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Chapter 1

Introduction

The Von Neumann architecture is one of the most widely spread nowadays. It is

composed of a CPU, a storage for data and instructions and interconnections.

However, with the fulfillment of Moore’s Law, CPUs reached their full potential, but

it cannot be said the same about memory performance, that stayed behind, even

with the advancement of transistor scaling (figure 1.1). This is called Von Neumann

bottleneck or Memory Wall. As a consequence new approaches and technologies

emerged to solve the issue. One of them is Logic-in-Memory (LIM).

The Logic-in-Memory approach (also often referred to as Processing-in-Memory

Figure 1.1: CPU vs Memory performances over the years. From [27]

(PIM)) aims to merge the logic and memory elements of a traditional structure, in

1



1 – Introduction

order to reduce the memory bandwidth limitation caused by the fact that common

applications are more and more data intensive and the data movement from memory

to CPU and back is way too costly.

The PIM approach is suitable for all that kinds of applications that require simple

operations, since they would be easier to integrate in the memory array

A lot of researchers already introduced their vision of Logic-in-Memory, acting either

from the technological point of view or from the architectural one. Few of them will

be reported in the next chapter as state of the art, in order to provide and overview of

the already existing proposal and of the promising potential of the Logic-in-Memory

paradigm.
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Chapter 2

State of the Art

2.1 Magnetic Tunnel Junction

2.1.1 MTJ Basics [1, 2, 3]

Magnetic tunnel junction (MTJ) is a nano-structure composed of three layers. A

metal-oxide film is trapped between two ferromagnetic (FM) metals. The structure

is represented in figure 2.1.

Figure 2.1: Magnetic Tunnel Juction structure

The insulator is thin enough to let the electrons transit from one metal to an-

other, through tunneling, when an appropriate magnetic field is applied on the

junction.

The current generated from this effect is proportional to the product of electrodes

density of states at Fermi level. This is because in ferromagnetic materials, the

ground-state energy bands in the vicinity of the Fermi level are shifted in energy,

resulting in separate majority and minority bands for electrons with opposite spins.
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Assuming spin conservation for the tunnelling electrons, there are two parallel cur-

rents: spin-up and spin-down currents.

The magnitude of the tunnelling current depends on the relative orientation of the

magnetization of both electrodes. The reason lies in the fact that for aligned mag-

netization, electrons around the Fermi level are allowed to transit from minority

to minority bands and from majority to majority. If the alignment is anti-parallel

the transition takes place from majority to minority and vice versa. This results

in a higher current for the first case and lower current for the second. In terms of

electrical resistance, this corresponds to a low or high resistance, respectively.

This resistance is called Tunnel Magneto Resistance defined as:

TMR =
2P1P2

1 − P1P2

=
RAP −RP

RP

(2.1)

Where P1 and P2 are the spin polarization of the two magnetic layers and RP and

RAP are the resistance for parallel and anti-parallel magnetization configuration

between the two ferromagnets, respectively.

The digital information is coded by the resistance of the junction: since, according

to the relative orientation of the magnetizations, the resistance varies, it is possible

to code low resistance as logic ’0’ and high resistance as logic ’1’. It is observed that

transitions between parallel and anti-parallel states present an hysteresis trend. The

behaviour of MTJ is reported in figure 2.2.

Figure 2.2: Behaviour of Magnetic Tunnel Junction

Magnetic tunnel junctions are widely used in magnetic memories, like Magnetic

Random Access Memory (MRAM).
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The basic MRAM cell is composed of a MTJ connected to a MOS transistor that is

used to enable or disable the current flow through the junction.

To make the storage of information programmable, one of the two ferromagnetic

layers of the MTJ is set on a fixed magnetization direction and it is called fixed

layer. The other one is kept free to rotate its orientation (free layer) according

to external stimuli, like a magnetic field or a current.

Each MTJ cell is controlled by three electrical signals on metal lines, that carry the

same names used in a conventional memory structure, i.e. bit line, word line and

source line (figure 2.3).

Figure 2.3: MTJ cell structure

Since the information is coded with a variable resistance, reading the cell consists

in measuring resistance. On the other hand, writing an MTJ cell can be performed

in different ways, resulting in different kinds of MRAMs:

• FIMS MRAM (Field Induced Magnetic Switching): writing is implemented

by the means of a magnetic field generated by current lines close to the junc-

tion. If the current densities are strong enough, the magnetic field generated

will switch the magnetization of the free layer.

• TAS MRAM (Thermal Assisted Switching): an additional layer, made of

Anti-ferromagnetic material, is used to pin the magnetization of the free layer.

A current applied through the stack heats the junction above a critical temper-

ature, freeing the free layer, which can then be easily switched by an applied

external field.
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• CIMS MRAM (Current Induced Magnetic Switching): it is based on the

Spin Transfer Torque effect. When a spin-polarized current is applied to a

ferromagnetic material, a torque on magnetization is exerted. If the current

density is high enough this could result in magnetization direction switching.

This type of memory is also called STT-MRAM.

Exploiting the MTJ technology (potentially mixed with traditional CMOS tran-

sistors) it is possible to implement a large selection of logic circuits, ranging from

simple logic gates to Non-volatile LUT or flip-flops, resulting in the generation of

more complex systems, such as Magnetic FPGAs.

2.1.2 MTJ-based non-volatile Logic in Memory Circuit, Fu-

ture Prospects and Issues [4]

Figure 2.4: Proposed structure of a MTJ-based LiM circuit. From [4]

In figure 2.4 is possible to observe the proposed structure.

The entity is basically composed of three units: the dynamic current source (DCS)

that allows to cut off steady current from VDD to GND, which results in low-power

dissipation; a logic-circuit tree, where arbitrary logic circuits are realized according

to its configuration; a Cross-Coupled-Keeper(CCK) that generates complementary

binary outputs congruently to a magnitude comparison result between two current

signals (Iz and Iz’).
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This structure is then applied to a LiM Full Adder, whose architecture is depicted

in figure 2.5.

Figure 2.5: Structure of a Logic-in-Memory Full Adder. MTJ elements are high-
lighted by the red rectangles. From [4]

The stored data is programmed by external signals. Selecting the word lines, is

possible to program the complementary inputs B and B’. During this write operation

all external inputs and clock signals are switched off.

The dynamic logic, controlled by the complementary clock signals, allows to cut off

the steady current flow from the supply voltage to ground, reducing the dynamic

power dissipation of the circuit.

Moreover, since the stored data is contained in non-volatile elements (MTJs), it is

possible to cut off the supply voltage, maintaining stored data in standby state.

This eliminates the static power dissipation.

Figure 2.6: Comparison of Full Adders with CMOS-only and MTJ-LiM implemen-
tation. This table was extracted from the study under consideration. From [4]
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In conclusion, it is demonstrated (figure 2.6) that the proposed structure is char-

acterized by a great reduction in area and power dissipation if compared with the

corresponding CMOS-only implementations. As far as delay is concerned an im-

provement is observed.

2.1.3 Challenge of MTJ-Based Nonvolatile Logic-in-Memory

Architecture for Dark-Silicon Logic LSI [5]

It is proposed a non-volatile logic-in-memory (NV-LIM) architecture to solve performance-

wall and power-wall problems in the present CMOS-only-based logic-LSI proces-

sors(all contents and figures of this section are thus extracted from [5]).

The choice fell on MTJ devices with spin-injection write capability.

MTJ acts either as storage element, either as logic element, because its resistance is

two-way programmable in accordance with its stored status.

The non-volatile characteristic of MTJ allows to maintain the data stored even when

the power is cut-off. This leads to the possibility to apply power-gating technique

to the circuitry, achieving low-power logic LSI. The basic architecture is shown in

figure 2.7.
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Figure 2.7: MTJ-based NV-LIM architecture: (a) hardware structure with a power-
gating capability; (b) power-gating efficiency using the NV-LIM architecture. From
[5]

The focus is then moved to VLSI processors. A ”first generation” of NV-VLSI is

first described, where high-density MRAM replaces the standard Flash and DRAM

memories and also on-chip memories and flip-flops are replaced to NV ones.

To further improve performance of NV-VLSI processors, a ”second-generation NV

logic-LSI architecture” is introduced. It consists in merging a part of NV on-chip

memory with logic circuit modules (figure 2.8).

Figure 2.8: Second generation NV logic-LSI architecture. From [5]

As next step, NV-LIM components are described in detail.
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• MTJ-based NV TCAM

Ternary Content Addressable Memory is a high-speed memory that performs

fully parallel search and comparison between stored data and input key. Other

than ’0’ and ’1’, also the value ’X’ (don’t care) is included, which makes search-

ing data more flexible. However, conventional CMOS-only implementation re-

quires high cost in terms of complex logic and power dissipation.

For this reason, a NV MTJ implementation is proposed (figure 2.9).

Figure 2.9: (a) Conventional TCAM cell structure; (d) Proposed NV-TCAM cell
structure. From [5]

The proposed solution merges storage elements with the logic part, achieving

area optimization, since CMOS-based implementation needs 12 MOS transis-

tor while the proposed one takes just 4 MOS and two MTJ devices.

It is important to notice that MTJ do not affect the total TCAM cell cir-

cuit because MTJs are fabricated onto the CMOS plane. The advantage of

the compact realization due to NV-LIM architecture can improve the perfor-

mance of the circuit by inserting a driver (figure 2.9 (d)).

With this structure it is possible to implement a three-segment based NV

TCAM that shows an average activation ratio as low as 2.8%. This implies

that about 97% of the TCAM cells can be in standby mode thanks to the

fine-grained power gating.

• MTJ-based NV FPGA
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Field programmable gate arrays are widely used in realizing prototyping sys-

tems thanks to their changeable configuration according to user needs. How-

ever, power consumption and high hardware cost are serious problems in en-

larging application fields of FPGAs.

A possible solution to the excessive power consumption is the employment of

MTJ devices, obtaining a NV FPGA (figure 2.10) in which each configuration

block (CLB) is composed of NV-LUT where configuration data is stored in

non-volatile storage element, in the present case, MTJs.

This way, whenever a LUT circuit is in a standby mode, its power supply can

be shut down, which completely eliminates the wasted standby power dissipa-

tion.

Figure 2.10: Overall structure of a NV FPGA. From [5]

However, only the simple replacement of volatile storage elements with NV

ones, increases the hardware cost of the circuit. For this reason MTJs are

merged with combinational logic in the LUT circuit using the NV-LIM archi-

tecture (figure 2.7). Moreover, in this configuration only one sense amplifier

is required. This results in a highly compact LUT circuit.
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Figure 2.11: NV LUT circuit: (a) Conventional approach; (b) proposed NV-LIM
architecture based approach. From [5]

In FPGAs, LUTs must have four inputs or more. With multiple MTJs, this

could be problematic in terms of resistance values. To obtain a stable LUT, it

is possible to add additional MTJs to adjust the operating point of the LUT

function. In figure 2.12 an example of multi-input NV-LUT circuit is shown.

Figure 2.12: Resistance-variation compensation technique using redundant MTJ
devices. Twice the number of MTJs are placed in the LUT selection-tree and three
additional MTJs are placed in LUT reference-tree. From [5]

The proposed NV-LIM based NV-LUT circuit result more compact with re-

spect to conventional structure even with the increase of the number of inputs.
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2.1.4 Design of MRAM-Based Magnetic Logic Circuits [6]

This work presents a new way to implement NML circuits. All the knowledge and

figures here exposed are extracted from [6].

The idea is to exploit Magnetic RAM to generate the same logic circuit realised with

NML technology.

In Nano Magnet Logic technology, bistable single domain nano-magnets are used to

represent digital values.

Since nano-magnets are naturally both logic and storage elements they are the per-

fect candidate to implement logic-in-memory circuits.

However, even if NML fundamentals were experimentally demonstrated,i.e the clock

system and logic gates, a complete NML circuit is not demonstrated yet. MRAM

technology, instead, has undergone fast development and evolution and it is cur-

rently ready for the commercial stage.

NML basic principle is the transmission of information through magnetodynamic

interaction between neighbouring magnets (figure 2.13).

Figure 2.13: NML fundamentals. From [6]

To reproduce the same concept the MRAM (in particular, here STT-RAM is

used) is modified:

– Distances among MTJs are reduced so that the free layer can be influenced
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not only by the current flowing through it, but also by the magnetic field

generated by neighbouring MTJs;

– A particular type of MTJ is used: the magnetization of the fixed layer is tilted

of 45◦. This is done to reduce the influence of the fixed layer on the free one,

maintaining at the same time a sufficient difference between the resistance

among the two logic states.

Then, to create the same magnetic signal patterns as in the NML circuit, MTJs are

removed from specific areas of the MRAM array.

