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Summary

Industrial Internet of Things (IIoT) plays an important role in industries, funda-
mentally by enabling the accessibility of huge amount of data at high speed more
efficiently and effectively, by incorporating the use of massive data, analytical tools,
and wireless networks. Wireless Sensor Networks (WSNs) are important in a wide
area of Internet of Things (IoT) applications. WSNs are a group of sensors re-
sponsible for collecting, analyzing and distributing data using a wireless link to
a central storage or other networks types through a gateway. WSNs are rapidly
emerging as a new type of distributed systems, with applications in different areas
such as in industries, automotive areas, building environment, traffic management,
etc. OpenWSN is an open source implementation of a complete protocol stack for
IoT. To achieve reliable communication and to get an effective and efficient perfor-
mance a network requires special routing mechanisms at the network layer. RPL
protocol is a mechanism that is specified and developed in order to meet these
requirements. RPL is an IPv6 routing protocol developed for low-power and lossy
networks, where motes and routers are expected to be power-constrained. This the-
sis studies the RPL protocol and how to get reliable data transmission with no loss,
low and deterministic latency in IIoT technology on industrial networks using open
source hardware platform called OpenMote B by measuring the performance of the
network with respect to the link. Simulation was performed using the OpenSim
emulator, which allows simulating OpenWSN network without a real device. The
Performance evaluation is based on traffic generation and measurement of relevant
metrics, which are round-trip time (RTT) and Packet Delivery Ratio (PDR). The
results obtained from the experiments show that the performance of a network will
be effective and efficient when motes are near to the grounded root, or a mote has
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a minimum hop with respect to the root mote. As future work, the performance
of a network should be measured with respect to power consumption and in real
devices in different scenarios.
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Chapter 1

Introduction

1.1 General context

These days the Internet is going to change rapidly. Now there is a massive global
network that allows people to communicate with each other. We use websites, send
messages to communicate and to share data. The people who use the Internet
and the data which come from client devices (laptop, personal computer, smart-
phone, tablet, etc.) go to some servers and those servers transmit that data or
that information further. Due to this, we can say that the Internet is made up of
three major actors, these are the people (client), the client devices they use and the
servers. But now a new category (actors) has been added to the Internet, which
are called ’Internet of Things (IoT)’.

IoT is the concept that any device is connected to the Internet and the devices
connected to each other. IoT is any object or device that has a sensor attached to it
that can transmit a data from that sensor into the Internet or into the cloud, where
it can be analyzed or used to make decisions to fulfill specific needs. The sensors are
connected to different platforms. The aim of these sensors is to target specifically
what information is important and useful, and what can safely be ignored. This
information can be used to notify the user with a suggestion or a recommendation,
by the device to detect a specific pattern or to detect possible problems before they
occur.
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1 – Introduction

The impact of the IoT revolution is disruptive. Industries and homes are already
registering major changes in efficiency and productivity. The transport sector is
getting a new face of autonomous cars, connected street lights switch off to conserve
energy when nobody is in the streets, automated traffic monitoring is controlling
congestion, smart metering systems in cities and homes, waste management, enter-
tainment, and an endless list of possibilities. These IoT devices applied in different
aspects to simplify our lives, e.g., in a building and home automation, in smart
cities, in smart manufacturing (industries), in automotive, in wearables object, in
health care systems, in precision agriculture and many other aspects of our lives.

Industrial IoT (IIoT) is a branch of Internet of Things, it is the application of
IoT to manufacturing industries. It changes fundamentally industries by enabling
the acquisition and accessibility of a large amount of data at greater speed and
more efficiently than before by integrating big data, analytical tools and wireless
networks with physical and industrial equipment. There are different products in
terms of hardware, software, and protocols, for IIoT implemented for commercial
and open source markets. These products will open new possibilities, prototyping,
and maintenance helps to exchange a large amount of data in a fast and more
efficient way [2].

1.2 Objectives

The aim of this thesis is to study the Routing Protocol for Low-power and Lossy
Networks (RPL) and to analyze the performance of the network generated by the
RPL protocol. Experiments were performed by using OpenSim emulator in different
scenarios and variable link qualities, and using as metrics the Round Trip Time
(RTT) and Packet Delivery Ratio (PDR). We also propose a recommendation to
improve the communication quality.
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1 – Introduction

1.3 Organization of the manuscript

The remainder of this thesis is organized as follows: Chapter 2 starts with a presen-
tation of the basics of wireless sensor networks design, characteristics, architecture,
applications, and their challenges. Chapter 3 is dedicated to the open source WSN
technologies and the OpenWSN protocol stack. In Chapter 4 a detailed overview of
the Routing Protocol for Low-power and Lossy Networks (RPL) was presented. It
will describe how routing is done, what are the routing requirements, the RPL con-
trol messages, and how the routing topology is constructed. Chapter 5 is dedicated
to the simulation and execution platforms of OpenWSN. It focuses on the overview
of simulation platforms and the configuration of the OpenSim emulator. Chapter
6 is dedicated to reporting experimental results obtained through simulation. In
this chapter, the performance of the solution in terms of packet delivery ratio and
latency is analyzed using the round trip time.

Finally, a concluding chapter highlights the main contribution of this thesis and
outlines future works and perspectives.
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Chapter 2

Wireless Sensor Networks

2.1 Overview of Wireless Sensor Network

A wireless sensor network (WSN) can be defined as a network spatially dispersed
and composed of dedicated sensors (possibly low-size, low-complexity and low-cost
devices) denoted as motes, which can sense the environment and communicate
the information gathered from the monitored field through wireless links. Data
is forwarded, possibly through multiple hops. The WSN is connected to other
networks (e.g., the Internet) through a gateway [34].

Figure 2.1: wireless sensor network model
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2 – Wireless Sensor Networks

WSNs are formed by hundreds or thousands of motes that communicate with each
other and exchange data through paths that can involve more than one node.
Motes are the building blocks of WSNs. They have very low cost and low power
consumption. They can monitor one or more sensors, and they are connected to
the outside world with a Radio Link. WSNs can be homogeneous or heterogeneous.
Motes can be stationary or moving and they can be aware of their location or not.
WSNs were initially designed to facilitate the battlefield surveillance of military
operations, but after that its application was extended to new domains like health,
traffic, and many other consumer and industrial areas. WSNs consist of protocols
and algorithms with self-organizing capabilities [34].

2.2 Characteristics of WSNs

A WSN has several characteristics. The main ones include power efficiency, scal-
ability, responsiveness, reliability, and mobility. A wireless sensor network with
these characteristics can be profitably used in many applications. If a WSNs does
not fulfill or ensure the characteristics mentioned above, its applicability in real
application contexts is dramatically reduced.

• Power efficiency:

A typical WSN mote is small in physical size and in power. This implies that
computation, communication, and memory resources in motes are a very limited
resource.
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2 – Wireless Sensor Networks

Figure 2.2: OpenMote B Hardware (Source: [36])

Due to these limitation, it becomes harder to design a large scale WSN. In fact,
the most important problem (i.e. battery powered motes) can be counteracted only
increasing the efficiency level of the device and of the communication protocol. The
capability of the device to consume less energy by operating under extremely low
power cosumption levels is an important prerequisite for such a kind of networks.
This is a very important factor, since WSNs motes and their sensors are usually
located far from power sources. Thus, these devices are usually built with the
ability to work only with batteries, and eventually, they can make use of energy
harvesting techniques to charge them. The optimal method of design is aimed
at the maximum reduction of the duty cycle of each node. Additionally, wireless
sensors are often put to sleep in order to save power, and thus are unresponsive to
neighbor communication [20].

• Scalability:

The ability of a network to grow in terms of the number of motes connected to
the wireless sensor network i.e. its scalability, is essential. WSN is built of "motes"
from a few to several hundred or even thousand, and each mote is connected to a
relatively high number of sensors. There is a higher chance that a communication
link brokes as the network size increases. When the network size increases, the
bandwidth available for applications decreases because a consistent percentage of

18



2 – Wireless Sensor Networks

the available bandwidth is used by the control message aimed at managing the
WSN. Several algorithms were proposed in the scientific literature to solve this
performance degradation [20].

• Responsiveness:

The ability of a network to quickly adapt itself to change in the topology is named
responsiveness. WSNs may change their topology due to their dynamic nature.
In a typical WSNs node transmissions are susceptible to error because of environ-
mental interference, and mobility of nodes. To obtain high responsive networks a
compromise with other characteristics must be achieved. In particular, in a high
dynamic environment both latency and scalability decrease [20].

• Reliability:

A high level of reliability is mandatory in any network. Consiquently, this is a
basic requirement also for WSN. Reliable data transmission must be guaranteed
also in the case of continuous changes in the network topology. This is a difficult
requirement to be achived in real implemetations.

• Mobility:

Mobility is the networks ability to handle mobile motes and changeable data paths.
A good design is necessary for wireless sensor networks to be highly responsive, in
order to deal with mobility. As a result, it becomes harder to design a network with
high scalability as well as a network capable to manage efficiently motes mobility.

2.2.1 Unique characteristics of WSN

There are some unique characteristics that differentiate WSNs from other commu-
nication networks:
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2 – Wireless Sensor Networks

• Communication paradigm : Compared to traditional communication net-
works, WSNs are data-centric. This means that communication should be
targeted to motes dispersed in a given location and characterized by a spe-
cific type of traffic which depends on the type of sensors installed in the mote.

• Application specific : Wireless sensor network is implemented to perform
a specific task.

• Deployment : In some large-scale WSNs, the deployment of motes is random
and their maintenance and replacement is impractical. This implies that WSN
motes should be reconfigured and reprogrammed remotely..

2.3 Architecture of Wireless Sensor Networks

Most common architectures for WSN follow the OSI Model. Basically, in sensor
networks five layer are defined: application layer, transport layer, network layer,
data link layer, and physical layer. In addition to the five layers there are three
cross layers planes, as shown in Figure 2.3.

Figure 2.3: Wireless Sensor Network Architecture (Source: [37])

The three cross-layer plains are: power management plane, mobility management
plane and task management plane. These layers are used to manage the network

20



2 – Wireless Sensor Networks

and make the sensors work together, in order to increase the overall efficiency of
the network.

• Physical Layer:

The main purpose of the physical layer in a WSN is modulation and demodulation of
the signal used to transmit the data. The function of the physical layer in WSN is to
perform the carrier frequency selection and generation, encryption and decryption,
signal detection, modulation and demodulation, transmission and reception of data.

WSNs generally transmit in industrial, scientific and medical (ISM) band. Many
other standards like IEEE 802.11 and Bluetooth use the same band. Therefore, all
systems in this band have to be robust against interference from other communi-
cation technologies. The most commonly used protocol for WSN is IEEE 802.15.4.
This protocol is designed to complement wireless technologies such as Bluetooth,
Wi-Fi, and Ultra-wideband (UWB), and is targeted at commercial sensing appli-
cations, where cabled connections are not possible, and where ultralow power and
low cost are required.

IEEE 802.15.4 defines wireless personal area networks for low rate devices. It
specifies the standards for the Physical and the MAC layer. IEEE 802.15.4 works
at a data rate of less than 250 kbps. It works up to a range of 75 m and it supports
up to 254 nodes. This protocol is designed especially for networks with a small data
rate, which have energy constraints, and which require a good QoS. IEEE 802.15.4
works in three frequency bands. These are 868 MHz (20 kbps data rate), 915MHz
(40 kbps data rate) and 2.4GHz (250 kbps data rate). IEEE 802.15.4 use a Direct
Sequence Spread Spectrum for modulation, BPSK for the first two bands, and a
16-bit array QPSK for the last band. The first band has 1 channel, the second band
has 10 channels and the third band has 16 channels. This is outlined in Figure 2.4
[14], [15].
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2 – Wireless Sensor Networks

Figure 2.4: 802.15.4 frequency bands (Source: [38])

• Data-Link Layer:

The Data-Link Layer is responsible for multiplexing data streams, data frame de-
tection, Media Access Control (MAC) and error control. This layer ensures a
reliable implementation of the point-to-point or the point-to-multipoint communi-
cation paradigms. Errors or unreliability sometimes comes from Co-channel inter-
ference at the MAC layer. This problem can be solved by MAC protocols [16].
Multipath fading and shadowing at the physical layer is another problem that can
be solved by Forward Error Correction (FEC) and Automatic Repeat request (ARQ)
techniques.

ARQ, although typically used in WSNs, is not popular because of the additional
re-transmission cost and overhead. ARQ is not efficient in addressing frame errors.
In fact, all the frame has to retransmited also in the case of an error in a single bit.
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2 – Wireless Sensor Networks

FEC decreases the number of retransmissions by adding redundant data on each
message. The receiver can use this additional information to detect and correct the
errors with this method retransmissions can avoided, and consequently the time
reserved to wait for the ACK confirmation frame can be used to schedule new
transmissions.

