
POLITECNICO DI TORINO
Department of Electronics and Telecommunications (DET)

Master Degree Thesis

DESIGN AND IMPLEMENTATION OF MIMO
OFDM IEEE 802.11N RECEIVER BLOCKS ON

HETEROGENEOUS MULTICORE ARCHITECTURE

Communications and Computer Networks Engineering

Supervisors: Candidate:

Prof. Roberto Garello Mohammad Hosseinvand

Prof. Jari Nurmi

Dr. Daniel Riviello

October 2018

MOHAMMAD HOSSEINVAND
DESIGN AND IMPLEMENTATION OFMIMO OFDM IEEE802.11N
RECEIVER BLOCKS ON HETEROGENEOUS MULTICORE
ARCHITECTURE

Master of Science Thesis

Examiners: Prof. Jari Nurmi

M.Sc. Sajjad Nouri

Examiners and topic approved by the

Faculty Council of the Faculty of

Computing and Electrical Engineering

on 30th of May 2018

i

ABSTRACT

MOHAMMAD HOSSEINVAND: Design and Implementation of MIMO OFDM
IEEE802.11n Receiver Blocks on Heterogeneous Multicore Architecture
Tampere University of Technology

Master of Science Thesis, 60 pages

October 2018

Master's Degree Programme in Communications And Computer Networks Engineering

Major: Communication Systems and Networks

Examiners: Prof. Jari Nurmi

M.Sc. Sajjad Nouri

Keywords: Software-De�ned Radio, WLAN, OFDM, MIMO, Heterogeneous, Application-

speci�c Accelerator, Multicore, FFT, HARP, RISC Processor, Network-on-Chip, CGRA,

COFFEE, FPGA, Recon�guration, Time Synchronization, Frequency O�set Estimation,

Channel Estimation, Symbols Demapping

In this thesis, the performance of a heterogeneous multicore platform in terms of

technical capability is evaluated. Therefore, the choice of architecture in general

can be based on a set of diverse applications. Selected applications can be parallel

or serial in nature. Applications evaluation are often based on various performance

metrics including the resource utilization and execution time. The wireless com-

munication systems are expanded to accelerate their functions execution in both

software and hardware. The embedded systems which involve several types of com-

munication systems perform a large number of computations which require short

execution time and minimized power consumption. Also, there is a growing demand

for application-speci�c accelerators aiding general-purpose. One feasible way is to

use heterogeneous multi-core platforms. Furthermore, many application-speci�c ac-

celerators are loosely connected with each other.

In this study, the implementation of Multiple-Input Multiple-Output (MIMO) Or-

thogonal Frequency Division Multiplexing (OFDM) receiver is evaluated by apply-

ing a Heterogeneous Multicore Architecture (HMA). The MIMO OFDM receiver

is composed of computationally intensive and general-purpose processing tasks and

can serve maximum coverage for evaluation of the HMA. The receiver blocks are

designed by crafting template-based Coarse-grained Recon�gurable Array (CGRA)

devices. In this case study, four streams (antennas) are proposed in order to process

the data over CGRAs simultaneously. HMA nodes will be recon�gured at run-time

in di�erent blocks of the receiver. In this experimental work, according to the per-

formance of each CGRA, the collective performance of the entire platform as well as

NoC tra�c is recorded considering the number of clock cycles and also several high-

ii

level performance criteria. The implementation of OFDM receiver scaled CGRAs

to various dimensions. The data can also be exchanged between diverse nodes on

the NoC structure by utilizing direct memory access (DMA) devices independently.

iii

PREFACE

This thesis work presented here was accomplished in the Laboratory of Electronics

and Communications Engineering at Tampere University of Technology, Tampere,

Finland to pursue a Master of Science degree in the Information Technology Program

in 2018.

At �rst, I would like to acknowledge my mother Soudabeh Memar, my father Asa-

dollah Hosseinvand and my sister Maryam Hosseinvand for their patience and con-

sistent struggle, passionate love, and tremendous support in all moments throughout

my life to bring me up to a stage, at which I became able to conduct this thesis and

write it. It is clear to me that I owe all my accomplishments to them and without

their support, all this would not have been possible.

I would like to express my deepest gratitude and respect to my supervisor Prof.

Jari Nurmi, who made possible accomplishment of this research work at Tampere

University of Technology as well as he welcomed me in his research group, always

his expertise, motivation and patience was a great value for my Master thesis. In

addition, I appreciate his support, which helped me manage the achievement of my

Master thesis.

I am really thankful to Prof. Roberto Garello for being my supervisors at Politecnico

di Torino, Turin, Italy for the given opportunity, to believe in my abilities to do

my thesis abroad, his enthusiastic support and always guided me to choose the best

decision. I express my thanks to Dr. Daniel Riviello for providing valuable comments

through this research.

I would like to express my warmest thanks to my dear friend, Yekta Lajevardi for

endless support and for helping me to stay positive and focused. I am thankful to

her for being an honest and lovely friend.

I am also grateful to my friend, Javad Malek Shahkoohi for long support and ad-

vices given through all the ups and downs of my studies. He has been my very

caring and amazing friend. I would like to extend my gratitude to my friends at

Tampere University of Technology, Ritayan Biswas, Alberto García, Marcelo Fierro,

Bahareh SadeQian, Danial Parsa, Farhad Javanmardi, Kamran Mohamadi, Anasta-

sia Yastrebova, Manlio D'Agostino, Giulia San�lippo for their friendship and good

moments we have shared together and also, for their invaluable support throughout

my Master degree. Living in Tampere would have been too colorless without you.

iv

Tampere, October 2018

Mohammad Hosseinvand

 ... یدیهارو تو هم هرگز نپرس یفتن گ فتم گ ن
“I never told you what I should have and you have never asked”

- Ardalan Sarfaraz

I dedicate this thesis to my father and my mother, whose love and a�ection, support,

encouragement, motivation and prayers of day and night make me capable to get

honor and achievement.

v

TABLE OF CONTENTS

1. Introduction . 1

1.1 Objective and Scope of Thesis . 2

1.2 Thesis Outline . 2

2. Literature review . 4

2.1 Processor/Co-processor Models . 4

2.2 Recon�gurable Devices . 5

2.2.1 Fine-Grained Devices . 5

2.2.2 Middle-Grained Devices . 6

2.2.3 Coarse-Grained Devices . 6

2.3 Multi-core Platforms . 6

2.3.1 MORPHEUS . 7

2.3.2 P2012 . 8

2.3.3 NineSilica . 8

2.3.4 RAW . 8

3. OFDM WLAN Overview . 9

3.1 MAC Frame Structure for WLAN Standards 10

3.2 Physical Layer Speci�cations for WLAN Standards 16

3.2.1 Time Synchronization . 21

3.2.2 Frequency o�set Estimation . 24

3.2.3 FFT . 25

3.2.4 Channel Estimation . 26

3.2.5 Symbols Demapping . 28

4. Platform Architectures . 29

4.1 Coarse-Grained Recon�gurable Arrays 29

4.1.1 CGRA Execution Flow . 30

4.2 Heterogeneous Accelerator-Rich Platform 31

4.2.1 Internal Structure of NoC . 32

vi

5. Design and Implementation of IEEE 802.11n on template-Based CGRA . . 34

5.1 Time Synchronization . 34

5.2 Frequency O�set Estimation . 37

5.3 Fast Fourier Transform . 40

5.4 Channel Estimation . 43

5.5 Symbols Demapping . 49

6. Integration of Baseband Processing Blocks on HARP 54

7. Measurements and Estimation . 57

8. Conclusions and Future Work . 59

Bibliography . 61

Appendices . 69

vii

LIST OF FIGURES

2.1 MORPHEUS architecture . 7

3.1 IEEE 802.11n PPDU formats in Legacy, Mixed and Green-�eld . . . 10

3.2 PLCP Preamble for OFDM training structure 12

3.3 Subcarrier frequency allocation for 40.0 MHz with 128 subcarriers . . 14

3.4 Block diagram of IEEE 802.11n transmitter [44] 16

3.5 Block diagram of IEEE-802.11n receiver [10] 16

3.6 natural order and Gray coding of QAM modulation 17

3.7 Cyclic Pre�x (CP) in OFDM Symbol 18

3.8 Transmit spectrum of OFDM (PDS) based on IEEE 802.11n standard 20

3.9 Block diagram of correlation algorithm for time synchronization . . . 22

3.10 Cyclic pre�x (CP) correlation along with SNR 20 dB 23

3.11 Linear interpolation algorithm to perform the channel estimation . . 26

4.1 The scalable template-based CGRA architecture. 30

4.2 Heterogeneous Accelerator-Rich Platform (HARP) [33]. 31

4.3 A view of master and slave node of HARP [78] 33

5.1 Second context for the calculation of the correlations 35

5.2 Third context for the calculation of the correlations 35

5.3 The context for the multiplication between a signal and its complex

conjugation . 38

5.4 Fast Fourier Transform . 41

viii

5.5 The �rst context includes four radix-2 butter�ies. 42

5.6 A radix-4 butter�y for the second context 43

5.7 Linear Interpolation algorithm based on pilot-assisted for Channel

Estimation . 44

5.8 Second context of the channel estimation 45

5.9 First context of the Linear Interpolation 46

5.10 Second context ofthe Linear Interpolation 46

5.11 First context of the Newton-Raphson method 48

5.12 Second context of the Newton-Raphson method 48

5.13 Sixth context of the channel estimation 49

5.14 Seventh context of the channel estimation 49

5.15 Decision regions of 64-QAM Gray-coded constellation 50

6.1 Abridged general view of IEEE 802.11n MIMO receiver on HARP

platform. 54

ix

LIST OF TABLES

3.1 Standards for OFDM WLANs [42] 10

3.2 Pilot speci�c values for 40.0MHz [44] 15

3.3 IEEE 802.11n OFDM parameter values [45] 15

5.1 Di�erent types and lengths of FFT and their complexity in number

of stages and in number of operations per butter�y [10]. 42

5.2 Clock cycles (cc) based on the type of FFT accelerator and length [10]. 43

5.3 64-QAM constellation mapping with gray coded 51

6.1 The required clock cycles at di�erent stages for data transfer and

processing. In the table, D. Mem, Trans and Exe. are referring to Data

memory, Transfer and Execution respectively, while Clock cycles with

* sign indicate data transfer from CGRA to Node's data memory. . . 56

7.1 Summary of resource utilization based on the breakdown of node-by-

node for Stratix-V (5SGSED8N3F45I3YY) FPGA device 58

7.2 Dynamic power of each CGRA node and the NoC. 58

x

LIST OF ABBREVIATIONS AND SYMBOLS

ACK ACKnowledgment

ADC Analog-to-Digital Converter

AGC Automatic Gain Control

ALM Adaptive Logic Module

ALU Arithmetic Logic Unit

ALUT Advanced Look-Up Table

ASIC Application Speci�c Integrated Circuit

ASK Amplitude Shift Keying

ATM Asynchronous Transfer Mode

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BPSK Binary Phase Shift Keying

CC Clock Cycle

CCB Core Con�guration Block

CE Channel Estimation

CFO Carrier Frequency O�set

CGRA Coarse Grain Recon�gurable Array

CIR Channel Impulse Response

CISC Complex Instruction Set Computing

CP Cyclic Pre�x

CPU Central Processing Unit

CREMA Coarse grain REcon�gurable array with Mapping Adaptiveness

DAC Digital-to-Analog Converter

DC Delay and Correlate

DFT Discrete Fourier Transform

DMA Direct Memory Access

DSP Digital Signal Processor

FEC Forward Error Correction Code

FireTool FIeld programming and REcon�guration management Tool

FPU Floating Point Unit

FF Flip Flop

FFT Fast Fourier Transform

FOE Frequency O�set Estimation

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

FSK Frequency Shift Keying

xi

FSM Finite State Machine

FU Functional Unit

Gbps Giga Bit Per Second

GCC GNU Compiler Collection

GI Guard Interval

GOPS Giga Operation Per Second

GPP General Purpose Processor

GUI Graphical User Interface

HDD Hard Decision-based Detection

HDL Hardware Description Language

HMA Heterogeneous Multicore Architecture

HW HardWare

I In-Phase

IEEE Institute of Electrical and Electronics Engineers

IDFT Inverse Discrete Fourier Transform

IFFT Inverse Fast Fourier Transform

I/O Input/Output

IP Intellectual Property

I/Q In-phase and Quadrature-phase

ISI Inter-Symbol Interference

LTS Long Training Symbols

LUT Look Up Table

MAC Medium Access Control

MCM Multi-Carrier Modulation

MIMD Multiple-Instruction Multiple-Data

MIMO Multiple-Input Multiple-Output

ML Maximum Likelihood

MPSoC Multi Processor System-on-Chip

MT Mobile Terminal

MVM Matrix Vector Multiplication

NOP No-OPeration

NoC Network-on-Chip

OFDM Orthogonal Frequency Division Multiplexing

PAPR Peak-to-Average Power Ratio

PCB Peripheral Control Block

PE Processing Elements

PN Pseudo Noise

PPDU Physical Protocol Data Unit

PSDU Physical layer Service Data Unit

xii

PSK Phase Shift Keying

PTS Partial Transmit Sequences

Q Quadrature-phase

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

RF Radio Frequency

RISC Reduced Instruction Set Computing

RPU Recon�gurable Processing Unit

RTL Register Transfer Level

RTOS Real-Time Operating System

SDD Soft Decision-based Detection

SDR Software De�ned Radio

SER Symbol Error Rate

SIMD Single-Instruction Multiple-Data

SISO Single-Input Single-Output

SLM SeLected Mapping

SNR Signal-to-Noise Ratio

SoC System-on-Chip

STS Short Training Symbols

TUT Tampere University of Technology

TS Time Synchronization

VC Virtual Carrier

VHDL Very-high-speed integrated circuit Hardware Description Language

VLIW Very Long Instruction Word

WiFi Wireless Fidelity

WLAN Wireless Local Area Network

1

1. INTRODUCTION

Today's human society is reliant on computers more than ever before. Their use in

the everyday life of the human society has lead to scienti�c advancements, events as

well as new �elds of science, which have prompted the formation of modern world.

An integrated part of modern life is communication which has evolved greatly th-

roughout the years. The latest means of communication is mobile phones which

are categorized into embedded systems. Embedded processors are dominant in com-

munication systems such as mobile phones in which short execution time is highly

desired. Embedded processors are expected to run many concurrent applications.

Recon�gurability is a solution for achieving the goal of short execution time, since

many embedded applications are computationally intensive. At the same time power

dissipation must be limited. Over the years, there has been a pattern to increase

the performance of the system by scaling the frequency of single-core architectures.

This led to considerable increase in power dissipation. This issue has caused ven-

dors to o�er multicore systems. However, Dark-Silicon [37] is a critical issue in mul-

ticore systems. We could overcome the Dark-Silicon challenge by introducing many

application-speci�c accelerators that provide high performance at low frequencies.

In this thesis, the focus is on the template-based Coarse-Grained Recon�gurable

Arrays (CGRAs), to generate special-purpose accelerators. These platforms have

relatively low power consumption. CGRAs are recommended since they operate

at very low frequencies while they can yield enormous performance improvements.

CGRAs are recon�gurable and are programmed using a high level language such as

C. Also, they contain many specialized accelerators and are designed in a way to

perform massively-parallel tasks in critical applications.

Moreover, there are many heterogeneous platforms which have almost identical de-

sign philosophies, e.g. NineSilica [1], Platform 2012 [2] and MORPHEUS ([3], [4]).

According to the guidelines published in [5], this study uses heterogeneous plat-

form in an accurate testing condition to identify possible architectural problems.

The tested units are Orthogonal Frequency Division Multiplexing (OFDM) receiver

blocks which are computationally complex tasks. Time Synchronization (TS) and

Fast Fourier Transform (FFT) are examples of computationally intensive tasks. In

1.1. Objective and Scope of Thesis 2

addition, OFDM application as a test was used to evaluate the ability of the plat-

form's general-purpose processing for algorithms like CORDIC algorithms and the

Taylor series. The RISC processor performs general-purpose tasks while OFDM-

speci�c tasks are carried out by the CGRA, and the two are interconnected using a

Network-on-Chip (NoC) for complete OFDM functionality. Heterogeneous Multico-

re Architecture (HMA) platform used in this thesis has been designed to maximize

computing resources to enhance the performance of many particular algorithms of

various types. Heterogeneous Accelerator Rich Platform (HARP) is a speci�c ins-

tance of HMA platforms. It has nine nodes placed in a 3×3 topology.

The HARP platform includes a RISC core which performs two speci�c tasks; it

acts as a system controller and distributes the con�guration streams as well as

the data to all other nodes that are interconnected through the NoC platform.

After the con�guration and data distribution tasks, the RISC core performs general

computations and enforces synchronization between the nodes. All OFDM receiver

block accelerators are designed based on the template-based CGRAs. Lastly, the

OFDM receiver is evaluated to determine that it supports many communication

systems algorithms.

1.1 Objective and Scope of Thesis

In this thesis, the feasibility of implementation and design of scalable CGRAs for

MIMO OFDM running on a heterogeneous accelerator-rich platform is studied. This

research work explores general issues as well as generation of application-speci�c

accelerators for Software-De�ned Radio (SDR) baseband processing utilizing the

CGRA template. They are integrated with each other and then to a RISC core

on a NoC. This thesis will be expanded to measurement, estimation and mapping

of intensive signal processing algorithms. The main objectives of this thesis are to

design and implement speci�c accelerators for an OFDM receiver baseband in a

MIMO setup. The designed accelerator performance for each OFDM receiver block

regarding the clock cycles, the use of resources and also the maximum operating

frequency by synthesis on the family of Altera Stratix-IV FPGAs is addressed.

1.2 Thesis Outline

The thesis consists of chapters as follows; Chapter 2 overviews the literature. Chapter

3 presents the main part of OFDM system based on IEEE 802.11n standard where

various approaches are explained for each OFDM receiver block. Chapter 4 describes

1.2. Thesis Outline 3

the platform architecture and template-based CGRAs. Additionally, the whole per-

formance of the HARP platform and the nodes of NoC is explained completely. In

Chapter 5, the design and execution of MIMO OFDM receiver blocks are explained

by employing template-based CGRAs. Then Chapter 6 explains the integration of

baseband processing blocks on HARP and the distribution of data between di�erent

nodes. Chapter 7 covers measurement and estimation of di�erent levels of HARP

related performance metrics. Finally, the last chapter presents the conclusion and

future work.

4

2. LITERATURE REVIEW

Nowadays, the computationally intensive tasks are allocated to Multi-processor

System-on-Chip (MPSoC) or accelerators based on the processor/co-processor mo-

del. Moreover, Coarse-Grained Recon�gurable Array (CGRA) is one of the most

powerful classes of accelerators, which is suitable for signal processing applications

by providing high throughput and parallelism. CGRAs contain a lot of gates, which

makes sense when they are used most of the time [7]. BUTTER [8], Morphosys [12],

ADRES [13] and PACT-XPP [14] are examples of CGRA. In order to complete dif-

ferent applications at the same time, the CGRAs working as coprocessors should be

combined to make a heterogeneous multicore platform [15].

2.1 Processor/Co-processor Models

This section will brie�y discuss processor and co-processor models. Regarding the

history of the processors, it can be seen that single-core processors were used for

the general-purpose approach of numerous applications. Additionally, it was used in

some proprietary accelerators, including audio, video, etc. as well as computationally

intensive applications. Throughout the years, di�erent processors for a various set

of requirements have appeared. It can be seen that Very Long Instruction Word

machines (VLIW) have been grown in large-scale parallel applications [17]. Also, to

support high-grade communication mobile applications, a combination of VLIW and

Digital Signal Processing (DSP) architecture was developed by supporting multiple

applications simultaneously [18].