An example of this technology is shown in figure 2.14.

Figure 2.14: 2-bit XOR circuit implemented with MTJ Bounded layout. (A) Com-
plete circuit layout configuration: Horizontal stripes are Bit-Lines and Source-Lines.
Vertical stripes are Word-Lines. (B) Detail and time evolution of a small part of
the XOR gate. From [6]

Each MTJ is controlled by word lines (one for each column) and bit and source

lines (couple for each row). MTJs are arranged in small groups, identified by different

colors. Each color labels a clock zone. The separation of circuits in clock zones is

required to control signals propagation and avoid errors.

Since a multiphase clock system is needed in NML circuits to operate properly, the

system has to be reproduced using MTJs. However, MTJs placed on a specific row
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belong to different clock zones, but they share the same source and bit lines. This

fact is in contradiction with the multiphase clocking requirements, because in every

clock zone MTJs must be driven independently. The solution of this problem is to

exploit the presence of transistors connected in series with every MTJs, that are

controlled by the word lines. So, it is possible to enable or disable the current flow

through the devices.

However, the constraint imposed by the structure of the MRAM, which implies a

rigid placement for the MTJs led to the formulation of a second structure, called

free layout. The traditional one instead was called bonded layout. The new structure

requires a change in the technological structure, but comes with no limitations on

MTJs placement. This topology has only two control signals and does not require

transistors, except for external read and write operations and to generate clock

signals. Word lines are not needed anymore (figure 2.15).

Figure 2.15: Structure comparison: (A) Bonded Layout; (C) Free Layout From [6]

This way, each clock zone is independently controlled and there are no limitation

on MTJs placement, which brings to circuits improvement. The negative aspect is
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that this solution requires to modify the fabrication process of the MRAM and its

feasibility is not yet demonstrated.

To compare the two different structures, two circuits were implemented: 2-bit XOR

and Galois multiplier. Results obtained are illustrated in figure 2.16.

Figure 2.16: Comparison between the two layout configurations. Table evinced
directly from the study under consideration. From [6]

It is possible to observe that free layout presents better results in all the analysed

fields but it is the bonded layout that is successful in terms of feasibility, while for

the free layout the matter is still to be looked into.

This demonstrates that there is space for improvements and further investigation

for this technology.

2.1.5 Reconfigurable Procesing in Memory Architecture Based

on Spin Orbit Torque [7]

Differently from the STT-RAM, in SOT-RAM the storage element is based on a MTJ

above a heavy metal film, resulting in a three terminal device. Write operation is

performed letting current flowing through the heavy metal film, then the free layer

is able to switch thanks to the spin hall effect. (figure 2.17).
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Figure 2.17: (a) STT-MRAM cell (b)SOT-MRAM cell. From [7]

The proposed architecture, called PISOTM (figure 2.18), is composed of SOT-

memory, reconfigurable SOT-logic and a controller.

For the SOT-logic, the memory array is partitioned in different logic clusters con-

trolled by several separetd 3 to 8 decoders.

Figure 2.18: PISOTM Architecture and compile operation. From [7]

The advantage of this structure is that the storage and logic elements are iden-

tical, this way any technology conflict is avoided.

Moreover, in SOT-logic there is no data movement, since the required data is already

in the memory array.
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To evaluate the structure Cadence, modified Multi2Sim and MlBench are used.

Results are compared with DRAM and STT-based PIM. The average speedup im-

provement of PISOTM is about 30% (figure 2.19).

Figure 2.19: Simulation results. From [7]

2.2 3D-Stacking

2.2.1 A 3D-Stacked Logic-in-Memory Accelerator for Application-

Specific Data Intensive Computing [8]

Data Intensive Computing applications need high bandwidth to achieve good per-

formance due to their inefficient memory access patterns.

To overcome the memory wall problem 3D-DRAM technology is used. It provides

low latency and high bandwidth. The proposed structure is composed of 3D-stacked

DRAM and an highly-specialized LiM layer.

The 3D-Lim system is showed in figure 2.20.
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Figure 2.20: 3D-Stacked Logic-in-Memory System. From [8]

The overall architecture is depicted in figure 2.21(a). The 3D-LiM device is

accessed by the CPU exploiting the standard DRAM interface. The LiM layer

is designed to process logic-simple parts of a data-intensive problem in the most

efficient way. The data elaborated in the LiM layer are then transferred to the CPU

for high-level interpretation. This kind of operations is less memory-bound, this way

the traffic on the data bus is greatly reduced.

In (b) is represented the structure of the 3D-stacked device. Each DRAM layer

is partitioned in banks and a pile of banks form a rank. Vertical connections are

formed by dense,short and fast TSV buses, that are capable of transfering a whole

DRAM row buffer in a few clock cycles.

Figure 2.21: (a) Overall architecture; (b) Fine-grained 3D-stacked DRAM. . From
[8]
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To understand the structure of the LiM core better, figure 2.22 is provided.

Figure 2.22: 3D-Stacked LiM Functional Diagram. . From [8]

The Memory Controller is dedicated for communication among the other core

components. The Meta Data Memory Array stores the information which maps the

blocks of data to DRAM rows, providing data format, block size and number of

non-zero elements. The LiM cores are designed based on a specific application.

This architecture has been tested for both dense and sparse application, 2D-FFT

and SpGemm respectively. The 3D-Stacked structure was modelled and simulated

with CACTI-3DD and HDL simulations. Results of SpGemm simulations are shown

in figure 2.23.
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Figure 2.23: Simulation results. . From [8]

Results show that power consumed by DRAM and LiM layer increases with the

increasing of the bandwidth. This is because more computational resources are

required. In figure 2.23(1.b) SpGemm is simulated with two benchmark matrices

and performance keeps increasing on architectures with higher memory bandwidths.

Then Intel Math Kernel Library (MKL) Sparse Basic Linear Algebra Subprograms

are run on Intel Xeon machines. For comparison, to simulate the same SpGemm,

Sniper multicore simulator is used. After that power and performance are evaluated.

Results show that the 3D-structure is able to achieve one order of magnitude of

performance improvement and more than two of power efficiency compared to Intel

MKL.

2.2.2 Design and Analysis of 3D Massively Parallel Proces-

sor with Stacked Memory [9]

The proposed architecture is called 3D-MAPS, that stands for Massively Parallel

Processor with Stacked Memory. The aim of this work is to fully exploit the high

bandwidth provided by the 3D technology. Thanks to the TSV connections or F2F

bond pads that are shorter than PCB connections, the stacked structure provides

high inter-chip communication bandwidth.
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The 3D-MAPS architecture is composed of a core layer made of 64 cores and a

memory layer made of 64 4KB SRAM blocks. Each core communicates with its

dedicated memory block through F2F bond pads. The architecture is shown in

figure 2.24.

Figure 2.24: 3D-MAPS architecture. From [9]

The memory works at the same frequency of the processors. The processor is

general purpose and it is designed to run memory read/write operations every clock

cycle in order to fully exploit the memory bandwidth.

Single-Core Architecture The architecture and the ISA of the single core are

similar to the MIPS, but they were modified to satisfy system specifications. Since

the specification on the area was very strict the architecture and the ISA were

simplified by eliminating some of the most expensive components in terms of silicon

area, such as floating point units and branch predictors.

Figure 2.25 shows the strcuture of the Single-Core. The pipeline depth is five and

the word size is 32bit.
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Figure 2.25: Single Core Architecture. From [9]

Each core is composed of a general-purpose ALU, a multiplier and 4 core-core

communication ports. The communication between cores happens at the third

pipeline stage.

To ensure that each core has access to the memory every clock cycle, and thus max-

imizing the usage of the memory bandwidth, an execution path is reserved for both

memory and non-memory operations.

As far as multi-core is concerned, to minimize power consumption a 2D mesh

network is used and to synchronize cores an H-tree shaped global barrier instruction

is employed.

The 3D-MAPS chip was built with a 130nm process technlogy. The architecture

was also simulated using 8 different data intensive benchmarks, such as K-means,

String search and matrix multiplication. The simulations were performed using

SoC Encounter and Cadence softwares. Results show that the maximum operating

frequency is 277Mhz, max peak bandwidth utilization is 63.8GB/s while consuming

4W power.
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2.2.3 XNOR-POP: A Processing-in-Memory Architecture

for Binary Convolutional Neural Networks in Wide-

IO2 DRAMs [10]

In order to adopt computing intensive CNN a lot of hardware resources and high

power budget are required, this is why adopting them in mobile devices is difficult.

XNOR-Net, an emerging binary CNN, reduces memory and computational over-

head performing XNORs and population count operations instead of floating point

multiply accumulate operations.

The proposed architecture aims to support XNOR-Net in mobile devices employing

WideIO2 memory. It is a stacked DRAM designed for mobile devices (figure 2.26).

Figure 2.26: Wide-IO2 DRAM architecture. From [10]

The following figure represent the proposed structure:

Figure 2.27: XNOR-POP Flow. From [10]

The XNOR-DRAM performs XNOR operations at row level in each DRAM
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bank. Once the result is latched a new operation can start. The result is transferred

on the logic die by TSVs. Then the data follow the flow through the population

count to the pooling stage till the Layer Output Buffer, which is a 512KB SRAM.

The pipeline has to stop when the computation of the convolutional layer is finished

or the layer output buffer is full. If this happen, the data in the LOB has to be

written back to DRAM dies.

The structure was simulated for different NNs and compared with state-of-the-art

accelerators. Results show (figure 2.28) that XNOR-POP on average improves CNN

tests by 11 times in performance and 90% of energy consumption.

Figure 2.28: Evaluation Results. From [10]

2.3 ReRAM-Based

2.3.1 ReRAM Basics

Resistive RAM is a non-volatile memory that stores information using a resistive

component.
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The ReRAM cell is a MIM structure: a metal-oxide layer is sandwiched between

two electrodes (figure 2.29).

Figure 2.29: Basic principles of ReRAM. From [11]

The information is represented by a resistive value: low resistance indicates logic

”1”(HRS) whilst high resistance corresponds to logic ”0” (LRS).

By applying an external voltage to the cell it is possible to switch between states.

The RESET operation consist in switching from LRS to HRS states and requires

negative voltage, while SET operation from HRS to LRS and requires positive

voltage.[11]

The most common structure of a ReRAM array is the crossbar structure (figure

2.30). This structure allows to implement matrix-vector multiplication and it is

often used in neural networks applications.

Figure 2.30: ReRAM crossbar structure. From [13]

26



2.3 – ReRAM-Based

2.3.2 PRIME: A Novel PIM architecture for Neural Net-

work Computation in ReRAM-based main memory

[11]

Artificial Neural Networks are a kind of NN that are implemented through the

crossbar structure (figure 2.31).

They implement operations like:

bj = σ(
X
∀i

ai · wi,j)

Figure 2.31: Artificial Neural Network structure. From [11]

Since they are similar to matrix-vector operations, ReRAM crossbar structure

adapts perfectly to the task.

The proposed architecture, called PRIME, aims to accelerate NN by leveraging

ReRAM’s computation capability and exploiting processing-in-memory architecture.

PRIME acts like a real in-memory architecture, since it does not need supplemen-

tary logic components, but it performs the computation directly on the memory

array. The add-on components in PRIME are simple modification to the peripheral

circuitry of the memory to enable the computation function. This result in a low

area overhead.

In figure 2.32 a comparison between PRIME and previous approaches is made.

It is noticeable that PRIME is the only one to not require an additional processing

unit (PU) to operate.

27



2 – State of the Art

Figure 2.32: Comparison between PRIME and other architectures. From [11]

PRIME performs operations inside the memory banks. To achieve this they are

divided into Memory subarrays, which have only storage capability, Full Function

subarrays that can work either in computation mode or memory mode and Buffer

subarray which serve as data buffers or data storage, if needed.

The overall architecture is shown in figure 2.33.

Figure 2.33: PRIME Architecture. From [11]

Buffer subarrays are selected as the closest to the FF subarrays, in order to reduce
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latency. The data flow from the Memory Subarrays to the Global Row Buffer and

then enter the Buffer Subarray. FF and Buffer subarrays communicate with each

other through private ports. This way they do not consume the bandwidth of the

memory subarrays and the CPU can still access them and work in parallel.

Moreover, sense amplifiers and write drivers are slightly modified to serve also as

ADC and DAC respectively, since these are components required in NN applications.

Figure 2.34: Configuration of FF subarrays: (a) Computation mode; (b)Memory
mode. From [11]

In figure 2.34 the internal functioning of the FF subarray is depicted.

As previously stated, they can work both in computational and memory mode. The

switching between modes is performed by the PRIME Controller that sends control

signals to the multiplexers.