The MAC layer is responsible to manage channel access policies, scheduling, buffer
management, and error control. In WSN, we need a MAC protocol that considers
energy efficiency, reliability, low access delay, and high throughput. The IEEE
802.15.4 standard, and its evolution IEEE 802.15.4e, is used in wireless sensor
networks. The IEEE 802.15.4e standard defines a MAC amendment of the IEEE
802.15.4 standard protocol to support the industrial market in a better way. The
main solution proposed in this standard is Time Slotted Channel Hopping (TSCH).
Basically, TSCH was designed to allow WSN devices to support a wide range of
applications including industrial applications IEEE 802.15.4e. TSCH is used by
time synchronized motes to achieve low-power operation and channel hopping (to
increase reliability). The IEEE 802.15.4e standard enable the production the latest
generation of ultra-lower power and reliable networking solutions for low-power and
Lossy networks [17], [18].

• Network Layer:

The main function of this network layer is routing the data. This service is needed
by the transport layer. Routing protocols are used to define a reliable path (and
eventually redundant paths) according to a certain metric, which differs from pro-
tocol to protocol. There are many routing protocols available for this layer, they
can be divided into flat routing (for example, direct diffusion) and hierarchical rout-
ing (for example, LEACH), or can be divided into time driven, query-driven and
event-driven. In continuous time driven protocols, the data is sent periodically, and
time is the most important physical variable used by the application to periodically
monitor the environment. In event-driven and query-driven protocols, sensor motes
respond according to actions or user queries. For OpenWSN IPv6 address is used to
identify the network interface of a mote instead, to manage routing OpenWSN and
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2 – Wireless Sensor Networks

the majority of WSNs use the RPL protocol. The RPL protocol is used for routing
in a wide range of Low-power and Lossy network applications (see Chapter 4). The
other protocol used at the network layer by OpenWSN and others is 6LoWPAN.
6LoWPAN is the acronym for IPv6 for Low-power wireless personal area networks
[19].

• Transport Layer:

The function of the transport layer is to provide reliable data delivery (as required
by the application layer) and congestion avoidance. There are many protocols
designed to provide aimed at implementing this functionality. These protocols
use different mechanisms for loss detection (ACK and sequence numbers) and loss
recovery (End to End or Hop by Hop). This layer is specifically needed when a
system needs to access and communicate with other networks. Providing a reliable
hop by hop communication is more energy efficient than end to end. That is one
of the reasons why TCP is not a suitable protocol for WSNs, while UDP is more
suitable. Usually, the link from a gateway to a node is considered as a downstream
link for multicast transmissions, and UDP traffic is suitable because of the limited
memory consumption and overhead. In general, transport protocols can be divided
into two categories: packet driven and event-driven. In Packet driven all packets
sent by the source must reach the destination, while in Event-driven, it is enough
that one notification message (an event) reaches the gateway [16].

• Application Layer:

The application layer includes a variety of protocols that perform various sensor
network applications, such as query dissemination, mote localization, time syn-
chronization, and network security. For example, the Sensor Management Protocol
(SMP) is an application-layer management protocol that provides software inter-
faces to perform a variety of tasks, for example, exchanging location-related data,
synchronizing sensor nodes, moving sensor motes, scheduling sensor motes, and
querying the status of sensor motes. WSNs at the application layer use Constrained
of Application Protocol (CoAP), which is implemented in each OpenWSN devices.
By using this protocol motes appear like a web servers on the internet.
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2.4 Applications of Wireless Sensor Networks

Nowadays WSNs are popular due to their flexibility in solving different problems in
different applications, and making at the end our life much easier. They also have
the potential to change our lives in many ways. WSNs can be applied to different
areas and to realized and for a variety of applications.

• Military application: WSN deployed in the military to control and de-
tect enemy intrusion, for reliable communications, computing, intelligence,
battlefield surveillance, and targeting systems [34], [43].

Figure 2.5: WSN for Military Application (Source: [40])

• Area monitoring application: The sensor nodes deployed to monitor some
phenomena. When these nodes detect anomalies in situations to be monitored
like heat, pressure, etc..., they have to report the problem to the base station
as soon as possible. After detecting the problem they will take an action to
solve the situation [34].

• Transportation applications: WSNs are deployed in the transportation
system for real-time traffic information, and also to give to the deriver in-
formation related to congestion, parking area allocation systems, and traffic
problems [43].
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Figure 2.6: WSN for Transport Application (Source: [39])

• Health applications: Health applications for sensor networks are support-
ing interfaces for the disabled, integrated patient monitoring, diagnostics, and
drug administration in hospitals, telemonitoring of human physiological data,
and tracking and monitoring doctors or patients inside a hospital [34].

• Environmental sensing applications: The term environmental sensor net-
works have developed to cover many applications of WSNs to earth science
research. This includes sensing volcanoes, oceans, glaciers, and forests. Some
other major areas are Air pollution detection, animal monitoring, forest fire
detection, greenhouse monitoring, and landslide detection [34].

• Industrial monitoring application: Wireless sensor networks have been
developed for machinery Condition-Based Maintenance (CBM), as they offer
significant cost savings and enable new functionalities. In wired systems, the
installation of enough sensors is often limited by the cost of wiring. CBM is
a type of predictive maintenance that uses sensors to measure the status of
a prodion device over time while it is in operation. Wireless sensors can be
placed in real-life locations to collect data in positions that are difficult to be
connected with cables, such as rotating machines. WSNs are also used for
data Center monitoring, to collect data for monitoring environmental infor-
mation, the quality and the level of water, the condition of civil infrastructures
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Figure 2.7: WSN for Environmental Applications (Source: [41])

and related geophysical processes close to real time, and for wine production
monitoring in the field and also in the cellar [34].

Figure 2.8: WSN for Industrial monitoring applications (Source: [42])

2.5 Wireless Sensor Network challenges

• Energy:

WSN applications require a power source, as any other electronic device, to do
their activities. Energy is consumed in data collection, data processing, and data
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communication. Additionally, continuous listening the medium for MAC opera-
tions demands a high amount of energy due to node components like CPU and
communication chips. Batteries providing power need to be changed or recharged
after they have been consumed. Sometimes, because of demographic conditions of
sensors nodes, it will be difficult to recharge or change the batteries [21].

• Self Management:

Wireless sensor networks, after they are implemented in a real-world location,
should be dynamic and highly adaptive to be able to work properly without any
human intervention and they need to be self-organized. WSNs should be able to
manage the network configuration, adaptation, maintenance, repair and communi-
cate their current level of activity to the central router by themselves [22].

• MAC Layer Issues:

MAC solutions have a direct influence on energy consumption. Some of the primary
causes of energy waste are found at the MAC layer. These are collisions due to
sensor node trying to send packets in the same transmission channel at the same
time, control packet overhead due to extra bytes added in the packet header, and
listening of a channel (to see when it becomes idle) without sending any packet. It
is not easy to implement power saving forward error control techniques, because of
the high computing power they require and due to the big and variable packet size
[23].

• Limited Memory and Storage Space:

Wireless sensors are small devices with very limited memory and storage space for
the code. So, to build a good and effective software, it is necessary to limit the
code size. The software designed for wireless sensors should be quite small due to
their limited memory and computational resources [23].

• Physical Attacks and Security:
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A wireless sensor deployed in a real-world location operates in an environment open
to adversaries, environmental conditions like bad weather and other factors. Due
to that, physical attacks are much more likely than the typical PC, which is located
in a secure place and mainly faces attacks from the network. Physical security of
wireless sensor motes cannot be assured. Attackers may modify or destroy mote
hardware, for instance by replacing it with a malicious sensor or a dummy sensor.

Security is a quite challenging issue as WSN is not only being implemented in the
real world like in battlefield applications but also for surveillance, building control-
ling, alarms and in critical systems such as airports and hospitals. Confidentiality
is required in WSNs to protect information traveling between the sensor motes of
the network or between the sensors and the base station. Otherwise, it may result
in eavesdropping of the communication [23], [24].
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Chapter 3

Open Source Wireless Sensor
Network (OpenWSN)

3.1 OpenWSN

The OpenWSN project, on which this thesis is based, is an open-source implemen-
tation of a fully standardized protocol stack for WSNs, based on the new IEEE
802.15.4e Time Synchronized Channel Hopping standard and on the outcomes of
the IPv6 over TSCH mode of IEEE 802.15.4e (6TiSCH) working group. IEEE
802.15.4e, coupled with others Internet of Things standards, such as 6LoWPAN,
RPL, and CoAP, enables ultra-low-power and highly reliable mesh networks, which
are fully integrated into the IPv6 protocol.

The goal of the OpenWSN project is to investigate the use of IEEE 802.15.4e in
Internet-connected low-power lossy networks and to provide an open-source imple-
mentation of a complete protocol stack based on Internet of Things standards, on
a variety of software and hardware platforms.
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3.2 Technologies of open Source low-power wire-
less Operating Systems

In WSNs, the motes due to their size, low cost and low power consumption have
limited resources. Currently, WSN mote technologies consist of processors with
really low computational power (e.g. TIMSP43F, TICC2538, ...) and tens of
kilobytes of memory. There is also a big variety of operating systems used by
the motes. Some of the most known operating systems for WSN technologies are
described.

3.2.1 TinyOS

It is an operating system which is flexible, component-based and used for low-power
wireless platforms for example in WSN, PAN, Building Automation and smart me-
ters. It supports the event-driven concurrency model. It defines events (which are
asynchronous), tasks such as routing, and different computations. TinyOS is imple-
mented in a programming language called NesC, a dialect of C language, which sup-
ports TinyOS components, concurrency, cross-component optimizations, compile-
time race conditions. TinyOS is an embedded system framework and component-
based application-specific operating system [44].

3.2.2 Contiki

Contiki is another operating system used in wireless sensor networks. It is an open
source operating system for the Internet of Things. It allow connecting microcon-
trollers which are tiny, low-cost, and low-power. It also includes a powerful toolbox
for building complex wireless systems.

It supports IPv4 and IPv6 along with low-power WSN standards such as RPL,
6LoWPAN, CoAP, and it can be installed in a wide range of low-power wireless
devices available on the market. Contiki is highly memory efficient, provides full
IP network stack with standard IP protocols and low-power standards, and it is de-
signed to operate in low-power systems. Contiki is power efficient, as a consequence
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it can run for long periods of time, supports low-power IPv6 standardized IETF
protocols such as RPL multi-hop routing protocol, and CoAP application-layer
protocol. Contiki supports dynamic loading and linking of modules at run-time
[25].

3.2.3 RIOT

RIOT is a small and free open source operating system for networked, memory-
constrained systems, with focus on low-power wireless Internet of Things (IoT)
devices and microcontroller architecture (it runs on 32-bit CPUs such as ARM
cortex, 16-bit such as TI MSP430, and 8-bit such as AVR Atmega). It implements
all relevant open standards of the Internet of Things, including those related to
security.

RIOT is IoT friendly, simplifying the implementation of users applications ready
for small WSN nodes. Both IPv6 and 6LoWPAN are supported together with
UDP, the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL), CoAP,
and Concise Binary Object Representation (CBOR) are available as application
level communication protocols. RIOT allows application programming with the C
and C++ programming language and provides full multithreading and real-time
capabilities [26].

3.3 OpenWSN protocol stack

The OpenWSN protocol stack is used as the standard communication technology
in this thesis. In the physical layer, OpenWSN uses the IEEE 802.15.4e standard to
define the physical wireless frequency modulation or demodulation mechanisms. At
the MAC layer, the IEEE 802.15.4e standard is used to define how motes commu-
nicate with each other. In the network layer, IETF 6LoWPAN is used to compress
the header size of the network layer to fit in a 127 bytes packet. In this layer, the
RPL routing protocol is used for routing. In addition, this layer defines how the
motes communicate with each other by means of multiple hops. Finally, in the
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transport layer, UDP is used to provide end-to-end communication over a network.
The application layer makes use of CoAP and HTTP. CoAP is a protocol imple-
mented on each OpenWSN device, which makes it appear like a web server on the
internet. HTTP defines how messages are formatted and transmitted, and what
actions Web servers and browsers should take in response to various commands.
The diagram for the OpenWSN protocol stack shown in figure 3.1.

Figure 3.1: OpenWSN protocol stack (Source [35])

3.3.1 IEEE 802.15.4

IEEE 802.15.4 is a standard that defines low-cost and low-power communications
and a large number of optional Physical Layers protocols operating in many fre-
quency bands. In addition, IEEE 802.15.4 defines a simple and effective MAC layer
as shown in the Figure 2.4, which is targeted for low-power wireless communica-
tions between battery-operated wireless devices [27]. The standard provides 127
bytes maximum payload size, 0-10 dBm transmission power and 250 kb/s data
rate in 2.4GHz frequency band, which is subdivided 16 channels. IEEE 802.15.4
defines several addressing modes: it allows the use of either IEEE 64-bit extended
addresses or 16-bit unique addresses within personal area network (PAN) [28].

In IEEE 802.15.4 standard, the transmissions follow a super-frame structure and
nodes use CSMA/CA as channel access mechanism. Two types of CSMA/CA
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weredefined: slotted and unslotted. If nodes use slotted CSMA/CA beacon mode is
enabled, while if a node uses unslotted CSMA/CA,the non-beacon mode is enabled.
The boundaries of the super-frame are defined using beacon frames sent from a
personal area coordinator in order to inform nodes on the possibility to joining the
network between two consequtive beacons, which are sent every beacon interval
(BI) [4].