Loosely Coupled (LC) accelerators communicate easily with a low bandwidth, which

allows multiple accelerators to be connected to the processor. This model of acce-

lerators can be obtained by connecting the accelerator to a system bus, on a local

node or remote network. In this case, multiple accelerators can exchange data with

each other, as well as they can also work concurrently. As a prototype of a loosely

coupled architecture on NoC, the platform P2012 [2] can be expressed.

In the Tightly Coupled (TC) model, accelerators have high bandwidth for commu-

nication with the processor. This makes it possible to provide faster data transmis-

2.2. Recon�gurable Devices 5

sion as well as synchronization. In this model, using a dedicated co-processor bus or

directly integrating an accelerator in the processor data-path are viable solutions.

A CGRA can be an example of an accelerator tightly coupled to a processor, which

can utilize a network of switched interconnections.

2.2 Recon�gurable Devices

In recent years, recon�gurable architectures have become more popular platforms

due to particular capabilities and abilities to perform computational tasks. Recon-

�gurable architectures have di�erent levels of parallelism. Recon�gurability means

modifying their functionality at run-time for various applications. Regarding the

characteristics of recon�gurable computing systems, some of the most signi�cant

features can be as follows [20].

• Recon�gurability: This refers to altering the internal architecture for the

purpose of running various applications at a high degree of performance.

• Computation Model: The computational models such as Single-Instruction

Multiple-Data (SIMD) or Multiple-Instruction Multiple-Data (MIMD) can be

used. Moreover, some systems may follow the Very Long Instruction Word

(VLIW) model.

• Granularity: Refers to the data size for operations of Recon�gurable Proces-
sing Unit (RPU) of a system.

Considering a wide range of di�erent models of recon�gurable devices, the recon-

�gurable devices can be categorized according to their granularity level into three

di�erent classes; Fine-Grained, Middle-Grained and Coarse-Grained [3].

2.2.1 Fine-Grained Devices

The FPGAs have been in the market for a few decades. They are well suited for

�ne-grained recon�gurable architectures. Logic Element (LE) is the smallest unit of

processing in an FPGA which is composed of a Look-Up Table (LUT), a few Flip-

Flops (FFs), 2-to-1 multiplexers and some logic gates. Two notable FPGA vendors

are Xilinx [22] and Altera [21]. For Altera, the goal is to reach at higher synthesis

frequencies in their tools, while Xilinx focuses on resource utilization [23]. MOLEN

model is another �ne-grained device which operates as a co-processor to a General-

Purpose Processor (GPP) ([24], [25]).

2.3. Multi-core Platforms 6

2.2.2 Middle-Grained Devices

The word length of middle-grained devices is less than or equal to 8. On the other

hand, irregular subword-length calculation increases trouble in the mapping of the

algorithm, when the processing width is increased. There is a good compromise

between the area and performance in this model. One of middle-grained devices is

PiCoGA-III, which includes a matrix of Recon�gurable Data-path Units (RDUs),

each of them composed of a 4-bit LUT, 4-bit ALU and 4-bit integer and Galois �eld

multiplier [27], [28].

2.2.3 Coarse-Grained Devices

One of the most successful platforms in the academic research and industrial envi-

ronment is CGRAs due to their high-level of granularity and also the number of di-

verse applications that can be targeted on them without di�culty. In fact, CGRAs

have a record of processing numerous data parallel applications for academic re-

search, e.g., Image and video processing ([8], [29]), Finite Impulse Response (FIR)

�ltering [30], Wideband Code Division Multiple Access (WCDMA) cell search [31]

and Turbo Codes [32]. Applying the CGRAs provides access to a large bandwidth

and high throughput. However, CGRAs can engage a wide area of a few million ga-

tes and have potentially high transient power dissipation [26]. XPP-III is one of the

coarse-grained devices. Another CGRA platform is Adjustable Dynamic Embedded

System (ADRES) as a recon�gurable array of 8×8 elements, which is strongly inte-

grated with a VLIW processor [13]. Each of the processing elements in the ADRES

includes Functional Units (FUs) and Register Files (RFs) linked to a mesh topolo-

gy. The ADRES particular instances can be produced by utilizing an XML-based

architecture speci�cation language.

2.3 Multi-core Platforms

In this section, we will focus on the subject of multi-core platforms, consisting of

both homogeneous and heterogeneous core models. In homogeneous model, the co-

res are all similar, in heterogeneous they are of di�erent types. Additionally, other

features of multi-core platforms (homogeneous and heterogeneous) are that they

are C-programmable but heterogeneous platform cores may need extra customized

tools compared to a simple compiler in C language, with data �ow-level support.

The following section will introduce some of the state-of-the-art platforms in detail.

2.3. Multi-core Platforms 7

NoC

ARM9

IC DNA
TUBSy
Mem Contr.

PiCoGA
eFPGA

XPP

Mem

Mem
Contr.

Bridge

Mem

OffChip
Mem

AMBA (Master/Data bus)

DMA

AMBA (Configuration bus)

PCM

Figure 2.1 MORPHEUS architecture [4]

2.3.1 MORPHEUS

MORPHEUS ([3], [4]) is an integrated platform containing three di�erent models: a

�ne-grained, middle-grained and coarse-grained recon�gurable accelerator while all

of them are Heterogeneous Recon�gurable Engines (HREs). These devices are called

FlexEOS, DREAM and XPP-III, and they can communicate together over an NoC.

One of the suitable cases for �ne-grained algorithms is the FlexEOS. Also, FlexEOS

is an SRAM-based scalable FPGA that is programmable in VHDL. DREAM is a

middle-grained recon�gurable DSP core that can carry out general-purpose proces-

sing by using a 32-bit RISC processor. PiCoGA core is a medium-grained recon�gu-

rable array composed of 4-bit oriented ALUs, where up to four con�gurations may

be kept concurrently in shadow registers [4].

XPP-III is one of the architectures of data processing based on CGRA and it can

provide highly parallel processing performance. Also, XPP-III is a model of hete-

rogeneous recon�gurable processor architecture composed of a data�ow array and

VLIW processor. Figure 3.1 shows the MORPHEUS architecture. The Morpheus

platform is a complex System-on-Chip that performs run-time programmability at

di�erent levels to provide a competitive computing solution [4] and dynamic recon-

�gurability.

2.3. Multi-core Platforms 8

2.3.2 P2012

Another homogeneous multi-core platform is P2012 including 16 general-purpose

processors divided into four clusters communicating with each other by using a NoC

([2], [34]). Moreover, all the processors are locally synchronous in a cluster [2]. In

other clusters, processors are globally asynchronous. The P2012 platform has been

tested for algorithms related to signal processing.

2.3.3 NineSilica

NineSilica [1] is a homogeneous MultiProcessor System-on-Chip (MPSoC) platform.

NineSilica platform includes a network of nine nodes placed in a mesh topology of

3×3 processing nodes (PNs) with three rows and three columns. The interconnec-

tion between PNs is done by a hierarchical Network-on-Chip (NoC). Each node of

NoC includes a 32-bit COFFEE RISC processor. All the nodes can exchange data by

packet switching technique [26]. Also, NineSilica is programmable in C language. Ni-

nesilica architecture indicates that MPSoC can obtain high parallelization e�ciency

[35]. Many software-de�ned radio applications such as correlations and FFT can be

designed and implemented over the NineSilica platform. The HARP platform used

in this study is a heterogeneous derivative of NineSilica.

2.3.4 RAW

Recon�gurable Architecture Workstation (RAW) is composed of 16 slices of 32-bit

MIPS2000 processors arranged in a 4×4 array ([36], [37]). The use of NoC has facili-

tated communication between processors. RAW provides both a static (determined

at compile-time) and a dynamic network (determined at run-time: wormhole routing

for the data forwarding) [38]. Its characteristics are similar to a recon�gurable fabric.

Furthermore, programmable NoC in RAW has employed only one communication

resource, resolving the wire selection problem from routing [38].

9

3. OFDM WLAN OVERVIEW

One of the spread spectrum techniques is Orthogonal Frequency-Division Mul-

tiplexing (OFDM). It divides the available bandwidth into several narrow-band

channels, with orthogonal carriers. This modulation performs multiplexing opera-

tions by using frequency division. The orthogonality concept in frequency division

refers to orthogonal signals, which returns to a mathematical de�nition in which, if

two sinusoidal functions are multiplied, then the integral of this product is zero in

any period of time. In fact, OFDM is a method of the general digital multi-carrier

modulation to reach higher data rates close to the Shannon limit [42]. The advantage

of this method is to send the data in parallel and to overcome the frequency selec-

tive fading because in this case, every part of the data is carried over a small range

of frequency band. This kind of fading on this small interval practically appears

linearly and can be compensated until the signal is eventually extracted.

The main bene�ts of using the OFDM method are its frequency selective fading

due to multi-path propagation in wireless communication systems, narrowband in-

terference, and reduction of the Inter-Symbol Interference (ISI). This means that

the ISI can be decreased by transmission of several parallel symbols and increasing

the symbol duration [43]. OFDM splits a higher bit rate encoded data stream into

di�erent streams of lower bit rate, then transmits them in parallel on di�erent sub-

carriers all of which are orthogonal with respect to each other [39]. It is necessary

to explain that for the purpose of maintaining orthogonality, both transmitter and

receiver must use the same modulation method.

The bene�ts of OFDM are high spectral e�ciency, adaptive modulation, and ro-

bustness against narrow-band co-channel interference [40]. Also, its disadvantages

include the loss of e�ciency due to the Cyclic Pre�x (CP) and sensitivity to doppler

shift [40]. The following section describes the OFDM structure consisting of trans-

mitter, channel and receiver based on IEEE 802.11n speci�cations.

3.1. MAC Frame Structure for WLAN Standards 10

L-STF L-LTF L-SIG Data

Legacy Short Training
2 OFDM symbols

Legacy Long Training
2 OFDM symbols

Legacy Signal
1 OFDM symbols

Service Field + User Data [PSDU] + Pad Bits + Tail

Legacy Mode

L-STF L-STF HT-SIGL-SIG HT-STF DataHT-LTFs

Mixed Mode

Legacy Short Training
2 OFDM symbols

Legacy Long Training
2 OFDM symbols

Legacy Signal
1 OFDM symbols

High Throughput Signal
2 OFDM symbols

High Throughput
Short Training

High Throughput
Long Training

Service Field + User Data [PSDU] + Pad Bits + Tail

L-STF HT-LTF1 HT-SIG HT-LTFs Data

Green-Field Mode

Legacy Short Training
2 OFDM symbols

First High Throughput Long Training
2 OFDM symbols

High Throughput Signal
2 OFDM symbols

Addit ional HT
Long Training

Service Field + User Data [PSDU] + Pad Bits + Tail

1 SYMBOL = 4 µs

Service (16-bit) Scrambled PSDU Tail (6-bit) Pad bits

Figure 3.1 IEEE 802.11n PPDU formats in Legacy, Mixed and Green-�eld modes [44]

3.1 MAC Frame Structure for WLAN Standards

At present, there are three types of generally accepted WLAN standards in the

world. They di�er only in Medium Access Control (MAC). For this purpose, table

3.1 lists these standards [42]. The �rst two options are applied in Europe and North

America, and the last option is used in Japan. IEEE802.11 will be explained in detail

below.

Table 3.1 Standards for OFDM WLANs [42]

No Standards No Type of MAC

1. IEEE802.11 1. Distributed MAC on the basis of Carrier Sense Multiple
Access/Collision Avoidance (CSMA/CA) protocol

2. HIPERLAN/2 2. Centralized mode and scheduled MAC by means wireless
Asynchronous Transfer Mode (ATM)

3. MMAC 3. Both the MACs listed above

Since the packet is transmitted, Mobile Terminal (MT) must wait for an Acknow-

ledgment frame (ACK) that is required to avoid collisions. The received packet �le

header consists of information about the transfer rate, payload length, and trans-

mission model, which is a modulation method.

According to the IEEE 802.11n speci�cations, MIMO OFDM receiver baseband

processing is designed onto the HARP platform [33]. MIMO OFDM is a propitious

technique to reach at high data rate, which includes bene�ts such as resilience to

frequency selective fading caused by the multi-path propagation and to ISI [42].

3.1. MAC Frame Structure for WLAN Standards 11

Also, receiver generally carries out Time Synchronization (TS), Frequency O�set

Estimation (FOE), Channel Estimation (CH), FFT and Symbols Demapping based

on this standard. Prede�ned samples in preamble are known to the receiver [33].

Short training symbols can be used for packet detection, frequency o�set estimation

and timing synchronization. Furthermore, the long training symbols are used for

channel estimation. The following subsections give a detailed explanation of these

operations [33].

The structure of the IEEE 802.11n MAC frame is illustrated in Figure 3.1. The

IEEE 802.11n standard supports the legacy IEEE 802.11a/b/g Physical Protocol

Data Unit (PPDU) formats. In the IEEE 802.11n speci�cations, the PPDU can

have several formats [44], depending on the abilities of the transmitter device such

as:

• Non-High Throughput (Non-HT) Legacy mode: Composed of the preamble,
which uses short and long training symbols as well as support for this format is

compulsory for IEEE 802.11n standard. In addition, this may occur as either

20.0 MHz Bandwidth or a 40.0 MHz Bandwidth.

◦ 20.0 MHz: The signal has 64 subcarriers with 4 pilots. pilots are inserted

in subcarriers ±21 and ±7. The signal is transmitted on sub-carriers -26

to -1 and +1 to +26 in the legacy mode.

◦ 40.0 MHz: For this model, two adjacent 20.0 MHz channels are emplo-

yed. The signal has 128 subcarriers with 6 pilots. Pilots are inserted in sub

carriers ±53, ±25 and ±11. Also, the signal is transmitted on subcarriers

-58 to -2 and +2 to +58.

• HT-Mixed mode: Preamble consist of the Non-HT short and long training

symbol, which can be decoded by legacy mode in IEEE 802.11a/g. The HT-

Mixed mode is compatible with IEEE 802.11a/g PLCP headers. Among other

features of this mode, transmissions can occur both in 20.0MHz and 40.0MHz

channels.

• HT-Green�eld mode: HT packet does not require a legacy compatible part

to be transferred. As a result, the maximum data throughput is much higher.

The various parameters in the headers are [75]:

• Rate (4 bits): Signi�es the type of modulation (8 combinations) and data

Forward Error Correction (FEC) coding.

3.1. MAC Frame Structure for WLAN Standards 12

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 GI2 T1 T2 GI SIGNAL GI Data 1 GI Data 2

8 + 8 = 16 µs

10 x 0.8 = 8.0 µs 2 x 0.8 + 2 x 3.2 = 8.0 µs 0.8 + 3.2 = 4.0 µs 0.8 + 3.2 = 4.0 µs 0.8 + 3.2 = 4.0 µs

Short training Long training

Figure 3.2 PLCP Preamble for OFDM training structure [44]

• Length (12 bits): Number of octets (bytes) carried in the Payload in Physical

Layer Service Data unit (PSDU).

• Tail (6 bits): Utilized for SIGNAL symbol FEC decoding.

• Service (16 bits): To synchronize the descrambler, bits from 0 to 6 should be

set to zeros and reserve the last 9 bits for subsequent purposes.

• Parity (1 bit): Parity-check on RATE + LENGTH data.

• Pad bits: Variable-length �eld needed to guarantee that the non-HT and HT-

Data data �eld, including an integer number of symbols.

Figure 3.2 shows the PLCP header includes a preamble, signal and data �eld. There

are 10 short training symbols and 2 long training symbols in the preamble. It can

be noted that the length of both training symbols is 8.0 µs with the total time of

16.0 µs.

L-STF consists of a sequence of tones, which belong to the values +1+j and −1−j.
These tones are performed on a small part of the sub-carrier, whilst the other sub-

carriers will reach zero. The reasons behind this choice are that there are properties

of best correlation and also low peak-to-average power ratio, which means L-STF is

actually used for automatic gain control in MIMO transmission, as well as for �ne-

tuning the time synchronization. Furthermore, a 128-point IFFT is essential for the

purpose of making a time domain sequence in the transmitter side. L-STF is known

for the receiver side. For instance, time acquisition or packet detection are done by

utilizing its properties of correlation peaks [43]. In addition, due to the iteration of

the samples, frequency o�set estimation is required, which will be described later.

The sequences in frequency domain for the 20.0MHz and the 40.0MHz bandwidths

are similar to the ones in the IEEE 802.11n speci�cation as shown in Equations 3.1

3.1. MAC Frame Structure for WLAN Standards 13

and 3.2 [44].

SL−STF (−26,26) =

√
1

2
{0, 0, 1 + j, 0, 0, 0,−1− j, 0, 0, 0, 1 + j, 0, 0, 0,−1− j, 0, 0, 0,

− 1 + j, 0, 0, 0, 1 + j, 0, 0, 0, 0, 0, 0, 0,−1− j, 0, 0, 0,−1− j,
0, 0, 0, 1 + j, 0, 0, 0, 1 + j, 0, 0, 0, 1 + j, 0, 0, 0, 1 + j, 0, 0}

(3.1)

SL−STF (−58,58) = {SL−STF (−26,26), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, SL−STF (−26,26)} (3.2)

Long Training Sequence (LTS) for 40.0MHz bandwidth mode is another preamble

sequence, which has similar long symbols T1 and T2 as in Figure 3.2, as well as a

guard interval (GI2) with duration of 1.6 µs ahead of these two symbols for coping

with the phenomenon of Inter-Symbol Interference (ISI). Both T1 and T2 symbols

take 3.2 µs, which means that the duration of the long training sequence (LTS) is

equivalent to 8.0 µs.

TLong = 1.6 + 2× 3.2 = 8.0

Furthermore, T1 and T2 will be de�ned in the frequency domain with 115 sub-

carriers, which are modulated instead of 57 sub-carriers in 20.0MHz (based on the

de�nitions of the legacy long training). The resulting sequence is as follows [45]

SL−LTF (−58,58) ={1, 1,−1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1, 1, 1,−1,−1, 1, 1,−1, 1,

− 1, 1, 1, 1, 1, 1, 1,−1,−1, 1, 1,−1, 1,−1, 1,−1,−1,−1,−1,−1,

1, 1,−1,−1, 1,−1, 1,−1, 1, 1, 1, 1,−1,−1,−1, 1, 0, 0, 0,−1, 1,

1,−1, 1, 1,−1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1, 1, 1,−1,−1, 1, 1,−1,

1,−1, 1, 1, 1, 1, 1, 1,−1,−1, 1, 1,−1, 1,−1, 1,−1,−1,−1,−1,−1, 1,

1,−1,−1, 1,−1, 1,−1, 1, 1, 1, 1}
(3.3)

Channel estimation (CE) is done in IEEE 802.11n speci�cation utilizing the LTF

�elds at the beginning of each packet as well as LTF �elds will be applied for more

precise time synchronization and frequency o�set estimation [43].

The next �eld in the PLCP header is the signal �eld containing information about

TXVECTOR length and coding rate. The signal �eld in legacy mode informs to

the receiver about the type of modulation used in the system and also the rate of

coding along with the packet data length. The L-SIG �eld is composed of an OFDM

3.1. MAC Frame Structure for WLAN Standards 14

P25
DC

P-25

-58 -53 -25 -11 0 11 25 53 58

d0 P-53d4 d5 d31 d32 P-11d45d44 d54 d55 P11d62 d63 d75 d76 P53d102 d103 d107

... …... …... …... …... …... …... …

Figure 3.3 Subcarrier frequency allocation for 40.0 MHz with 128 subcarriers [44]

symbol, which is always BPSK modulated, as well as the length of OFDM symbol is

4.0 µs in legacy mode. The High Throughput Signal (HT-SIG) �eld is composed of

the information about the burst. It operates the same task as the L-SIG �eld unless

used with one of the HT modes. In that case, it operates two OFDM symbols.