The PRIME architecture has been modelled using CACTI-IO, CACTI-3DD and

NVSim. Then it was simulated using a trace-based in-house simulator. PRIME was

compared to different systems, such as NPU co-processor, CPU-only and NPU PIM

processor.

The benchmarks used comprise six NN design (MlBench) for machine learning ap-

plications. Results are shown in figure 2.35.
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Figure 2.35: Evaluation results. From [11]

As far as performance is concerned, the advantage of PRIME comes from the

fact that the synaptic weights do not need fetching from memory because they are

already pre-programmed into the memory cells unlike for instance the NPU. Also

from the energy efficiency point of view PRIME shows good results, thanks to the

ReRAM structure that is energy efficient for NN applications.

2.3.3 RADAR: A 3D-ReRAM based DNA Alignment Ac-

celerator Architecture

Sequence Alignment is the most fundamental application in bioinformatics. One of

the most widely used algorithms is the Basic Local Alignment Search Tool (BLAST).

This kind of algorithm involve moving a huge DNA databse from storage to com-

putational components. Such actions are expensive in terms of time and energy.

RADAR is an architecture that aims to transfer the computational operations lo-

cally in memory to be performed without moving the database.

RADAR uses as memory 3D-ReCAM (3D ReRAM-based CAM) that is very

suitable to accelerate BLAST thanks to its low power consumption, high density (it
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is capable of storing the whole DNA database) and capability to perform parallel

comparisons. Moreover it is a transistor-less structure.

The overall structure is depicted in figure 2.36.

Figure 2.36: RADAR architecture

Each BLASTN Mat is made of multiple 3D reCAMs connected with each other

in H-tree.

Comparison operation can be performed in different rows and different CAMs cun-

currently. This enables both row and CAM level parallelism. Moreover, each BLAST

Unit works in parallel independently, providing Unit level parallelism.

In the following few main characteristics of RADAR are listed:

• Reduction in Data Movement: instead of moving the whole database into

computing components, the query sequence is moved into CAMs. This way

the database remains in memory and operations are performed locally. This

reduction in data movement leads to speedup and energy saving;

• Scalability: 3D ReCAM is characterized by high density, this allows RADAR

to store the whole DNA database in a single chip. If the database is too large

to fit in a single chip, scaling out is an option. In order to deal with extremely

huge databases,it is possible to distribute RADAR;

• There are no writing operations in RADAR except for writing the database

into ReCAMs just one time;

To evaluate RADAR a C++ simulator was built. 3d ReCAM parameters were

extracted from NVSim. RADAR was evaluated for 5 designs, varying CAM param-

eters (numbers of rows ,columns and so on).

As benchmarks 6 different databases with different sizes were used. The baseline is
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NCBI BLASTN running in a server with CPU of Intel Xeon. Results are shown in

figure 2.37.

Figure 2.37: Performance results of NCBI BLASTN and RADAR

It is possible to notice that from the response time point of view, the values of

the CPU grow dramatically, while RADAR maintains quite stable values even with

the increasing of the database size.

As for energy consumption RADAR appear very energy efficient compared with

the CPU. This is thanks to the reduction in data movement. However CPU and

RADAR move similarly for energy efficiency: it decreases as the database grows. It

is due to the correspondent increase in query response time. Still, the CPU efficiency

decreases much faster than RADAR.
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Figure 2.38: Energy and Area breakdown of RADAR

As for Area and Energy breakdown (figure 2.38) , it is noticeable that almost

all of area and energy is due to the CAM. This indicates that RADAR is a memory

centric accelerator with low leakage and small extra hardware overhead.

2.3.4 A 462GOPs/J RRAM-Based Nonvolatile Intelligent

Processor for Energy Harvesting IoE System Featur-

ing NV Logics and PIM [12]

NIP is a nonvolatile intelligent processor capable of both general and neural network

computing. It is built in 150nm CMOS process with embedded HfO RRAM. The

block diagram is depicted in figure 2.39.

Figure 2.39: Top level architecture of NIP. From [12]

The CPU executes general purpose tasks and manages the communication with

off-chip sensors and transceivers; the FCNN Turbo Unit (FTU) deals with FCNN
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tasks; nvSRAM is a data memory shared between FTU and CPU.

Power Management Unit (PMU) provides power supply and handles the backup and

restore decisions for the whole chip.

However, there are two problems in energy harvesting NIPp with RRAM-based

PIMs:

1. CPU and RRAM array interfaces (i.e. DAC and ADC) become the bottleneck

of chip area and energy efficiency;

2. To perform matrix-vector multiplication (MVM) operations, all access transis-

tors on the word lines are simultaneously turned on, resulting in a great waste

of energy;

For these reasons a low power MVM engine is designed (figure 2.40) with input

controlled access transistor and binary interfaces.

Figure 2.40: Proposed Low-power MVM engine and its performance improvements-
From [12]

The ADC and DAC overheads are eliminated resulting in energy and area saving.

Also, the input-controlled access transistors remain OFF when the row input is zero,

resulting in high energy saving. NIP is compared to prior works. It achieves 13x

improvement in nergy efficiency over the state of the art.
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2.3.5 A Novel ReRAM-based Processing-in-Memory Archi-

tecture for Graph Computing [13]

In graph processing application memory bandwidth is the key performance bottle-

neck.

RPBFS is the proposed ReRAM-based processing-in-memory architecture that im-

plements the Breadth First Search algorithm. This structure is capable of processing

the graphs and storing them permanently. RPBFS architecture is represented in fig-

ure 2.41.

Figure 2.41: RPBFS architecture. From [13]

The ReRAM banks are partitioned into 2 types: graph bank and master bank.

Graph banks are used to map the graph and to store its adjiacency list, so for one

graph multiple graph banks are involved. The master bank stores corresponding

metadata of graph banks.

Each bank is provided with an embedded controller with computing capability

to decode instructions and provide control signals. The cache is used to store inter-

mediate data.

Communication between banks is made with a mesh network. Banks share a

EDRAM that stores the status bitmap of all vertices in an expansion level.

RPBFS is modelled by modified NVSim. The simulator is modified as trace-

based system to evaluate performance with other solutions. RPBFS is compared
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with GPU-based solution Enterprise adn state-of-the-art CPU-based parallel imple-

mentation.

As benchmarks 5 real world workload are chose, such as Wikipedia Talk network

(WT). To evaluate traversal performance traversed edges per second (TEPS) is

used. Results reported in figure 2.42 indicate that RPBFS achieve a performance

improvement for all benchmarks compared to other techniques.

Figure 2.42: Performance of RPBFS and direction-optimizing CPU-based and GPU-
based solutions. From [13]

2.3.6 The Programmable Logic-in-Memory Computer [14]

The proposed is a fully programmable system composed of a multi-bank ReRAM

and a LiM controller (figure 2.43). This architecture is then tested with PRESENT,

a primitive used for cryptographic applications.
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Figure 2.43: PLiM Architecture. From [14]

ReRAM memory elements can execute majority voter operations, this allows

to perform various operations directly into the memory array. Thanks to the high

density of ReRAM, it would be possible to achieve an high level of parallelism but

that would imply a complex logic control. Therefore, to simply the controller, only

serial operations are taken into account.

A full crypto operation can be implemented in-memory with an energy of 5.88 pJ

and a throughput of 120.7 kbps.

The memory is partitioned in multiple banks and it can operate both in memory

and computational mode. The LiM controller is composed of a FSM and few regis-

ters. When the control signal LIM is low, LIM controller is off and the ReRAM act

as standard memory, otherwise computation starts.

2.3.7 ReVAMP: ReRAM based VLIW Architecture for in-

Memory comPuting [15]

PLiM architecture allowed only sequential computations, thus under-utilizing the

crossbar array. For this reason ReVAMP is proposed.
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ReVAMP is a general purpose programmable system that supports VLIW-like in-

structions and parallel computation.

Logic operations are implemented with the same principle as PLiM: exploiting the

ReRAM cell to obtain a majority vore (figure 2.44). With the function Zn is possible

to make any operation.

Figure 2.44: Logic operation using ReRAM devices. Zn = M3(Z,wl,bl). From [15]

ReVAMP architecture (figure 2.45) is composed of two ReRAM crossbar mem-

ory: the Instruction Memory accessed by the Program Counter and the Data and

Computation Memory (DCM).

Figure 2.45: ReVAMP architecture. From [15]

Since multiple Zn operations operate in parallel, ReVAMP is a VLIW architec-

ture in nature.
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The architecture was test using 24 EPFL benchmarks and compared to PLiM

(figure 2.46)for different word lengths. In comparison with the PLiM architecture

ReVAMP shows a considerable speed-up improvement.

Figure 2.46: ReVAMP evaluation results. From [15]

2.4 Processing-in-Memory

2.4.1 Hybrid Memory Cube Basics

Hybrid Memory Cube is a 3D DRAM architecture composed of multiple layer con-

nected with each other via TSVs. The structure is enhanced with a logic die that

is responsible of refresh,data routing, DRAM sequencing, error correction and high-

speed interconnect to the host [30].

Figure 2.47: HMC Architecture
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Each layer of DRAM is partioned; a vertical stack of partitions is called vault

[31]. Each vertically stacked memory module operates in parallel to achieve up to

320GB/s bandwidth [32].

2.4.2 TOP-PIM: Throughput-Oriented Programmable Pro-

cessing in Memory [16]

3D-stacking technology provides high bandwidth and it can be exploited to move

memory-intesive computations closer to memory.

However, due to thermal constraints, stacking memory directly on top of a high-

performance processor is not advisable.

TOP-PIM presents an alternative. The system organization is conceived as an

host processor interconnected with multiple 3D stacked memories enhanced with an

in-memory processor incorporated on the logic die of each stack (figure 2.48).

Figure 2.48: System with in-memory processors. From [16]

Both in-memory processors and the host in this organization are accelerated

processing units (APU), each of which consists of GPU and CPU cores on the same

silicon die. Since the host processor does not suffer from any thermal constraint it

can support computing-intensive high performance operations.

The system was modelled with an in-house ML-based model for performance

and power estimation. As GPU AMD Radeon was chosen.

The benchmark used for evaluation are graph processing algorithms such as

Breadth First Search or high performance compute such as MiniFE. Results are

reported in figure 2.49.
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Figure 2.49: Evaluation results. From [16]

Simulations show that PIM can provide both performance and energy benefits

for a various range of applications.

2.4.3 The Architecture of the DIVA Processing-in-Memory

Chip [17]

The DIVA (Data IntensiVe Architecture) system is composed of a set of PIM chips

serving as smart-memory co-processor to a standard microprocessor (figure 2.50).
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Figure 2.50: The DIVA system architecture. From [17]

DIVA aims to improve performance in bandwidth limited applications such as

sparse-matrix and multimedia. DIVA accelerates these applications by executing

computation directly in memory.

PIM chips communicate with each other through a separate interconnection in

order not to interfere with host-memory traffic. Data, parcels and application code

contain virtual addresses. DIVA memory is partitioned based on usage in order to

avoid the overhead of page tables at each node to translate the addresses.

The partition is the following:

• Dumb Memory: allocated in a host’s application virtual space and not

reached by PIM chips processing;

• Local Memory: used only by PIM node routines;

• Global Memory: visible to the PIM nodes and the host;

A PIM chip is general purpose and it is composed of multiple PIM nodes (figure

2.51).
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Figure 2.51: DIVA PIM chip architecture. From [17]

PIM Routing Component has the duty to route parcels off and on the chip. PIM

chips share the host interface.

Figure 2.52 shows the internal organization of a PIM node.

Figure 2.52: DIVA PIM node organization. From [17]

PIM node supports single-issue, in order execution. There is a single instruction

control unit that coordinates two different datapaths: Wide Word Datapath executes

fine-grained parallel executions and a Scalar Datapath.

DIVA structure has been tested with various types of benchmarks, ranging from

image processing to database. To perform evaluation DSIM was developed. It is an
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event-driven simulator based on the RSIM framework.

Results (figure 2.53) has been obtained from a simulation considering the system

composed of only one PIM chip and they were compared to the ones obtained with

a system provided only with the host processor (based on the MIPS R10000).

Figure 2.53: DIVA evaluation results. From [17]

Only with one PIM chip it is possible to achieve x3.3 speed-up improvement.

This is thanks to the reduction of the stall time and to parallelism.

2.4.4 Processing in Memory: The Terasys Massively Paral-

lel PIM Array [18]

SIMD processors can provide high performances for massively parallel problems, in

which threads execute the same operation repeatedly. However, the computational

load distribution is not homogeneous and this result in a waste of energy and de-

crease in performance.

Terasys aims to embed the SIMD so close to host processor architecture that

the SIMD array can be seen both as conventional memory and as a processor array.