Figure 3.2: Super frame structure in IEEE 802.15.4

As shown in the Figure 3.2, the active period is a combination of the contention
access period (CAP) and the contention free period (CFP). During CAP nodes try
to join the network using slotted CSMA/CA. CFP is the sum of 16-time slots to
offer an exclusive access to the communication medium for nodes with high needs
in terms of quality of services. IEEE 802.15.4 has some limitations. The main
one is performance under dense implementations in real-world scenarios like smart
cities, smart buildings, smart homes, and industrial applications. Due to this, the
use of CSMA/CA mechanisms decreases the performance of the MAC standard
and increases co-existence problems. If many networks share the same frequency
band, each time a node needs to transmit on a specific network, it could collied
with other nodes belonging to other networks that might be communicating with
a different technologies (such as IEEE 802.11 ot Blutooth) [27].

3.3.2 IEEE 802.15.4e

The IEEE 802.15.4e standard approved in 2012 addresses the problems of interfer-
ence and multipath fading. It is a revision of the IEEE 802.15.4-2006 standard.
This standard increases robustness against external interference and gives better
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support in terms of better latencies and reliability for the industrial markets. It
defines three types of access mode.

The first one is Deterministic and Synchronous Multichannel Extension (DSME)
which defines an extended vision of the superframe structure used in the beacon-
enabled mode of IEEE802.15.4, and increases the number of frequency channels.
The other access mode is a Low Latency Deterministic Network (LLDN), which is
designed for star topologies without the channel-hopping mechanism [29]. The third
access mode is called Time Slotted Channel Hopping (TSCH) which was designed
to allow IEEE 802.15.4 devices to support a wide range of applications including
the latest generation of Ultra-low power and reliable networking solutions for LLNs.
In particular, as described in the next subsection, TSCH allows obtaining better
WSN with lower latencies, higher reliability, and lower power consuption.

3.3.3 Time Slotted Channel Hopping (TSCH)

Time Slotted Channel Hopping (TSCH) is used to reduce interference and it is
particularly suitable for multi-hop mesh networks. IEEE 802.15.4 TSCH networks
communicate by following a Time Division Multiple Access (TDMA) schedule.

The time slotted access schedule provides predictable and bounded latencies, guar-
antees a predefined bandwidth and increases network capacity using multi-channel
communication and using different channels, which are identified by different chan-
nel offsets. It is also an emerging standard for industrial automation and process
control for LLNs. Many ideas were borrowed from previous industrial standards
WirelessHART, ISA100.11a, and others. To avoid collisions, the absolute sequence
number (ASN) is used to measure time. This time indicatation is sent by the router
or the root node and shared by all the nodes [30].
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Figure 3.3: slotframe structure in IEEE 802.15.4e TSCH

TSCH is supporting both Dedicated links and Shared links. A "Link" is a Pairwise
assignment of a directed communication between devices in a specific slot, with a
given channel offset, as shown in the Figure 3.3. Dedicated links are allocated to a
single device to device communication. These slots are assigned to one transmitter
and one receiver, and the links are accessed without any delay (i.e. there is no
need to execute a channel access algorithm because only the two scheduled nodes
can use the dedicated slot). Shared links are special slots assigned to multiple
transmitters/receivers and can be accessed concurrently by different nodes through
the CSMA/CA algorithm, to reduce the probability of collisions. There are 16
channel which are used to offer channel hopping functionalities.

3.3.4 6top

The IPv6 over the TSCH mode of IEEE802.15.4e (6TiSCH) defines the 6top sub-
layer which is a set of protocols for setting up a TSCH schedule. TSCH is one
of the key element of the 6TiSCH stack [30]. The 6top protocol dynamically as-
signs bandwidth resources to the nodes in the network according to the application
requirements. All communications in a 6TiSCH network (i.e. a network thatim-
plements TSCH) are coordinated by a schedule. The schedule is composed of cells
identified by a slot offset in the time-axis and by a channel offset in the frequency-
axis. 6top is a 6TiSCH operation sublayer [13]. The 6top protocol which is also
named 6p in the newer versions of the standard. 6P allows nodes to communicate
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with a neighbor node, to add or delete TSCH cells and to run one or multiple
6top Scheduling Functions (SFs), which define the rules that decide when to add or
delete cells. There are hard and soft cells. A soft cell can be read, added, deleted
or updated by 6top and a hard cell is read-only for 6top [13], [30].

3.3.5 IETF 6LoWPAN

IPv6 over low-power wireless personal area networks (6LoWPANs) are formed by
devices which are compatible with the IEEE802.15.4 standard. It is a wireless net-
work with low-power, where all the nodes have its own IPv6 address, which allows
it to connect directly with the internet using open standards [27]. In 6LoWPAN
a link is characterized as lossy, supports 16-bit short or 64-bit extended MAC ad-
dresses, low-power, low bit rate, short range; with many nodes saving energy with
long sleep periods [54]. 6LoWPAN offers end-to-end IP addressable nodes and a
router can connect the 6LoWPAN network to IP. It offers self-healing, robust and
scalable mesh routing with P2M and M2P routing. The mesh routers of 6LoWPAN
can route data destined to others, whereas hosts can sleep for the long duration of
time [31], [27].

3.3.6 RPL

RPL is the IPv6 routing protocol for low-power and lossy networks (LLNs). RPL
was designed to be suitable for resource-constrained devices in home automation,
urban and industrial WSNs and IoT domain, It is considered a critical component
that links the low-power network connectivity to the application layers in IETF
protocol suite for LLNs. It operates on top of 6LoWPAN to maintain a routing
topology. Both collection and source routing mechanisms are implemented in RPL.
The routing layer is responsible for relaying packets across multiple hops, separating
the source and destination nodes. LLNs are a class of networks in which both the
router and their interconnection are constrained. RPL uses an Objective Function
(OF) which is used to specify how a specific route has to be weighted. The main
goal of RPL is to provide IPv6 connectivity to a large number of battery-operated
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embedded wireless devices that use low-power radios to communicate, and that
deliver their data over multiple hops. RPL is also a distance vector type routing
protocol that builds directed acyclic graphs (DAGs) based on the selected routing
metrics and constraints [4], [35].

3.3.7 Constrained Application Protocol (CoAP)

CoAP is a specialized web transfer protocol for constrained node and networks.
Constrained networks that make use of 6LoWPAN support the fragmentation of
IPv6 packets into small link-layer frames, even if this causes a significant reduction
in packet delivery probability. CoAP is a protocol supported by OpenWSN that
enables RESTful interaction with individual motes, without the overhead of the
Transmission Control Protocol (TCP) and the verbose nature of HTTP. A CoAP-
enabled mote acts both like a web client and a web server [32].

A CoAP request is sent by a web client to request an action on a resource lo-
cated in a web server. The server sends back to the client a response. These ex-
changes are performed asynchronously over a datagram embeded on a UDP packet.
CoAP main goal is to design a generic web protocol for the special requirements of
constrained environments, especially considering energy, building automation, and
other machine-to-machine (M2M) applications. One of the targets of CoAP is to
keep message overhead small, limiting the need for fragmentation, and not to blindly
compress HTTP, but rather to realize a subset of Representational State Transfer
(REST) managed with HTTP, but optimized for M2M application. CoAP rewrites
simple HTTP interfaces into a more compact protocol. More importantly, it also
offers features for M2M like built-in discovery, asynchronous message exchange,
and multicast support. The main feature of CoAP is a web protocol fulfilling M2M
communication pasradigm. It uses UDP, and it implements asynchronous message
exchanges. The messages have low header overhead and parsing complexity. It
is also a stateless HTTP protocol that allows proxies to be easily built, providing
access to CoAP resources via HTTP in a uniform way, and CoAP uses security
binding to Datagram Transport Layer Security (DTLS) [33].
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Chapter 4

Routing Protocol for Low-power
and Lossy Network

4.1 Overview

Low-power and Lossy networks (LLNs) are a class of networks in which both the
routers (typically WSN motes) and their interconnections are constrained. LLNs
consist largely of constrained motes operating with limited processing power, mem-
ory, and energy. Limited energy is a constraint when the motes are battery operated
and they can not make use of energy scavenging [1]. The routers are usually in-
terconnected by using the IEEE 802.15.4 low-power wireless standard, which is
characterized by low data rate, high loss rate, and instability [4].

LLNs support the following traffic patterns: Point-to-Point (P2P), Point-to-Multipoint
(P2MP, from a central point to a subset of devices inside the LLN) and Multipoint-
to-Point (MP2P, from devices inside the network towards a central control mote)
as shown in Figure 4.1.

Most of the time LLNs use the Point-to-Multipoint or Multipoint-to-Point traffic
patterns. As mentioned in the previous chapters, such networks can contain up
to thousands of motes. For these reasons, such kind of network traffic requires
a routing solution that considers the above characteristics. A commonly adopted
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solution is RFC 6550 [4], also known as IPv6 Routing Protocol for Low-Power and
Lossy Networks (RPL).

Figure 4.1: Traffic supported by LLNs (a) P2P, (b) P2MP and (c) MP2P

RPL is a distance vector protocol which is based on calculating a direction (the
next hop address and exit interface) and a distance (a measure of the cost to
reach certain mote calculated using different routing metrics) [2]. RPL is a routing
protocol which operates on top of IEEE 802.15.4. The routing layer is responsible
for relaying packets across multiple hops separating the source and destination
motes. It is divided into a forwarding engine, which uses a routing table to decide
which neighbor node is the next hop for that packet, and a routing protocol, which
populates that routing table.

RPL is designed for Low Power and Lossy Wireless Networks such as WSNs. Hence,
it is optimized for collection networks (where motes periodically report measure-
ments to a small number of collection points) with infrequent communication from
the collection point to individual motes. RPL manages separately collection traf-
fic MP2P and configuration traffic P2MP. RPL does not support P2P traffic well,
although workarounds can be used.

RPL routes are optimized for traffic to or from one or more roots motes that act
as gateways for the topology. For MP2P traffic, RPL builds a graph into the
network, grounded at the collection points called Low power and Lossy network
Border Router (LBR) or Direct Acyclic Graph root (DAG root). To each node,
a rank is assigned, such that the rank increases as the mote gets farther from the
border router. In RPL, the topology is called Destination Oriented Directed Acyclic
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Graph (DODAG). Forwarding a packet to the LBR roughly consists in picking the
neighbor mote with the lowest rank [3], [4], [35].

Figure 4.2: DODAG Graph

As shown in Figure 4.3, RPL organizes a topology as a DAG that is portioned into
one or more DODAG. Both DAG and DODAG are directed graphs with no cycles.
All paths are oriented toward and terminate at one or more root motes. DODAG
is a DAG rooted at a single destination, i.e., at a single node (the DODAG root)
with no outgoing edges, as shown in the two figures 4.3.

Figure 4.3: (a) DAG (b) DODAG
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To maintain and identify the topologies, RPL uses four values. These are RPLIn-
stanceID, DODAGID, DODAGVersionNumber, and Rank.

RPLInstanceID identifies a set of one or more DODAGs. An RPL Instance is de-
fined as a set of one or more DODAGs that share the RPLInstanceID identifier. An
RPL node can belong to at most one DODAG associated to an RPL Instance. Each
RPL Instance is independent from other RPL Instances. An RPL Instance may
comprise a single DODAG with a single root like in Home Automation Networks or
multiple uncoordinated DODAGs with independent roots (different DODAGIDs)
like urban data collection application. This thesis is focused on a single RPL In-
stance [4].

Figure 4.4: RPL Instance

As an example, Figure 4.4(a) shows an RPL Instance comprising two DODAGs
with DODAG roots R1 and R2. Each of these DODAG roots advertises the same
RPLInstanceID, but DODAGID is different. In Figure 4.4(b), DODAG root R3
have different RPLInstanceID from DODAG roots R1 and R2 in the Figure 4.4(a),
therefore, the DODAG in the Figure 4.4(b) have different RPL Instance from Figure
4.4(a).

The scope of the DODAGID is RPL instance. A single DODAG in the network is
identified by a combination of RPLInstanceID and DODAGID. DODAGVersion-
Number is a sequential counter that is increased by the root to form a new version
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of DODAG. Its scope is the DODAG. DODAG Version is a specific iteration "Ver-
sion" of a DODAG with a given DODAGID. DODAG Version is uniquely identified
by a combination of RPLInstanceID, DODAGID, and DODAGVersionNumber.

Rank defines individual positions of nodes with respect to DODAG root and its
scope is DODAG Version. The computation of the value Rank is obtained by
means of an Objective Function (OF). A DODAGVersionNumber increment leads
to a new DODAG version. The DODAGVersionNumber increment results in a
different DODAG topology. A DODAG root can thus institute a global repair
operation by incrementing the DODAGVersionNumber, thus allowing for DODAG
repairing in RPL. The repair operation will lead to a new DODAG Version that
contains the new organization of the motes. Due to this, motes in the DODAG will
have a new position, and they can choose the new position using the RPL protocol.
In particular, motes in the new DODAG Version nodes can choose a new position
whose Rank does not depend on the Rank they had in the old DODAG Version.
RPL also allows for local DODAG repairing within the DODAG Version [4]. The
following Figure 4.5 illustrates how a DODAGVersionNumber increment leads to a
new DODAG Version.

Figure 4.5: (a) Version N (b) Version N+1

For any application running in the mote, security is an important requirement, and
RPL is not an ecception. RPL supports message integrity and confidentiality. RPL
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has three basic security modes. These are unsecured mode, preinstalled mode and
authenticated mode [4].