For a 40.0MHz transmission, there are 114 subcarriers in each data OFDM symbol

that contains 108 data subcarriers and 6 pilot subcarriers. In other words, six of

the subcarriers are allocated to pilot signals for the purpose to create the coherent

detection, robust against phase noise and frequency o�sets. As it should be noted, in

order to prevent the production of spectral lines, pilots are produced as a sequence

of pseudo-binary. Thus, pilot signals should be inserted in subcarriers ±53, ±25 and

±11. Based on Figure 3.3, it can be seen as the sub-carrier frequency allocation.

Equation 3.4 shows the pilot sequence for symbol n and space-time stream iSTS [44].

P−58,58 =
{

0, 0, 0, 0, 0,Ψ
(NSTS)
iSTS ,n⊕6, 0,

0,Ψ
(NSTS)
iSTS ,(n+1)⊕6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,Ψ

(NSTS)
iSTS ,(n+2)⊕6, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,Ψ
(NSTS)
iSTS ,(n+3)⊕6, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0,Ψ
(NSTS)
iSTS ,(n+4)⊕6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,Ψ
(NSTS)
iSTS ,(n+5)⊕6, 0, 0, 0, 0, 0

}
(3.4)

Here the patterns Ψ
(NSTS)
iSTS

are determined in Table 3.2 [44] and n⊕ a symbol repre-
sents the integer number a of the module. The point is that there is a di�erent pilot

pattern for each space-time stream. These patterns are cyclically rotated over the

symbols. Subsequently, according to the design parameters in this thesis, the cont-

ribution of the pilot sub-carriers for each OFDM symbol is generated by Fourier

3.1. MAC Frame Structure for WLAN Standards 15

Table 3.2 Pilot speci�c values for 40.0MHz [44]

NSTS iSTS Ψ
(NSTS)
iSTS ,0

Ψ
(NSTS)
iSTS ,1

Ψ
(NSTS)
iSTS ,2

Ψ
(NSTS)
iSTS ,3

Ψ
(NSTS)
iSTS ,4

Ψ
(NSTS)
iSTS ,5

1 1 1 1 1 -1 -1 1

2 1 1 1 -1 -1 -1 -1

2 2 1 1 1 -1 1 1

3 1 1 1 -1 -1 -1 -1

3 2 1 1 1 -1 1 1

3 3 1 -1 1 -1 -1 1

4 1 1 1 -1 -1 -1 -1

4 2 1 1 1 -1 1 1

4 3 1 -1 1 -1 -1 1

4 4 -1 1 1 1 -1 1

transform of sequence P−58,58 based on Equation 3.5.

P−58,58 ={0, 0, 0, 0, 0, 1, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0,

0, 1, 0, 0, 0, 0, 0}
(3.5)

Table 3.3 IEEE 802.11n OFDM parameter values [45]

Parameter Non-HT(20.0MHz) HT(20.0MHz) HT(40.0MHz)

FFT length 64 64 128

NSD: No.data carriers 48 52 108

NSP : No. pilot carriers 4 4 6

NST : Total no. carriers 52 56 114

∆f : Carrier spacing 312.5 kHz 312.5 kHz 312.5 kHz

TDFT : IDFT/DFT period 3.2 µs 3.2 µs 3.2 µs

TGI : Guard interval 0.8 µs = TDFT /4 0.8 µs 0.8 µs

TGI2: Double GI 1.6 µs 1.6 µs 1.6 µs

TL−STF : L-STF duration 8.0 µs = TDFT /4 8.0 µs 8.0 µs

TL−LTF : L-LTF duration 8.0 µs = 2× TDFT + TGI2 8.0 µs 8.0 µs

TSYM : OFDM symbol duration 4.0 µs = TDFT + TGI 4.0 µs 4.0 µ

TL−SIG: L-SIG �eld duration 4.0 µs = TSYM 4.0 µs 4.0 µ

THT−SIG: HT-SIG �eld duration N/A 8.0 µs = 2 TSYM 8.0 µs

THT−STF : HT-STF �eld duration N/A 4.0 µs 4.0 µs

THT−LTF : HT-LTF �eld duration N/A 4.0 or 8.0 µs 4.0 or 8.0 µs

The types of modulation of data can be BPSK, QPSK, 16QAM and also 64QAM.

They are similar for each burst, as well as the length of IFFT per symbol that is

128. Based on the 40.0MHz transmission for all 128 subcarriers, the frequency range

3.2. Physical Layer Speci�cations for WLAN Standards 16

ST
BC

CSD

Interleaver

Sp
at

ia
l

M
ap

pi
ng

IDFT

St
re

a
m

 P
ar

se
r

S
cr

a
m

b
le

r

E
n

co
d

e
r

P
ar

se
r FE

C
En

co
d

er
FE

C
En

co
d

er

Interleaver

Interleaver

Interleaver

Constellation
mapper (QAM)

Constellation

mapper (QAM)

Constellation

mapper (QAM)

Constellation

mapper (QAM)
CSD

CSD

Insert GI RF

IDFT

IDFT

IDFT

Insert GI

Insert GI

Insert GI

RF

RF

RF

Figure 3.4 Block diagram of IEEE 802.11n transmitter [44]

RF AGC, Time Synch,
Freq Synch FFT

Channel
Estimation

RF AGC, Time Synch,
Freq Synch

FFT
Channel

Estimation

RF AGC, Time Synch,
Freq Synch FFT

Channel
Estimation

RF AGC, Time Synch,
Freq Synch FFT

Channel
Estimation

M
IM

O

Eq
ua

liz
er

De-QAM
Deinterleave

De-QAM
Deinterleave

De-QAM
Deinterleave

De-QAM
Deinterleave

D
e-

Sp
at

ia
l P

ar
se

r

D
e-

Q
A

M
D

ei
nt

er
le

a
ve

D
e-

pu
n

ct
ur

er

C
h

a
n

n
e

l
D

ec
o

de
r

Figure 3.5 Block diagram of IEEE-802.11n receiver [10]

of each subcarrier is 312.5 kHz. According to Table 3.3, the timing parameters

associated with the IEEE 802.11n signal are listed for di�erent conditions [45].

3.2 Physical Layer Speci�cations for WLAN Standards

In broadband communication system, nowadays, OFDM is vastly utilized to tackle

the frequency-selective fading. The transmitter, receiver and channel are blocks of an

OFDM system. In IEEE 802.11n speci�cation, the transmitter and receiver blocks

are shown in Figures 3.4 and 3.5. The scrambler block that reduces the probability

of long sequences of zeros or ones [45]. The encoder parser which de-multiplexes the

scrambled bits among NES (number of FEC encoders). Forward Error Correction

(FEC) encoder block is used for controlling errors in data transmission. The stream

parser splits the encoder's output into blocks which are sent to (NSS number of spa-

tial streams) di�erent interleaver and mapping devices. To avoid long sequences of

adjacent noisy bits, the interleaver block interleaves the spatial stream bits. Also,

the constellation mapper maps the sequence of bits in each spatial stream to cons-

tellation points. For each spatial stream, the modulation is carried out separately.

The modulation processes are two-dimensional, they are used for carrier waves of

3.2. Physical Layer Speci�cations for WLAN Standards 17

-8 -6 -4 -2 0 2 4 6 8
In-Phase

-8

-6

-4

-2

0

2

4

6

8

Q
ua

dr
at

ur
e

Scatter plot

000000

000000

000001

000001

000011

000010

000010

000011

000110

000100

000111

000101

000101

000110

000100

000111

001000

001000

001001

001001

001011

001010

001010

001011

001110

001100

001111

001101

001101

001110

001100

001111

011000

010000

011001

010001

011011

010010

011010

010011

011110

010100

011111

010101

011101

010110

011100

010111

010000

011000

010001

011001

010011

011010

010010

011011

010110

011100

010111

011101

010101

011110

010100

011111

110000

100000

110001

100001

110011

100010

110010

100011

110110

100100

110111

100101

110101

100110

110100

100111

111000

101000

111001

101001

111011

101010

111010

101011

111110

101100

111111

101101

111101

101110

111100

101111

101000

110000

101001

110001

101011

110010

101010

110011

101110

110100

101111

110101

101101

110110

101100

110111

100000

111000

100001

111001

100011

111010

100010

111011

100110

111100

100111

111101

100101

111110

100100

111111

Figure 3.6 QAM naturally ordered (Red color) and Gray coded (Black color)

In-phase (I) and Quadrature (Q). Equation 3.6 shows a QAM modulation which is

a combination of two modulations, Phase Shift Keying (PSK) and Amplitude Shift

Keying (ASK). Moreover, 64-QAM modulation is used in this thesis work.

s(t) = Ikcos(ωct)−Qksin(ωct) = Akcos(ωt+ φk) (3.6)

By designating a mapping, all constellation points must be labeled. There are two

ways to consider to solve this issue; Grey-coding (Black color) or by natural order

(Red color) as illustrated in Figure 3.6. However, there are variations between these

two ways. Natural coding allows decimal numbers ordered from 0 to 63, but in Gray-

coding, the adjacent representations (symbols) di�er by only one bit. Therefore, two-

bit errors which are also the most typical type of error between neighboring points

can be reduced by applying Gray-coding, which reduces Bit Error Rate (BER) and

Symbol Error Rate (SER) [42].

Then there is the space-time block coding (STBC), which is a method used in

wireless communications systems to transmit multiple copies of a data stream among

3.2. Physical Layer Speci�cations for WLAN Standards 18

N - NgNg (800 ns) Ng

OFDM SymbolCyclic Prefix
(CP)

Figure 3.7 Cyclic Pre�x (CP) in OFDM Symbol [45]

a number of antennas. In IEEE 802.11n, STBC is applied to extend the spatial

stream to double their number of space-time streams (STBC is not always used). In

the cyclic shift diversity (CSD) block, cyclic shifts are used to avoid unintentional

beam-forming. The values of the shifts used in the preamble �elds and the data �eld

may be di�erent. Then, in the spatial mapper block, it can be stated that spatial

mapper extends the space-time streams into a number of transmit chains.

The next block and one of the most important ones is the Inverse Discrete Fourier

Transform (IDFT) that will be brie�y described below. With the help of IDFT, a

block of constellation points in frequency domain is converted to a time domain

block. On the other hand, Discrete Fourier transform (DFT) is de�ned as X(k) in

the frequency domain based on Equation 3.7 and also according to the sequence of

N samples x(n) in the time domain. Based on Equation 3.8 [40], IDFT is used to

calculate x(n) from X(k).

Xk =
1√
N

N−1∑
n=0

x(n)e−j2πkn/N (3.7)

xn =
1√
N

N−1∑
k=0

X(k)ej2πnk/N (3.8)

Therefore, IFFT is done on the frequency domain QAM subcarriers to produce

time domain sum of sinusoids. Subsequently, these operations will be reversed in

the receiver side in order to retrieve the original data by using the Fast Fourier

Transform (FFT).

The next block is Guard Interval (GI) Block. When the IFFT is carried out, GI

or CP will be added to the IFFT output [42]. In other words, guard interval inser-

tion prepends to the symbol a circular extension of itself as shown in Figure 3.7.

Accordingly, to add a CP, 32 samples (0.8 µs) from the end of the OFDM symbol

are annexed to the beginning of the OFDM symbol. The OFDM symbols must be

3.2. Physical Layer Speci�cations for WLAN Standards 19

coordinated by a GI or CP to resist InterSymbol Interference (ISI) as well as ti-

me synchronization errors [45]. It should be noted that the ISI is basically created

by receiving multiple copies of the transmitted signal due to multi-path e�ects and

channel dispersion [47].

To clarify the issue, it will be assumed that there are two OFDM symbols, the last

part of the �rst OFDM symbol makes interference with the �rst part of the second

OFDM symbol upon it is received. Thus, according to the above-mentioned condi-

tions, the amplitude and phase of the sub-carriers may deviate. Subsequently, the

cyclic pre�x is very important in terms of solving this problem. The delay portion of

the �rst OFDM symbol is absorbed through the cyclic pre�x of the second OFDM

symbol [48]. In the windowing section, it is optionally used for smoothing the edges

of each symbol in order to increase the spectral decay. After adding CP, preambles

are produced which consists of short and long training symbols. Also, before trans-

mitting the signal on the air interface by antennas, the signal must be converted from

digital to analog through a digital-to-analog converter (DAC). Since the samples go

through the DAC, a renovation �lter is needed to eliminate the replication of the

spectrum, which makes the design of this model much simpler.

In the cellular wireless communications, the transmission channel causes various

unwanted changes in the signal of information resulting from re�ections and dif-

fractions. Indeed, these changes may cause noise, interference, cancellation and dis-

tortion in the systems. In addition, the channel can be described as a linear time-

invariant transfer function with Additive White Gaussian Noise (AWGN). The recei-

ved signal is as y(t) = x(t) + n(t), because the noise n(t) is added to transmitted

original signal x(t). The signal-to-noise ratio (SNR), the signal strength to noise, is

measured in (dB) unit. Based on Equation 3.9, SNR is the ratio between the power

of the transmitted signal and the undesirable noise.

SNRdB = 10 log10

(
Psignal
Pnoise

)
= 10 log10(Psignal)− 10 log10(Pnoise) (3.9)

Figure 3.8 shows the Power Spectral Density (PSD) of the OFDM system in terms of

the amount of SNR according to the IEEE 802.11n. PSD is the frequency response

of a random or periodic signal. It tells us where the average power is distributed as

a function of frequency. In other words, PSD is distribution of power, and it can be

calculated by Fourier Transform of auto-correlation function of the signal. Therefore,

the quality of the signal is improved by increasing SNR.

The �rst parts of the receiver are mostly used to detect the synchronization, estimate

3.2. Physical Layer Speci�cations for WLAN Standards 20

Figure 3.8 Transmit spectrum of OFDM (PSD) based on IEEE 802.11n standard

the channel and equalize the symbols, whereas the remaining of the receiver blocks

must be done in reverse order in the transmitter. The analog signal received for

the �rst time is sampled and converted to a digital signal by an Analog to Digital

Converter (ADC). The gain will be adjusted to an appropriate input signal level by

employing the Automatic Gain Control (AGC). When the ADC is accomplished, the

next block has the task of detecting packets and time synchronization. Generally,

detection of the packet serves to detect the beginning of the packet, which can be

performed by utilizing correlation with the short training symbols. Additionally, the

time synchronization could be done using the VHT-STF �eld that can determine

the starting point of received packets by the correlation the delayed version of itself

or the inbound packet with known training symbols.

After removing the cyclic pre�x, frequency o�set estimation is needed to estimate the

amount of frequency o�set that is added to the transmitted signal on the channel,

which means that the frequency o�set is estimated from the VHT-STF �eld and

corrected for the entire stream of data. Then, the stream is divided into symbols

and the guard interval is removed.

The next block is channel estimation for estimating the channel impulse response by

comparing the received pilots and known transmitted ones. The channel estimation

of MIMO is carried out by using the VHT-LTF �elds. These training symbols are

3.2. Physical Layer Speci�cations for WLAN Standards 21

transmitted in each stream with various polarities, making them orthogonal to each

other, and then the receiver has the ability to perform a channel estimation evalua-

tion for each sub-carrier separately. Once pilots are the same in all streams, it can

be stated that they are not orthogonal to each other. On the other hand, channel

estimation for the subcarrier of pilots cannot be estimated by utilizing the VHT-

LTF as the other subcarriers. As an alternative, interpolation between surrounding

subcarriers is used to estimate the channel for the subcarriers of the pilot.

In the following receiver blocks, a linear equalization algorithm employs a reverse

of the frequency response of the channel to the received signal using a Zero-Forcing

equalizer [45]. Based on this model of the equalizer, it will eliminate the whole of

ICI and it is ideal when the channel is without noise. When the channel is in noisy

environments, the zero-forcing equalizer ampli�es the noise strongly at frequencies

where the channel response has a low magnitude. The equalizer converts a number

of multiplexed received chains into a number of equalized space-time streams where

each space-time stream provides a pilot tracker.

In the next block, the demodulation extracts the original transmitted bits from

the received modulated constellations and the deinterleaver reverses the process of

interleaving. Interleaver block interleaves the bits of each spatial stream to prevent

long sequences of adjacent noisy bits. The block deinterleaver performs the inverse

operation of the interleaver. Also, the demodulated bits are crossed through the

stream deparser. In the last stages, the data bits are depunctured with appending

dummy zeros in the locations where encoded bits were punctured, and the symbols

are transformed into a bit stream.

3.2.1 Time Synchronization

In OFDM systems, the time estimation block is used for two speci�c tasks which

are packaging detection and symbol timing synchronization. When there is no in-

formation about the starting point of the received packet, packet detection will be

required for OFDM systems. Also, in order to �nd the exact start point of of the

OFDM symbols which determines the true position of FFT window, time synchro-

nization is needed [55]. Correlation algorithm implies to the similarity between two

signals. There are two types of correlations which are auto-correlation algorithm and

cross-correlation algorithm.

An auto-correlation algorithm is the correlation between a signal with its delayed

version or its shifted version. The cross-correlation algorithm refers to the correlation

between two di�erent signals. Also, correlation algorithm is intensive when it is

3.2. Physical Layer Speci�cations for WLAN Standards 22

 𝑦(𝑛) 𝑐(𝑛) 𝑧(𝑛)

Σ |.| Find max.

 []∗

𝑧−𝐷

Figure 3.9 Block diagram of correlation algorithm for time synchronization [55]

.

computed in time domain. So, di�erent fast algorithms are carried out to reduce the

time consumed. Packet detection is determined by applying delay and correlation

[42]. The output of this algorithm, cn is shown in Equation 3.10.

cn =
L−1∑
k=0

yn+ky
∗
n+k+D (3.10)

Note that yn shows the received packet, D equals 32 (in IEEE 802.11n with 64-QAM

modulation) and L stands for the length of correlation. The time synchronization

block can be implemented by using two di�erent methods as follows [54]; �rst, using

special symbols like training symbols or null symbols, second, cyclic pre�x (CP)

or Guard Interval (GI) correlation algorithm. The start point of the actual data

including OFDM symbols can be detected by transmitting a particular symbol, that

is known to the receiver, by the transmitter in the �rst method. The end of short or

long training symbols of a received data packet which can be seen in Equation 3.11

is used for timing synchronization in IEEE 802.11n.

zn =
L−1∑
k=0

yn+kt
∗
n (3.11)

Note that yn is the received signal, tn stands for the known symbols and (∗) shows the

complex conjugate operation. As the most common way in OFDM systems, cyclic

pre�x method is applied when the data content is not clear. Since CP or GI is used

for combatting against Inter-symbol interference (ISI). Figure 3.9 shows the signal

�ow structure. The amount of delay z−D equals CP length which is 32 according

to IEEE 802.11n standard speci�cations. An output cn and zn which are given by

3.2. Physical Layer Speci�cations for WLAN Standards 23

Figure 3.10 Cyclic pre�x (CP) correlation along with SNR 20 dB

.

Equations 3.12 and 3.13 are produced in this method.

cn = cny
∗
n−D (3.12)

zn =
L−1∑
i=0

ci+n (3.13)

Depending on Equation 3.14, when the correlation �nishes, its largest peak should

be taken to estimate the index of time o�set specifying the �rst FFT window edge.

τ̂s = argmax
n

| zn | (3.14)

Treatment of |zn| in a noisy channel with no multipath propagation can be observed
in Figure 3.10. If there is not any multipath propagation and received data symbol

length in IEEE 802.11n equals 160 (128 FFT and 32 CP), the data symbol correlated

with itself has one peak (τ̂s) such that the length of the cyclic pre�x equals the peak

location minus one. Corresponding to cyclic pre�x removal, samples before the peak

value are skipped when the time o�set is found.