Structure of Terasys is depicted in figure 2.54.
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Figure 2.54: Terasys workstation. From [18]

The Sparc processor executes conventional sequential operations. Instructions

on data parallel operands are conveyed to Terasys.

Terasys interface can support up to 8 PIM array units, each of which contains 4096

processors, giving a total of 32768 processors. The PIM chip is depicted in figure

2.55. It is composed of 64 single-bit processors, 2k x 64 bits of SRAM and error

detection and control circuitry. To operate in computation mode Terasys interface

board sends determined control signals.

45



2 – State of the Art

Figure 2.55: A Processor-in-memory chip. From [18]

Figure 2.56 shows the PIM processor. It is divided into 2 parts. The lower half

performs masking and routing operations, while the upper half executes computa-

tions on data.

At each clock cycle, the pipelined ALU can storage data in memory or load data

from data, but these operations can not be performed at the same time.
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Figure 2.56: A Processor-in-memory processor. From [18]

Terasys was tested for 20 different applications, such as DNA sequence match or

image processing. Results show that Terasys achieves 3.2 · 1011 peak bit operations

per second.

2.4.5 A Scalable Processing-in-Memory Accelerator for Par-

allel Graph Processing [19]

The proposed PIM architecture, called Tesseract, aims to be the solution to achieve

memory-capacity-proportional performance in large-scale graph-processing.

Tesseract does not depend on a particular memory organization, but for analysis

purposes HMC with eight 8 Gb DRAM layers was chosen as baseline (figure 2.57).

Figure 2.57: Tesseract architecture. From [19]

In order to execute computations in-memory a single-issue in-order core is placed
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in the logic die of each vault.

In the proposed system the host processor has its own memory and Tesseract serves

as accelerator. Moreover, it does not support virtual memory, in order to avoid the

overhead derived from the address translation.

The host processor has access to the entire memory of Tesseract and it is the

host’s duty to distribute the input graph inside the vaults.

On the other hand, each core has access only to its own local DRAM partition.

Therefore, message passing mechanism is implemented in order to connect cores

with each other.

Since a single-issue in-order core is not able to exploit all the available bandwidth,

2 types of hardware prefetchers were designed:

– List Prefetcher : for constant-stride sequential accesses, so it is used a stride

prefetcher based on a reference prediction table;

– Message-triggered prefetching : for random access patterns

Since graph processing often requires a large amount of random accesses, Message-

triggered prefetching(figure 2.58) is included. It exploits message communication

adding as additional field the memory address to be pre-fetched.

Figure 2.58: Message-triggered prefetching mechanism. From [19]

In order to evaluate Tesseract an in-house cycle-accurate simulator was devel-

oped. As benchmarks 5 graph algorithms were picked, such as Average Teenage
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Follower (AT) or Page Rank (PR). Then, 3 input graphs were used.

Results show (figure 2.59) that Tesseract achieves better performances than DDR3

even without prefetching.

Figure 2.59: Evaluation results. From [19]

The reason why Tesseract gives better performances compared with other struc-

tures is that they are not able to exploit the wide bandwidth. In fact, as tables

show, Tesseract achieves a bandwidth usage of the order of TB/s.

2.4.6 Prometheus: Processing-in-Memory Heterogeneous Ar-

chitecture Design From a Multi-layer Network Theo-

retic Strategy

In order to deal with the great amount of data found in nowadays application,

Prometheus aims to provide a solution to the memory bottleneck.

The goal is to propose an approach to partition data across different vaults in

HMC-based systems, in order to exploit high intra-vault memory bandwidth and at

the same time reduce energy consumption and improving performance.
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The Prometheus Framework (figure 2.60)takes into account the interactions be-

tween computation and communications. It follows three steps:

1. An input C/C++ application is modeled as a two-layered graph, where nodes

denote LLVM IR (low level virtual machine intermediate representation) in-

structions and edges represent the data and control dependencies among LLVM

instructions. Moreover, the weight associated with the edge represent the

amount of time required for that specific operation;

2. The two-layered network is highly partitioned in order to minimize the energy

consumption required for data movement and accesses;

3. Community-to-vault mapping strategy is applied

Figure 2.60: Overview of the Prometheus framework

In the following the three phases are analysed in detail:

1. Application Transformation: The C/C++ application in input is turned

into a two-layered graph through different steps. In the computation layer

nodes represent computations, the second layer models communication. Edges

of the graph correspond to data and control dependencies.
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Figure 2.61: Application Transformation

2. Community Detection: is a technique to partition in clusters vertices which

have higher probability of connecting with each other with respect to other

vertices in different groups.

Figure 2.62: Community Detection

3. Community-to-vault mapping:the graph from previous step is re-mapped.

Nodes are ordered according to priority (the lower the depth, the higher the

priority). If more communities have the same depth they are sorted by com-

munication cost (represented by the edges in the graph). Then, communities

are mapped onto NoC in a way that the ones with higher priority are placed

in a better position.
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Figure 2.63: Community-to-Vault Mapping

Prometheus has been tested and compared with an HMC- and a DDR3-based

systems. Results (figure 2.64) shows that Prometheus bring improvement both in

performance and energy efficiency compared to other systems.

Figure 2.64: Speedup and energy consumption comparison between DDR3, HMC
and Prometheus

2.4.7 PINATUBO: A Processing-in-Memory Architecture

for Bulk Bitwise Operations in Emerging Non-volatile

Memories [20]

The aim of this project is to present a valid alternative for the DRAM-based PIM ar-

chitectures that are dependant on 3D integration. Instead of using DRAM, Pinatubo

exploits the emerging non-volatile memories, such as STT-RAM or ReRAMs. Pinatubo

does not depend on a specific technology, as long as the technology is based on re-

sistive cell. Moreover it does not rely on 3D integration. Pinatubo is designed to

accelerate Bulk Bitwise Operations.
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Figure 2.65: Comparison between Pinatubo and conventional approach. From [20]

Pinatubo eliminates data movement for computation, since computation is per-

formed in the memory itself. Moreover it provides high bandwidth and parallelism

since it allows multi-row operations.

As presented in figure 2.65, the conventional approach consists in fetching data

from memory, moving them to CPU and then write back. Pinatubo, instead, com-

municates with CPU only for control commands and row addresses.

Figure 2.66: Pinatubo Architecture. From [20]

Figure 2.66 shows the 3 different levels of bitwise operations supported by Pinatubo.

• (c) Intra-subarray ops: Pinatubo performs intra-subarray operations if

operands are all in one subarray. Multi-row activation is used. The opera-

tion is perfomed by the sense amplified, in which the reference values has been

shifted in order to perform the logic operation;

• (b) Inter-subarray ops: If operands are all on the same bank. Operations
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are performed by additional logic components. Final results is sampled by the

global row buffer;

• (a) Intra-bank ops: if operands are on different banks but on the same chip.

They are executed by add-on logic in the I/O buffer.

Pinatubo has been simulated using HSPICE, NVSim and CACTI-3DD and com-

pared with SIMD, S-DRAM and AC-PIM systems. Pinatubo 2 and 128 indicate

the number of row operations. Bechmarks used are vector, graph processing and

database.

Figure 2.67: Speed-up and energy saving normalized to SIMD baseline. From [20]

The label ”ideal” indicates result with zero latency and energy spent on bitwise

operations. Results (figure 2.67) show that Pinatubo almost achieves the ideal value

for acceleration. Compared with other systems, Pinatubo can improve database ap-

plication energy saving and speed-up of about 1.29 times, graph processing speedup

(x1.15) and energy saving (x1.14).

2.4.8 Ambit: In-Memory Accelerator for Bulk Bitwise Op-

erations Using Commodity DRAM Technology [21]

Many applications require bulk bitwise operations, ranging from databases to en-

cryption algorithm and so on. However, this kind of operations require a large

amount of data transitions that results in high bandwidth, latency and energy con-

sumption. In order to compensate the limitation on the throughput of bulk bitwise
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operations due to limited memory bandwidth, Ambit is introduced. This architec-

ture exploits DRAM technology in order to execute bulk bitwise operations com-

pletely inside the memory, using the entirety of its bandwidth.

Ambit can be thought split in two parts:

• Ambit-AND-OR: it is possible to perform AND or OR operations exploiting

a three-row activation with rows that share the same sense amplifiers;

• Ambit-NOT: since each sense amplifier has two inverters, with a modest

change it is possible to perform bitwise NOT.

With the capability to execute AND, OR and NOT operations, Ambit can execute

any bitwise operation. All of that is obtained entirely using DRAM technology.

Ambit-AND-OR Knowing that in a subarray, each SA is shared by many DRAM

cells on the same bitline and that the final state of the bitline after sense amplification

depends primarily on the voltage deviation on the bitline after the charge sharing

phase, it is possible to observe that simultaneously activating three cell results in a

bitwise majority function.

The final state of the bitline isAB +BC + CA = C(A+B) + C(AB).

This means that by controlling the value of cell C, it is possible to exploit Triple

Row Activation (figure 2.68) to execute a bitwise AND or bitwise OR of cells A and

B.

Figure 2.68: Triple Row Activation. From [21]

55



2 – State of the Art

Ambit-NOT Ambit-NOT exploits the fact that at the end of the sense amplifi-

cation process the voltage level of the bitline represents the negated logical value of

the cell (figure 2.69).

Figure 2.69: Bitwise NOT using a dual-contect cell. From [21]

Ambit interface is exactly the same of conventional DRAM, so it is possible to

connect it directly on the system memory bus and handle it using memory con-

troller. Since the CPU can access Ambit directly, there is no need to transfer data

between CPU memory and accelerator.

Ambit was modelled using SPICE and gem5. The architecture was compared

with Intel Skylake CPU, NVIDIA GTX and HMC 2.0. Ambit is tested both in

normal and 3D stacked version. Throughput results (figure 2.70) show that Ambit

outperforms other systems.

Figure 2.70: Throughput of bulk bitwise operations. From [21]
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2.4.9 Ultra-Efficient Processing In-Memory for Data Inten-

sive Applications [22]

APIM is an Approximate Processing-in-Memory architecture that exploits the stat-

ical nature of data in some applications, such as Internet of Things or multimedia

applications, to obtain better performance in spite of some accuracy.

The proposed architecture makes use of emerging non-volatile memory, in particular

ReRAM, in a blocked cross-bar structure, which introduces flexibility in executing

operations and facilitates shift operations in memory.

Moreover, APIM can dynamically configure the precision of computation in order

to tune the level of accuracy during runtime.

Figure 2.71: Overall structure of APIM. From [22]

As figure 2.71 shows, APIM is partitioned in blocks linked with each other

through configurable interconnections.

There are two kinds of block but since they are structurally the same, they are

interchangeable.

Data blocks serve as data storage, while processing blocks perform computation.

Interconnections support shifting operation, this way latency is reduced. Fast addi-

otin is performed by carry save adders.
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As far as approximation is concerned there are two approaches. One is approx-

imating at the beggining of operation, masking some of the LSBs. This approach

is faster and less consuming but the error propagates through the entire process,

possibly resulting in very high inaccuracy.

The second approach consists in approximating at the final stage of execution. It is

more accurate but also slower.

APIM was compared with state-of-the-art AMD Radeon GPU. Simulation were

carried out using multi2sim, Cadence Virtuoso. Six general OpenCL were run for

comparison, such as FFT. Results are reported in figure 2.72. APIM was run in

exact mode.

Figure 2.72: Energy consumption and speedup of exact APIM normalized to GPU
vs different dataset sizes. From [22]

Energy and speed-up results of APIM outperforms the one obtained for GPU.

2.4.10 ApproxPIM: Exploiting Realistic 3D-stacked DRAM

for Energy-Efficient Processing-in-memory [23]

The purpose of ApproxPIM is to investigate the potential and feasibility of diploying

PiM in realistic HMC products without adding any computation logics or cores.

ApproxPIM is proposed to enable PIM in HMC for domain-specific computing.

The overall architecture is shown in figure 2.73.
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Figure 2.73: Overview of ApproxPIM. From [23]

ApproxPIM is based on HMC, which is composed of vaults. Each vault has

its own controller and it is completely independent from each other. The commu-

nication between HMC and the host processor is based on a parcel transmission

protocol. At the first stage of executing an application ApproxPIM configures its

lane into quarter-width links, in order to reduce energy cost. When execution is

finished, ApproxPIM notify the host which restore the full-duplex connection.

To evaluate ApproxPIM CACTI-3DD, Multi2Sim and McPAT were used. The

architecture was tested with different workloads such as graph processing, sorting

algorithms and machine learning applications. ApproxPIM supports boh sequen-

tial and parallel execitions. Results (figure 2.74, 2.75) were then compared with a

CPU+HMC system.
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Figure 2.74: Sequential Execution results. (a) Performance in terms of total execu-
tion time; (b) Energy consumption. From [23]

For sequential execution ApproxPIM achieves 21% speedup improvement with

respect to the baseline (Host processor +2D DRAM), 8% speedup improvement

with respect to HMC+CPU system and 68% less energy consumption with respect

to HMC+CPU.