In unsecured Mode the control messages are sent without any additional security
mechanisms. But this does not mean that a RPL network is not secured. RPL
network uses other security mechanisms like Link-layer security to meet application
security requirements.

In preinstalled Mode, hosts and routers have preinstalled keys that enable only
authorized motes to join a given RPL Instance. The keys also provide message
authenticity, integrity, and confidentiality.

In authentication Mode, motes have preinstalled keys, but the preinstalled key is
only used to join the RPL Instance when a node is a leaf and it has consequently
no children. A router joining RPL Instance must be authenticated. It requires an
authentication key from an authentication authority.

4.1.1 Upward Route and DODAG Construction

RPL provisions routes Upward towards DODAG roots, forming a DODAG opti-
mized according to an Objective Function (OF). Upward routing is a standard
procedure which enables network devices to send data to a root mote. RPL nodes
routes are constructed, and the topology of DODAG maintained using a RPL con-
trol message called DODAG Information Object (DIO).

Objective Function

An Objective Function (OF) [5] defines how RPL nodes select and optimize routes
within an RPL instance and related functions used to compute the rank. In addi-
tion, OF dictates how parents are selected in the DODAG and it is used for DODAG
formation. OF allows RPL to be adapted to meet different optimization criteria
that are required by different applications and network designs. A mote decision
of which DODAG and DODAG Version it should join is based on the value of the
OF. Each node also uses the OF to select its preferred and backup parent motes in
the current DODAG Version. The preferred parent will be used in Upward routes,
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while the backup parent will be used whenever the connectivity with the preferred
parent is lost.

In a typical WSN scenario, nodes periodically generate data packets that have
to find their way through the network to reach a specific destination encoded in
the packet. There are two types of OF used for RPL routing. These are Object
Function Zero (OF0) and Minimum Rank with Hysteresis OF (MRHOF).

OF0 is designed to find the nearest Grounded root and it selects a preferred parent
and a backup feasible successor if it is available. This can be achieved if the Rank
of a node is close to its distance from the root. The preferred parent of a node
belongs to the set of the node parents, that have been selected as preferred motes
for the next hop of the Upward route. Usually, the preferred parent set contains a
single node. However, whenever the node has multiple preferred parents with the
same Rank, it may consist of multiple nodes. To select a single preferred parent
OF0 makes use of the criteria specified by the RFC [5]:

• Prior to selecting a router as the preferred parent, a RPL implementation
should validate the connectivity and suitability of the router.

• A router that offers connectivity to a grounded DODAG Version should be
preferred over one that does not.

• A router that offers connectivity to a more preferable root should be preferred.

• The parent that allows obtaining the lesser resulting Rank for this node should
be preferred.

• The preferred parent that was in use already should be preferred.

• A router that has announced a DIO message more recently should be pre-
ferred.

When selecting a backup feasible successor, the OF performs the following checks
[5]:

• The backup feasible successor must not be the preferred parent.
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• The backup feasible successor must be either in the same DODAG Version as
this node or in an subsequent DODAG Version.

• Along with RPL rules, a Router in the same DODAG Version as this node
and with a Rank that is higher than the Rank computed for this node must
not be selected as a feasible successor.

• A router with a lesser Rank should be preferred.

• The backup feasible successor that was in use already should be preferred.

The MRHOF Objective Function looks for shortest paths, according to a given
metric that measures a "distance" between two nodes. Since small fluctuations, if
the computed metric might induce frequent topology changes, hysteresis is used to
prevent excessive changes in the network topology. The OF metrics are additive
and are advertised by the DIO messages.

Grounded and floating DODAGs

In DODAG construction and upward route, there are two kinds of DODAGs. These
are grounded and floating DODAGs. A grounded DODAG offers connectivity to
those hosts required to achieve the application goals. A floating DODAG is not
associated with any particular activity, and in most cases, it simply provides routes
to nodes within the DODAG. The Figure 4.6 illustrates the floating and grounded
DODAGs.

Since LLN should are, by definition, low-power, loop detection should not be carried
out regularly, but only when required by topology changes. To this extent, RPL’s
implements data-packet based on-demand loop detection. Since adding additional
headers to packets that have to be transmitted is not expensive, standard messages
also carry the information required to update the network topology. However, since
data traffic can be infrequent, maintaining a routing topology that is constantly
up to date with the physical topology requires additional messages and can waste
energy.
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Figure 4.6: (a) Floating DODAG; (b) Grounded DODAG

Unfortunately, this additional exchange of packets cannot be avoided because it is
fundamental to maintain the topology when data packets are not exchanged in the
network or when they are transmitted with a too small frequency. Typical LLNs
exhibit variations in physical connectivity that are transient and do not significantly
affect exchanged traffic, but that is expensive to track from the control plane. Since
these infrequent changes in connectivity need not be addressed by RPL by sending
specific messages until there is data to send, RPL does not update the topology
in this case. During data transmission, RPL uses RPL Packet Information [4] to
update the network topology.

RPL Packet Information is an external mechanism to access and transport some
control information within the data packets, which is used by RPL routers to process
the routing information and to help maintain the routing topology. RPL Packet
Information enables the association of a data packet with an RPL Instance and the
validation of RPL routing states. The RPL Packet Information, that is contained
within the data packets, is used to perform loop detection.

RPL tries to avoid creating loops when changes in topology occur. The standard
defines a node as greedy if it attempts to move deeper (increase Rank) in the
DODAG Version in order to increase the size of the parent set. If an RPL node is
too greedy, the nodes attempt to optimize for additional parents beyond its most
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preferred parents. This results in an instability in the DODAG network [6], [5].
Figure 4.7 illustrates a greedy behavior in a DODAG. To avoid instabilities in
the DODAG Version, RPL disallows greediness for nodes that joined the DODAG
Version, using RPL packet Information to avoid loops.

Figure 4.7: Greedy DODAG parent selection

In Figure 4.7(a) Node A is the DODAG parent for Node (B) and (C) while in
Figure 4.7(b) Node A is a DODAG parent for Node B and C, and also Node C is a
DODAG parent for Node B, in Figure 4.7(c) Node A is a DODAG parent for Node
B and C, and also Node B is a DODAG parent for Node C.

Let us consider the DODAG illustration in Figure 4.7, and let’s consider the effects
of greedy nodes on the DODAG generation. Let’ suppose that node (B) is allowed
to leave and rejoin the DODAG with a different Rank. The objective function may
then favor (B) taking both (A) and (C) as parents, as illustrated in Figure 4.7(b).

Now Node (B) is deeper than both Nodes (A) and (C), and Node (B) is satisfied
with two DODAG parents. However, node (C) can now follow the same procedure:
it’s willing to receive and process a DIO message from Node (B) (against the rules
of RPL), and therefore can decide to leave the DODAG to rejoin it at a lower Rank.
To do so, it takes both Nodes (A) and (B) as DODAG parents. Now Node (C) is
deeper than both Nodes (A) and (B) and is satisfied with two DODAG parents.
Since node (B) is greedy, it will again leave and rejoin at a deeper Rank, to again
get two parents. The process will repeat, and the DODAG topology will obscillate
between Figure 4.7(b) and Figure 4.7(c) until the nodes count to infinity and restart
the cycle again.
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This endless loop can be avoided through mechanisms defined in RPL. Once nodes
(B) and (C) have selected (A) as a preferred parent, they ignore DIO messages
from nodes with equal or higher Rank, because such nodes are possibly in their
own sub-DODAGs.

RPL uses an algorithm to construct the DODAG called Distributed Algorithm
Operation. This algorithm constructs the topology as follows: first, a mote is
configured to be DODAG root with associated DODAG configuration, which is used
to distribute configuration information for DODAG operation through the DODAG.
Second, motes advertise their presence (including affiliation with a DODAG, routing
cost, and related metrics) by sending link-local multicast DIO messages to all-RPL-
nodes. The other motes listen for DIOs and use their information to join a new
DODAG (thus, selecting DODAG parents), or to maintain an existing DODAG,
according to the specified Objective Function and Rank of their neighbors. In this
thesis Objective Function Zero is used [4], [5]. Motes provide their routing table
entries if they are in Storing mode or Non-Storing mode, as specified by the DIO
message. Motes that decide to join a DODAG can select one or more DODAG
parents as the next hop for the default route.

4.1.2 Downward route and Destination Advertisement

To establish Downward routes, RPL nodes send Destination Advertisement Ob-
ject (DAO) messages Upward. The DAO contains the destination information.
RPL nodes transmit a DAO Upward to propagate a destination information along
DODAG after joining a DODAG. The RPL nodes use the destination information
of the DAO to create a routing table for the Downward routing. Routes support
multiple flows: the P2MP flow, which is used to send packets from the DODAG
root towards the leaves, and the P2P flow, which allows sending messages from
nodes towards the DODAG root (or a node ancestor) through an Upward route,
and then towards the message destination through a Downward Route.

RPL supports two modes of downward routing traffic, Storing and Non-Storing
modes. Storing mode is fully stateful. This means that nodes store downward
routing tables for their sub-DODAG. At each hop, a node examines its routing
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table to decide the next hop of the message (see Figure 4.8(a)).

In Non-Storing Mode, which is fully source routed, nodes do not store downward
routing tables. Instead, all non-root nodes found in the DODAG sends all the traffic
to the root (see Figure 4.8(b)). The DODAG root makes all decisions relevant to
establish downward routing paths. The DODAG root uses a source routing (the
route starts from the root mote) when sending Downward packets. In the source
routing, the packets include a routing information from source to destination [4].

Figure 4.8: Storing(a) and Non-storing(b) mode with the RPL Downward routing
(Source: http://slideplayer.com/slide/8727418)

4.1.3 Routing Metrics and Constraints Used by RPL

Routing metrics are used by routing protocols to compute the shortest path. RPL
supports constraint-based routing, i.e. constraints may be applied to both links and
nodes. Link and nodes not satisfying the given constraints are pruned from the set
of candidate neighbors. The routing algorithm, therefore, looks for a constrained
shortest path.

The set of routing metrics and constraints used by a RPL deployment is advertised
along the DODAG that is built according to the Objective Function, the routing
metrics and constraints are advertised in the DIO message. RPL may be used to
build DODAGs with the goal of maximizing reliability by using the link reliability
metric to compute the "best" path or to use the energy node characteristic as a
node constraint when building the DODAG [4], [7].
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In OpenWSN, RPL implements link routing metric. The routing metric and con-
straint is carried within a DODAG metric container object Figure 4.9. DODAG
metric container option is present in DIO or DAO messages and it is used to report
the routing metric in a DODAG. OF specifies the objectives used to compute the
constrained path and it is decoupled from the routing metrics and constraints used
by RPL [4].

Figure 4.9: Format of DODAG metric container (Source: [4])

Object Function Zero (OF0) is used in OpenMote B and on this thesis for routing
metric. In RPL OF0 is used for the nodes to join a DODAG Version that offers good
enough connectivity to a specific set of nodes, or to a larger routing infrastructure
for with there is no guarantee that the path will be optimized according to a specific
metric [5]. The OF0 in OpenMote implementation computes the rank of a mote
with respect to the DODAG root, then it selects the best preferred parent and
feasible successors for a given instance from all the candidate neighbors. When a
new DIO message is received, the OF is evaluated using the information obtained
from the DIO message to update the DIO message itself. The new DIO message is
then sent to the mote neighbors. The Wireshark log in the figure 4.10 shows that
OpenMote B uses OF0.

Figure 4.10: DIO message showing OF0 identification on Wireshark log
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4.2 RPL Instance

One or more DODAG roots can be associated with a single RPL Instance. The roots
can operate independently, or might be connected through a network that does not
necessarily behaves as a LLN. RPL Instances are identified from the RPLInstan-
ceID. These identifiers can be either Global and Local. Global identifiers are used
for one or more coordinated DODAGs, while local ids always correspond to single
DODAG instances. Global RPLInstanceID must be unique to the whole LLN and
there can be up to 128 Global instances in the whole network. The RPLInstanceID
is encoded in 1 octet. The first bit indicates whether it is Global or Local.

Local RPL Instances are always single DODAGs whose root owns the correspond-
ing DODAGID. The DODAG unilaterally allocates the local RPLInstanceID (see
Figure 4.4). Local RPLInstanceID can support up to 64 Local instances per
DODAGID. A local RPLInstanceID is autoconfigured by the mote that owns the
DODAGID and it must be unique for that DODAGID. According to the standard,
the DODAGID must be a reachable IPv6 address, and it must be used as the end-
point of all communications within that Local instance. This thesis is focused on
Local RPL Instance [4].

Data packets flow within the RPL network includes RPLInstanceID as part of the
RPL Packet Information. Whenever a message sent from outside the RPL network
reaches the ingress router, the router fills the RPLInstanceID field of the packet,
which is then forwarded through the RPL network.