3.2. Physical Layer Speci�cations for WLAN Standards 24

3.2.2 Frequency o�set Estimation

FOE will be discussed in this section according to IEEE 802.11n standard. OFDM

waveform is made of multiple sinusoidal components. Before transmission, a signal is

upconverted to carrier frequency. The received signal on the receiver is downconver-

ted to demodulation from the same carrier frequency prior. The OFDM's sensitivity

to carrier frequency o�set is one of its drawbacks which causes device impairments

[42]. Based on Equation 3.15, f∆ is the di�erence between the carrier frequencies on

the transmitter and receiver side.

f∆ = fTx − fRx (3.15)

There are many reasons that might create a Carrier Frequency O�set (CFO) in

OFDM systems because of either inconformity of frequencies between the oscillators

of the transceivers or because of the Doppler spread [56]. As result of the CFO,

the rotation of demodulated symbols in the constellation or ISI [53] can be noticed.

Frequency synchronization should be performed very precisely at the receiver for

the purpose of preventing losing orthogonality between the samples while frequency

o�set measurement in time domain could be done by applying maximum likelihood

estimator. For this reason it is possible to use short training sequences with the

duration of 0.8µs each. Let us presume that xn is our transmitted signal, then

passband signal yn could be modeled from the complex baseband one as

yn = xne
j2πfTxnTs , (3.16)

Here fTx is carrier frequency of the transmitter. As mentioned before, upon receiving

signal, it should be downconverted to baseband signal rn with a carrier frequency

fRx that can be seen from Equation 3.17. Moreover, f∆ refers to frequency o�set.

rn = sne
j2πf∆nTs (3.17)

Frequency o�set that can be gained from Equation 3.18, is calculated by the same

delay and correlate method.

yτ̂ =
L−1∑
n=0

rnr
∗
n+D =

L−1∑
n=0

sns
∗
n+De

j2πf∆nTse−j2πf∆(n+D)Ts

= e−j2πf∆DTs

L−1∑
n=0

| sn |2
(3.18)

3.2. Physical Layer Speci�cations for WLAN Standards 25

Where D is 32 (0.8µs × 40MHz(fs)) according to IEEE 802.11n standard. FOE

can be expressed based on Equation 3.19 when multiplication between the received

signal and the complex conjugation of its delayed version is done.

f̂∆ = − 1

2πDTs
6 yτ̂ , (3.19)

Consider Ts as the sampling period and 6 as the angle of yτ̂ , that is a correlation

output in the last equation. Based on Equation 3.20, frequency o�set correlation is

gained by using Frequency O�set Estimation (FOE) and multiplied by the received

signal. Here rn
′
as the corrected signal, n stands for the sample index and N is the

number of samples in a symbol.

rn
′
= rn × e−j2πf∆

n
N (3.20)

3.2.3 FFT

The most time consuming and computationally intensive block is FFT. The 128-

point FFT has to be implemented within 4 µs [12] according to IEEE 802.11n

standard. The DFT will be obtained as the following Equation 3.21 [57].

X[k] =
N−1∑
n=0

x[n]W
nk
N (3.21)

Where k = 0, 1, 2, ..., N − 1 and e−j2π
nk
N refers to the twiddle factor for W nk

N . DFT

complexity is equal to O(N2) and for FFT is O(N
2
LogrN). The FFT block is expres-

sed based on Equation 3.22 for radix-2.

X[k] = W k
N

N
2
−1∑

m=0

x[2m+1]W
2mk
N +

N
2
−1∑

m=0

x[2m]W
2mk
N

(3.22)

Also, Equation 3.23 is used for radix-4.

X[k] =

N
4
−1∑

n=0

x[n]W
nk
N +W

Nk
4

N

N
4
−1∑

n=0

x[n+N
4

]W
nk
N

+W
Nk
2

N

N
4
−1∑

n=0

x[n+N
2

]W
nk
N +W

3Nk
4

N

N
4
−1∑

n=0

x[n+ 3N
4

]W
nk
N

(3.23)

3.2. Physical Layer Speci�cations for WLAN Standards 26

Trasmitted Pilots

Data Carriers

Received Pilots Interpolating Filter Estimated Channel Response

... ...

Channel
Response

Figure 3.11 Linear interpolation algorithm to perform the channel estimation [33]

.

3.2.4 Channel Estimation

Channel impairments may need correction because the transmitted symbols will be

a�ected by various impairments while passing through the wireless channel. The

frequency spectrum of received signal should be determined [42] when data symbols

are recovered after FFT which is found by a channel estimation block. Received and

demultiplexed OFDM block can be expressed according to the following Equation

3.24.

Yn = XnHn +Nn (3.24)

Where Hn refers to the channel response, Nn is the additive noise and n stands

for the number of subcarrier. There are two ways of performing channel correction

[40], one way is to estimate channel attempts to correct Hn, and the other way

is to equalize the channel attempts in order to correct Yn according to Xn. There

are many di�erent methods to compute channel estimation such as Pilot-assisted

linear interpolation and Least Square (LS) [61]. There are some training symbols

in WLAN OFDM such as pilots which are mostly known for the receiver [59]. Six

speci�c values are adjusted as pilots between data subcarriers in the transmitter, as

mentioned in IEEE 802.11n speci�cations. At �rst, a diagonal matrix in the receiver

side, O, is formed from transmitted pilots to accomplish the channel estimation. The

matrix O expressed as

O =

O1,1 0 0 · · · 0

0 O2,2 0 · · · 0

0 0 O3,3 · · · 0
...

...
...

. . .
...

0 0 0 0 Oj,j

 (3.25)

Subsequently, the Channel Impulse Response (CIR) will be gained by:

H̃j = O−1PRx, (3.26)

3.2. Physical Layer Speci�cations for WLAN Standards 27

Here PRx refers to the received pilot, which may be noisy, H̃j is representing the

received pilot for channel impulse response (CIR) and j stands for the number of pi-

lots. One of the methods for estimating the channel is using the linear interpolation

algorithm, which can be seen in Figure 3.11 [60]. Furthermore, the linear interpo-

lation algorithm is the approximate model of value in any position between two

samples and due to pilot overhead on the receiver side, this method is used to solve

this problem. The two sequential known pilot subcarriers in the linear interpolation

are used to specify the channel response for data subcarriers. Then, the intermediate

estimates will be assessed through the linear sum of known elements on both sides.

The channel estimation at the data sub-carriers k will be expressed as follows [61]:

mL < k < (m+ 1)L (3.27)

Here mL and (m+ 1)L are two points. Also, using a linear interpolation method in

[61] can be expressed as:

H(n) = H(mL+ 1), 0 < l < L

=

((
Hj(m+ 1)−Hj(m)

)
× m

L

)
+Hj(m)

(3.28)

Since linear interpolation is one of the easiest methods and the samples connect to

each other with a straight line, then Equation 3.29 can be expressed based on the

(interp function in the Matlab) [51] by extending Equation 3.28, where Ĥn refers

to the channel frequency response of all subcarriers.

Ĥn =

Np−1∑
a=1

Pl∑
b=1

((
H̃j(a+ 1)− H̃j(a)

)
× b− 1

Pl

)
+ H̃j(a) (3.29)

Np is the number of pilots and Pl refers to the data length between two successive pi-

lots. In order to rectify OFDM symbols carrying noisy data by channel equalization,

the channel frequency response must be estimated. Then the obtained Yn symbols

are similar to the Xn data. This procedure can be implemented as a result of the

received signal divided by its channel frequency response, as shown in Equation 3.30.

Ŷn =
Yn

Ĥn

(3.30)

3.2. Physical Layer Speci�cations for WLAN Standards 28

3.2.5 Symbols Demapping

The last part of the OFDM receiver is demapping of the symbols. After performing

all the synchronization and demodulation operations, demapping step will be run.

Then, the true value of received data bits should be determined. The main purpose

of demapping symbols is to transform received data symbols to data bits without

loss of accuracy. Moreover, 64-QAM modulation was used based on IEEE 802.11n

speci�cation for this thesis work. Decisions about received data bits should be taken

according to the system modulation. Also, decisions are divided into two parts, soft

decisions and hard decisions [42].

• Hard Decision: If the number of transferred data bits is identical to the

number of received data bits, a hard decision demodulator will be used and if

the received data bits are noisy, a Gaussian cloud in the constellation points

will be made by them. The di�culty is to decide on transferred data symbols

related to the received data bits in this part. Maximum- likelihood decision says

that allocation of bits will be carried out by hard decision if the constellation

points and received bits are close to each other.

• Soft Decision: Soft Decision implies to use information bits about forwarded

symbols which will give acceptable results in performance related to execution

complexity [62].

When received data symbols are demapped to data bits, the quality of OFDM

systems is measured in terms of bit error rate (BER). A part of bits that has errors

over the total transmitted bits is called BER and it is varying as SNR changes. It

reduces while SNR increases [64]. Moreover, BER is related on modulation type for

the equal SNR.

29

4. PLATFORM ARCHITECTURES

The HARP platform is an experimental platform which permits to integrate at

most nine NOC nodes, with the node in the center combined with a RISC core

named COFFEE [65]. Other than the fact that a RISC core it is bene�cial for

general-purpose processing, it is necessary to be programmable and having constant

supervision of the platform. Moreover, AVATAR accelerator can be combined with

other nodes to speed up the tasks which are intense computationally.

4.1 Coarse-Grained Recon�gurable Arrays

As illustrated in Figure 4.1, CREMA and AVATAR accelerators have similar arc-

hitectural attributes, and the only di�erence between them is their sizes that are

modi�ed according to the applications which are proposed. CREMA consists of R

rows × 8 columns of PEs whereas AVATAR that is the developed version of CRE-

MA has R rows × 16 columns of PEs. Also, CREMA contains 32-bit local memories

of size 16 × 256 while the size of each local memory is 32 × 512 for AVATAR. I/O

bu�ers insert the data among local memories and the PEs. In CREMA, I/O buf-

fers contains sixteen 16 × 1 multiplexers and sixteen 32-bit registers, and the size

is twice for AVATAR. The data that is processed into the local memories during

an operation is loaded and stored on the PE array sequentially by applying Direct

Memory Access (DMA) device [66].

AVATAR is a highly parallel template-based CGRA [66]. The computationally in-

tensive cores are run by the accelerators generated by AVATAR, while the general-

purpose processing is carried out by COFFEE that can be programmed in C. The

DMA is interconnected with COFFEE, I/O peripherals and system memory through

a matrix of switched interconnection. Each PE operates on two 32-bit operands and

performs integer and �oating-point computations. Furthermore, PE core components

might be divided to two major parts: �rstly, the Functional Units (FU), secondly,

the control blocks of con�guration. A PE includes a LookUp Table (LUT), addition,

subtraction, shifter, multiplication, instant register and �oating point logic that is

selectable at design time based on the processing needs of the application. Figure

4.1. Coarse-Grained Recon�gurable Arrays 30

+ −
 × >>

+ −
 × >>

+ −
 × >>

…
…

+ −
 × >>

Memory Banks

rows

rows

I/O buffer

I/O buffer

PEs

………….. + −
 × >>

+ −
 × >>

Fi
rs

t
D

at
a

 M
em

o
ry

+ −
 × >>

+ −
 × >>

+ −
 × >>

+ −
 × >>

+ −
 × >>

+ −
 × >>

+ −
 × >>

+ −
 × >>

+ −
 × >>

+ −
 × >>

+ −
 × >>

+ −
 × >>

+ −
 × >>

+ −
 × >>

…………..

…………..

…………..

VERTICAL

HORIZONTAL

UP
RIGHT

UP
LEFT

UP

LOOPs

INTERLEAVED

Se
co

n
d

 D
at

a
M

em
or

y

Figure 4.1 The scalable template-based CGRA architecture.

4.1 shows how each PE in a CGRA has point to point connection with neighboring

PEs.

4.1.1 CGRA Execution Flow

Placement and routing for any particular application must be done by respecting its

algebraic expressions. The context describes the interconnection between the PEs

and the operation to be performed by each PE at any clock cycle. Con�guration

words are saved at system start-up and all PEs have their own memory. Also, con-

�guration words apply to PE arrays with a pipelined structure [67] by DMA device

and each of them shows an operation and address �eld. By using C language, it is

possible to program the control �ow of AVATAR accelerators, COFFEE RISC co-

re performs the control operation and writes control words to the control registers

of the CGRA accelerators. Depending on the con�guration data in the CGRA, the

context changes. Therefore, whenever replacement of existing con�guration stream

is required, recon�guration will be performed. Here is a list of execution �ow [33]:

4.2. Heterogeneous Accelerator-Rich Platform 31

N0 N1 N2

N3 N4 N5

N6 N7 N8

RISC

DMA
CGRA

Template

D
M

A

CGRA
Template

DMA
CGRA

Template

DMA
CGRA

Template

DMA
CGRA

Template

DMA
CGRA

Template

DMA
CGRA

Template

D
M

A

CGRA
Template

Figure 4.2 Heterogeneous Accelerator-Rich Platform (HARP) [33].

1. The DMA device at the system start-up time will facilitate the con�guration

data loading in the CGRA.

2. The data to be processed is loaded into the local memories of the CGRA.

3. Con�guring the functionality of the PEs and interconnection among them by

enabling each context.

4. Processing the data over PE array

5. As needed, CGRA will be recon�gured by changing the context.

6. Processing a new set of data from step 3

In order to complete the execution an algorithm will repeat these phases, and will

transform the result to the local memory of another CGRA (RISC processor).

4.2 Heterogeneous Accelerator-Rich Platform

This thesis work employs HARP, depicted in Figure 4.2. The HARP is built with

nine nodes over a NoC in a 3×3 mesh topology. The HARP platform is written

in parametric VHDL. As can be seen from Figure 4.2, the COFFEE RISC core is

combined with the node in the center and the rest include a template-based CGRA,

4.2. Heterogeneous Accelerator-Rich Platform 32

data memory and DMA device. All of the nodes can have a template-based CGRA

accelerator except the central node which is integrated with COFFEE RISC core.

By utilization of NoC the CGRAs and RISC core can communicate with each other.

HARP comprises multiple CGRAs of particular dimensions in order (rows×columns)
of PEs. These CGRAs together form a test-case which can be used to examine

the overall design. COFFEE RISC provides supervision in terms of control and

communication. CGRA of a particular size for any of the existing nodes can be

integrated since HARP is a template-based architecture. Alternatively, the node

can be considered as a data routing resource.

4.2.1 Internal Structure of NoC

Figure 4.3 illustrates how the master and slave nodes are utilized in details. It can

be seen that NoC nodes are connected to one master and two slaves where the

mentioned master node is in charge of communication within the node as well as

publishing the data on the network, hence it is combined with RISC core. On the

other hand, the master node of other nodes are linked to the master of DMA device

and the slaves utilize local memory and slave node of DMA device. The supervisor

node consists of a RISC processor which is in charge of data transmission through

its own and the other slave nodes' data memory. RISC cores provide the ability of

synchronous data transmission between each two nodes by reserving a shared space

in their memory for setting and resetting track of read and write �ags which is

accessible by the other nodes.

While the system is starting up, the data transfer is begun by the supervisor node

(N4) with sending the con�guration stream. Also, the data will be processed between

its own and other data memories. The packet has two parts: routing information in

the header and data and con�guration words in the rest. At the �rst, the packet

will be received by the initiator and then will be forwarded to the request switch of

the destination node. As the node arbiter resides between the request and response

switches to set up connections through various modules, the initiator module noti�es

a node. The targeted slave device then gets selected by the request switch based on

the address �eld of the routed packet. Through the target module the data can

be written to NoC. However reading/writing data from/to the instruction or data

memory are requirements for given RISC core so the request switch has to interact

with a node's master. As soon as the transport route is determined, DMA devices

will load the processed data and con�guration stream into the local memory banks

of the template-based CGRA in the slave nodes. The RISC core can carry out

the same operations for other nodes. Also, shared memory space of which size is

4.2. Heterogeneous Accelerator-Rich Platform 33

Response Switch

To NoC

Initiator

From NoC

Master Interface

RISC | DMA Master

ArbiterRequest Switch

Target

Data MemoryInstruction Memory | DMA Slave

Slave Interface - 2Slave Interface - 1

Figure 4.3 A view of master and slave node of HARP [78]

related to number of slave nodes must make synchronization among slave nodes and

supervisor nodes. Writing '1' in the shared memory placed at the target node by

the RISC core indicates the way of establishing synchronization is correct. Then the

RISC core transmits the packet to the target node and asks to start the data transfer

from DMA slave. In the next phase, the DMA master is responsible for fetching the

stream of node's data memory and di�using it to the con�guration memories. After

�nishing the data transfer, the DMA's master will transfer an acknowledgment and

the RISC core writes '0' over the NoC which results to reset the shared memory

location related to the supervisor node.

When the DMA devise accomplishes the internal data transfer of the template-

based CGRAs totally and as soon as the con�guration stream and the data are

�lled in the local memories of slave nodes, the RISC core will forward the control

words to the CGRAs. The slave nodes include the CGRAs that can work in parallel

and independently of each other. Hence, the dependency of some data in the �ow

of the program may occur that needs the exchange of data between the nodes of

the CGRA. To make more processing, the results stored in one of the local CGRA

memories can be carried to other slave nodes. However, the same synchronization

process should be accomplished via the RISC core because it speci�es the shared

memory location allocated to the receiver node, and then the DMA device targets

the sender node.

34

5. DESIGN AND IMPLEMENTATION OF IEEE

802.11N ON TEMPLATE-BASED CGRA

In previous chapters the concepts and basic structure of OFDM systems and the

platform architecture used in this work were explained. This chapter describes the

execution of OFDM blocks in detail and focuses on the design of CGRAs on HARP

platform. In others words, the design of an application-speci�c accelerator using

AVATAR for implementing the IEEE 802.11n speci�cation is elaborated. In this

process a baseband receiver executes the algorithms of digital signal processing, in

order to utilize the received data bits with high accuracy. Moreover, MATLAB is

used to test the functionality of baseband receiver and all of the transceiver algo-

rithms implemented. During the �rst step, a MATLAB script generates random data

symbols by employing a speci�c constellation based on IEEE 802.11n speci�cations.

Subsequently, the accelerator was designed and then implemented for each block

such as TS, FOE, FFT and CE. Each output was compared to the corresponding

MATLAB results. Moreover, the script generates OFDM data symbols based on 64-

QAM modulation, and the channel with AWGN is modeled assuming that CFO is

40 kHz and the SNR value is equal to 20 dB. In the following section, the process

of designing and implementing the application-speci�c accelerator for each receiver

block is explained. COFFEE is used for calculating the number of clock cycles and

execution time for each one of them. Also, ModelSim software [79] is utilized for

simulation purposes and for testing the functionality of each accelerator. Ultimately,

the designed accelerators are synthesized onto Altera Stratix FPGAs.

5.1 Time Synchronization

After the analog to digital conversion, time synchronization is the �rst block of

OFDM receiver. As mentioned earlier, there are two known methods to achieve

time synchronization: using special symbols or Cyclic Pre�x (CP). In this thesis,

cyclic pre�x method is employed [54]. A correlation algorithm is performed between

the received signal and its delayed version. In accordance to the IEEE 802.11n

speci�cation, the delay length z−D is equal to the length of CP, L = 32.

5.1. Time Synchronization 35

c1
(Imag)

c0
(Imag)

>
>

>>

>
> >
>

c158
(Real)

Lo
ca

l

M
em

or
y

1

>
>

…
..