HMC provides inter-vault parallelism. Figure 2.75 shows performance of Approx-

PIM for different numbers of vaults. It is noticeable that performance is improved

when it is possible parallelize the benchmark and they further improve, the more

parellism is added.

Figure 2.75: Parallel Execution results. (a) Performance in terms of total execution
time; (b) Energy consumption. From [23]
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2.4.11 Interleaved Logic-in-Memory Architecture for Energy-

Efficient Fine-Grained Data Processing [24]

This architecture aims to present a solution for the Von Neumann bottleneck, that

is the disparity in speed between memories and processors.

Nearly 75% of energy consumption is due to data movement, so reducing this

would imply a great improvement in performance.

This architecture, called MISK, tries to implement a single, monolithic logic-in-

memory structure, rather than keeping CPU and memory phisically separated.

Figure 2.76: MISK and conventional approach. From [24]

Rather than transferring data into processing elements to elaborate, with MISK

(figure 2.76) data only need to be moved into the cache. This results in a reduction

of data transfer overhead and enables massively parallel execution.
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Figure 2.77: (b) LUT-based LIM unit; (c) Modified RS-latch; (d)XOR-based LIM
unit. From [24]

CMOS logic for data processing is integrated into a 6T SRAM which is in a

memory-logic-memory-latch configuration (figure 2.77).

Two classes of LIM units are introduced: XOR-based unit and LUT-based unit.

XOR is a commonly used operation for cryptographic application and LUT offers

FPGA-like flexibility.

MISK targets a wide application space, ranging from image processing to fine-

grained computation.

To evaluate MISK architecture, 9 different applications were mapped into OpenRISC

1200 CPU with and without MISK integrated into the data cache. Simulations were

performed using Or1ksim and Synopsys Design Compiler.
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Figure 2.78: Evaluation results. From [24]

Results (figure 2.78) show that MISK-integrated CPU achieves impressive im-

provement in terms of execution time; even if the energy-per-cycle value is grater

than the simple CPU, MISK-integrated CPU requires less cycles, resulting in energy

savings.

2.4.12 Gilgamesh: A Multithreaded Processor-In-Memory

Architecture for Petaflops Computing [25]

Gilgamesh is a system based on shared and distributed memory. It is composed

of multiple MIND chips linked with each other through a Global Interconnection

(figure 2.79).
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Figure 2.79: Gilgamesh Architecture. From [25]

Communication between chips is implemented with a parcel protocol. MIND

chips (figure 2.80) are formed by multiple DRAM banks, processing logic, I/O in-

terfaces and inter-chip communication channels. It is a general purpose structure.

Figure 2.80: MIND Chip Architecture. From [25]

MIND nodes (figure 2.81) provide computational capability to the chip, integrat-

ing memory with logic and control blocks.

Since a wide memory bandwidth is available, provided by DRAM row-wide access

and the large amount of memory banks in a single chip, each memory bank is inte-

grated with a wide ALU inside the row buffer, in order to process row-wide data.
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Figure 2.81: MIND Node Architecture. From [25]

The system memory bus interface gives the means to interconnect MIND chips

to conventional workstation and server motherboard memory buses.

A Gilgamesh prototype has been made using a specifically designed board, con-

taining 4 high-density FPGAs and 8MB SRAM to represent two nodes and their

interconnection. The prototype board operates at one tenth of speed of what an

actual chip would be capable of but its performance is at least a thousand times

greater than a gate level cycle-by-cycle software simulator.

2.4.13 Design and Evaluation of a Processing-in-Memory

Architecture for the Smart Memory Cube [26]

Smart Memory Cube is a PIM architecture that enhances the capabilities of the

logic base die in HMC.

The structure has been analyzed with an in-house simulation environment called

SMCSim based on gem5. The simulator is capable of modeling a SMC device linked

to a SoC Host. The host used is a Cortex A15.
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Figure 2.82: SMCSim Environment. From [26]

As figure 2.82 shows, PIM component is connected to the logic base through local

interconnection. It is composed of a Scratchpad memory (SPMs), DMA engine,

Translation Look Aside Buffer and Memory Management Unit.

TLB is used so that PIM can access user-space virtual memory directly. PIM

has been enhanced with a DMA engine capable of bulk data transfer between the

DRAM vaults and its SPMs.

SMC has been simulated for data intensive application such as graph processing

applied to social network applications such as Average Teenage Follower (ATF),

Breadth First Search and Page Rank.
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Figure 2.83: Performance results. From [26]

SMC can reach up to 2x performance improvement in comparison with the host

SoC and about 1.5x against a similar host-side accelerator (figure 2.83). Moreover,

by scaling down frequency and voltage it is possible to reduce energy by about 55%

and 70% with respect to the accelerator and the host respectively (figure 2.84).

Figure 2.84: Energy efficiency results. From [26]
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Chapter 3

The CLIMA Architecture

The architecture under develompment was named CLIMA, which stands for Config-

urable Logic-in-Memory Array. The main aim was then to achieve a configurable

structure capable of performing operations directly inside the memory array.

For the development of the architecture, a bottom-up approach was adopted (figure

3.1).

Target 
Application

CELL ROW ARRAY

ARRAY

ADD-ON COMPONENTS CONTROL UNIT

CLIMA

FINAL STRUCTURE

Figure 3.1: Bottom-up flow followed to develop CLIMA

Once a target application and thus an algorithm was selected, the first step was

to design the LiM cell that was capable of performing the required actions. After

that, a series of cells can compose a row and in the same way multiple rows would
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form the memory array. The next step was to define all the remaining components

used to guarantee the correct functioning of the array. Once the datapath was fully

designed, the control unit was implemented. The union of datapath and control

unit brings to light the final CLIMA structure.

3.1 The application: Bitmap Indexing

Sometimes, when trying to implement something new, having a blank page and no

boundaries can do more harm than good. However, thanks to the wide spectrum

of possibilities gathered with the state of the art, a few possible applications and

algorithms compatible with the Logic-in-Memory mentality were selected. Out of

them, Bitmap indexes were chosen as a starting point.

Bitmap indexes are widely used in database management systems. Typically, a

column in a table is composed of different key-values. Bitmap indexing transforms

that column in as many bitmap indexes as each distinct key-value of that column.

A bitmap is an array of bits in which the i-th bit of the bitmap is set to 1 if the

value of the column in the i-th row has the same value corresponding to the one

represented by the bitmap index. Any other position of the bitmap is set to 0. [33]

An example is shown in figure 3.2.

Bitmap indexing is indicated for database with a low degree of cardinality, that

is a table in which the number of distinct key-value is smaller with respect to the

number of rows. It also provides reduced response time and it is most effective with

queries in the ”where” clause [28]. This is because with bitmap indexing resolving

queries results in performing simple bitwise logic operations, as shown in figure 3.3.

In figure 3.3, to answer the ”how many” query a counter that counts the hits in

the resulting bitmap would be needed.
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Figure 3.2: An example of bitmap index. From [28]

Figure 3.3: An example of query using bitmap indexes. ”How many married cus-
tomers live in the west or central region?”.From [28]

3.1.1 Data Organization

Usually, data of a table are stored in columns, in such a way that each column

represents a particular attribute of the data set and one row contains the entire
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profile of a particular entry. However, for a Logic-in-Memory approach, this orga-

nization would imply operations between columns and so, accessing multiple rows

and discarding unwanted data. Such an approach would have been too costly. For

this reason, a Column-Oriented organization was preferred [29]. The entire table is

transposed so that each column now lies as a row. With this method accessing one

row will allow to have access to the whole index (figure 3.4).

Figure 3.4: Column-oriented bitmap memory organization. From [29]

3.1.2 The Algorithm

As said in the previous section, a query can be fragmented into many bitwise logic

operations.

For bitwise, it is intended the processing of a bit vector with another making interact

the bits belonging to the same position in the array. For instance, if an AND

operation is to be performed between two operands (e.g 8-bit each), the steps to

follow are:

1. Read Operand1;

2. Read Operand2;

3. Perform AND between each bit of the operands, respecting their position;
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4. Logic result is computed;

This example is depicted in figure 3.5.
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1
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1
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1

OPERAND1

OPERAND2

LOGIC 
RESULT

Figure 3.5: Bitwise AND between two operands

Types of Query

In this implementation will be considered two different types of query:

• Simple: a query composed only of an operation between two operands.

E.g: A ·B;

• Composed: a query composed of two operations.

E.g: (A ·B) + C;

3.2 CLIMA Datapath

3.2.1 The Cell

The first step consisted in defining the LiM cell. According to the selected applica-

tion, what was needed were bitwise logical operations between rows inside the array.

So, the characteristics to implement were the following:

• standard memory features (read,write);

• configurable logic operations(inter-row bitwise operations);
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For this reason the cell was divided into two different elements: memory and logic.

An internal view of the cell is shown in figure 3.6.

MEM

wordline IR

CONFIG 
LOGIC

config_logic_ctl

C

data_in

data_out

from_mem

from_ext

logic_res

Figure 3.6: Internal view of the LiM cell

The memory element is in charge of storing information and connecting external

data with the logic, this is made to avoid a second input in the cell. A permanent

connection between the memorized data and the logic is present. This way, when

performing an operation, the data stored in the cell does not need to be read. The

IR control signal, alongside the traditional wordline, is used to manage the data flow

inside the cell (figure 3.7).
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logic_res
MEM

wordline IR

CONFIG 
LOGIC

config_logic_ctl

C

data_in

data_out

from_mem

from_ext

logic_res

'Z'

'Z'
LIM  

wordline = '0' 
IR = '1' 

config = logic_op 

OFF 
wordline = '0' 

IR = '0'

Figure 3.7: Data flow inside the cell, according to different input. Highlighted arrows
indicate active signals

In figure 3.7 are depicted all the operation modes of the LiM cell.
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• WRITE: the wordline is active and the input data is saved inside the cell;

• READ: wordline and IR are set to 1 and the data stationing in the cell is sent

as output;

• LIM: only IR is active. An external data enters the cell up the logic block so

that the cell is able to execute the wanted operation, according to the logic

configuration control signals that are sent in input;

• OFF: both wordline and IR are set to 0. This means that the entire cell is

switched off and its outputs impose high impedance , in order not to disturb

other cells.

The logic element has the external data and the stored one as input. According to

the different number and the kind of operation to perform, a C-bit configuration

control vector is sent as input to the logic. The result of the logic operation is

then sent in output. For this application, AND,OR and XOR operations were imple-

mented, with all the possible combinations of inputs (e.g A, not(A)),for a total of

12 possible operations and a 4-bit control vector. The logic block was implemented

as a structural block, since the behavioral counterpart had too much area overhead.

An internal view of the configurable logic block is represented in figure 3.8.

config_logic_ctl(3 downto 2)

logic_res

'Z'
0 
 
1

0 
 
1

00 

01 

10 

11

from_mem

from_ext_to_cl

config_logic_ctl(0)

config_logic_ctl(1)

Figure 3.8: Internal view of Configurable Logic
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As shown in figure 3.8, the logic block perform the operation represent by the

configuration signal. The all-zero signal is used to keep the block switched off sending

as output high impedance.

The look of the cell as a whole is shown in figure 3.9.

CELL

data_in

data_out

wordline IR

config_logic_ctl

C

logic_res

Figure 3.9: Top view of the LiM cell

Now, the interaction between cells will be explained.

Computing is performed between two operands, so, since each cell is capable of logic

computation, a decision about which one actually performs it is needed.

Considering two cells belonging to different rows, but that have the same position

in the row, as bitwise operations demand, one of them has to be read, so that the

data inside it will travel to the logic block of the second cell to execute the operation

(figure 3.10).
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MEM
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data_in
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LOGIC

config_logic_ctl
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logic_res
Cell Operand 1

Cell Operand 2

Figure 3.10: Interaction between cells during LiM operation

This means that the input of every cell has to be common to the input of every

other cell, same for the outputs and a connection between input and output is

necessary. Thinking to a standard memory, this principle is implemented by the

bitlines shared between cells.

As a consequence, a way to avoid conflicts along the lines was needed. Thus, the

cell control signals wordline and IR are used not only to read, write or to connect

input to logic but also to set the outputs as high impedence, so that if the cell is

not used it will not cause interference to the others.

Ghost Cell

As said before, the logic result is sent as one of the output signals of the cell. But

as for where it goes it was not yet specified. There were many options to consider,

such as overwriting the content of the cell who performed the operation to save the

result, but it would have meant the deletion of the database. Another choice was

to add a second element of memory in the cell, resulting in a doubling of the total

area.