4.3 RPL routing requirement characteristics

The Routing Over Low power and Lossy network (ROLL) Working Group in 2009
published documents that describe unique routing requirements for Low Power and
Lossy networks (LLN) for Industrial [8], Commercial (Building) [9], Home [10], and
Urban [11] networks. These requirements can be subdivided for the above repre-
sentative’s types of traffic, in terms of resources, path diversity, their convergence
time, heterogeneous routing, security, and other requirements.
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The routing protocol must support P2MP and MP2P traffic pattern services and a
bidirectional link between two motes in the network. The routing protocol should
be implementable in resource-constrained devices and for battery-powered nodes.
For this reason, power consumption must be low to achieve a long battery lifetime,
therefore, the routing protocol battery-powered motes should provide no more than
1% of duty cycle on their sleep phase and at least the device should have five years
of service lifetime [8], [9], [10]. The routers must be able to provide alternative
routes for successful and reliable packet delivery. The packet delivery ratio must be
> 99 percent including retransmissions and for Lossy links, retransmissions must
be not more than three [13].

In Industrial applications, the routing protocol must converge after the joining of
new nodes within a few minutes, and after the re-establishment of a node or Lossy
connectivity within tens of seconds [8]. In home automation, in case of instabilities
of application devices (e.g., for instance, when motes are in motion) the convergence
time must be within 0.5 seconds if no nodes have moved and 4 seconds if nodes
have moved [11]. The routing protocol should consider characteristics of the node,
such as power budget, memory, and sleeping interval.

The routing protocol should route via mains-powered nodes if possible [10]. The
routing protocol also must be able to generate different routes with different char-
acteristics for different flows to assure that mission-critical applications do not defer
while less critical applications accessing the network can be managed with less tim-
ing requirements. Last but not least the routing protocol and its configuration have
to contribute to prevent attacks, and to support message integrity of nodes from
manipulating routing functions in the routing decision process security [35].

4.4 ICMPv6 RPL control message

Nodes running RPL exchange signaling information to setup and maintain the
DODAG. This information is exchanged as a new type of ICMPv6 message called
the RPL Control Message. A RPL control message is identified by a code, and the
code identifies how the message is structured and how to interpret its content. Most
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RPL control messages are related to a single link, except for the DAO / DAO-ACK
messages in Non-Storing mode [4]. The message exchange is managed using unicast
address over multiple hops, because DAO message is sent to the specific known
node and thus uses global or unique-local address for both source and destination
addresses. For the rest of RPL control messages, the source address is a link-local
address, and the destination address can be either a link-local unicast address or an
all-RPL-nodes multicast address. The all-RPL-nodes multicast address is a specific
address with a value of ff02::1a (see Figure 4.20). A RPL control message consists
of ICMPv6 header followed by a message body. The RPL control message base
diagram is illustrated below.

Figure 4.11: RPL control message

The RPL control message is an ICMPv6 information message with the ’Type’ field
set to 155. The RPL control message type is defined by the ’Code’ field. The
RPL control messages are: Code=0x00 DODAG Information Solicitation (DIS),
Code=0x01 DODAG Information Object (DIO), Code=0x02 Destination Adver-
tisement object (DAO), and Code=0x03 Destination Advertisement Object Ac-
knowledgment (DAO-ACK) [4].

Messages containing unknown code fields must not be processed, and have to be
directly discarded, without generating any response message.

The checksum field should be set to zero for RPL security operations. For the other
packets, it’s computed from the packet contents (including the security headers).
Figure 4.11 shows an RPL control message.
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Figure 4.12: secure RPL control message

To provide additional integrit, authenticity, confidentiality and delay protection,
each RPL message has a secure variant. The security information is situated be-
tween the checksum and the base fields, as shown in Figure 4.12.

Figure 4.13: Security Section

4.4.1 DODAG Information Solicitation (DIS)

DIS is a RPL control message and it is used to solicit a DIO from a RPL mote,
in the same way as the router solicitation mechanism specified in IPv6 Neighbor
Discovery. Router Solicitation originates from hosts only, these messages are sent
to detect the presence of routers on the link. Routers respond to these messages
by sending Router Advertisement. Router Advertisement messages originate from
routers, these messages indicate the presence of the router on a link. These messages
contain essential parameters along with IPv6 prefix of the network.
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A mote may use DIS to probe its neighborhood for nearby DODAGs. As shown
in Figure 4.14 the format of DIS base object fields is: 8 bit unused field reserved
for flags, followed by a Reserved field that consists of 8 unused bits. The "options"
part allows the DIS to carry PAD1, PADN and Solicited Information. PAD1 and
PADN may also be present in DIO, DAO and DAO-ACK messages. PAD1 option
is usedto specify that a single octet should be inserted as padding, while PADN is
used to insert two or more octet of padding into the message (to enable options
alignment). Solicited Information option is used by a mote to request DIO messages
from a subset of neighboring motes.

Figure 4.14: DIS base object

Flags and Reserved fields are initialized to zero by the sender and contain an 8 bits
reserved field. A Secure DIS message follows the format in Figure 4.12, where the
base format is the DIS object shown in Figure 4.14.

4.4.2 DODAG Information Object (DIO)

The 1 byte code in the ICMPv6 header is used to differentiate between different
sub-types. The DIO message, used to build the DODAG, is called the DODAG
Information Object (DIO). DIO carries information that allows a mote to discover
an RPL Instance, learn its configuration parameters, select a DODAG parent set,
and maintain the DODAG [4]. The main fields of DIO message include Version
Number, DODAGID and RPLInstanceID. The DODAGID must be a routable IPv6
address associated to the DODAG root. The format a DIO base object is shown in
the Figure 4.16.
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All the motes in the network regularly issue a DIO which serves as a heartbeat to
indicate their rank. The sending rate of DIO messages is regulated by the Trickle
Algorithm [12]. The algorithm detects graph inconsistencies, for example, due to
motes that join or change position in the network, to decide when to multicast DIO
messages. To this extent, the algorithm defines a trickle time, that denotes the
interval between two consecutive DIO messages. The trickle time is dynamically
updated to increase or decrease the message rate.

As the network stabilizes, the interval between DIO messages is increased, resulting
in fewer messages sent through the network. When inconsistencies are detected,
the nodes reset the trickle time and send DIOs more often. Using this mechanism,
the frequency of the DIO messages depends on the network stability. One of the
main advantages of the Trickle Algorithm is its simplicity: the implementation of
the algorithm does not require excessive computational power. This aspect is quite
relevant for LLNs. The fundamental mechanism of the trickle timer is shown in
Figure 4.15.

The algorithm runs for a defined interval, which is based on three parameters.
These are the minimum interval size, ’Imin’, which is defined in units of time (e.g.,
milliseconds, seconds). For example, a protocol might define the minimum interval
as 100 milliseconds. The maximum size interval size, ’Imax’, which is described as
the number of doublings of the minimum interval size (the base-2 log(max/min)).
For example, a protocol might define ’Imax’ as 16. If the minimum interval is 100
ms, then the amount of time specified by Imax is 100 ms * 65,536, i.e., 6,553.6
seconds or approximately 109 minutes.

Finally, the algorithm defines a redundancy constant ’K’, which is greater than zero.
Trickle Algorithm also uses three additional variables. These are current interval
size ’I’, a time within the current time interval or the time for sending message ’t’,
and a counter ’C’.

When the algorithm starts its execution, the algorithm sets ’I’ to a value in the
range of [Imin, Imax], and it begins the first interval. When the interval begins,
the trickle algorithm resets ’C’ to 0 and ’t’ is selected randomly within the interval
[I/2, I). When the Trickle algorithm hears a transmission, if it is "consistent", the
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counter ’C’ is increased by one. At time ’t’, The trickle algorithm transmits a DIO
message, when the counter ’C’ is less than the redundant constant ’K’.

When the interval ’I’ expires, the Trickle doubles the length of the maximum inter-
val size. At this point, if the new interval length ’I*max’ is greater than the time
specified by Imax, the trickle algorithm sets the interval length ’I’ to the time spec-
ified by ’Imax’. If the Trickle algorithm hears a transmission that is "inconsistent"
and the interval ’I’ is greater than ’Imin’, it resets the trickle timer. To reset the
timer, the trickle algorithm sets ’I’ to ’Imin’, and starts a new interval as in step 2.

If ’I’ is equal to ’Imin’ when the trickle algorithm hears an "inconsistent" trans-
mission, it does nothing. The algorithm is illustrated in Figure 4.15. The trickle
algorithm can also reset its timer in response to external "events" [12].

Figure 4.15: The trickle time process of the trickle algorithm (Source: [51])
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The only time the Trickle algorithm transmits DIO message is when the C>K
condition of the algorithm illustrated in the above Figure 4.15 is true. This means
there is an inherent delay between detecting an inconsistency (shrinking I to Imin)
and responding to that inconsistency (transmitting at time t in the new interval).
This is intentional. Immediately responding after an inconsistency is detected can
cause a broadcast storm, where many nodes respond at once and in a synchronized
fashion.

By making responses follow the Trickle algorithm (with the minimal interval size)
and randomly in selecting the transmission times of the messages, a routing protocol
can benefit from Trickle’s suppression mechanism and scale across a huge range of
node densities [4].

Figure 4.16: DIO base object

In the DIO base object, the ’G’ flag means Grounded, and it indicates whether the
DODAG advertised can satisfy the application-defined goal. If ’G’ flag is set, it
means that the DODAG is grounded. If it is not set, it means that the DODAG is
floating. MOP (Mode of Operation) is used to identify the operation mode of the
RPL Instance.

MOP is encoded in MOP 0, 1, 2, 3. MOP value 0 indicates no downward routes
maintained by RPL, which means that destination advertisement messages are
disabled and the DODAG maintains only Upward routes, MOP value 1 indicates
the operation is done in Non-storing mode, MOP value 2 indicates the operation
is held in storing mode without multicast support and MOP value 3 indicates that
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the operation is held in storing mode with multicast support [4]. The MOP and
’G’ flag are illustrated in Figure 4.17.

Figure 4.17: MOP and Grounded flag captured in Wireshark

DODAGPreference (Prf) is a 3-bit unsigned integer and defines how preferable the
root of this DODAG is compared to other DODAG roots belonging to the same
instance. Version Number is an 8-bit unsigned integer. The DODAG root sets
this field to the value specified by the DODAGVersionNumber. Rank is a 16-bit
unsigned integer containing the Rank in the current DODAG of the node sending
the DIO message. RPLInstanceID is an 8-bit field set by the DODAG root and
identifies the RPL instance the DODAG belongs to. Destination Advertisement
Trigger Sequence Number (DTSN) is an 8-bit unsigned integer is used as part of
the procedure to maintain Downward routes and is set by the mode issuing a DIO
message. Flags and Reserved are 8-bit unused fields, that are set to zero by the
sender and ignored by the receiver. Finally, DODAGID is a 128-bit IPv6 address
that uniquely identifies the DODAG, and is set by a DODAG root[4]. DIO control
messages have the same structure of RPL control message, with a base object like
the one shown in Figure 4.16.

4.4.3 Destination Advertisement object (DAO)

The DAO is used to propagate destination information along the DODAG. P2MP
is enabled by piecewise source routing: when issuing a message for a specific node
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in the network, the LBR prepends the sequence of nodes that need to be traversed
to get to the destination. To learn this sequence, each node in the network is asked
to transmit a Destination Advertisement Object (DAO) to the DODAG root. In
Storing mode, the DAO message is sent in unicast by the child to the selected
parent(s). In Non-Storing mode, the DAO message is sent in unicast to the DODAG
root [3]. The format of DAO base object is shown in Figure 4.18.

Figure 4.18: DAO base object

RPLInstanceID is an 8-bit field indicating the topology instance associated with
the DODAG, as described for the DIO, the ’K’ flag indicates that the recipient is
expected to send a DAO-ACK back, the ’D’ flag indicates that the DODAGID field
is present. This flag must be set when a local RPLInstanceID is used, the field
(Flags) consists of 6 unused and reserved bits. The field must be initialized to zero
by the sender and must be ignored by the receiver, and ’Reserved’ is an 8-bit unused
field. DAOSequence is incremented at whenever a DAO message is generated from
a node. The corresponding DAO-ACK messages use the same value. DODAGID
(optional) is a 128-bit unsigned integer that uniquely identifies a DODAG, and
is set by the DODAG root. The flag ’D’ indicates whether the field is present
or not. Typically, this field is used to identify a DODAGID associated with an
RPLInstanceID whenever local RPLInstanceIDs are used [4].

61



4 – Routing Protocol for Low-power and Lossy Network

4.4.4 Destination Advertisement Object Acknowledgment
(DAO-ACK)

The DAO-ACK message is a unicast address packet sent by a DAO recipient to
reply to a unicast DAO RPL control message. The format of DAO-ACK base
object is shown in the Figure 4.19.

Figure 4.19: DAO-ACK base object

RPLInstanceID is an 8-bit field indicating the topology instance associated with
the DODAG, as described for the DIO, the ’D’ flag indicates that the DODAGID
field is present. Typically, this would only be set when a local RPLInstanceID is
used. ’Reserved’ is a 7-bit field, reserved for flags. DAOSequence is copied by the
recipient from the DAO message that triggered the DAO-ACK, to associate the
acknowledgment to the correct DAO message. ’Status’ indicates the completion of
the DAO-ACK control message accepted or rejected. Status 0 is defined as unqual-
ified acceptance in this specification. The remaining status values are reserved as
rejection codes. As for DAO control messages, the DODAGID field is optional [4].