+ >
> >
>

>>

>
>

URF

>
>

>
>

>
>

>
>

>
>

URF

>
> >
>

×

-

>
>

× × × >
>

c0
(Real)

c1
(Real)

c159
(Imag)
c158

(Imag)
c158
(Real)

c159
(Real)

y0
(Real)

y1
(Real)

y158
(Real)

y159
(Real)

y0
(Imag)

y1
(Imag)

y158
(Imag)

y159
(Imag)

>
> >
>

>
>

>
>

>
>

URF

URF

URF

+ URF

>
>

>
> URF

>
>

>
>

>
>

>
>

URF

URF

>
>

>
> URF +

>
>

∑

C
ol

u
m

n
 #

6

C
ol

u
m

n
 #

10

C
ol

u
m

n
 #

14

c156
(Imag)
c155

(Imag)
c155

(Imag)
c155
(Real)

c156
(Real)

y156
(Real)

y157
(Real)

y156
(Imag)

y157
(Imag)

c1
(Imag)

y2
(Real)

y4
(Real)

…
..

c0
(Real)

c1
(Real)

c157
(Real)

c159
(Real)

c0
(Imag)

c157
(Imag)

c159
(Imag)
c158

(Imag)

y1
(Real)

y158
(Real)

y159
(Real)

y1
(Imag)

y2
(Imag)

y158
(Imag)

y159
(Imag)

c0
(Real)

c1
(Real)

c155
(Real)

c156
(Real)

c157
(Real)

c158
(Real)

c159
(Real)

c0
(Imag)

c1
(Imag)

c156
(Imag)

c158
(Imag)

c159
(Imag)

y2
(Real)

y3
(Real)

y157
(Real)

y158
(Real)

y159
(Real)

y2
(Imag)

y3
(Imag)

y157
(Imag)

y158
(Imag)

y159
(Imag)

c157
(Imag)

c0
(Real)

c1
(Real)

c155
(Real)

c156
(Real)

c157
(Real)

c158
(Real)

c159
(Real)

c0
(Real)

c1
(Real)

c155
(Real)

c156
(Real)

c157
(Real)

c158
(Real)

c159
(Real)

c0
(Imag)

c1
(Imag)

c155
(Imag)

c156
(Imag)

c157
(Imag)

c158
(Imag)

c159
(Imag)

c0
(Imag)

c1
(Imag)

c155
(Imag)

c156
(Imag)

c157
(Imag)

c158
(Imag)

c159
(Imag)

y3
(Real)

y4
(Real)

y158
(Real)

y159
(Real)

y3
(Imag)

y4
(Imag)

y158
(Imag)

y159
(Imag)

y5
(Real)

y159
(Real)

y4
(Imag)

y5
(Imag)

y159
(Imag)

Lo
ca

l

M
em

or
y

2

Figure 5.1 Second context for the calculation of the correlations

c158
(Real)

>
>

>>

>
> >
> URF

>
>

URF -

>>

>
> >
> URF

>
>

>
> URF

×

URF

>>

URF

>
>

URF

+ URF + + URF

>> URF >> >> URF >>

>
>

>
>

>
>

-

>>

>
>

>
> URF

>
>

>
> >
>

>
>

× ××

>
>

× × ×

c156
(Imag)
c155

(Imag)
c155

(Imag)
c155
(Real)

c156
(Real)

y156
(Real)

y157
(Real)

y156
(Imag)

y157
(Imag)

c1
(Imag)

y2
(Real)

Y4
(Real)

…
..

c0
(Real)

c1
(Real)

c157
(Real)

c159
(Real)

c0
(Imag)

c157
(Imag)

c159
(Imag)
c158

(Imag)

y1
(Real)

y158
(Real)

y159
(Real)

y1
(Imag)

y2
(Imag)

y158
(Imag)

y159
(Imag)

c0
(Real)

c1
(Real)

c155
(Real)

c156
(Real)

c157
(Real)

c158
(Real)

c159
(Real)

c0
(Imag)

c1
(Imag)

c156
(Imag)

c158
(Imag)

c159
(Imag)

y2
(Real)

y3
(Real)

y157
(Real)

y158
(Real)

y159
(Real)

y2
(Imag)

y3
(Imag)

y157
(Imag)

y158
(Imag)

y159
(Imag)

c157
(Imag)

c0
(Real)

c1
(Real)

c155
(Real)

c156
(Real)

c157
(Real)

c158
(Real)

c159
(Real)

c0
(Real)

c1
(Real)

c155
(Real)

c156
(Real)

c157
(Real)

c158
(Real)

c159
(Real)

c0
(Imag)

c1
(Imag)

c155
(Imag)

c156
(Imag)

c157
(Imag)

c158
(Imag)

c159
(Imag)

c0
(Imag)

c1
(Imag)

c155
(Imag)

c156
(Imag)

c157
(Imag)

c158
(Imag)

c159
(Imag)

y3
(Real)

y4
(Real)

y158
(Real)

y159
(Real)

y3
(Imag)

y4
(Imag)

y158
(Imag)

y159
(Imag)

y5
(Real)

y159
(Real)

y4
(Imag)

y5
(Imag)

y159
(Imag)

Lo
ca

l

M
em

or
y

1

× × × × × × × × ×

+- -

+

>
> URF +

>
> URF URF ++ URF

+>
> >
>+ + +

z1
(Real)

z1
(lmag)

c154
(Real)

z2
(Real)

z2
(lmag)

z3
(Real)

z3
(lmag)

z4
(Real)

z4
(lmag)

c152
(Imag)
c151

(Imag)
c151

(Imag)
c151
(Real)

c152
(Real)

y156
(Real)

y157
(Real)

y156
(Imag)

y157
(Imag)

c1
(Imag)

y6
(Real)

y8
(Real)

…
..

c0
(Real)

c1
(Real)

c153
(Real)

c155
(Real)

c0
(Imag)

c153
(Imag)

c155
(Imag)
c154

(Imag)

y5
(Real)

y158
(Real)

y159
(Real)

y5
(Imag)

y6
(Imag)

y158
(Imag)

y159
(Imag)

c0
(Real)

c1
(Real)

c151
(Real)

c152
(Real)

c153
(Real)

c154
(Real)

c155
(Real)

c0
(Imag)

c1
(Imag)

c152
(Imag)

c154
(Imag)

c155
(Imag)

y6
(Real)

y7
(Real)

y157
(Real)

y158
(Real)

y159
(Real)

y6
(Imag)

y7
(Imag)

y157
(Imag)

y158
(Imag)

y159
(Imag)

c153
(Imag)

c0
(Real)

c1
(Real)

c151
(Real)

c152
(Real)

c153
(Real)

c154
(Real)

c155
(Real)

c0
(Real)

c1
(Real)

c151
(Real)

c152
(Real)

c153
(Real)

c154
(Real)

c155
(Real)

c0
(Imag)

c1
(Imag)

c151
(Imag)

c152
(Imag)

c153
(Imag)

c154
(Imag)

c155
(Imag)

c0
(Imag)

c1
(Imag)

c151
(Imag)

c152
(Imag)

c153
(Imag)

c154
(Imag)

c155
(Imag)

y7
(Real)

y8
(Real)

y158
(Real)

y159
(Real)

y7
(Imag)

y8
(Imag)

y158
(Imag)

y159
(Imag)

y9
(Real)

y159
(Real)

y8
(Imag)

y9
(Imag)

y159
(Imag)

Lo
ca

l

M
em

or
y

2

∑

>
>

Figure 5.2 Third context for the calculation of the correlations

5.1. Time Synchronization 36

Outputs cn and zn of the correlation algorithm are expressed by Equations 5.1 and

5.2 respectively. Symbol of ∗ stands for the complex conjugate.

cn = yny
∗
n−D (5.1)

zn =
L−1∑
i=0

ci+n (5.2)

Equations 5.1 and 5.2 should be mapped over the PE array of AVATAR. For this

speci�c design, AVATAR is further scaled up to 5×16 PE array. Also, Equation 5.1

can be simpli�ed to Equation 5.3, to perform a more e�ective way for placement

and routing. R stands for Real and I for Imaginary part of the received signal.

cn = ((yn(R) × yn−D(R)) + (yn(I) × yn−D(I)))︸ ︷︷ ︸
Real

+ ((yn(R) × yn−D(I))− (yn(I) × yn−D(R)))︸ ︷︷ ︸
Imaginary

(5.3)

In Figures 5.1 and 5.2 the mapping of a 160-point correlation algorithm is shown.

The two contexts must be used consecutively. The �rst context (is not illustrated)

loads immediate values to the PEs to operate shift after any multiplication. With

regard to interconnections between PEs and the processes that the PEs should

perform, they are completely identical. The sole dissimilarity, though, is their I/O

bu�ers. First, the received data symbols must be loaded into the �rst local memory

of AVATAR. As can be observed in Figure 5.1, two di�erent tasks are performed in

this context. The multiplication among the received data symbols and the complex

conjugation of its delayed version is related to the �rst task based on Equation 5.3.

The data demonstrated by indexes from 0 to 159 belong to 160-point correlation.

To perform time synchronization for 160 data symbols requires 160 correlations.

Data distribution in other columns of local memory is the second task in this context

so as to maximize the parallel usage of resources. As discussed earlier, this context

can only be used to distribute data and implement the �rst correlation. For executing

four correlations simultaneously, the results stored in the second local memory are

applied by altering the data �ow direction to the �rst local memory.

Figure 5.2 shows in last row of PEs in the third context, a sum-of-products of

the results of complex multiplications is performed based on Equation 5.2. The

delayed version undergoes a shift and the procedure is repeated. Unregistered-Feed

Through (URF) operation is used to solve this issue. According to Figure 5.2 in the

third context, four URFs shift the delayed version of data symbols four units during

each run. Then, in the next step and when all the correlations are completed (160

5.2. Frequency O�set Estimation 37

correlations), the maximum value is looked for by RISC processor (N3). Moreover,

after the execution of C code the largest value is obtained. This variable corresponds

to the time o�set index, which is equal to the �rst FFT window by using Equation

5.4. Program 5.1 that looks for the largest value for each data symbol is performed

by COFFEE RISC processor.

1 int z, max_val , position = 1;

2 max_val = output [160];

3

4 for (z = 1; z < 160; z++)

5 {

6 i f (output[z] > max_val)

7 {

8 max_val = output[z]; position = z+1;

9 }

10 }

Program 5.1 C code for the seek of largest value

The Square Modulus (SM) is used when the correlation results are complex. SM

uses Equation 5.4 to calculate the magnitude of complex numbers.

τ̂s = argmax
n

| zn | = argmax
n

| zn(R) × zn(R) + zn(I) × zn(I) | (5.4)

Where τ̂s identi�es the maximum value among the 160 correlation results of (zn).

Besides, R and I illustrate the Real and Imaginary parts in this Equation. At the end,

after �nding the index of the time o�set, the data symbol should be transmitted to

the next block which is the FOE for further processing discussed in detail in Section

5.2.

5.2 Frequency O�set Estimation

As explained previously, Carrier Frequency O�set (CFO) in OFDM systems is the

consequence of incompatibility between the transmitter and receiver oscillator. By

adding training symbols on the transmitter side, the CFO can be estimated. Ba-

sed on Equation 3.18, for this intention, the delay and correlation algorithm is used

with a delay value equal to 32. That is to say, to obtain the phase di�erence between

the received training symbols, a multiplication by the complex conjugation of their

delayed version must be done. Therefore, there needs to be 160 complex multiplica-

tions, equal to the length of the short training sequence.

5.2. Frequency O�set Estimation 38

r19
(Real)

rD19
(Real)

r19
(Imag)

r1
(Real)

rD1
(Real)

r1
(Imag)

r0
(Real)

rD0
(Real)

Lo
ca

l M
em

or
y

2
Lo

ca
l M

em
or

y
1

rD0
(Imag)

rD1
(Imag)

rD19
(Imag)

r0
(Imag)

r39
(Real)

rD39
(Real)

r39
(Imag)

r21
(Real)

rD21
(Real)

r21
(Imag)

r20
(Real)

rD20
(Real)

rD20
(Imag)

rD21
(Imag)

rD39
(Imag)

r20
(Imag)

r40
(Real)

r41
(Real)

r59
(Real)

rD40
(Real)

rD41
(Real)

rD59
(Real)

rD40
(Imag)

rD41
(Imag)

rD59
(Imag)

r40
(Imag)

r41
(Imag)

r59
(Imag)

r60
(Real)

r61
(Real)

r79
(Real)

rD60
(Real)

rD61
(Real)

rD79
(Real)

rD60
(Imag)

rD61
(Imag)

rD79
(Imag)

r60
(Imag)

r61
(Imag)

r79
(Imag)

×

×

-

×

×
>

> >
>

+

×

×

-

×

×
>

> >
>

+

×

×

-

×

×
>

> >
>

+

×

×

-

×

×
>

> >
>

+

z0
(Real)

z18
(Real)

z19
(Real)

z20
(Real)

z38
(Real)

z39
(Real)

z40
(Real)

z58
(Real)

z59
(Real)

z60
(Real)

z78
(Real)

z79
(Real)

z0
(Imag)

z18
(Imag)

z19
(Imag)

z20
(Imag)

z38
(Imag)

z39
(Imag)

z40
(Imag)

z58
(Imag)

z59
(Imag)

z60
(Imag)

z78
(Imag)

z79
(Imag)

×

×

-

×

×
>

> >
>

+

×

×

-

×

×
>

> >
>

+

×

×

-

×

×
>

> >
>

+

×

×

-

×

×
>

> >
>

+

>
> >
>

>
> >
>

>
> >
>

>
> >
>

>
> >
>

>
> >
>

>
> >
>

>
> >
>

r80
(Real)

r81
(Real)

r99
(Real)

r80
(Imag)

r81
(Imag)

r99
(Imag)

rD80
(Real)

rD81
(Real)

rD99
(Real)

rD80
(Imag)

rD81
(Imag)

rD99
(Imag)

r100
(Real)

r101
(Real)

r119
(Real)

rD100
(Real)

rD101
(Real)

rD119
(Real)

rD100
(Imag)

rD101
(Imag)

rD119
(Imag)

r100
(Imag)

r101
(Imag)

r119
(Imag)

r120
(Real)

r121
(Real)

r139
(Real)

rD120
(Real)

rD121
(Real)

rD139
(Real)

rD120
(Imag)

rD121
(Imag)

rD139
(Imag)

r120
(Imag)

r121
(Imag)

r139
(Imag)

r140
(Real)

r141
(Real)

r159
(Real)

rD140
(Real)

rD141
(Real)

rD159
(Real)

rD140
(Imag)

rD141
(Imag)

rD159
(Imag)

r140
(Imag)

r141
(Imag)

r159
(Imag)

z80
(Real)

z98
(Real)

z99
(Real)

z80
(Imag)

z98
(Imag)

z99
(Imag)

z100
(Real)

z118
(Real)

z119
(Real)

z100
(Imag)

z118
(Imag)

z119
(Imag)

z120
(Real)

z138
(Real)

z139
(Real)

z120
(Imag)

z138
(Imag)

z139
(Imag)

z140
(Real)

z158
(Real)

z159
(Real)

z140
(Imag)

z158
(Imag)

z159
(Imag)

Figure 5.3 The context for the multiplication between a signal and its complex conjugation

The short training symbols used to estimate frequency o�set estimation is consis-

ting of a certain number of prede�ned data symbols, added in the transmitter side.

The �rst context is shown in Figure 5.3, in which short training symbols in the �rst

local memory along with its delayed version are loaded using DMA. Here, r and rD

refer to short preamble and its delayed version respectively. This context is ideal for

performing multiplication between complex numbers. Accordingly, after multiplica-

tion between the received signal and its delayed version, the phase di�erence value

should be calculated in the next step. In this way, the result of the �rst context of

second local memory is transferred to the main memory for more processing.

ATAN function is one of the procedures for calculating the phase angle of a complex

value. To �nd the phase angles of a complex number such as x+ iy, x and y are real

and imaginary parts, respectively. The following equation can be expressed as

w = atan(
y

x
), (5.5)

Where w stands for the phase angle of a complex number. Firstly, the imaginary

part should be divided by the real part, and then the phase angle is calculated using

the ATAN operation. This can be accomplished in software by utilizing a CORDIC

algorithm that is one of the well-known algorithms because of the simplicity of its

hardware implementation ([68], [69] and [70]). The algorithms of complex algebraic

equations and a large number of repetitions like CORDIC are not e�ectual to be

mapped on CGRA in terms of execution time. In addition, the designed CGRA is

simple as well as incapable of performing complex algebraic and trigonometric ope-

5.2. Frequency O�set Estimation 39

rations. Accordingly, they can be done in shorter running times by using processor

software at the cost of more power and energy. The use of CORDIC algorithms is

most bene�cial when no prede�ned hardware multiplier exists as they only use addi-

tion, subtraction, bit-shift and lookup table [69]. Once the division is done according

to Equation 5.5, the phase angle of a complex number should be computed by means

of the result of the division from the prior section. As previously mentioned, the-

re are no prede�ned functions on the COFFEE RISC processor, so ATAN function

has to be done using another method like the Taylor series [71]. Finally, the pha-

se angle can be calculated in processor software by expanding Taylor series for the

arctangent ratio as Equation 5.6.

arctan x =
N∑
n=0

(−1)n

(2n+ 1)
x2n+1 (5.6)

Where the value of N is dependent on the needed precision, which is equal to 4

in this particular case. When the phase angles are found from the received data

symbols, carrier frequency o�set should be estimated by means of Equation 3.19

previously explained. Afterward, using Equation 3.20, the data symbols must be

corrected separately on the basis of the estimated frequency o�set, in which the

exponential function is needed. The Taylor series has to be employed based on the

following equation.

ex =
∞∑
n=0

xn

n!
(5.7)

The equation above works only for integer numbers, so for complex numbers, the

Equation 5.7 should be modi�ed as

ez = ex
(
cos(y) + isin(y)

)
, (5.8)

z consists of the real part x and the imaginary part y. cos and sin functions can

be expanded by the Taylor series, which are shown in Equation 5.9 and 5.10,

respectively.

cos y =
∞∑
n=0

(−1)n

(2n)!
y2n (5.9)

sin y =
∞∑
n=0

(−1)n

(2n+ 1)!
y2n+1 (5.10)

Finally, the received signal should be multiplied by the correction factor which is

calculated above. Once all of the steps above are carried out on the processor software

5.3. Fast Fourier Transform 40

to perform the complex multiplication, the data can be transferred again to the local

CGRA memory. This can be done by using almost the same context as depicted in

Figure 5.3. Subsequently, after performing frequency o�set estimation operation the

local memories have the data symbols that can be directly demodulated. It has to

be mentioned that before the demodulation of the data symbols, the cyclic pre�x is

removed.

5.3 Fast Fourier Transform

In this section, the Fast Fourier Transform (FFT) block will be explained in detail.

The data symbols in this step must be converted from time domain to frequency

domain after the received signal has been corrected in terms of the frequency o�set;

it's named demodulation. It can be executed by FFT as a particular class of Discrete

Fourier Transform (DFT). When comparing the FFT block with other blocks on the

receiver side, FFT block is one of the most time consuming. More details about the

implementation of the radix-N algorithms can be found in [58] and [10]. The Discrete

Fourier Transform (DFT) can be de�ned as

X[k] =
N−1∑
n=0

x[k]W nk
N (5.11)

Where W nk
N = exp(−j2π nk

N
) is a twiddle factor and n is any sample that has been

processed among samples of N . DFT is obtained by FFT radix-2m structures [26],

where m ∈ Z+ and its structural unit is a butter�y. Furthermore, with the increase

of m, the arithmetic resources required by the butter�y will increase along with the

complexity of the FFT structure, but the number of implementation steps for FFT

processing will be signi�cantly reduced. Based upon IEEE 802.11n speci�cations

with frequency bandwidth 40.0 MHz, demodulation can be done by a 128-point

FFT within 4µs.