A third way was chosen. An additional row was added, composed of a cell equipped

only with the memory element in order to store the freshly computed logic output.
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Obviously, the same interface as the LiM cell has been kept to guarantee congruence

with the rest of the architecture. These cells were given the name of ghost cells, to

underline the purpose to store temporary data (figure 3.11).

GHOST 
CELL

logic_res data_out

wordline IR

Figure 3.11: View of a Ghost Cell

The output of the Ghost Cell is common to the LiM cells. This is done to enable

the possibility to read the content of the Ghost Cell whenever needed.

The acronym IR stands for Interal/external Read/write. It refers to one of the

first drafts of the LiM cell, before the introduction of the ghost one, when the

case of overwriting the content of the cell was implemented, making that the fifth

functioning mode of the cell, coded with three bits: two of IR and the wordline.

Without it, the possible actions are restricted to four, coded in a two bit control

signal. For this reason IR switched from a two-bit to a one-bit signal, but its label

stayed unchanged.

3.2.2 The LiM array

Once the two types of cell were defined, it was possible to implement the whole LiM

array.

A series of ghost-cells were put in line to form the ghost row, while the LiM-cells

were put together to compose the rest of the array.

Each row is controlled by the same wordline and IR control signal, the same for the

ghost one. But the logic configuration bits are sent only to LiM-rows.

The input line is common for every LiM-row, while the output line is also common

with the ghost row giving the user the possibility to read its content or re-using it

for further computation.
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In a standard memory, an organization based on rows divided into words is a com-

mons solution, since moving big amounts of data all together would be too costly.

So, each row was divided into 2W words, where W is the bit size of the word address.

To avoid conflicts between words belonging to the same row, an enable word bit

vector signal had to be introduced for each row to activate one word at a time. The

interaction between words is the same as explained previously for the cells. Between

two operands, one is set to be read and the second to ”absorb” the first operand

and perform execution. Then, the result is immediately saved in the ghost word

having the same word-address as the second operand. This was made to simplify

the control of the array, since having to choose where to sent the result would have

implied the need to manage a third address. To make connection between input and

output possible when needed, a multiplexer was inserted as input to choose between

an external data, as it would be required in a normal memory functioning, and the

output of one of the other LiM-words necessary for LiM operations. The selection

bit of the multiplexer was then called LIM, and it is set to 0 if the array is working

in standard memory mode, to 1 if it is in LIM mode. The final array composition is

shown in figure 3.12.

GHOST WORD

LIM WORD

LIM WORD

LIM WORD

GHOST WORD

LIM WORD

LIM WORD

LIM WORD

GHOST WORD

LIM WORD

LIM WORD

LIM WORD

DATA_OUT

DATA_IN
0 

1 

LIM

N

N

Figure 3.12: View of the LiM array. Word control signals are omitted for clarity. N
represent data size
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Decoders

The presence of so many control signal imposed the use of custom-made decorders,

to simplify the control at a higher level. Two decoders were implemented:

• Configurable Logic Decoder;

• IR Decoder;

Configurable Logic Decoder Having so many bit of configuration for each row,

connecting all of them from the outside would be too expensive. This is why it

was implemented a decoder capable of managing all the configuration bits of an

array. As input, an enable signal, the logic operation coded on C-bit (considering

the implemented logic, C will be 4-bit large) and the address are sent. The decoder

set the configuration bits in correspondence to the input address and all the rest are

set to 0, that is the default configuration that indicates that the logic is switched

off. The enable signal is used to activate or not the decoder (figure 3.13).

CL DECODER

logic_opCL_enable

address

config_logic_ctl

C*2^M

M

C

Figure 3.13: View of the Configurable Logic Decoder

IR Decoder As figure 3.14 shows, IR Decoder has many inputs. They will be

explained briefly:

• Address 1 is composed of word address and row address of the first operand

of the operation, that, as said before, is the one to be read, travelling to the

second;
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• Address 2 is composed of word address and row address of the second operand

of the operation. The row segment of this address is also sent to the CL

decoder;

• mem is set to 0 when the structure is working in standard memory mode. In

this mode, only address 1 is decoded, to activate the corresponding word to be

read or written. If it is set to 1, the structure enters LIM mode and outputs

enable word, wordlines, IRs are set as the operation demands;

• IR1,IR2 are the IR signals to insert according to the input addresses, the

working principle is the same as the CL decoder;

• en wl is used during LIM mode to read the content of the ghost word, sending

it to another word in the array for further computation;

• enable is used to enable the decoder. If disabled, it keeps the whole array to

a switched off status.

IR  
DECODER

mem en_wl

IR_enable

address_1

address_2

M+W+1

M+W+1

IR1IR2

decoded

IR_decoded

enabled_word

2^M+1

2^M+1

2^W*(2^M+1)

Figure 3.14: View of the IR decoder
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Array size of the addresses and as a consequence of the input vector is M+W+1

because it includes word address as well as row addresses, that in one more then the

wanted size due to the presence of the ghost row.

Word and Row Selectors

During the early stages of the synthesis phase the array as it was had a pretty long

output delay. The reason turned out to be the large amount of load capacitance

oppressing the output line, due to the fact that each single word of the array was

connected to it. To lessen the weight on the line, a word selector was inserted in

each row, exploiting the enabled word output of the IR decoder to sent the desired

word in output and a row selector was inserted for each array to select between the

pre-selected words, exploiting the wordlines signal from the IR decoder. This way

the control unit did not need to be modified and the delay on the line was deeply

reduced. In figure 3.15, it is possible to observe what would be the load on the

output line without this component.

enabled_word(i)

2^W

N

selected_word

enabled_word(i-1)

2^W

N

common 
output 

line

selected_word

word

word

word

word

word

word

wordlines

selected_row

N

Figure 3.15: View of two word selector connected to the output line
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3.2.3 CLIM Bank

The structure depicted so far is shown in figure 3.16.

Since in this structure input and output are connected together during the LIM

operation, inside this structure can be performed only one operation at a time.

So, it was decided to divide the whole memory array into such units, from now called

CLIM Bank. A bank is the smallest unit of parallelism inside the whole array.

LIM 
ARRAY

data_in

data_out

N
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CONFIG LOGIC DECODER

DECODER 
IR

internal_data
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1

logic_config CL_enable

address_2M

address_1
M+W+1

en_wl

mem

C

IR1 IR2

Legend
input
from control
output
internal

LIM

M+W+1

IR_enable

Figure 3.16: Internal view of a CLIM Bank

The complete structure can be composed of as many banks as it is thought to be

appropriate. The idea was to exploit the bank ability to isolate itself to implement

a degree of parallelism that could be at maximum equal to the number of banks,

allowing more of them to work together or independently in parallel with other

banks.

Bidirectional Breaker

One of the most tricky issue about the development of CLIMA was to manage

interconnections. This was already observed during the implementation of the LiM

rows themselves.

82



3.2 – CLIMA Datapath

As far as multiple banks are concerned the same principle of interconnection between

rows in a bank still stands: the input line is common to each bank and the same

happens for the output line. This condition imply that if two banks are intended to

work with each other, they will occupy the data bus, preventing other banks to do

the same. For this reason, a method to isolate the banks with each other, in order

to guarantee the maximum possible parallelism, was introduced. A Bidirectional

Breaker is instantiated for each clim bank. The component is shown in figure 3.17.
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BANK

UDz

3

N N

N

N

N
N

data_from_b

data_to_b

down_indown_out

up_outup_in

Figure 3.17: View of the Bidirectional Breaker

According to the 3-bit control signal, the Bidirectional Breaker is in charge of

diverting the data that passes through it to the desired direction, allowing data to

travel everywhere in the array. If switched off, the breaker imposes high impedance

to all of its outputs, isolating the bank or entire regions of the whole array ( figure

3.18).
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Figure 3.18: Data flow inside the Bidirectional Breaker according to different control
inputs
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Looking at figure 3.18, it is possible to observe that the breaker opens only one

output at time, leaving the other two switched off. It can be ”active” sending the

data of its own bank to the rest the array or receiving data for it, or it can act as

a ”passive” component, letting data pass through it. Thanks to the fact that even

if the breaker lets data pass , this does not interfere with its bank, it is possible

to implement parallel operations, with banks that work with each other, while the

isolated ones can work by themselves.

3.2.4 CLIM Bank Array

The duo Bank-Breaker is then used to compose the final structure of the LiM ar-

ray. Multiple copies of the duo are connected together to form the array (figure

3.19). Since each bank represent the smallest unit of parallelism and the entire

implementation is parametric, a lot of combinations can be made, according to the

performance to achieve. It is possible to choose a configuration with lots of banks

with few rows, or few banks with more rows and so on.
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bank_ctrls(2^B-2)
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data_out
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Figure 3.19: Array of banks and breakers
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3.2.5 Instruction Memory

To allow the structure to work at the maximum of its capabilities, that is performing

as many parallel operations as the number of banks, it was necessary to provide the

architecture with the components to manage such eventuality.

The Instruction Memory is a register file containing as many registers as the number

of banks of the array, with dimensions equal to the sum of twice the size of a com-

plete address (bank, row and word) and the size of the logic configuration( identified

in figure 3.20 with letter O) . Therefore, a so called ”instruction” is a segment of a

query, which contains the addresses of the two operand and the desired operations.

The rest of the structure of a complete query will be explained later.

A single load signal was used, to simplify the control unit.

INSTRUCTION 2^B -1
LD

INSTRUCTION 2^B -2
LD

INSTRUCTION 0
LD

instruction_in(2^B-1)

instruction_in(2^B-2)

instruction_in(0)
O

O

OO

O

O

instruction_out(2^B-1)

instruction_out(2^B-2)

instruction_out(0)

CLK LOAD

Figure 3.20: View of the Instruction Memory

3.2.6 Operation Dispatcher

Due to the versatility of the architecture, the operands of the operation to be

performed could be found everywhere in the array. Thus, the needed addresses

(row+word) had to be sent to the appropriate bank. A logic block, the Operation

Dispatcher served this purpose.
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As said previously, CLIMA had to be equipped according to its major potential, but

this does not mean that it is the only way it can perform. Therefore, the instruction

memory was needed as big as possible, but in most cases, it will not be updated

fully. This is why an enable operation control signal was needed. According to

how many new parallel operation are loaded and thus enabled, the dispatcher is in

charge of reordering the addresses, sending them to the right bank and ignoring the

disabled ones. Also, two arrays bank 1 and bank 2 are sent to the control unit to

manage the operations. They contain the addresses of the banks that are used in

operation order (figure 3.21). For instance, if during the operation with position 0

bank 2 and 3 are used, the arrays will contain 2 and 3 in position 0, respectively.

OPERATION 
DISPATCHER

instruction_out(2*B-1)

instruction_out(2*B-2)

instruction_out(0)

enable_operation

2^B

address_1
address_2
logic_op

address_1
address_2
logic_op

address_1
address_2
logic_op

to_bank 2^B-1

to_bank 2^B-2

to_bank 0 

bank_2bank_1

B*2^BB*2^B

Figure 3.21: View of the Operation Dispatcher

3.2.7 Addresses Register File

To ensure synchronization, the well-ordered addresses, before being directly con-

nected to their banks, are sent to a register file, where they are loaded and then sent

to the array. Each banks own its triplette of registers with two addresses and one

logic configuration. Clock and load signals are common for all the internal registers

(figure 3.22).
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A1 A2 CL
LD LD LD

A1 A2 CL
LD LD LD

A1 A2 CL
LD LD LD

BANK 2^B-1

BANK 2^B-2

BANK 0

A1&A2&CL_in

A1&A2&CL_in

A1&A2&CL_inA1&A2&CL_out

A1&A2&CL_out

A1&A2&CL_out

CLK LOAD

2*Mex+C

2*Mex+C

2*Mex+C

2*Mex+C

2*Mex+C

2*Mex+C

Figure 3.22: View of the Addresses Register File. Mex indicates the extended address
composed of word and row, considering the plus one of the ghost row

3.2.8 Ones Counter

Even if at the beginning the idea was to incorporate every single aspect of compu-

tation in the memory array, it was soon realized that inserting a ones counter in the

array would have been too costly. Moreover, a simple counter in which the input

data would have been analyzed bit-by-bit, incrementing a counter for each ’1’ found,

was too slow. For this reason a tree-structured counter was implemented.

The data array is firstly divided into D segments, each composed of N
D

-bits, then

each segment is processed at the same time to count how many ones it contains and

eventually all segments are added together following a tree structure. To make im-

plementation easier, the adders that compose the tree structure are all of the same

dimension, computed to avoid overflow, set as D
2

+ N
D

.