4.5 Topology Construction andMessage Exchange

The topology construction process starts at the root mote, which is configured by
the user who controls the system. If a mote is configured to act as a root, it starts
sending the topology information with the new information to its neighboring peers
using DIO messages. If the mote is a leaf mote, it simply joins the graph by request-
ing the DIO message using DIS messages and does not send any DIO message, to
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avoid forming loops which cause network instability (see Section 4.1.1) The neigh-
boring peers will repeat this process and do parent selection, route addition and
graph information advertisement using DIO messages.

The root mote with its IPv6 address multicasts the DIO RPL control message to
the leaf motes using all-RPL-multicast address ff02::1a as shown in the Wireshark
log in Figure 4.20. The motes send DIO packets with a period between 2 to 3
seconds. The state of the motes changes frequently due to new motes that try to
join in the network. Therefore, the root mote sends the topology information with
the new information using DIO messages to its neighboring motes. This process
builds the graph from the root mote to the leaf motes. The leaf motes can send a
data packet into the root the graph by just forwarding the packet to its immediate
parent. This model represents a MP2P (Multipoint-to-point) forwarding model
where each node of the graph is reachable toward the graph root.

Figure 4.20: The-all-RPL-multicast address of RPL control message DIO from root
mote

The routing choice is based on the used metrics and constraints defined by the
OF. Object Function Zero (OF0) metric is used for routing metrics. Each mote
computes its own rank when there is an inconsistency in the network, the Trickel
Algorithm runs (see Figure 4.15). Then the neighboring motes in the network,
when they receive DIO message, compare their state with the new DIO message
and updates their states. The leaf motes will send DAO message to the DODAG
root or their immediate parent.

The following Figure 4.21 illustrates emulated motes starts to build the graph

63



4 – Routing Protocol for Low-power and Lossy Network

with their neighbors and contains five motes as seen from the terminal. The
web based interface simulator OpenSim starts on the browser using the address
http://127.0.0.1.8080/. One of the motes in the simulator was configured manually
to be the root mote, then the motes start to discovering their neighbors using DIS
control messages and join the network using DIO control messages. As seen from
the Figure 4.21, Mote 2 and Mote 3 are synchronized to use the offset at "slotoffset
0" following the standard IEEE 802.15.4e. After they join the network, to maintain
the network all the motes multicast a DIO control message except the leaf motes
according to The Trickle Algorithm (see Figure 4.15). For every DIO message, the
leaf motes will send to the root mote a Non-storing DAO message which uses a
unicast address. The DAO control message, as reported by the OpenSim emulator,
is shown in Figure 4.21.

Figure 4.21: Neighboring Discovery and Non-Storing DAO message

The Wireshark log of Figure 4.22 shows a transmission of an Echo message from the
root mote to a child mote. When the root mote starts pinging the child mote, the
root mote sends an echo request message to the child mote and the child mote sends
an echo reply message to the root mote. At this time an inconsistency is detected
due to the exchange of messages between root mote and child mote through the
network. Then, the Trickle algorithm reacts by sending DIO messages to the motes
in the network using local communication. Motes will check their own states with a
Trickle message and update their states accordingly. Everytime when inconsistecies
occur in the network, a DIO message will be multicast to the child and leaf motes,
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as shown in the Figure 4.22.

Figure 4.22: DIO messages after echo reply

During pinging, the terminal displays which mote has received the echo request.
This is showed in the Figure below.

Figure 4.23: Terminal display during pinging and status of motes

To build the DODAG on the simulation, mote 0001 is selected as a DODAG root
by the administrator. The root mote sends the graph information to its neigbours,
and the rest of the motes join to the network using DIO message. The DODAG uses
an OF0 as objective function to build the routing by finding the nearest grounded
root. The DODAG graph construction with five motes in OpenSim simulator is
illustrated in Figure 4.24.

Wireless links may be affected by weak signal reception, interference or other phe-
nomena. At this point, by considering the above Figure 4.24, the idea is to analyze
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Figure 4.24: Five Motes DODAG

how much time will take the RPL routing to re-establish the connection between
nodes, if the link between them is disconnected. From the above DODAG graph
the root mote starts pinging mote 0004 and after some time, the link between mote
0003 and 0004 was disconnected manually from the simulation. After disconnect-
ing the link manually, as shown in the Wireshark log in Figure 4.25, the root keeps
sending echo requests, but the link that connects mote 0003 to mote 0004 is not
available and the originator does not obtain any response from the destination mote
until it rejoins the network and connects with mote 0003.
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Figure 4.25: Link disconnection display captured in Wireshark

After 43 seconds, the disconnected Mote 0004 rejoins the network and connects
with root mote using the RPL metrics defined in the OF, and starts replying to the
echo request which was sent by the root mote. It also changes its routing, in fact
Mote 0004 was reached by the root mote through Mote 0003, but now Mote 0004
makes its route directly to the root mote. Also the DODAG Rank is changed from
rank two to rank one, and the DODAG Version changed from the DODAG version
reported in Figure 4.24 to that reported in Figure 4.26.

Figure 4.26: Routing displaying Mote 0004 rejoining to the network
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Chapter 5

Simulation and Execution
Platform for OpenWSN

5.1 Overview simulation Platform

Computer simulations are used to test the performance of protocols in different net-
work scenarios, and assess their performance and practical values. There are three
main types of simulation: the Monte Carlo Simulation, Trace-Driven Simulation,
and Discrete-Event Simulation. Discrete-event simulation is widely used in wireless
sensor networks, and communication networks in general, due to the simplicity of
simulating lots of jobs running on different sensor nodes. This simulation can list
pending events which are executed in order. Each event can modify the state of
simulated devices, and generate other events that are added to the list [46].

The global variables, which describe the system state can represent the simulation
time. This type of simulation includes input routines, output routines, initialization
routines, and trace routines. In addition, it provides dynamic memory management,
which can add new entities and drop old entities in the model. Debugger break-
points are usually provided in discrete-event simulation, thus users can check the
code step by step without disrupting the program operation. Instead, Trace-Driven
Simulation provides different services. This kind of simulation is commonly used
in a real system [45].
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There are several simulation tools used to simulate open source low-power WSNs.
These simulation tools can be categorized into two types: simulators and emulators.
A simulator is universally used to develop and test protocols of WSNs especially
in the beginning stage of their designs. The cost of simulating thousands of nodes
networks is very low and the simulation can be finished within a very short execution
time, which is typically smaller than the real time. The tool which makes use of real
firmware and software to perform the simulation is called an emulator. Emulation
can combine both real software and firmware implementation. Emulator relies
on real code, thus it may provide more precision performance [47]. Usually, the
emulator has high scalability, which can emulate numerous sensor nodes at the
same time. Some of the simulation tools used in WSNs are OpenSim, NS-3 [48],
OMNeT++ [49], Cooja [52].

5.1.1 OpenSim emulator

OpenSim is an event-driven emulator which is part of the OpenWSN project de-
veloped in University of California, Berkeley. The OpenSim environment combines
elements from OpenWSN firmware and OpenWSN software. Emulated firmware
motes are compiled as a python extension module OpenWSN creates an instance of
the resulting class for each emulated motes and run them within OpenVisualizer.

The OpenVisualizer software is able to gather the debugging information on events,
which are transfered by the hardware motes by means of a serial port. To run
OpenVisualizer some necessary elements must be installed. These elements are
different libraries and dependencies. In particular, they include Python (which
is a popular programming language), PySerial, PyDispatcher, PyWin32 (Python
Extension for Windows), Scons (used for tool execution), and TAP for Windows
(IPv6 tunnel drive) used for Windows only.

On Linux, TUN/TAP is already included in the operating system, and OpenVi-
sualizer configures it on the fly. The host computer needs to have gcc installed
to be able to compile the firmware as a Python extension module. To compile
the firmware, the compiler will need to have access to the Python.h header file.
The Python header files should be present by default on Windows. On Linux, the
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Python-dev package needs to be installed.

OpenSim is a part of OpenVisualizer. OpenSim is allowed to emulate a mote to
generate data and inject to the event bus. The Event Bus provides the messaging
framework. Specific components implement services like a connection of wireless
motes via a serial connection, and external user applications via an IPv6 TUN
interface. A simulated network behaves exactly the same as a network with a real
device. Figure 5.1 shows how the emulated motes communicate with the EventBus.

Figure 5.1: Hardware and Simulation architecture (Source: [53])

When the OpenSim simulation is running, these emulated motes communicate with
the rest of the OpenVisualizer architecture. OpenSim allows users to simulate an
OpenWSN network without physical devices and emulate a full network in python
and C programming languages OpenSim is compatible with Windows and Linux.
Multiple emulated motes are able to run concurrently by using the OpenSim sim-
ulation framework [53].
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5.1.2 NS-3 simulator

Network Simulator 3 (NS-3) is a discrete event network simulator written in C++,
with optional Python programming language. It was implemented using an Object
Oriented structure, providing a modular environment in which various models could
reuse the existing code for networking protocols, and networking stacks. Simulation
scripts can, therefore, be written in C++ or in Python. NS-3 allows scientists to
analyze Internet protocols and large-scale systems in a controlled environment.

It is an open source simulator targeted primarily to network researchers and edu-
cational use. NS-3 is not compatible with NS-2 (its predecesssor) and it is weak
in MAC a physical layer development support. NS-3 supports large-scale systems.
Since NS-3 generates pcap packets trace files, Wireshark can be used to analyze
traces and it is compatible with Linux, Mac and Windows operating systems [48].

5.1.3 OMNeT++ simulator

OMNeT++ (Objective Module Network Test-bed in C++) is a discrete event mod-
ular network simulator, developed in C++. It is very simple to use, due to its clean
design. OMNeT++ contains strong GUI libraries for animation, tracing and de-
bugging. The simulator also has graphical tools for simulation building and result
evaluation in real time.

OMNeT++ provides a hierarchical nested architecture. The modules are pro-
grammed in C++, and the GUI is created by using the Tk library. The modules
are assembled into components and models by using a high-level language (NED).
Modules communicate by sending messages. The main flaw of this simulator was
the lack of available protocols in libraries when compared to some other simulators.
OMNeT++ simulator has very good scalability and supports very large scale net-
work topologies, and it is limited only by available memory on the user computer.

OMNeT++ simulator mainly supports standard wired and wireless communication
networks. Without the proper extensions, the simulator lacks suitable protocols and
energy models for WSN, since basic support is mainly for IP networks. Today, there
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are several sensor network simulation frameworks based on OMNeT++. The Mo-
bility Framework, for example, implements the support for node mobility, dynamic
connection management and wireless channel model [49], [50].

Finally, OMNeT++ offers various frameworks for the deployment of RPL in a
network. Additional available modules may be used to add support for energy
consumption and mobility models, but might introduce compatibility problems .
OMNeT++ is compatible with Linux, Mac, and Windows operating systems.

5.1.4 COOJA simulator

COOJA is a discrete event simulator written in Java, but allows the programming
of a node in standard C programming language by using Java Native Interface
(JNI). This enables the simulator to be easily extendable, and allows sensor node
software to be written in C programming language. It was developed by the Swedish
Institute of Computer Science. COOJA is primarily a code level simulator for
networks consisting of nodes running Contiki OS.

Nodes with different simulated hardware and different software can be included in
the same simulation. Code level simulation is achieved by compiling Contiki core,
user processes, and special simulation glue drivers into object code native to the
simulator platform, and then executing this object code from COOJA. COOJA is
able to simulate non-Contiki nodes, which are implemented in Java, and act as a
generic WSN simulator. COOJA can simulate sensor nodes at all levels of details.
Additionally, nodes simulated at different levels of details can coexist and interact
in the same simulation. This feature is called cross-level simulation.

COOJA offers simultaneous simulation of both low-level node sensors hardware and
high-level network behavior. COOJA allows to change or replace all levels of the
simulated system: sensor node platforms, operating system, radio transceivers, and
radio transmission models. The simulator, however, due to cross level simulation
and extendibility, is not very efficient. Simulation of many nodes with several
interfaces each requires a lot of computational power. A test interface GUI is absent,
thus making extensive and time-dependent simulations difficult. COOJA simulator

72



5 – Simulation and Execution Platform for OpenWSN

fully supports RPL and has relatively low efficiency for large-scale simulations.
Scalability is up to 200-500 nodes for simulation and takes long processing time.
The simulator supports Linux, Mac and Windows operating systems [52].

5.2 Configuration of OpenSim

OpenWSN can be installed and it is compatible with different operating systems.
For this thesis, the configuration is done in Linux OS. In Linux, OpenWSN can be
configured in simulation mode and integrated with simulated OpenWSN hardware
devices. In simulation mode it allows to use the ping tool and it allows simulated
devices to interact with CoAP. OpenSim is used to simulate an OpenWSN network
without the physical device.

The first step is to create a directory "OpenWSN" on the desktop, then inside
"OpenWSN" directory download updated OpenWSN firmware source code, software
source code and python module from Github. The firmware source code is used
to run motes which are emulated, the software code is used to run the simulation
on a computer and the python module is used to implement the CoAP service. To
run the simulation, OpenSim compiles a python extension and creates an instance
class for each emulated mote. The simulation web-based interface is run from the
Linux terminal as shown in the Figure below.