In addition, a 128-point FFT can not be processed by a radix-4 butter�y, while the

radix-2 needs expensive seven stages to process it. However, if a mixed-radix is used,

the 128-point FFT can be implemented in four stages. In the �rst stage, a radix-2

butter�y is used for processing and as a result, the structure of 128-point FFT is

divided into two parts. Each half of the FFT will be 64-points. Also, these halves

can be processed by a radix-4 butter�y in three steps.

Mapping four di�erent contexts, a mixed-radix accelerator was designed utilizing

AVATAR, two of which comprise radix-2 and radix-4 butter�ies and the remaining

5.3. Fast Fourier Transform 41

x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16
x17
x18
x19
x20
x21
x22
x23
x24
x25
x26
x27
x28
x29
x30
x31
x32
x33
x34
x35
x36
x37
x38
x39
x40
x41
x42
x43
x44
x45
x46
x47
x48
x49
x50
x51
x52
x53
x54
x55
x56
x57
x58
x59
x60
x61
x62
x63

x64
x65
x66
x67
x68
x69
x70
x71
x72
x73
x74
x75
x76
x77
x78
x79
x80
x81
x82
x83
x84
x85
x86
x87
x88
x89
x90
x91
x92
x93
x94
x95
x96
x97
x98
x99
x100
x101
x102
x103
x104
x105
x106
x107
x108
x109
x110
x111
x112
x113
x114
x115
x116
x117
x118
x119
x120
x121
x122
x123
x124
x125
x126
x127

W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W1
W2
W3
W4
W5
W6
W7
W8
W9
W10
W11
W12
W13
W14
W15
W0
W2
W4
W6
W8
W10
W12
W14
W16
W18
W20
W22
W24
W26
W28
W30
W0
W3
W6
W9
W12
W15
W18
W21
W24
W27
W30
W33
W36
W39
W42
W45

W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W1
W2
W3
W4
W5
W6
W7
W8
W9
W10
W11
W12
W13
W14
W15
W0
W2
W4
W6
W8
W10
W12
W14
W16
W18
W20
W22
W24
W26
W28
W30
W0
W3
W6
W9
W12
W15
W18
W21
W24
W27
W30
W33
W36
W39
W42
W45

W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W1
W2
W3
W4
W5
W6
W7
W8
W9
W10
W11
W12
W13
W14
W15
W0
W2
W4
W6
W8
W10
W12
W14
W16
W18
W20
W22
W24
W26
W28
W30
W0
W3
W6
W9
W12
W15
W18
W21
W24
W27
W30
W33
W36
W39
W42
W45

W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W0
W1
W2
W3
W4
W5
W6
W7
W8
W9
W10
W11
W12
W13
W14
W15
W0
W2
W4
W6
W8
W10
W12
W14
W16
W18
W20
W22
W24
W26
W28
W30
W0
W3
W6
W9
W12
W15
W18
W21
W24
W27
W30
W33
W36
W39
W42
W45

W0
W0
W0
W0
W0
W4
W8
W12
W0
W8
W16
W24
W0
W12
W24
W36
W0
W0
W0
W0
W0
W4
W8
W12
W0
W8
W16
W24
W0
W12
W24
W36
W0
W0
W0
W0
W0
W4
W8
W12
W0
W8
W16
W24
W0
W12
W24
W36
W0
W0
W0
W0
W0
W4
W8
W12
W0
W8
W16
W24
W0
W12
W24
W36

W0
W0
W0
W0
W0
W4
W8
W12
W0
W8
W16
W24
W0
W12
W24
W36
W0
W0
W0
W0
W0
W4
W8
W12
W0
W8
W16
W24
W0
W12
W24
W36
W0
W0
W0
W0
W0
W4
W8
W12
W0
W8
W16
W24
W0
W12
W24
W36
W0
W0
W0
W0
W0
W4
W8
W12
W0
W8
W16
W24
W0
W12
W24
W36

x0
x64
x16
x80
x32

x4

x1

x5

x8

x9

x100

x104

x68

x12

x84

x116

x36

x17

x88

x113

x20

x72

x52

x120

x24

x81

x56

x76
x28
x92

x60
x108

x85

x33

x124

x65

x69

x97

x37

x49

x40

x21

x101
x53

x44

x25

x13

x117

x48

x89

x109

x41

x121

x73

x45

x105
x57

x125

x29

x98

x61

x82

x93

x34

x50

x66
x18

x70

x114

x22

x38

x54

x10
x74

x77

x26

x42

x30

x46

x86

x78

x58

x14

x90

x71

x62

x35

x94

x19

x96

x67

x83

x99
x51

x102

x23

x103
x55

x106

x87

x91

x39

x110

x11

x112

x27

x43

x115

x107

x75

x118

x119

x59

x15

x122

x123

x79
x31

x126

x95

x2

x6

x3

x7

x47
x111
x63
x127

Stage 1, Radix-2 Stage 2, Radix-4 Stage 3, Radix-4 Stage 4, Radix-4

Figure 5.4 Fast Fourier Transform [10]

operate for the purpose of data reordering. FIeld programming and REcon�guration

management Tool (Firetool) [77] is used in order to design and execute the mentioned

contexts. The desirable e�ciency of the accelerator processing can be achieved with

the help of a mixed-radix scheme in variety of FFT lengths. Also, speci�c number

of processing stages is proper for each FFT structure. For instance, 128-point FFT

structure with radix-2 requires seven processing stages.

5.3. Fast Fourier Transform 42

Table 5.1 Di�erent types and lengths of FFT and their complexity in number of stages
and in number of operations per butter�y [10].

FFT types Length Stages Additions Subtractions Shifts Multiplications

Radix-2 128 7 3 3 4 4

Radix-4 1024 5 15 15 12 12

Radix-2,4 4× 128 4 18 18 16 16

×

>
>

>
> >>

+

×
>
>

>
> >
>

-

+

×

>
>

>
>

y111 y127

+

× × × × × ×

>
> + >
> >
> +

>
>-

×

-

×
>
>

×

-

>
> >>

>
>>>

>
> >>

+
-

+

×

×

+ - + +

- - - - -

×

+

>>

>
>

>
>

>
>

>
>>
>

>
>

>
>>
>

>
>

>
>

×
+

>>

>
>

>>

>
>

>>

>
>

>
>

>
>

>
>

c17

c16 y16

y97 y113

c0

c1

c32

c33

c48

c49

c15 c31

y0

y1 y17

y32

y33

y48

y49

c64

c65

c79

y64

y65

y79

c80

c81

c95

y80

y81

y95

c96

c97

c112

c113

y96 y112

Lo
ca

l
M

em
or

y
2

Fi
rs

t
C

o
n

te
xt

W(1)i y64

W(0)i y64 W(32)ic64

c65

y0

y1

c79 W(15)i

c96

c97

c111

W(33)i

W(47)i

y32

y33

c48

c49

c63

c112

c113

c127

W(16)i

W(17)i

W(31)i

W(48)i

W(49)i

W(63)i

y16

y17

y80

Lo
ca

l M
em

or
y

1

-

>
>

c0

c1

c15

W(0)r

W(1)r

W(15)r y15 y79

c32

c33

c47

W(32)r

W(33)r

W(47)r y47

y96

y97

y111

c16

c17

c33

W(16)r

W(17)r

W(31)r y33

y48

y49

y63

c80

c81

c95

W(48)r

W(49)r

W(63)r

y81

y95

y112

y113

y127

…
..

c47 c63 y15 y31 y47 y63 c111 c127

Figure 5.5 The �rst context includes four radix-2 butter�ies.

As shown in Figure 5.4, this context is utilized for processing of the �rst stage of the

128-point FFT structure. The twiddle factors and sample points are loaded in such

a way so the task of processing is distributed among four Radix-2 butter�ies. As can

be seen from Table 5.1, radix-2 FFT butter�y needs four multiplication operations

as well as four shift operations and since the 12-bit numbers are processed into the

32-bit register elements, over�ow never happens even if an addition or a subtraction

operation is performed after multiplication.

Figure 5.5 shows that after an addition or subtraction, a shift operation can be

executed. In the �rst context, there is a �xed value of 12 bits. They are loaded in

the immediate registers of the PE on the vertical connections. This is performed with

the shift operation. In the second context, a radix-4 butter�y is used. In this context,

the radix-4 butter�y can processes the second, third and fourth stages based on 64-

point FFT. When using the radix-4 FFT butter�y, there are three twiddle factors

and four complex samples as inputs. In the design of the second context by radix-4,

it is required to load extra data for twiddle factors. The twiddle factors are provided

5.4. Channel Estimation 43

>
> >
>

>
>

>
>

-

>
>

×

-

>>

×

-

>
>

×

>>

-

+ + >
> >
> + >
>

>
> >
> × ×

×

×

+

×

>
>

×

+

×

-

+

-

>> >> >>

- -

-

+

+ + + -

- - - - -

+

×

>
>

>
>>
>

>
>

>
>

+
×

>>

>
>

+

>
>

>
>

c17

c16 y16c0

c1

c32

c33

c48

c49

c79 c95

y0

y1 y17

y32

y33

y48

y49

Lo
ca

l
M

em
or

y
2

Se
co

n
d

 C
o

n
te

xt
c49

c48 y48c32

c33

c47

W(0)i y32

y33

y47

y49

y63

c80

c81

c95

y64

y65

y79

c96

c97

c111

y80

y81

y95

c112

c113

y96

Lo
ca

l M
em

or
y

1

+

c0

c1

c15

W(0)r

W(1)r

W(15)r y15

y0

y1

c63

y16

y17

y31

W(0)i

W(1)i

W(15)i

c16

c17

c31

c64

c65

c79 c127

W(0)i

W(02)i

W(28)i

W(0)r

W(3)r

W(45)r

W(0)i

W(3)i

W(45)i

y97

y111

y112

y113

y127

…
..

c111 c127 y79 y95 y111 y127

W(1)i

W(15)i

W(0)r

W(1)r

W(15)r

W(0)r

W(2)r

W(28)r

W(0)i

W(02)i

W(28)i

W(0)r

W(2)r

W(28)r

W(0)r

W(3)r

W(45)r

W(0)i

W(3)i

W(45)i

+

c81

c80 y80c64

c65

c96

c97

c112

c113

y64

y65 y81

y96

y97

y112

y113

c31c15 c47 c63 y15 y31 y47 y63

A0 A2 B1 B3 B0 B2 A3 A1 A0 A1 A2 A3 B0 B1 B2 B3 A0 A2 B3 B1 B2 A1 A3

…
..

…
..

B0

B0 B1 B2 B3A0 A1 A2 A3

Figure 5.6 A radix-4 butter�y for the second context

Table 5.2 Clock cycles (cc) based on the type of FFT accelerator and length [10].

FFT types Length IEEE standard CGRA template Clock cycles Execution time

Mixed-Radix (2,4) 4× 128 802.11n AVATAR 759 cc 3.9µs

in the array by the vertical connections. According to the radix-2 in the �rst context,

the processed samples should be distributed to the four radix-2 butter�ies so that

the results obtained from the �rst context based on radix-2 FFT structure is split

into two equal parts. Also, in the beginning of the second stage of radix-4 processing,

each stage needs 32 CC and a latency of 5 CC, which is shown in Figure 5.6. Based

on Table 5.2, AVATAR accelerator of mixed-radix can satisfy the timing constraint.

5.4 Channel Estimation

In this section, the structure and mechanism of the channel estimation for the OFDM

systems will be expressed in detail. There are various techniques for estimating the

channel for OFDM systems. The channel estimation provides an estimated chan-

nel impulse response to the equalizer. Moreover, by the channel estimation at the

receiver, channel state information can be traced and obtained. As previously men-

tioned, the data symbols transmitted over the wireless channel may be distorted due

to di�erent disturbances in the channel before reaching the receiver antenna.

5.4. Channel Estimation 44

Trasmitted Pilots

Data Carriers

Received Pilots Interpolating Filter Estimated Channel Response

... ...

Channel
Response

Figure 5.7 Linear Interpolation algorithm based on pilot-assisted for Channel Estimation
[33]

There are two techniques for estimating the channel based on pilot arrangement.

The �rst technique is called block-type channel estimation and the second tech-

nique is called comb-type channel estimation. The �rst method is best suited for

slow fading channel, in which pilot tones will be inserted into all the subcarriers of

OFDM symbols within a speci�c period. In other words, in time domain, symbols

are transmitted periodically by Least Square (LS) and Least Mean Square (LMS)

estimation channel. With this technique, initially the channel will be estimated, and

subsequently the same estimates will be used throughout the block. In the second

method, suited for fast fading channel, some subcarriers are reserved for pilot tones

in each OFDM symbol. This technique can estimate the channel at pilot frequencies

based on Least Square (LS), Minimum Mean Square Error (MMSE) or Least Mean

Square (LMS) [60].

For performing the channel estimation, we can utilize one of the simplest interpola-

tion methods, which is named Linear Interpolation algorithm. This method is not

very accurate, but it is a quick and easy method for performing channel estimation

as shown in Figure 5.7. In addition, the channel estimation can executed on pilots,

which are known to the receiver. According to Equation 3.26, the channel impul-

se response has to be computed at the beginning of the channel estimation block.

This equation is the complex multiplication between inverse of the transmitted pi-

lots and the received pilots. Furthermore, on the basis of IEEE 802.11n speci�cation

with 40.0 MHz, the number of pilots is equal to Npilot = 6. The pilots are inserted

among the subcarriers in the transmitter as depicted in Figure 5.8.

The �rst context is appertaining to loading immediate values for shift operations.

Figure 5.8 shows the four columns of PEs used in the second context of the channel

estimation. For more processing, the received pilots (RP) and the inverse of trans-

mitted pilots (ITP) are immediately loaded into the �rst local memory. In the second

context of channel estimation, the complex multiplication between RP and ITP by

Linear Interpolation can be mapped on AVATAR. Thereby, by only one context, the

channel response can be computed and stored in the second local memory. After

calculating the channel impulse response of pilots, it should be expanded for the

remaining subcarriers by collaborating Linear Interpolation algorithm according to

5.4. Channel Estimation 45

RP5
(Real)

RP1
(Real)
RP0
(Real)

>>

HLS5
(Real)

HLS5
(lmag)

HLS4
(Real)

HLS4
(lmag)

HLS0
(Real)

HLS0
(lmag)

Lo
ca

l M
em

or
y

2
Lo

ca
l M

em
or

y
1

+
>
>>
>

×× ×

ITP0
(Real)

ITP1
(Real)

ITP5
(Real)

ITP0
(Imag)

ITP1
(Imag)

ITP5
(Imag)

RP5
(lmag)

RP1
(lmag)
RP0

(lmag)

×

>>

-

...

…
..

…
..

>
>

>
>

Figure 5.8 Second context of the channel estimation

Equation 3.29.

Figure 5.9 shows the �rst context for the linear interpolation. Initially, the real part

is loaded into the �rst local memory coupled with the step size. When the linear

interpolation algorithm is done for real part and imaginary part as shown in Figure

5.10, the channel frequency response is transmitted to the main memory for all of

subcarriers because it is needed in the last step for implementation of the channel

equalization. For the purpose of performing the channel equalization, the receiver

needs to have the channel frequency response of all of subcarriers. When the channel

response H̃k of the received pilot is calculated and then stored in the second local

memory, eventually it's necessary to estimate the channel frequency response of the

adjacent subcarriers using linear interpolation algorithm.

5.4. Channel Estimation 46

×

+

Lo
ca

l M
em

or
y

2
Lo

ca
l M

em
or

y
1

+

…
..

…
..

>
>

>
>

>
>

>
> >
>

+

×
+

>>

--

× ×

-

>
>

>
> -

>
>

HLS0
(Real)

HLS0
(Real)

HLS0
(Real)

HLS1
(Real)

HLS1
(Real)

HLS1
(Real)

HLS2
(Real)

HLS2
(Real)

HLS2
(Real)

HLS3
(Real)

HLS3
(Real)

HLS3
(Real)

HLS4
(Real)

HLS4
(Real)

HLS4
(Real)

HLS5
(Real)

HLS5
(Real)

HLS5
(Real)

Mu0

Mu1

Mu31

Mu0

Mu1

Mu12 Mu17

Mu1

Mu0 Mu0

Mu1

Mu12

Mu0

Mu1

Mu31

-

>
>

×

>
>

+

>> >> >> >>

Ch.Est75
(Real)

Ch.Est74
(Real)

Ch.Est61
(Real)

Ch.Est45
(Real)

Ch.Est44
(Real)

Ch.Est43
(Real)

Ch.Est32
(Real)

Ch.Est30
(Real)

Ch.Est0
(Real)

Ch.Est107
(Real)

Ch.Est106
(Real)

Ch.Est76
(Real)

Ch.Est62
(Real)

Ch.Est63
(Real)

Ch.Est31
(Real)

>
>

>
> >
> >
> >
>

Figure 5.9 First context of the Linear Interpolation

×

+

Lo
ca

l M
em

or
y

2
Lo

ca
l

M
em

or
y

1

+

>
>

…
..

…
..

>
>

>
>

>
>

>
> >
>

+

×
+

>>

--

× ×

-

>
>

>
> -

>
>

HLS0
(lmag)

HLS0
(lmag)

HLS0
(lmag)

HLS1
(lmag)

HLS1
(lmag)

HLS1
(lmag)

HLS2
(lmag)

HLS2
(lmag)

HLS2
(lmag)

HLS3
(lmag)

HLS3
(lmag)

HLS3
(lmag)

HLS4
(lmag)

HLS4
(lmag)

HLS4
(lmag)

HLS5
(lmag)

HLS5
(lmag)

HLS5
(lmag)

Mu0

Mu1

Mu31

Mu0

Mu1

Mu12 Mu17

Mu1

Mu0 Mu0

Mu1

Mu12

Mu0

Mu1

Mu31

-

>
>

×

>
>

+

>> >> >> >>

Ch.Est75
(Real)

Ch.Est64
(Real)

Ch.Est46
(Real)

Ch.Est45
(Real)

Ch.Est44
(Real)

Ch.Est33
(Real)

Ch.Est32
(Real)

Ch.Est1
(Real)

Ch.Est0
(Real)

Ch.Est107
(Real)

Ch.Est77
(Real)

Ch.Est76
(Real)

Ch.Est62
(Real)

Ch.Est63
(Real)

Ch.Est31
(Real)

>
>

>
>

>
>

>
> >
>

>
> >
>

>
>

>
> >
>

>
>

Ch.Est31
(lmag)

Ch.Est30
(lmag)

Ch.Est0
(lmag)

Ch.Est32
(lmag)

Ch.Est43
(lmag)

Ch.Est44
(lmag)

Ch.Est45
(lmag)

Ch.Est61
(lmag)

Ch.Est62
(lmag)

Ch.Est63
(lmag)

Ch.Est74
(lmag)

Ch.Est75
(lmag)

Ch.Est76
(lmag)

Ch.Est106
(lmag)

Ch.Est107
(lmag)

Ch.Est76
(Real)

Ch.Est106
(Real)

Ch.Est107
(Real)

Ch.Est63
(Real)

Ch.Est74
(Real)

Ch.Est75
(Real)

Ch.Est45
(Real)

Ch.Est61
(Real)

Ch.Est62
(Real)

Ch.Est32
(Real)

Ch.Est43
(Real)

Ch.Est44
(Real)

Ch.Est0
(Real)

Ch.Est30
(Real)

Ch.Est31
(Real)

>
>

>
> >
> >
> >
> >
> >
>

>
>

Figure 5.10 Second context of the Linear Interpolation

In addition, with respect to Equation 3.30, the demodulated data symbols have to

be equalized after calculating the channel estimation. There is an important point

in this step that should be taken into consideration and it is that in COFFEE RISC

and AVATAR, division operation is not available. Another algorithm required to do

a division operation is Newton-Raphson iteration algorithm [72]. Newton-Raphson

method is an algorithm for seeking the root of an equation. For instance, if there is

a given function of f(x), Newton-Raphson method [72] can be used by the Equation

5.12 to acquire the �rst approximation of its root.