The counter is also sensitive to the negative edge of the clock, giving the compo-

nent at least half a clock to perform the counting before the output register, that is
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3.2 – CLIMA Datapath

sensitive to the positive edge, loads the result. A reset signal is present to reset the

counter and it is set to 1 when the counter is needed. The top view and internal

structure of a 8 bit counter with 4 segments is shown in figure 3.23 and 3.24.

ONES COUNTER 
N bit

RST

N

N

how_many

to_count

RST

CLK

Figure 3.23: Top view of the Ones Counter

counts (3) counts(2) counts(1) counts(0)

how_many

Figure 3.24: Internal view of an 8-bit ones counter divided into 4 segments

3.2.9 The complete CLIMA Datapath

The complete structure of the CLIMA Datapath is shown in figure 3.25. Input (Data

In) and output (Result of Query) registers were added. A multiplexer is interposed

between the array and the input register, giving the user the possibilty also to save

in the array the result of a previous query, maybe instantiating an empty bank to

save results, in order to avoid deleting part of the database. Another multiplexer
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3 – The CLIMA Architecture

at the output chooses between the ”who” answer of the query, represented by the

output of the array, or the ”how many” answer represented by the output of the

counter.
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3 – The CLIMA Architecture

3.3 CLIMA Control Unit

The final step of the implementation of CLIMA was the design of the Control Unit.

The management of all the possible operating modes of CLIMA and as a consequence

the management of the data flowing everywhere in the array thorugh the breakers,

made it difficult to implement the control as a microprogrammed unit. This is why

the Control Unit was implemented as a Finite State Machine.

8 different operation modes were defined, coded on a 3-bit vector called OP MODE:

• WRITE(000): an external data is written in the location pointed by the input

address;

• READ(001): the data located in the input address is sent as output

• SAVE(010): the result of a query loaded in the output register is saved in the

location pointed by the input address;

• LIM single same Bank(011): a LIM operation is performed between two operands

belonging to the same bank. The result is immediately sent in output;

• LIM single different Bank(100) : a LIM operation is performed between two

operands belonging to different banks. The result is immediately sent in out-

put;

• LIM Multiple Banks(101): multiple LIM operations are performed in parallel,

between operand belonging either to the same banks or to different ones;

• LIM composed single(110): a complex LIM operation is performed in two steps.

Then the result is sent as output

• LIM multi composed(111): Multiple complex LIM operation are performed in

parallel.

Each operation mode is the starting point of a query, which is composed as shown

in figure 3.26.
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3.3 – CLIMA Control Unit

OP_MODE W_H BANK_ACTIVE NEW_OP COMPOSED_OP OPERATIONS

Figure 3.26: Composition of a complete query

• OP MODE: 3-bit vector to decide the operation mode of the query;

• W H: bit set to 0 is the query to answer is ”who”, set to 1 is the query asks

”how many”;

• bank active: mask composed of as many bits as the number of banks in the

array. It is used to simplify the control unit and it indicates which banks are

active during the execution of the query. This is done to avoid interference

caused by unused banks;

• new op: mask composed of as many bits as the number of banks in the array.

It is sent to the dispatcher which will perform assignation of the operations

that are actually being executed;

• composed op: mask with as many bits as the number of banks in the array.

During a simple operation is set to 0, whilst during a composed operation

it is in part complementary with new op (depending on the total number of

operations, the rest is set to 0 for both masks) and it is used in the second

part of the execution, substituing new op as enable for the dispatcher;

• operations: is a sequence of bit vectors (separated by a space), each of which

is as long as the dimension of an instruction (twice a complete address plus

the logic operation, as explained in section 3.2.5) and it is sent as input to the

datapath, in particular to the Instruction Memory;

The external view of the Control Unit is shown in figure 3.27.
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CONTROL 
UNIT

CLK

banks_controls

breakers_controls

START

ARST

bank_active new_op composed_op

bank_1 bank_2

OP_MODE

W_H

B*2^B
B*2^B

2^B2^B2^B

3 3*2^B

7*2^B

Figure 3.27: Top view of the Control Unit

In the following the inputs not yet mentioned will be explained:

• ARST: is the asynchronous reset. It resets the machine to an idle state;

• START: if is set to 0 the machine remains in the idle state, otherwise it starts

working. The Control Unit is designed in such a way that if START remains

set to 1 the machine continues working sampling another query, skipping the

idle state;

• bank 1,bank 2: are bank address vectors coming from the datapath. They

are ordered according to the operation sequence and are used to both manage

the banks control signals and the breakers control signals;

The FSM chart of all operation modes are reported in the following figures.
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Reset system

RESET

IDLE

START
0

1

Data_in register and
instruction memory
are loaded with new

data

LOAD_REGS

Dispatcher is enabled and
appropriate addresses and

logic are loaded into the
addresses register file 

LOAD_ADDR

OP_MODE

WRITE_SAVE

000/010

READOP

001

LIM_single_Same

011 LIM_single_Diff

100

LIM_Multi_banks
101

LIM_composed_single

110
LIM_composed_Multi

111

Figure 3.28: Preliminary stages of a CLIMA operation
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OP_MODE

According to OP_MODE(1) the
external data o the content of

the ROQ register are written in
the address pointed by input

000/010

WRITE_SAVE

START

Figure 3.29: Flow of a WRITE/SAVE operation

OP_MODE

the data cointained in the
address pointed by input is sent

in output loaded in the ROQ
register

001

READOP

START

Figure 3.30: Flow of a READ operation
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Execute LIM
operation in the
specified bank

011

OP_MODE

LIM_single_sameBank

load on the ROQ
register the desired
output according to

the W_H signal

LIM_single_out

START

Figure 3.31: Flow of a single LIM operation inside a bank
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OP_MODE

Execute LIM
operation between
the two specified

banks

100

LIM_single_diffBank

load in the ROQ
register the desired
output according to

the W_H signal

LIM_single_out

START

Figure 3.32: Flow of a single LIM operation between two different banks
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Execute in parallel
multiple LIM operation
between both different

and same banks

OP_MODE

101

LIM_multi_Bank

START

Figure 3.33: Flow of a parallel LIM operation
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OP_MODE

Execute the first part of
the query and enable the

dispatcher in order to
load the addresses

necessary for the second
part

110LIM_composed_part1

The result of first part is
read and used as one of

the two operands to
execute the second part

of the operation

LIM_composed_part2

The desired result,
according to the W_H
signal is loaded in the

ROQ register

LIM_composed_out

START

Figure 3.34: Flow of a single composed LIM operation
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OP_MODE

multiple first parts of queries
are executed in paralle while
the addresses of the second

part are loaded in the
addresses register file

111

LIM_composed_part1

Results are read to execute
the second part of the

queries

LIM_composed_part2

START

Figure 3.35: Flow of multiple composed LIM operations

3.4 The complete CLIMA structure

The relantioship between Datapath and Control Unit is depicted in figure 3.36, while

a top view of the structure as a whole is shown in figure 3.37.
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CONTROL 
UNIT DATAPATH

START

ARST

W_H

bank_controls

breaker_ctrls

bank_1 
bank_2

data_in

data_out

operations

bank_active new_op composed_op

Figure 3.36: Internal view of CLIMA. Signal parallelism is omitted for clarity

CLIMA

DATA_IN

ROQ

START

ARST

CLK

QUERY

Figure 3.37: Top view of CLIMA

As it is possible to observe, CLIMA has as inputs external data, the desired query

other than traditional control signals while the only output is Result Of Query.
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Chapter 4

Test and Simulation

After implementation was completed, the natural following step was to ensure that

CLIMA worked properly. All of CLIMA internal structures have been kept para-

metric to give the possibility to implement the architecture composed of how many

banks, rows and words needed according to the target database.

For this study it was decided to implement a 256x256 bit architecture, divided into

16 banks, with 16 rows each, with 16 words each, for a total of 4096 words. Data

size is set as 16 bit.

The flow implemented for this stage of the project is show in figure 4.1.

MATLAB 
script

TESTBENCH

bitmap.txt

query.txt

clima

WAVEFORMS

students  
group

Figure 4.1: Flow of the Test phase

From a MATLAB script (or from an external source in the case of the bitmap)

were extracted both the bitmap and the queries to execute. The files were then set

as input for the VHDL Testbench and finally it was run a simulation. The VHDL

Testbench is structured in two loops:
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1. Fill the memory extracting data from the bitmap;

2. For each cycle of the loop, read one query and execute it. The loop stops at

the end of the file

4.1 Generate Input MATLAB script

To make the generation of queries easier, a very simple MATLAB script was written

and used. When started, the script enters a loop that terminates only when the user

decides not to create any more queries and a file query.txt is generated as output.

The completion of the query is assisted by two pop-up windows: one shows the

internal composition of the memory (figure 4.3) and the other shows the available

logic operations and their correspondent code(figure 4.4).

An example of the user interface is shown in figure 4.2.

Figure 4.2: Screenshot of the generate input Matlab script interface
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Figure 4.3: Description of the internal organization of the array
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Figure 4.4: Description of available logic operation

The script also generates a text file called memory.txt that can be used during

testing. It can be used as filler of the array, but each words corresponds to the ID

of the word in which it is saved (e.g 1,2,...4095,4096), so it is not a real bitmap, but

it was still used because simple to obtain, in order to check if architecture worked

as planned.

Later in the test phase a real bitmap was provided by a student group who imple-

mented a Python compiler capable of manipulating an integer table to obtain the

bitmap. Since both of the text files were used to fill the array, from now on it will

be referred as bitmap.txt.
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4.2 Operation Mode Testbench

In this section will be reported a simulation for each operation mode of CLIMA.

For clarity, only the operations string of the query will be reported in the following

format:

OP MODE WHO/HOW MANY BxRxWx ByRyWy LOGIC OP

Where x,y corresponds to the addresses of the first and second operand, respec-

tively.WHO/HOW MANY and LOGIC OP will be omitted for read and write cases.

The radix of the data input and output is set as ”unsigned” to make the results

easier to understand.

4.2.1 Write/Save

Query:

WRITE B14R7W1

Expected behaviour

Figure 4.5: Expected waveform of a write operation
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Actual behaviour

Figure 4.6: Waveform of a Write operation

4.2.2 Read

Query:

READ B14R7W1

Expected behaviour

Figure 4.7: Expected waveform of a read operation

108



4.2 – Operation Mode Testbench

Actual behaviour

Figure 4.8: Waveform of a Read operation

4.2.3 LIM single same bank

Query:

LIMsingleSame WHO B5R11W13 B5R8W2 AND

Expected behaviour

Operation:

72 AND 4 = 0

Figure 4.9: Expected waveform of a LIM single same bank operation
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Actual behaviour

Figure 4.10: Waveform of a LIM single same bank operation

4.2.4 LIM single different banks

Query: LIMdiffSame HOW MANY B10R3W3 B1R0W0 XOR

Expected behaviour

Operation:

0 XOR 8 = 8

number of ones = 1

Figure 4.11: Expected waveform of a LIM single different banks operation
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Actual behaviour

Figure 4.12: Waveform of a LIM single different banks operation

4.2.5 LIM multiple operations

Query:

LIMmultiple WHO B1R7W5 B3R0W10 OR

B8R8W B8R1W9 AND

B7R7W7 B11R11W11 OR

B14R0W0 B14R10W5 AND

B13R2W2 B15R9W6 OR

Expected behaviour

Operations:

8192 OR 2048 = 10240

5120 AND 0 = 60415

0 OR 0 = 65535

264 AND 4224 = 0

0 OR 256 = 256
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Figure 4.13: Expected waveform of a LIM multiple operations

Actual behaviour

Figure 4.14: Waveform of a LIM multiple banks operation

4.2.6 LIM single composed

Query:

LIMsingleComposed HOW MANY B2R2W2 B1R1W1 XOR

B1R16W1 B7R11W0 OR

Expected behaviour

Operations:

18432 XOR 264 = 18696
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18696 OR 0 = 18696

number of ones = 4

Figure 4.15: Expected waveform of a LIM single composed operation

Actual behaviour

Figure 4.16: Waveform of a LIM single composed operation

4.2.7 LIM multiple composed

Query:

LIMmultiComposed WHO B15R15W15 B15R0W0 AND

B15R16W0 B10R2W2 OR

B4R4W4 B3R3W3 XOR

B3R16W3 B1R10W11 OR

Expected behaviour

Operations:
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32768 AND 16384 = 0

0 OR 36865 = 36865

—

1280 XOR 0 = 1280

1280 OR 0 = 1280

Figure 4.17: Expected waveform of a LIM multiple composed operation

Actual behaviour

Figure 4.18: Waveform of a LIM multiple composed operation
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Chapter 5

Synthesis Results

After ensuring that CLIMA worked properly, the process of synthesis begun. The

flow of the synthesis phase is shown in figure 5.1.

Synthesis Flow

Analyze Elaborate Compile

CONSTRAINTS

report_area 

report_power 

report_timing

VHDL 
CODE

NETLIST

Figure 5.1: Flow of the synthesis process

Synthesis was performed using Synopsys Design Compiler with a 45 nm CMOS

technology.

It was necessary to proceed by baby steps to avoid errors. For this reason, instead

of synthesizing the whole structure in one step, as for the implementation phase a

bottom-up approach was adopted.

At first, Cell and Ghost Cell were analyzed and compiled. When both of their best

delay was found, it was decided to impose a don’t touch constraint on them, to

ensure that the fundamental element of the entire architecture would not undergo

modification due to optimization during synthesis.
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5.1 Cell

As the fundamental element of the whole structure, the Cell was the first to be

analyzed and optimized.

The obtained results are reported in tables 5.1, 5.2.

memory logic LiM Cell
Non-Combinational Area [µm2] 9.31 2.12 11.43
Combinational Area [µm2] 5.32 15.43 20.75
Total Area [µm2] 32.18
Delay [ns] 0.45

Table 5.1: Area and Time Results of the LiM Cell

Internal Power
[µW ]

Switching Power
[µW ]

Tot.Dynamic Power
[µW ]

Leakage Power
[nW]

LiM Cell 5.93 4.53 10.46 700.85

Table 5.2: Power consumption of the LiM Cell

The resulting schematics of both mem and logic components are shown in figures

5.2 and 5.3. As it is noticeable both logic and memory elements are coherent with

the implementation.

Figure 5.2: Schematic of the memory element of the LiM Cell
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Figure 5.3: Schematic of the logic element of the LiM Cell

5.2 Ghost Cell

The ghost cell is the second basic component of CLIMA. The results of the synthesis

are reported in tables 5.3 and 5.4.

Ghost Cell
Non-Combinational Area [µm2] 2.13
Combinational Area [µm2] 5.05
Total Area [µm2] 7.18
Delay [ns] 0.16

Table 5.3: Area and Time Results of the Ghost Cell

Internal Power
[µW ]

Switching Power
[µW ]

Tot.Dynamic Power
[µW ]

Leakage Power
[nW]

Ghost Cell 0.755 0.475 1.23 142.61

Table 5.4: Power consumption of the Ghost Cell

The schematic obtained with the synthesis is depicted in figure 5.4.
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Figure 5.4: Schematic of the Ghost Cell

5.3 CLIMA

As next step, the entire structure was synthesized. As mentioned at the beginning

of this section, a don’t touch constraint was posed on Cell and Ghost Cell to avoid

modification during synthesis.

CLIMA was synthesized of dimension 256x256 bit divided into 16 banks, with 16

rows each, with 16 words each, with a data size of 16 bit, the same as the simulation

phase.

5.3.1 Parametric Ones Counter

In the first drafts of CLIMA, the Ones counter was implemented as a behavioural

block with a loop that counted the ones present in the vector. However, such a

counter had a delay of 3 ns. To speed it up, the counter was re-implemented as

explained in section 3.2.8.

To make the structure as flexible as possible, the counter was implemented with

the parametric value D, that indicates in how many segments the input vector is

divided. Figure 5.5 show the relation between D and the total delay of the counter.
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Figure 5.5: Relation between delay and number of segments in the counter

It is noticeable that for a data size of 16 bits, for D = 8 the counter shows the

best delay. For this reason CLIMA was synthesized with a fixed value of D = 8.

5.3.2 CLIMA results

Synthesis results of the CLIMA architecture are reported in tables 5.5 and 5.6.

CLIMA
Non-Combinational Area [mm2] 1.554
Combinational Area [mm2] 0.785
Total Area [mm2] 2.33
Delay [ns] 12.14
fCLK [MHz] 82.4

Table 5.5: Area and Time Results of Clima
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Internal Power
[µW ]

Switching Power
[µW ]

Leakage Power
[nW]

Total Power
[µW ]

CLIMA 582.55 448.04 47.9e6 48.9e3

Table 5.6: Power consumption of CLIMA

For comparison purposes CLIMA was also synthesized with a 28nm CMOS li-

brary. In order to compare CLIMA with the non-LiM ASIC architecture specifically

implemented for the Bitmap Index algorithm provided by the group of students

mentioned previously, since their implementation can perform only AND, OR and

NOT operations, the logic block of CLIMA was modified to comply with theirs and

then synthesized with 45 nm. This version will be referred to as CLIMAmod. All

the results are reported in tables 5.7 and 5.8.

CLIMA 45nm CLIMA 28nm CLIMAmod 45nm
Non-Combinational Area [mm2] 0.785 0.105 0.768
Combinational Area [mm2] 1.554 0.947 0.835
Total Area [mm2] 2.33 1.052 1.603
Delay [ns] 12.14 3.46 12.14
fCLK [MHz] 82.4 289.02 82.4

Table 5.7: Area and Time Results of different versions of CLIMA

As far as throughput is concerned, when CLIMA is working in multiple parallel

mode, one clock cycle is enough to execute operations. So, the resulting throughput

for a multiple parallel mode simple operation is:

throughputsimple = fclk ·Nops

With Nops corresponding to the number of operations performed in parallel.

As for the composed operations, since it takes two clock cycles to complete them,

the resulting throughput is:

throughputcomposed =
fclk
2

·Nops
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Internal Power
[µW ]

Switching Power
[µW ]

Leakage Power
[nW]

Total Power
[µW ]

CLIMA 45 nm 582.55 448.04 47.9e6 48.9e3
CLIMA 28 nm 1.23e3 361 10.86e6 12.45e3
CLIMAmod 45nm 578.4 446.1 28.4e6 29.4e3

Table 5.8: Power consumption of different versions of CLIMA

As expected CLIMA 28nm is the best out of the three versions, since it was syn-

thesized with a newer technology.

Observing synthesis results, it is possible to notice that CLIMA and CLIMAmod share

the delay, but as far as area is concerned , CLIMAmod is smaller. This is due to the

fact that the logic block of the LiM cell has a different configuration and a smaller

amount of internal block, since it perform a less wide spectrum of operations. This

is also the reason why CLIMAmod consumes less power.

Array organization

Since all the sub-structures of CLIMA were implemented as parametric, it was

interesting to analyze how synthesis results would change varying the distribution

of the array. For this reason, another LiM array was synthesized, again with a

dimension of 256x256 bit but distributed in 128 banks with 2 rows each, having 16

words each. Data size is kept unchanged. Results are reported in table 5.9.

Array B16R16W16 Array B128R2W16
Total Area [mm2] 2.292 2.575
Delay [ns] 3.16 16.48

Table 5.9: Area and delay results of the two instances of LiM array

Comparing the two instances, it is possible to say that the configuration with

128 banks is bigger and way slower. The overhead in area is due to the fact that,

even if the overall number of rows is the same, more banks imply more ghost rows

and more breakers. The bigger amount of breakers is also the cause of the longer

delay. However, it must be said that such a distribution of the array could perform

128 parallel operations instead of 16, resulting in a much higher throughput. So,

121



5 – Synthesis Results

it is possible to implement any configuration of CLIMA according to the desired

performances and area-delay trade-off.

5.3.3 Optimization

Analyzing synthesis results of CLIMA it was noted that an optimization could be

carried out.

The delay of CLIMA is dependent on the fact that the ones counter is sensitive to

the negative edge of the clock. This imply that the critical path results in half of the

overall clock. This choice was made since if the counter was sensitive to the positive

edge, it did not have time to sample the correct data and compute result. In order

to try and optimize the clock, a register with the load always set to 1 was inserted

right after the output of the array, then the counter was modified to be sensitive

to the positive edge of the clock. Adding a delay represented by the new register,

now the counter would have the time to count the correct input. However, it was

also necessary to modify lightly the control unit, in particular adding more states

to obtain the output. The modified structure was then again synthesized in all the

previous versions. Results are reported in tables 5.10 and 5.11.

CLIMA 45nm CLIMA 28nm CLIMAmod 45nm
Non-Combinational Area [mm2] 0.785 0.105 0.768
Combinational Area [mm2] 1.542 0.953 0.837
Total Area [mm2] 2.33 1.058 1.606
Delay [ns] 6.52 1.74 6.52
fCLK [MHz] 153.4 574.7 153.4

Table 5.10: Area and Time Results of different versions of CLIMA after optimization

Internal Power
[µW ]

Switching Power
[µW ]

Leakage Power
[nW]

Total Power
[µW ]

CLIMA 45 nm 1.09e3 797.1 47.8e6 49.7e3
CLIMA 28 nm 2.43e3 0.689 10.954e6 14.07e3
CLIMAmod 45nm 1.07e3 781.5 28.4e6 30.3e3

Table 5.11: Power consumption of different versions of CLIMA after optimization
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5.3 – CLIMA

It is possible to notice that the one value that changed considerably after op-

timization was the delay. Now the clock frequency of CLIMA is almost twice the

previous one and the same could be said for the resulting throughput.

5.3.4 Comparison

CLIMAmod was implemented to be compared with the architecture provided by the

student group. They implemented a non-LiM ASIC architecture composed of tradi-

tional memory, an ALU (which could perform only AND, OR and NOT operations,

as explained previously) and the Control Unit, aimed to the Bitmap index algorithm.

They synthesized it and provided the results. To make the comparison coherent,

CLIMAmod was necessary. Results of both architectures are reported in table 5.12.

CLIMAmod 45nm non-LiM
Total Area [mm2] 1.606 0.226
Delay [ns] 6.52 2.2
fCLK [MHz] 153.4 454.5
Total Power [mW] 30.3 15.2

Table 5.12: Synthesis results of CLIMAmod 45nm and the standard architecture
provided by the student group

To compare the two structures the number of accesses to memory would probably

be worth mentioning. To perform an operation between two operands in a standard

architecture three accesses would be needed: two to read the operands and one

to write the result back in the array. As for the LiM architecture, to execute an

operation, two accesses are enough: one to transport one operand to the other and

one to save the result in the correspondent ghost word. Moreover, the fact that these

data movements are performed inside the memory array, instead that going back

and forth from the memory, must be taken into account. Also, CLIMA is capable

of performing multiple operations in parallel, while a standard structure is able to

execute one at a time. To implement parallel operation it would be necessary to

instance as many units as needed, resulting in a multiplied architecture.

Furthermore, it should be noted that the values of the memory of the non-LiM

architecture were collected from the model of a real memory, while CLIMA could
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not be synthesized as a real one. This resulted in the memory elements being

synthesized as latches, which are far more expensive than a traditional memory cell.

As far as power consumption of CLIMA is concerned it has to be considered that

data movement inside a Bank would probably be less expensive than in the case of

operations between banks, especially if distant ones. This shows that with CLIMA

there is a lot of room for study, improvements and optimization.
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Chapter 6

Conclusion and future work

The project carried out with this thesis aimed to explore the Logic-in-Memory

paradigm, starting from a target application and then implementing a parallel ar-

chitecture.

CLIMA is a configurable parallel architecture which bases itself on the application

of Bitmap indexing, an algorithm used in database systems.

CLIMA is implemented as a modular and parametric structure, to be as versatile as

possible. It is capable of performing as many parallel operations as the number of

its banks. It is also pretty easy to modify if some improvements or reconfiguration

are needed. In fact, even if it started from bitmap indexing, CLIMA is suitable for

any kind of bitwise applications.

The architecture was tested and synthesized and it showed promising results com-

pared with a standard architecture, taking into account its high degree of parallelism

and the fact that CLIMA could not be synthesized to be modeled as a real memory.

6.1 Future Work

CLIMA is still far from being a perfect structure and there is a lot of room for

improvement. With more study and analysis it could be possible to further optimize

CLIMA.

Few examples will be reported:

• 3D structure: multiple layers of LiM array could be put together to obtain
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a more efficient architecture;

• Flushing outputs: aimed to improve parallelism, while multiple banks are

busy working independently, the ones that completed their job send the results

in output one by one and resume work when free.

• Avoid ghost overwriting: one of the bad sides of multiple parallel opera-

tions is that the result cannot be sent right in output. This is why it is saved

in the ghost word. However, if the result is not read soon after, there is a

possibility that it will be overwritten by a subsequent operation. A possible

improvement could be finding a solution to avoid this eventuality.

• General purpose: CLIMA was implemented with the idea of bitwise opera-

tions in mind. But it should not be too difficult to further modify the structure

to make CLIMA suitable for all kinds of applications.

To conclude, this work comes to an end with the hope that CLIMA could one

day be a starting point for new ideas that will bring the concept of Logic-in-Memory

even further.
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