In OpenSim, OpenVisualizer is used to connect the OpenWSN network to the in-
ternet over a virtual interface, to control the status of the OpenWSN network and
communicating with the mote. It works for both Linux and Windows OS and inter-
acts with the motes connected to it over a serial port. It works for real devices and
emulated motes. It includes a 6LoWPAN Low-power Border Router (LBR), i.e., it
converts 6LoWPAN packets into IPv6 packets, thereby connecting the low-power
wireless mesh to the Internet. LBR provides border router translation between IPv6
packets on the external network and 6LoWPAN packets on the LLN. It generates
the events messages, which then may be handled by the RPL protocol.

OpenVisualizer has three types of user interfaces. These are a graphical user inter-
face, a command-line user interface, and a web user interface. In this thesis, the
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Figure 5.2: Starting OpenWSN from the command line

web-based user interface is employed. The web-based user interface provides rele-
vant information about the OpenWSN network. This includes the internal states
of each mote (neighbor table, communication schedule, routing table, etc.), the
multi-hop routing structure, debug information and error messages generated by
the motes. The OpenVisualizer also sends commands and data to the motes, espe-
cially packets coming from the Internet.

The next step to start the simulation is to install Python header files and Scons
for compiling the firmware as a Python extension module, as a form of a shared
library. When OpenVisualizer run with sudo the Python program will create a tun
interface and an open source software construction tools help the OpenVisualizer
to run on web user interface. The web interface in OpenWSN simulation can be
displayed in the browser. In OpenWSN simulation to display the web interface
http://127.0.0.1.8080/ address must be used, as shown in Figure 5.3.
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Figure 5.3: OpenMote Home page

As shown in the above Figure, the home page displays the DAG root state, an
IPv6 address of the motes, status of DAG root, and other data. On the left side
of the Figure some tabs related to Event Bus, Topology, Routing, connectivity,
Documentation, and Rovers are shown.

Figure 5.4: Event Bus of OpenWSN page

The components defined inside OpenVisualizer use a message to communicate with

75



5 – Simulation and Execution Platform for OpenWSN

each other. Event bus is used as a communication pipe between emulated motes.
The Event Bus also provides to the simulation environment; sender information,i.e.,
a description of the kind of event and the number of events occurred.

In the Topology tab, the position of the motes and their links are displayed, as
shown in Figure 5.5. In the simulation, using the computer mouse, it is possible to
move the positions of the motes by left click on a mote. The user can also right
click on the two motes to connect them with a wireless link, and it is possible to
change the link quality by modifying the value of the Packet Delivery Ratio (PDR),
which can be used to measure the performance of the network in a more realistic
operating condition.

Figure 5.5: Linear topology view on OpenWSN simulation with 5 motes

The Routing tab shows the resulting RPL route in a given topology. The definition
and generation of the new routing starts when a mote is Toggled as a DAG root in
the Mote page.
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Figure 5.6: Connectivity Status in a linear topology consisting of 5 motes

The Rover tab is used to combine the OpenMote B hardware and the OpenWSN
software. The OpenVisualizer monitors the internal state of motes. The state is
presented through a web interface. Rover extends the OpenVisualizer by allowing
motes plugged into different computers to remotely connect to it. Once connected,
a user monitors and manages the motes exactly as if they were connected locally.
Rover also allows the user to remotely reset or reflash the motes with any arbitrary
firmware.
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Chapter 6

Result and discussion

The experiments were performed on a computer running Ubuntu 12.04 LTS. The
simulations are based on Open Visualizer (OV). OV is a part of OpenWSN, it resides
on the host computer and it provides communication and visualization functional-
ities by creating a IPv6 TUN (network TUNnel) interface for the motes’ network.
Wireshark was also used to analyze the experimental results obtained from the
simulation. The results obtained from the simulation platform are quite variable
because the code of the nodes is exactly that of a real device, and the only source
of inaccuracy is related to the simulstion of the characteristics of the communica-
tion medium (which is an emulator (i.e. it runs exactly the same code executed
in the real devices), behaves exactly like a real-life device. Simulations are carried
out to analyze routing performance. we performed four experiments. The first one
measures the RTT using Linear Topology with a variable number of hops between
1 to 4. The second one measures the latency by sending a huge amount of traffic
and show the results using cumulative distribution functions. The third experiment
measures the quality of the link between motes when changeing the packet delivery
ratio from 30% to 100%. The last experiment analyzes how much time a mote will
take to rejoin a network if the link between two nodes is disconnected.
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6.1 Experiment 1: RTT with Linear Topology

This experiment measures the latency by determining the time required by a packet
to travel from source to destination mote and back from destination to source
mote, which is called "round-trip time" (RTT). The Minimum RTT, Average RTT,
Maximum RTT and the Standard Deviation of the motes was analyzed to measure
the latency in the network. We took into account four linear topologies (DODAG
graphs) with a different number of motes. The first mote in all linear topology
DODAGs was configured as a root mote, and the RTT test was implemented for
each mote by sending ICMP packets from the root mote. The generation of such
a kind of packets was obtained by means of the ping Linux utility. The DODAGs
used for these experiments are illustrated in the Figure 6.1 below.

Figure 6.1: Linear Topology with 2, 3, 4, 5 motes respectively

The root mote sends for each child motes 500 sample packets. Each packet has a
size of 10 kilobytes and two seconds waiting interval between sending each packet.

79



6 – Result and discussion

The Packet Delivery Ratio (PDR) was set to the value 100%. as a consequence,
for this set of experiments, the network was ideal, i.e., packets have the certainity
of being delivered to the destination mote.

As expected the topology which has only 2 motes (only one hop) obtain the min-
imum RTT (i.e., 54 ms). The minimum value of the RTT for the first hop with
configurations with 3, 4 and 5 motes is 85 ms, 115 ms, and 148 ms, respectively.
The same result considerations hold for maximum RTT, and Average RTT. The
standard deviation also, as shown in the above Table 6.1, increases as the number of
hops increases. These results implicate that the mote which is near to the grounded
root shows better performance and increased determinism (lower standard devia-
tion and variance).

In addition, commenting the experimental results obtained with the topologies of
Figure 6.1 and reported in Table 6.1, the motes which have the same hop distance
from the root mote have different values of measured latencies under Linear topolo-
gies characterized by a different number of motes. As shown in Table 6.1, in a linear
topology with 3, 4, and 5 motes, the second hop minimum RTT is 158 ms, 236 ms,
and 250 ms, respectively. Also, the maximum RTT for 3, 4, and 5 motes is 1085
ms, 1463 ms, and 1225 ms, respectively. Finally, the Average RTT for 3, 4 and 5
motes is 209 ms, 310 ms, and 336 ms, respectively. This is because of the amount
of traffic increases as the number of motes in a network increase. This is due to
DIO RPL control message that was multicast every time an event occurs in the
network. In addition, there were the messages of the IEEE 802.15.4 protocol that
are as observed in Wireshark logs. This will vary the value of the RTT for those
motes that have the same hop distance from the root mote, but in linear networks
characterized by an increase in the overall number of motes. Therefore, the amount
of traffic that passes through the network has an impact on the quality of commu-
nication, even when the PDR is 100%. When a network has a large number of
motes, the amount of traffic also increases, in addition to the ICMP packets that
we sent to execute the experiments.

In the Figure 6.2 (a), (b), (c) and (d) the maximum RTT, the minimum RTT, the
average RTT, and the standard deviation show that all the statistical indices related
to RTT increase when the numder of hops between the root and the destination

80



6 – Result and discussion

Number of
Motes

Number of
hops

Minimum
RTT(ms)

Average
RTT (ms)

Maximum
RTT (ms)

Standard
Deviation
(ms)

2 1 54 74 210 17
3 1 85 123 381 33

2 158 209 1085 59
4 1 115 160 600 46

2 236 310 1463 100
3 338 428 1536 111

5 1 148 219 1246 103
2 250 336 1225 107
3 426 561 1961 164
4 571 720 2341 220

Table 6.1: Linear Topology with 2, 3, 4, 5 motes, respectively

mote increase. Due to the linearity of the topology, the routing was also linear and
it is not possible that the root mote can connect and communicate directly to the
child motes. The root mote, when it tries to communicate with the last mote of
the DODAG (which is more than one hop), should passes through the nearest child
of the root mote as shown the above Figure 6.1.

Therefore, when the destination mote is far from the root, the time to get a response
from the destination mote to the root mote is increased. For this reason, when
the number of hops increases, the determinism of the network becomes lower and
latencies increase, which means that a mote far from the root mote will have a higher
variance and standard deviation, and also higher RTT. High RTTs can cause in the
network long delays and high latency.

This affects the efficiency of the system, increases the response time and decreases
the energy resource and durability of operated motes. In particular, high latencies
and low determinism are not compatible with many control applications, espetially
in the context of industrial application where determinism is of primarly impor-
tance.
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(a) Number of nodes vs Minimum
RTT

(b) Number of nodes vs Maximum
RTT

(c) Number of nodes vs Average
RTT

(d) Number of nodes vs Standard
deviation of the RTT

Figure 6.2: Experimental results on how the RPL is influenced by the number of
hops in a Linear Topology

In conclusion, The motes in a network with Linear topology can communicate
with a different communication quality that depends on their distance from the
root mote. In particular, the communication quality decreases with the distance
inversely proportional with the distance of the root mote.

6.2 Experiment 2: Latency

In this experiment we consider linear topology with 4 and 5 motes as shown in
the Figure 6.3. The mote labeled 0001 (for both linear topologies in Figure 6.3 (a)
and (b)) was configured as root, and the rest of the motes in both figures have a
routing directed to the the root mote (i.e., mote 0001). Motes that are not directly
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connected with root mote communicate with root mote through their immediate
parents. In particular they use the Non-Storing mode (see Section 4.1.2).

(a) Four motes Linear
Topology

(b) Five motes Linear
Topology

Figure 6.3: The two Linear Topologies used in the experiment

The ping command executed in the PC (to which the root mote is connected
through a USB cable) sends 7000 sample data packets with 100% PDR and two
seconds interval between adjacent packets. The experiment analyzed and measured
the round trip time using a linear topology contains 4 and 5 motes and which has
3 and 4 hops, respectively. The main difference from the previous experiment is
the higher number of samples we used to statistically analyze the results. Using
more samples allowed us to obtain results that have a higher statistical significance
allowing us to plot the distribution of latencies. This is very important to investigate
the characteristics of the network and to allow developers to correctly size it in the
design phase.

As shown in Figure 6.3, the root mote is the first mote of the topology for both
of them. The root mote pings mote 0004 (see Figure 6.3(a)) and mote 0005 (see
Figure 6.3(b)). The results of the two experiments are represented in Table 6.2.
In Figure 6.4 the Cumulative Distribution Function (CDF) of the RTT shows how
the two configurations affect the communication quality.
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Number of
Motes

Minimum
RTT(ms)

Average RTT
(ms)

Maximum
RTT (ms)

Standard Devi-
ation (ms)

4 325 567 1423 206
5 571 991 3369 375

Table 6.2: Experimental results of the Round Trip Time for Linear Topology with
4 and 5 motes

Figure 6.4: Cumulative Distribution Functions of Linear Topology with 4 and 5
motes

The experiment results of Table 6.4 show that the Minimum RTT, Average RTT,
Maximum RTT and the Standard Deviation of the RTT of a DODAGs which has
4 motes is smaller than a DODAG composed of 5 motes. The DODAG with 3 hops
(a network that has 4 motes) has a minimum RTT equal to 325 ms, a maximum
RTT equal to 1423 ms, and an average RTT equal to 568 ms. The DODAG with 4
hops has the Minimum, Maximum and Average RTT of statistical indices referred
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to the RTT equal to 571 ms, 3369 ms, and 991.203 ms, respectively.

When the number of hops increases, there is an increase also in RTT. The RTT
increases, because of the high number of transmitted packets: packets sent and
received from the source (root mote) have to travel through the network to reach
their destinations. This long delay results in higher latency. The higher traffic
affects the performance of the network and decrease the network determinism (see
Table 6.2).

The Cumulative Distribution Function in Figure 6.4 shows that, when the number
of hops increases from 3 to 4, there is an increase on latency approximately around
250 ms. If we cross the CDF with an horizontal line place on the value 0.9, we can
conclude that the 90% of the samples are transmitted with a delay lower than 400
ms in the 4 motes configuration, and a delay smaller than 800 ms for the 5 mote
configuraton.

6.3 Experiment 3: Link quality with respect to
Packet Delivery Ratio (PDR)

In this experiment is aimed at observing the performance of a DODAG network
when the quality of the link between two motes is changed. The quality of the link
can be tuned by setting the Packet Delivery Ratio (PDR). PDR is the ratio, com-
puted for a specific link between two nodes, of the number of packets successfully
received by the destination mote over the number of packets sent by the source
mote.

Link quality unavoidably affects protocols and applications in wireless networks.
The experiment uses two motes, as shown in Figure 6.5, connected linearly. The
ping program executes in the PC generators, as we seen from the other experiments,
echo request packets will be sent to mote 0002. Each experiment consists of 500
packets generated with a period of two seconds. The value of PDR was changed
manually from 30 % to 100 % in the simulation, and the results were captured and
analyzed.
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Figure 6.5: Linear routing topology with 2 motes used in the experiment

The results are shown in the following Figure 6.6.