5.4. Channel Estimation 47

xi+1 = xi +
f(xi)

f ′(xi)
, (5.12)

where i is the number of iterations such as i = 0, 1, 2, ..., and xi will be the initial

guess for the root. The function f
′
(xi) is derivative of a function f(xi) and division

operation based on this Equation 5.13 can also be modi�ed to use other purposes.

xi+1 = xi.(2−Dxi) (5.13)

Assuming that �nding 1
D
is desired, we need to �nd the function f(x) whose value

is zero at x = 1
D
. The resulting function is f(x) = 1

x
− D based on Equation 5.13.

where xi is representing the initial guess and D stand for the denominator. Based

on the noisy channel, the denominator is a complex number. Therefore, for more

processing by Newton-Raphson method and in order to map on CGRA Equation

5.13 can be simpli�ed to an integer number as

x+ jy

a+ jb
× a− jb
a− jb

=
(x+ jy)× (a− jb)

a2 + b2
(5.14)

where x+jy stands for received data symbols from FFT block, a+jb is representing

estimated channel response and a − jb signify complex conjugation of the channel

response. In the �rst step, Newton-Raphson method should be mapped on AVATAR

for calculating the value of 1
a2+b2

in order to carry out the channel equalization. Here

according to the Equation 5.13, D is equivalent to (a2 + b2). a stands for the real

part of the channel frequency response and b is representing the imaginary part of

the channel frequency response. The mapping of Newton-Raphson method is shown

in Figures 5.11 and 5.12.

The mapping employs eleven columns of the �rst context and ten columns of the

second context. So as to compute the square values of the real and imaginary parts

of the channel frequency response, in the �rst context, the �rst PEs' row act as

multiplication. These values, then, are added to each other on the second row. Com-

puted results, in the next step, must be multiplied by the initial guess Dxn. Then, 2

is loaded into the local memory as well as results obtained from the previous context

based on Equation 5.13. The local memories in CGRAs are line-readable in order to

be faster and simpler. The values of X and 2 are loaded along with every column.

The �rst row of PEs performs preprocessing of data and with the rest of the rows of

PEs, it can execute the required shift operations, subtractions and multiplications.

Finally, speci�c DMA operations transfer the result of division (1
a2+b2

) back to the

main memory.

5.4. Channel Estimation 48

x

x
x

+

>
>

Lo
ca

l M
em

or
y

2
Lo

ca
l M

em
or

y
1

×

>
>

…
..

…
..

×

>
> + + +

>
> >> >> >>>>

>
>

>
>

× ×

× ×>
>

>
>

>
>

× × × × ×

Ch.Est0
(Real)

Ch.Est1
(Real)

Ch.Est31
(Real)

Ch.Est0
(lmag)

Ch.Est1
(lmag)

Ch.Est31
(lmag)

Ch.Est32
(Real)

Ch.Est33
(Real)

Ch.Est44
(Real)

Ch.Est32
(lmag)

Ch.Est33
(lmag)

Ch.Est44
(lmag)

Ch.Est45
(Real)

Ch.Est46
(Real)

Ch.Est62
(Real)

Ch.Est45
(lmag)

Ch.Est46
(lmag)

Ch.Est62
(lmag)

Ch.Est63
(Real)

Ch.Est64
(Real)

Ch.Est75
(Real)

Ch.Est63
(lmag)

Ch.Est64
(lmag)

Ch.Est75
(lmag)

Ch.Est76
(Real)

Ch.Est77
(Real)

Ch.Est107
(Real)

Ch.Est76
(lmag)

Ch.Est77
(lmag)

Ch.Est107
(lmag)

× ×

+

>
>

×

>
>

×

>>

Y0

Y30

Y31

Y32

Y43

Y44

Y45

Y61

Y62

Y63

Y74

Y75

Y76

Y106

Y107

>
> >
> >
>

>
>

>
>

Figure 5.11 First context of the Newton-Raphson method

x 2 Y31 Y44

x 2 Y1 Y33

x 2 Y0 Y32

>>

-

× ×

D31

D30

D0Lo
ca

l M
em

or
y

2
Lo

ca
l M

em
or

y
1

Y62

Y46

Y45

-

×

D62

D61

D45

-

D107

D106

D76

…
..

…
..

>
>

>
>

>
>

>
>

>
>

>
>-

>
>

>> >>

>
> >
>

>
>

>
>

>
>

Y63

Y64

Y75

Y76

Y77

Y107

>
> >
>

>
> >
>

>
> >>

>
> >>

>
> >
> -

× ×

D32

D43

D44

D63

D74

D75

>
> >
> >
> >
>

>
>

Figure 5.12 Second context of the Newton-Raphson method

In order to perform the channel equalization based on Equation 5.14, the nume-

rator of this equation must be calculated. It is a complex multiplication between

complex conjugation of estimated channel frequency response and the demodulated

data symbols. As demonstrated in Figure 5.13 for executing complex multiplication

in a context, data will be returned from the main memory to the �rst local memo-

ry of AVATAR. During the last context of a channel estimation block as shown in

Figure 5.14, the achieved results from the Newton-Raphson algorithm will be mul-

tiplied by the results of complex multiplication. In this stage, shift and multiplica-

5.5. Symbols Demapping 49

Z31
(Real)
Z30
(Real)

Z0
(Real)Lo

ca
l M

em
or

y
2

Lo
ca

l M
em

or
y

1

…
..

…
..

FFT31
(Real)

FFT1
(Real)

FFT0
(Real)

FFT31
(Imag)

FFT1
(Imag)

FFT0
(Imag)

Ch.Est0
(Real)

Ch.Est1
(Real)

Ch.Est31
(Real)

Ch.Est0
(lmag)

Ch.Est1
(lmag)

Ch.Est31
(lmag)

FFT44
(Real)

FFT33
(Real)

FFT32
(Real)

FFT44
(Imag)

FFT33
(Imag)

FFT32
(Imag)

Ch.Est32
(Real)

Ch.Est33
(Real)

Ch.Est44
(Real)

Ch.Est32
(lmag)

Ch.Est33
(lmag)

Ch.Est44
(lmag)

FFT62
(Real)

FFT46
(Real)

FFT45
(Real)

FFT62
(Imag)

FFT46
(Imag)

FFT45
(Imag)

Ch.Est45
(Real)

Ch.Est46
(Real)

Ch.Est62
(Real)

Ch.Est45
(lmag)

Ch.Est46
(lmag)

Ch.Est62
(lmag)

FFT75
(Real)

FFT64
(Real)

FFT63
(Real)

FFT75
(Imag)

FFT64
(Imag)

FFT63
(Imag)

Ch.Est63
(Real)

Ch.Est64
(Real)

Ch.Est75
(Real)

Ch.Est63
(lmag)

Ch.Est64
(lmag)

Ch.Est75
(lmag)

FFT107
(Real)

FFT77
(Real)

FFT76
(Real)

FFT107
(Imag)

FFT77
(Imag)

FFT76
(Imag)

Ch.Est76
(Real)

Ch.Est77
(Real)

Ch.Est107
(Real)

Ch.Est76
(lmag)

Ch.Est77
(lmag)

Ch.Est107
(lmag)

×

×
>

>

×
>

>

+

-

× ×

×
>

>

×
>

>

+

-

××

×
>

>

×
>

>

+

-

× ×

×
>

>

×
>

>

+

-

××

×
>

>

×
>

>

+

-

×

Z0
(Imag)

Z30
(Imag)

Z31
(Imag)

Z32
(Real)

Z43
(Real)

Z44
(Real)

Z32
(Imag)

Z43
(Imag)

Z44
(Imag)

Z45
(Real)

Z61
(Real)

Z62
(Real)

Z45
(Imag)

Z61
(Imag)

Z62
(Imag)

Z63
(Real)

Z74
(Real)

Z75
(Real)

Z63
(Imag)

Z74
(Imag)

Z75
(Imag)

Z76
(Real)

Z106
(Real)

Z107
(Real)

Z76
(Imag)

Z106
(Imag)

Z107
(Imag)

>
>

>
> >
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

Figure 5.13 Sixth context of the channel estimation

Z31
(Real)

D31

Z0
(Real)

D0Lo
ca

l M
em

or
y

1 …
..

>>

×

Res31
(Real)

Res31

(Imag)
Res44
(Real)

Res44
(Imag)

Res30
(Real)

Res30

(Imag)
Res43
(Real)

Res43
(Imag)

Res0
(Real)

Res0

(Imag)
Res32
(Real)

Res32
(Imag)

Lo
ca

l M
em

or
y

2

Res62
(Real)

Res62
(Imag)

Res61
(Real)

Res61
(Imag)

Res45
(Real)

Res45
(Imag)

…
..

>>

>>

>
> >
>

Z0
(Imag)

Z31
(Imag)

>>

×

Z32
(Real)

Z44
(Real)

D32

D44

Z32
(Imag)

Z44
(Imag)

Z1
(Real)

D1
Z1

(Imag)
Z33
(Real)

D33
Z33

(Imag)
Z64
(Real)

Z45
(Real)

Z46
(Real)

Z62
(Real)

D45

D46

D62

Z45
(Imag)

Z46
(Imag)

Z62
(Imag)

Z63
(Real)

Z75
(Real)

D63

D64

D75

Z63
(Imag)

Z64
(Imag)

Z75
(Imag)

Z76
(Real)

Z77
(Real)

Z107
(Real)

D76

D77

D107

Z76
(Imag)

Z77
(Imag)

Z107
(Imag)

Res63
(Real)

Res74
(Real)

Res75
(Real)

Res63
(Imag)

Res74
(Imag)

Res75
(Imag)

Res76
(Imag)

Res106
(Imag)

Res107
(Imag)

Res76
(Real)

Res106
(Real)

Res107
(Real)

>>

×

>>

>>

>
> >
>

>>

×

>>

×

>>

>>

>
> >
>

>>

×

>>

×

>>

>>

>
> >
>

>>

×

>>

×

>>

>>

>
> >
>

>>

×

>> >> >> >> >> >>>> >> >> >>

Figure 5.14 Seventh context of the channel estimation

tion operations will be used to generate the �nal product. The shift operation is also

required after each multiplication to prevent the data over�ow. Resi is representing

the equalized received data symbols.

5.5 Symbols Demapping

In this section, a decision on the received data symbols should be made with the

help of the decision boundaries after performing the channel estimation block and

equalization. For each received data symbol, the most likely transmitted data bits

5.5. Symbols Demapping 50

In-Phase

Quadrature

Figure 5.15 Decision regions of 64-QAM Gray-coded constellation

must be determined. As previously mentioned, for making the decisions about recei-

ved data bits there are two ways, one is hard decision and another is soft decision.

To execute the symbols demapping of 64-QAM modulation with Gray coded bit

mapping, hard decision will be used.

The transmitted data symbols consist of two real baseband signals, which are inde-

pendent. Therefore, the complex plane can be divided into regions of decision with

each region composed of the set of points that are very close to a certain symbol.

This is called Maximum likelihood detection. Generally, a Gray code can be expres-

sed in which all adjacent constellation symbols di�er by exactly one bit. Figure 5.15

shows how the complex plane is divided into the In-phase part (I) and the Quadra-

ture part (Q), which are equivalent to real (R) and imaginary (I) parts of received

data symbols. Accordingly, in 64-QAM constellation for each data symbol contai-

ning six data bits that might be used for symbols demapping purpose individually.

By hard decision way, in the beginning, the three leftmost bits can be detected based

on the C code that is written for symbols demmaping, as shown in Program 5.2.

5.5. Symbols Demapping 51

Figure 5.15 shows there are eight areas for each three bits (rightmost and leftmost)

after dividing the complex plane into Quadrature and In-phase regions. Meanwhile,

the �rst three bits (Bit1 Bit2 Bit3) are repeated frequently for each region of I-axis

constantly, whereas the last three bits (Bit4 Bit5 Bit6) are similar for each region

of Q-axis. Table 5.3 shows how each constellation point is represented by a 6-bit

symbol composed of three bits each from the In-Phase axis and the Quadrature axis

respectively.

Example. Assume that in the receiver side, '4.8 + 2.8i' is received as a demodula-

ted data symbol instead of '5 + 3i' because of the Additive White Gaussian Noise

(AWGN) channel. In the �rst step, a decision boundary can be made for real and

imaginary parts, respectively. There are eight states (≥ 6, < 6 & ≥ 4, < 4 & ≥ 2,

< 2 & ≥ 0, < 0 & ≥ −2, < −2 & ≥ −4, < −4 & ≥ −6, ≤ −6), which might

happen for each real and imaginary part. As '4.8' is greater than '4', speci�c bits

can be determined: '101' is assigned to the �rst three data bits. Figure 5.15 shows

that received data bits only vary between eight di�erent values, which contains bits

('101000','101001','101011','101010','101110','101111','101101' and '101100') that are

located within the same zone of I-axis. In the �nal step, an imaginary part is detected

in the same way which is equal to '011' in this case.

Table 5.3 64-QAM constellation mapping with gray coded

In-phase Bit1 Bit2 Bit3 Quadrature Bit4 Bit5 Bit6

-7 0 0 0 +7 0 0 0
-5 0 0 1 +5 0 0 1
-3 0 1 1 +3 0 1 1
-1 0 1 0 +1 0 1 0
+1 1 1 0 -1 1 1 0
+3 1 1 1 -3 1 1 1
+5 1 0 1 -5 1 0 1
+7 1 0 0 -7 1 0 0

1 for (j = 0 ; j < data ; j++)

2 {

3

4 // The real section

5

6 i f (OUTPUT_REAL >= 6){

7 bit1[j] = 1; bit2[j] = 0; bit3[j] = 0;

8 }

5.5. Symbols Demapping 52

9 e l se i f (OUTPUT_REAL >= 4)

10 i f (OUTPUT_REAL < 6){

11 bit1[j] = 1; bit2[j] = 0; bit3[j] = 1;

12

13 }

14 }

15 e l se i f (OUTPUT_REAL >= 2){

16 i f (OUTPUT_REAL < 4){

17 bit1[j] = 1; bit2[j] = 1; bit3[j] = 1;

18

19 }

20 }

21 e l se i f (OUTPUT_REAL >= 0){

22 i f (OUTPUT_REAL < 2){

23 bit1[j] = 1; bit2[j] = 1; bit3[j] = 0;

24

25 }

26 }

27 e l se i f (OUTPUT_REAL >= -2){

28 i f (OUTPUT_REAL < 0){

29 bit1[j] = 0; bit2[j] = 1; bit3[j] = 0;

30

31 }

32 }

33 e l se i f (OUTPUT_REAL >= -4){

34 i f (OUTPUT_REAL < -2){

35 bit1[j] = 0; bit2[j] = 1; bit3[j] = 1;

36

37 }

38 }

39 e l se i f (OUTPUT_REAL >= -6){

40 i f (OUTPUT_REAL < -4){

41 bit1[j] = 0; bit2[j] = 0; bit3[j] = 1;

42

43 }

44 }

45 e l se {

46 bit1[j] = 0; bit2[j] = 0; bit3[j] = 0;

47

48 }

49

50

51

52 // The imaginary section

53

54 i f (OUTPUT_IMAGE >= 6){

55 bit4[j] = 0; bit5[j] = 0; bit6[j] = 0;

5.5. Symbols Demapping 53

56 }

57 e l se i f (OUTPUT_IMAGE >= 4)

58 i f (OUTPUT_IMAGE < 6){

59 bit4[j] = 0; bit5[j] = 0; bit6[j] = 1;

60

61 }

62 }

63 e l se i f (OUTPUT_IMAGE >= 2){

64 i f (OUTPUT_IMAGE < 4){

65 bit4[j] = 0; bit5[j] = 1; bit6[j] = 1;

66

67 }

68 }

69 e l se i f (OUTPUT_IMAGE >= 0){

70 i f (OUTPUT_IMAGE < 2){

71 bit4[j] = 0; bit5[j] = 1; bit6[j] = 0;

72

73 }

74 }

75 e l se i f (OUTPUT_IMAGE >= -2){

76 i f (OUTPUT_IMAGE < 0){

77 bit4[j] = 1; bit5[j] = 1; bit6[j] = 0;

78

79 }

80 }

81 e l se i f (OUTPUT_IMAGE >= -4){

82 i f (OUTPUT_IMAGE < -2){

83 bit4[j] = 1; bit5[j] = 1; bit6[j] = 1;

84

85 }

86 }

87 e l se i f (OUTPUT_IMAGE >= -6){

88 i f (OUTPUT_IMAGE < -4){

89 bit4[j] = 1; bit5[j] = 0; bit6[j] = 1;

90

91 }

92 }

93 e l se {

94 bit4[j] = 1; bit5[j] = 0; bit6[j] = 0;

95 }

96 }

Program 5.2 C code of Data Symbols Demapping

54

N0 N1 N2

N3 N4 N5

N6 N7 N8

RISC
D
M
A

D
M
A

D
M
A

D
M
A

TS/FOE/FFT
(5×16 PE)

CE
(5×16 PE)

CGRA CGRA

CGRACGRA
DMA

DMA

D
M
A

D
M
ACGRA CGRA

CGRA

CGRA
TS/FO

E/FFT
(5

×
1

6
 P

E)

TS
/F

O
E/

FF
T

(5
×1

6
 P

E)

TS/FOE/FFT
(5×16 PE)

CE
(5×16 PE)

CE
(5×16 PE)

CE
(5×16 PE)

Stream #1

Stream #2

Stream #3

Stream #4

Figure 6.1 Abridged general view of IEEE 802.11n MIMO receiver on HARP platform.

6. INTEGRATION OF BASEBAND

PROCESSING BLOCKS ON HARP

Figure 6.1 shows the overall architecture for processing MIMO OFDM after integra-

tion over HARP. The CGRAs are used to create application-speci�c accelerators for

the receiver blocks. Also, the size of each template-based CGRA on HARP is shown

in Table 6.1. In the proposed platform for this thesis, the designer can write the

distributed control for the data transfer. The RISC core transfers the con�guration

stream and data for processing to CGRAs where node N4 RISC is responsible for

N1, N3, N5 and N7 CGRAs. By considering the MIMO OFDM as a case-study, the

designed platform is divided into 4 parts including streams 1-4. The RISC core is

instantiated on N4, which sends the data to all the streams. N1, N5, N7 and N3 are

6. Integration of Baseband Processing Blocks on HARP 55

responsible for streams 1 to 4 respectively. To perform TS, FOE and FFT blocks, the

received data will be loaded and transferred to the N1 prior to the system start-up

and transfer of the con�guration stream with the RISC core.

Table 6.1 shows the Clock Cycles (CC) needed for data transfer from data memory

of a node to the other one and to CGRA's local memory while processing at di�erent

stages. Also, using the other CGRA's local memory from Stream 1, CH block can be

performed. Transfer of data from local memory to another local memory is performed

directly. To execute CE block, the output of the FFT is stored to the local memory

of N1 which has to be transferred to the local memory of N0 directly by the DMA.

Moreover, to complete the task of CE, the results should be �rst transferred back to

the data memory of N1 and at a later stage, to the data memory of N4. Table 6.1

shows that for all data transfers from N4 RISC to N1 CGRA, 4,595 CC are required.

Also, correlation can be done in 2,371 CC. When the algorithm of correlation is

executed by N1, the results will return to N4 for calculating the o�set time index.

This process needs 13,738 CC in order to transfer data to data memory from CGRA.

The calculation of the SM as well as �nding the time o�set index can be carried out

in 4,179 CC by the RISC core.

After that, short training symbols must be loaded to the local data memory of N1 in

order to execute complex multiplication. It takes 4,665 CC to load the data from data

memory of N4 to N1. A RISC core is required to perform some parts of FOE block

that needs data exchange between N1 and N4 twice. Therefore, in order to perform

some parts of FOE by N4 RISC core, the result of complex multiplication must come

back to the data memory of N4. Generally, it is possible to divide execution time

for performing FOE in 12,634 and 74 CCs which are executed by N4 RISC core and

the template-based CGRA mapped on N1, respectively. After completing Equation

3.20 by the designed CGRA located at N1 in the last stage, it can be recon�gured at

run-time to perform a 128-point FFT (radix(2-4)) on the results from N1 in 571 CC.

When the FFT execution is completed, a transfer of the results by the DMA of N1

from the local memory of CGRA to the local memory of N0 is performed. Also, the

data symbols have to be transferred to the local data memory of N0 to execute the

channel estimation, which takes 2,585 CC. Once the channel estimation is completed

by N0 in 479 CC, the �nal results should be transferred back to the data memory of

N4 to perform symbols demapping in the last stage. Furthermore, the con�guration

streams of all the slave nodes are loaded in parallel mode to speed-up the execution

time of the entire platform.

Moreover, Table 6.1 shows the number of CC needed to run each block by the

CGRA and the data transfer among the data memories. The table demonstrates

6. Integration of Baseband Processing Blocks on HARP 56

Table 6.1 The required clock cycles at di�erent stages for data transfer and processing. In
the table, D. Mem, Trans and Exe. are referring to Data memory, Transfer and Execution
respectively, while Clock cycles with * sign indicate data transfer from CGRA to Node's
data memory.

Node-to D. Mem to D. Mem Trans. Exe.

-Node D. Mem to CGRA Total Total

N4-N1 (Correlation) 2,680 1,915 4,595 2,371

N1-N4 (SM) - 13,738* - 4,179

N4-N1 47 - - -

N4-N1 (FOE) 1,961 2,704 4665 12,634 (+74)

N4-N1 (FFT) 2,042 1,033 3,075 571

N1-N0 (CE) 1,753 832 2,585 479

N0-N1-N4 - 815* - 4,378

three types of data transfers. The �rst category relates to the transmission of data

from the RISC core data memory to the CGRA's data memory, the second, data

transfer to the local memory banks from the data memory and the third category,

the transfer within a slave node by employing a DMA device. Furthermore, the

total run-time for FOE, TS, CE blocks and FFT will be 12708, 6550, 479, 571

CCs, respectively. Also, RISC core can perform symbols demapping in 4,378 CCs.

Based on the algebraic equations, CGRAs are designed to perform MIMO OFDM

receivers. These CGRAs are made in an optimal way as most of the PEs are used

in each context. The desirable mapping of an application at design time is essential

for performance improvement, power and development time, and region utilization

which need scaling up/down the CGRA.

57

7. MEASUREMENTS AND ESTIMATION

For prototyping purposes, the entire platform is incorporated to a Stratix-V (5SG-

SED8N3F45I3YY) FPGA device. The operating temperatures are considered to be

−40◦C for low and 100◦C for high junction temperature points. With the mentioned

conditions, operation frequencies after the placement and routing are 197.82 MHz

and 187.72 MHz at −40◦C and 100◦C for slow timing model (900mV). On the other

hand, the fast timing model (900 mV) led to higher frequencies of 321.75 MHz at

−40◦C and 284.17 MHz at 100◦C, respectively. It is worth mentioning that a single

clock source has been utilized throughout the work.

Table 7.1 illustrates how the resources are employed for the proposed platform by

presenting the number of Adaptive Logic Modules (ALMs), Memory Bits, Registers

and DSP elements. As it can be seen, about 98 percent of the entire resources are

used in the design stage while a total of 1,164 (59 percent) �18-bit DSPs� resources

are employed which are dependent on the number of �32-bit multipliers� since each

of these �32-bit multipliers� de�ned in PE consists of two �18-bit DSPs� for being

able to be synthesized on FPGA. The mentioned �32-bit multipliers� in each receiver

block as well as a RISC on a NoC node are also provided in Table 7.1.

Post placement and routing information evaluate the platform's power dissipation in

such a way that PowerPlay Power Analyzer Tool of Quartus II 15.0 at 25◦C tempera-

ture with frequency of 200.0 MHz is used. Therefore, the overall estimation process

result is highly reliable. The gate-level netlist of the platform has obtained these

estimations and ModelSim software was used to produce the Value Change Dump

(VCD) �le taht includes the signal transition information when OFDM receiver is

executed. Signal switching activity contributes to the dynamic power and powering

on the FPGA contributes the static power. The estimation tool Quartus II compu-

tes the dynamic power, static power and I/O thermal power dissipation equal to

5,506.4 mW, 1,541.82 mW and 56.68 mW respectively. Accordingly, the total power

dissipation of the FPGA by MIMO OFDM platform is 7.1 W.

From the table 7.2, the dynamic power rises along with the size of CGRA. It should

be noticed that with scaling up the CGRA, the static power remains almost the

7. Measurements and Estimation 58

Table 7.1 Summary of resource utilization based on the breakdown of node-by-node for
Stratix-V (5SGSED8N3F45I3YY) FPGA device

Node ALMs Registers Memory (32-bit Multipliers)

Bits DSPs

N0 (TS/FOE/FFT) 32,237 21,252 2,634,456 (80) 160
N1 (CE) 30,101 16,625 2,632,672 (64) 128
N2 (TS/FOE/FFT) 32,234 21,249 2,634,456 (80) 160
N3 (CE) 30,099 16,621 2,632,672 (64) 128
N4 (RISC) 6,604 5,752 4,194,304 (6) 12
N5 (CE) 30,101 16,623 2,632,672 (64) 128
N6 (TS/FOE/FFT) 32,240 21,254 2,634,456 (80) 160
N7 (CE) 30,100 16,631 2,632,672 (64) 128
N8 (TS/FOE/FFT) 32,239 21,267 2,634,456 (80) 160
NoC 2,592 4,218 - -

258,547 161,492 25,262,816 (582) 1164
Total 98.53% 30.77% 48.05% 59.3%

Table 7.2 Dynamic power of each CGRA node and the NoC.

Node Dynamic Power (mW)

N0 518.51

N1 532.96

N2 521.12

N3 534.18

N4 358.79

N5 537.08

N6 520.17

N7 531.83

N8 515.93

NoC 101.68

Integration Logic 834.17

Total 5,506.4

same. Also, energy consumption for each node is computed as the product of power

dissipation and runtime.

In this case study, the current instance of the platform contains 640 PEs. By taking

into account the operating frequency of 200 MHz and also total power dissipation

of 7.1 W in this model, this HARP instance can provide 128 Giga Operations Per

Second (GOPS) and 0.018 GOPS/mW for Altera Stratix-V chips in 28 nm.

59

8. CONCLUSIONS AND FUTURE WORK

In this thesis work, OFDM receiver blocks are implemented to fully examine func-

tional features and architectural capabilities of a HMA such as HARP platform. The

computational and processing power required by the MIMO OFDM receiver for pa-

rallel and serial algorithms is intensive enough to make them potential candidates

for discovering all HARP design features. In this case, algorithm implementation

involves TS, FOE, FFT, CE and symbols demapping for four parallel streams.

The designed receiver using HARP platform has been prototyped on the FPGA

device which operates at frequency of 200.0 MHz at room temperature of 25◦C.

Furthermore, the HARP platform o�ers a performance of 128 GOPS and 0.018

GOPS/mW.

The designed application-speci�c accelerators satisfy the IEEE 802.11n standard.

Moreover, the simulation results and comparisons with other modern platforms prove

the advantages of maximizing the number of recon�gurable processing resources over

a platform since the integrated CGRAs can be scaled to numerous dimensions.

There are two motivations for the design of HARP, one that deals with the dark-

silicon problem by replacing the underutilized section of the chip with special-

purpose accelerators, and the other which maximizes the number of PEs available

on the chip so that the demand for throughput can be met.

In this thesis, a MIMO OFDM according to IEEE 802.11n standard speci�cation has

been designed by crafting template-based CGRAs. It makes the whole design process

easier for those application developers who are not familiar with VHDL. Moreover,

the computationally intensive tasks have been parallelized which led to achieve a

considerable level of performance. According to the conducted experimental results,

the total power dissipation is equal to 7.1 W for the whole platform. In terms of

resource utilization, in total, 98.53% ALMs, 30.77% Registers, 48.05% Memory Bits

and 59.3% 32-bit DSPs have been utilized. In terms of the required clock cycles for

executing each task by designed CGRAs, we achieved 2,371 CC for TS block, 12,708

CC for FOE block, 571 CC for FFT block and 479 CC for CE block.

8. Conclusions and Future Work 60

As a future work, the HARP architecture can be selected in order to implement

Massive-MIMO OFDM as a candidate for 5G. Moreover, the power dissipation of the

implemented design in this thesis can be mitigated by applying self-aware computing

models.

61

BIBLIOGRAPHY

[1] R. Airoldi, F. Garzia, O. Anjum and J. Nurmi, �Homogeneous MPSoC as

baseband signal processing engine for OFDM systems�, International Sympo-

sium on System on Chip (SoC), 2010, pp. 26-30, Sept. 2010, doi: 10.1109/IS-

SOC.2010.5625562.

[2] D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepley, G. Haugou, F.

Clermidy and D. Dutoit, �Platform 2012, a Many-Core Computing Accelerator

for Embedded SoCs: Performance Evaluation of Visual Analytics Applications�,

in Proc. 49th Annual Design Automation Conference (DAC '12). ACM, pp.

1137-1142, New York, NY, USA.

[3] N. S. Voros, M. Hübner, J. Becker, M. Kühnle, F. Thomaitiv, A. Grasset, P.

Brelet, P. Bonnot, F. Campi, E. Schler, H. Sahlbach, S. Whitty, R. Ernst, E.

Billich, C. Tischendorf, U. Heinkel, F. Ieromnimon, D. Kritharidis, A. Schnei-

der, J. Knaeblein and W. Putzke-Rming, �MORPHEUS: A Heterogeneous Dy-

namically Recon�gurable Platform for Designing Highly Complex Embedded

Systems�, ACM Trans. Embed. Comput. Syst. 12, 3, Article 70, 33 pages, April

2013.

[4] F. Thoma, M. Kuhnle, P. Bonnot, E. M. Panainte, K. Bertels, S. Goller, A. Sch-

neider, S. Guyetant, E. Schuler, K. D. Muller-Glaser and J. Becker, �MORP-

HEUS: Heterogeneous Recon�gurable Computing�, International Conference on

Field Programmable Logic and Applications, FPL 2007, pp. 409-414, August

2007.

[5] M.B. Taylor, �Is dark silicon useful?: harnessing the four horsemen of the coming

dark silicon apocalypse�, In proceedings of the 49th Annual Design Automation

Conference (DAC 2012), pp. 1131-1136, San Francisco, CA, USA.

[6] A. Shrivastava, J. Pager, R. Jeyapaul, M. Hamzeh and S. Vrudhula, �Enabling

Multithreading on CGRAs�, 2011 International Conference on Parallel Proces-

sing.

[7] W. Hussain, R. Airoldi, H. Ho�mann, T. Ahonen and J. Nurmi, �Design of an

accelerator-rich architecture by integrating multiple heterogeneous coarse grain

recongurable arrays over a networkon-chip,� in Proc. IEEE 25th Int. Conf.

Appl.-Speci�c Syst. Archit. Processors, 18-20 Jun 2014, pp. 131-138.

62

[8] C. Brunelli, F. Garzia and J. Nurmi, �A Coarse-Grain Recon�gurable Architec-

ture for Multimedia Applications Featuring Subword Computation Capabili-

ties�, in Journal of Real-Time Image Processing, Springer Verlag, 2008, 3 (1-2):

21-32. doi:10.1007/s11554-008-0071-3.

[9] F. Garzia, W. Hussain and J. Nurmi, �CREMA, A Coarse-Grain Recon�gurable

Array with Mapping Adaptiveness�, in Proc. 19th International Conference on

Field Programmable Logic and Applications (FPL 2009). Prague, Czech Re-

public: IEEE, September 2009.

[10] W. Hussain, F. Garzia, T. Ahonen and J. Nurmi, �Designing Fast Fourier Trans-

form Accelerators for Orthogonal Frequency-Division Multiplexing Systems�,

Journal of Signal Processing Systems for Signal, Image and Video Technology,

Springer, Vol. 69, pp. 161-171, November 2012.

[11] W. Hussain, X. Chen, G. Ascheid and J. Nurmi, �A Recon�gurable Application-

speci�c Instruction-set Processor for Fast Fourier Transform processing�, 2013

IEEE 24th International Conference on Application- Speci�c Systems, Archi-

tectures and Processors (ASAP), pp. 339-345, 5-7 June 2013, Washington, D.C.,

USA.

[12] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh and E. M. C.

Filho, �Morphosys: An integrated recon�gurable system for data-parallel and

computation-intensive applications�, IEEE Trans. Computers, vol. 49, no. 5,

pp. 465-481, 2000.

[13] B. Mei, S. Vernalde, D. Verkest, H. D. Man and R. Lauwereins, �ADRES: An

architecture with tightly coupled VLIW processor and coarse-grained recon-

�gurable matrix�, Field-Programmable Logic and Applications, vol. 2778, pp.

61-70, September 2003, ISBN: 978-3-540-40822-2.

[14] J. M. P. Cardoso and M. Weinhardt, �XPP-VC: A C Compiler with Temporal

Partitioning for the PACT-XPP Architecture�, in Field-Programmable Logic

and Applications: Recon�gurable Computing Is Going Mainstream, Editors:

M. Glesner and P. Zipf and M. Renovell, Lecture Notes in Computer Science,

Springer Berlin Heidelberg, pp. 864-874, Vol. 2438, ISBN: 978-3-540-44108-3,

2002.

[15] W. Hussain, T. Ahonen F. Garzia and J. Nurmi, �Application-Driven Dimensio-

ning of a Coarse-Grain Recon�gurable Array�, 2011 IEEE NASA/ESA Confe-

rence on Adaptive Hardware and Systems (AHS-2011), pp. 234-239, San Diego,

California, USA.

63

[16] P. Bonnot, F. Lemonnier, G. Edelin, G. Gaillat, O. Ruch and P. Gauget, �De-

�nition and SIMD implementation of a multi-processing architecture approach

on FPGA�. In Proc. of Design, Automation and Test in Europe (DATE '08).

ACM, pp. 610-615, New York, NY, USA.

[17] Hennessy JL, Patterson DA (1990) Computer Architecture: A Quantitative

Approach. 3rd edn. Elseview Morgan Kaufmann, San Francisco.

[18] C. Panis, �VLIW DSP Processor for High-End Mobile Communication Applica-

tions�, In Processor Design: System-on-Chip Computing for ASICs and FPGAs,

J. Nurmi, Ed. Kluwer Academic Publishers / Springer Publishers, June 2007,

ch. 5, pp. 83-100, ISBN-10: 1402055293, ISBN-13: 978-1-4020-5529-4.

[19] D. Vassiliadis, N. Kavvadias, G. Theodoridis and S. Nikolaidis, �A RISC archi-

tecture extended by an e�cient tightly coupled recon�gurable unit�. In Proc.

ARC, 2005.

[20] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh and E. M. C.

Filho, �Morphosys: An integrated recon�gurable system for data-parallel and

computation-intensive applications�, IEEE Trans. Computers, vol. 49, no. 5,

pp. 465-481, 2000.

[21] www.altera.com

[22] www.xilinx.com

[23] Altera(2006) Stratix II vs. Virtex-4 Density Comparison. Consulted on 16 Fe-

bruary 2007. Altera white paper at http://www.altera.com

[24] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels, G. Kuzmanov and E. M.

Panainte, �The Molen Polymorphic Processor�, IEEE Transactions on Compu-

ters, vol. 53, pp. 1363-1375, November 2004.

[25] E. M. Panainte, K. Bertels and S. Vassiliadis, �The Molen Compiler for Recon-

�gurable Processors�, ACM Trans. Embed. Comput. Syst., Vol. 6, ISSN: 1539-

9087, New York, USA, February 2007.

[26] W. Hussain, �Design and development from single core recon�gurable acce-

lerators to a heterogeneous accelerator-rich platform�, Tampere University of

Technology, p. 128, ISBN: 978-952-15-3406-5, Tampere, Finland, 27 Nov 2014.

[27] A. Lodi, C. Mucci, M. Bocchi, A. Cappelli, M. De Dominicis and L. Ciccarelli,

�A Multi-Context Pipelined Array for Embedded Systems�, International Con-

ference on Field Programmable Logic and Applications, 2006. FPL06, pp. 18,

Aug. 2006.

64

[28] A. Lodi, M. Toma, F. Campi, A. Cappelli, R. Canegallo and R. Guerrieri, �A

VLIW Processor with Recon�gurable Instruction Set for Embedded Applica-

tions�, IEEE Journal of Solid-State Circuits, Vol. 38, pp. 1876-1886, Nov. 2003,

doi: 10.1109/JSSC.2003.818292.

[29] Chia-Cheng Lo, Shang-Ta Tsai and Ming-Der Shieh, �A recon�gurable archi-

tecture for entropy decoding and IDCT in H.264� VLSI Design, Automation

and Test, 2009. VLSI-DAT 09. International Symposium on, pp. 279-282, April

2009, doi: 10.1109/VDAT.2009.5158149, ISBN: 978-1-4244-2781-9.

[30] P. Kunjan and C. Bleakley, �Systolic Algorithm Mapping for Coarse Grained

Recon�gurable Array Architectures�, Recon�gurable Computing: Architectu-

res, Tools and Applications, Lecture Notes in Computer Science, 2010, Sprin-

ger Berlin Heidelberg, pp. 351-357, Vol. 5992, doi: 10.1007/978-3-642-12133-3

33.

[31] F. Garzia, W. Hussain, R. Airoldi and J. Nurmi, �A Recon�gurable SoC tailored

to Software De�ned Radio Applications�, in Proc of 27th Norchip Conference,

Trondheim (NO), 2009.

[32] Y. Kishimoto, S. Haruyama and H. Amano, �Design and Implementation of

Adaptive Viterbi Decoder for Using A Dynamic Recon�gurable Processor�, in

Proc. Recon�gurable Computing and FPGAs, Dec. 2008, pp. 247-252, doi=

10.1109/ReConFig.2008.39, ISBN: 978-1-4244-3748-1.

[33] S. Nouri , W. Hussain and J. Nurmi, �Evaluation of a Heterogeneous Multicore

Architecture by Design and Test of an OFDM Receiver�, IEEE Transactions on

Parallel and Distributed Systems, VOL. 28, NO. 11, NOVEMBER 2017.

[34] F. Conti, C. Pilkington, A. Marongiu and L. Benini, �He-P2012: architectural

heterogeneity exploration on a scalable many-core platform�, in Proc. of the

24th edition of the great lakes symposium on VLSI (GLS-VLSI '14), pp. 231-

232, ACM, New York, NY, USA.

[35] Roberto Airoldi, �Design and Implementation of Software De�ned Radios on a

Homogeneous Multi-Processor Architecture�, Tampere University of Technolo-

gy, Vol. 1136, ISBN: 978-952-15-3078-4, May 2013, Tampere, Finland.

[36] M. B. Taylor, J. Kim, J. Miller, D. Wentzla�, F. Ghodrat, B. Greenwald, H.

Ho�man, P. Johnson, Jae-Wook Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,

N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe and A. Agarwal, �The

Raw microprocessor: a computational fabric for software circuits and general-

purpose programs,� Micro, IEEE, vol. 22, no. 2, pp. 25-35, 2002.

65

[37] M. B. Taylor, W. Lee, J. Miller, D. Wentzla�, I. Bratt, B. Greenwald, H. Ho�-

mann, P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M.

Frank, S. Amarasinghe and A. