 4, LSTM_SIZE>(WS, output, out2);
add<LSTM_SIZE * 4>(outl, out2, BIAS, gates);
for(int i=0;i<LSTM_SIZE;i++){
state[i] = sigmoid(gates[LSTM_SIZE + i]) * state[i] +
sigmoid(gates[i])* tanh(gates[LSTM_SIZEx2 + i]);
output[i] = sigmoid(gates[LSTM_SIZE*3 + i]) * tanh(statel[i]);
}
template<int INPUT_SIZE, int OUTPUT_SIZE, typename T>
void feed_forward(const T input[INPUT_SIZE], T output [OUTPUT_SIZE],
const T W1[INPUT_SIZE] [OUTPUT_SIZE],const T BIAS1[QUTPUT_SIZE]){
T tmp [OUTPUT_SIZE];

matMul<QUTPUT_SIZE, INPUT_SIZE>(W1, input, tmp);

add<0QUTPUT_SIZE>(tmp, BIAS1, output);
}
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