(a) Minimum RTTwith different PDR (b) Maximum RTT with different PDR

(c) Standartd deviation with different PDR (d) Average RTT with different PDR

Figure 6.6: Round Trip Time vs Packet Delivery Ratio
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Figure 6.6 shows the RTT for the network when the quality of a link increases. The
time required for a packet to travel from a root mote to specific destination mote
and back again to the root mote (i.e., round trip time) is inversely proportional to
the quality of the link (that is the Packet Delivery Ratio).

This behavior is similar for all the statistical quantities analyzed in Figure 6.6,
i.e. minimum, maximum, standard deviation and average value. This relation
can be explained observing that a packet that does not reach its destination is
retransmitted.

The RTT increases because each retransmisstion, as stated by the TSCH tech-
nique, can only be scheduled in specific time slot, as a consequence, each time a
retransmission is needed, the originator has to wait its scheduled time slots, with
a consequent increase on the RTT.

As can be seen from the plots, the relation between the PDR and the RTT is linear.
This can be easily observed in the plot of Figure 6.6 (d). In the plot related to
the minimum, instead, there is not a linear dependence between the two quantities
because, with a sufficient number of samples, there is a high likelihood that a packet
can cross the entier network without experiencing any retransmisstion, also in the
case of a network with low values of PDR.

The other statistical quantity analyzed in this experiment is the interaction between
the Packet Loss Ratio and the PDR. It is important at this moment to point out
that the Packet Loss percentage is computed at the application level, while the
PDR at the link level (i.e., without traking into account retransmission).

As a matter of fact, a packet is lost at the application level when all its retrans-
missions (and the original transmission) are lost at the link level. Since in the
OpenWSN implementation of the 6TiSCH protocol stack the number of transmis-
sions of each data packet is 4 (i.e., 1 transmission plus 3 retransmission), the values
of the packet loss percentage is affected only when all the 4 retransmissions at the
link level are lost. The packet loss rate decreases when the packet delivery ratio
increases. These results are shown in Figure 6.7.
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Figure 6.7: packet delivery ratio vs Packet loss

As expected, in a network with only two motes, when the link quality is better (i.e.
high values of PDR), also transmission times are small, and motes have a higher
probability to meet their communication deadline. If the Packet Delivery Ratio
decreases, the rate of packet loss will increase. As we observed in Figure 6.5, the
network performance with variable link quality has an impact on the quality of
communication in terms of reliability between two motes.

When we have more than two motes in the network and the number of hops in-
creases, the network performance decreases and as a consequence, the communi-
cation network becomes less reliable. As shown in Figure 6.7, we analyzed the
correspondence between analytical and theoretical curves.

Since there is correspondence, we can also use the theoretical formulation to analyze
the behavior of the network in the case the number of transmissions is 3, 4, and 5.
These experimental conditions are identified with the labels nt=3, nt=4, and nt=5,
respectively. The formula that links the PDR and the number of transmissions "nt"
with the packet loss probability (PLP) is:

PLP = 2 · (1 − PDR)nt − ((1 − PDR)nt)2 (6.1)

In RPL the maximum number of transmission is 4 , consequently, a packetcan be
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transmitted 4 times before being dropped.

6.4 Experiment 4: Rejoin Time

Basically, if RPL finds a better link or the communication on a link become bad
because the link is interrupted, it changes the routing in order to use a different
path by selecting its preferred parent to reach its destination mote. The process
does not only change the preferred parent but it could change also the Rank of the
mote.

RPL uses Rank to measure and indicate the hop distance of a mote from the root
mote in the network. If the Rank of a mote is large, the mote will become far from
the root mote. If the network is unstable, the route will change many times. When
RPL selects a new path, it may not change the mote’s Rank because the new route
might have the same length.

The Last experiment measures how much time a mote took, when disconnected
from the current network, to rejoin to the network again. As described in Chapter
4, when a mote is disconnected from the network, to rejoin the network again,
it requests a DIO control message from its neighbors by sending a DIS control
message. When a disconnected mote receives a DIO control message from a mote
already in the network, this mote will be immediatly selected as a new parent.
Finally, the disconnected mote replies to its new parent mote using a DAO control
message.

Therefore, the time measured is between a mote is disconnection from the network
and the instant the same mote rejoins the network by sending a DAO control
message. This is done in a given mesh topology using the DODAG constructed
by the RPL routing protocol. After constructing the DODAG tree graph, the root
mote will be configured and the PC starts pinging one of the child motes with
100 packet samples. The packet size is 10 kilobyte and the interval time between
the adjasent packet is 2 seconds. During the pinging time, one of the links was
disconnected manually from the randomly topology constructed in the simulation
by RPL.

89



6 – Result and discussion

Then, each measure was taken as the interval from the time the root mote sends
an echo request message generated by the PC and the echo request message is
lost in the network (i.e., it is not delivered to the root mote), and the time the
disconnected mote rejoins the DODAG by selecting its preferred parent (using
RPL control messages) and it starts replying to the requests sent by the PC. In the
following, some examples show how the topology changes when a mote disconnectes
from the network and rejoins to the network. These examples are illustrated and
shown in the Figure 6.8.

It is important for the routing protocol to react to changes in connectivity by
rapidly reconfiguring the topology, while maintaining at the same time a low control
overhead and power consumption.

For this experiment Wireshark is used to capture the packets exchanged in the
network. In particular, wireshark is used to trace the sending time of the echo
request packet and the presence of the coressponding reply, and measure the time
taken by a disconnected mote to reconnect to the network. Experiments for each
topology were repeated 10 times. The experimental results are shown in Table 6.3.

Number 3 motes Topology
(s)

4 motes Topology
(s)

5 motes Topology
(s)

1 20 37 123
2 21 28 42
3 24 25 93
4 23 51 86
5 74 29 34
6 53 87 36
7 6 46 99
8 60 52 73
9 7 89 43
10 10 89 44
Minimum 6 25 34
Maximum 74 89 123
Average 29 53 67

Table 6.3: Time intervals between a mote disconnected from the network and rejoin
to the network
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(a) DODAG with 3 motes

(b) DODAG with 4 motes

(c) DODAG with 5 motes

Figure 6.8: Examples of how the topology changes when the link is disconnected
and a mote rejoins the network

For not highly demanding Industrial applications, the routing protocol should con-
verge within tens of seconds so that a device is able to establish connectivity to
any other point in the network or quickly detect connectivity issues. Repeating the
same experiments more times, we observed that the rejoin time varies. The rejoin
time can range from few milliseconds under ideal conditions between closely spaced
motes, to several seconds under different conditions between motes separated by a
large distance (i.e. a high number of hops). The minimum time obtained for a 3
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motes DODAG network is 6 seconds, for a 4 motes DODAG is 25 seconds and for
a 5 motes DODAG it is 34 seconds.

The maximum time obtained for a 3 motes DODAG is 74 seconds, for a 4 motes
DODAG 89 seconds and 123 seconds for a 5 motes DODAG network. The average
times computed over 10 different runs of the simulation are 29 seconds for a 3
motes DODAG, 53 seconds and 67 seconds for a 4 and 5 motes DODAG networks,
respectivelly. This result shows that when the number of hops increases, the time a
disconnected mote needs to rejoin the network also increases. The analysis presents
a small rejoin time for the motes with small hops. Those motes join quickly the
network according to the routing protocol requirements, but an increase in the
number of hops lead to longer rejoin times.

In fact, when the number of hops increases, the motes will wait a longer period
to rejoin the network, resulting in a large number of packet dropped during the
interval needed by the RPL protocol to establish a new route to the node. During
this interval, communication with the disconnected mote is not possible. For this
reason, the overal performance of the network decreases, because some motes are
not reachable.

As discussed in Chapter 4, RPL (more in general 6TiSCH protocol stack) was
designed for low power and lossy network wireless devices, to increase efficiency in
Industrial, Commercial, Home and Urban networks. All these applications require
to deliver information with low latency and to save the energy resources to decrease
as much as possible the maintenance required by the motes after they are installed
in the field.

The delay required by a disconnected mote to rejoin the DODAG network must be
small because motes are placed in a network to deliver information or to do some
specific task usefull for the application. If a mote does not complete the specific
task within a required time (deadline), some applications, especially those used in
industry, may not work work properly. To solve such kind of problems, and to
increase operational efficiency in a network, we propose two methods: backup link
or active redundancy path.
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6.4.1 Backup Link Method

RPL protocol constructs a DODAG graph which is acyclic with all edges directed
to the root and each source mote can use only one path for data transmission and
switch to another path upon link failures. After topology construction, if one of
the links is broken, according to RPL routing protocol specifications, it will take
tens of seconds to minutes to reconstruct the new topology with the new route.
Especially for industrial applications, these times are too long. The packets that
are transmitted during the interval are dropped. Therefore, it is better to apply
a backup link for the mote when it disconnects from the network. To use the
backup link, we have to be sure that the time to reconstruct the new route and the
new topology is lower than the time the RPL protocol requires to reconstruct the
new route. We must also have to define when to use the backup link. A possible
solution is switching to the backup link after a given number of frames have been
lost. Heuristics can be used to select the optimal number of frames (that can be
decided with some heuristic algorithm). The idea is illustrated in the Figure 6.9.

Figure 6.9: Reconstruction of the new network topology by using the backup link

When a link is broken between the leaf mote and the intermediate mote, the backup
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link will be used and a new topology will be reconstructed to maintain reliable
communication and to keep an uninterrupted data exchange in the network. It is
important to have uninterrupted communication in WSNs for all applications, such
as industrial ones, which require an immediate response.

6.4.2 Active Redundancy Path Method

The other method is active redundancy paths. Active redundancy plays an im-
portant role to maintain a communication in the network. This method consists
in creating redundant routes in a network topology already constructed by RPL
routing protocol using an improved version of the protocol aimed at generating two
completely disjointed routes. The main idea is illustrated in Figure 6.10.

In Active redundancy systems, a source mote will send two copies of the same
message (the purple and green color) as shown in Figure 6.10 to the destination
using the two disjointed paths. The destination mote will take the message that
arrives first. But, if one link is broken, one of the two copies of the message will
arrive to the destination, and the network continues its communication without any
loss and delay.

To be sure that at least one message arrives to the destination with a single point
of failure in the route topology, we need that the two paths are completelly disjoint.
The drawback of the proposed algorithm are a higher power consumption and a
higher bandwidth usage compared with other algorithms not based on redundancy.
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Figure 6.10: Active redendancy paths
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Chapter 7

conclusion and future work

This final chapter presents some concluding remarks about the thesis, and makes
suggestions related to possible improvements and future work.

The main topic of this thesis is the study of the RPL Routing protocol, with a
particular attention devoted to the performance analysis of the quality of commu-
nication. The metrics used in the experimental campaign are the Round Trip Time
(RTT) and the Packet Loss Percentage. These metrics were analyzed on a multi-
tude of experimental conditions, aimed at checking a number of possible contexts
of interest. RPL is the emerging routing standard for low-power and lossy networks
(LLN), and was designed by the IETF ROLL Working Group to take into account
the unique routing challenges posed by LLNs. RPL was designed in order to stan-
dardize and to incorporate the various independent and non-interoperable efforts,
with the purpose of creating a routing protocol that would suit a wide variety of
LLN scenarios.

In particular, RPL is a routing protocol which operates on top of the IEEE 802.15.4
standard, and it is designed for Low Power and Lossy Wireless Networks such as
WSNs. Hence, RPL is optimized for collection networks with infrequent commu-
nication from the collection point to individual motes. RPL organizes a topology
as a Destination Oriented Directed Acyclic Graph (DODAG), which is a directed
graph whose edges are oriented as to avoid cycles. All paths are thus directed and
terminate at the root mote. To construct the topology, RPL uses specific control
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messages: DIO, DAO, DAO-ACK, and DIS. These control messages are used to
achieve the final routing topology. Finally, RPL makes use of an Objective Function
(OF) to estimate the distance between a node and the root mote. The outcome of
the OF is used to build the appropriate network topology. The RPL protocol is
used also in OpenWSN based motes, and it can be applied to different applications,
including industrial applications that are characterized by stringent requirements
in terms of timeliness and reliability.

Experimental results highlight that, when motes are placed far from the root mote,
the RTT increases, casing a consistent delay in data packet transmission. As a
result, latencies in the network are too high to be used in a number of application
contexts, including industrial applications. The number of hops in the network, as
well as the traffic, have a direct influence on latencies. In fact, the performance of
the network decreases as the number of hops in the routing topology increases. The
quality of a link in terms of Packet Delivery Ratio (PDR) plays an important role
to improve the performance of a network. A poor link quality has a really negative
impact in the overall performance of the network. Because of this, it can cause
increases in packet loss and consequently it has a negative effect on both timeliness
and reliability. As a recommendation, to cope with this problem, we proposed two
methods, namely, backup link route and active redundancy path.

As future work, the RPL routing protocol should be analyzed also in large scale
networks, and the performance should be measured with real devices and in more
complex scenarios. In any case, results obtained in this thesis are a useful reference
for network engineers. They provide a comprehensive analysis of the performance,
in terms of latency and packet loss of a 6TiSCH network based on OpenWSN.
Performance was obtained for different network configurations and experimental
conditions. In addition, this is a good starting point for researches on more effective
routing solutions for IIoT, but also for other application contexts.
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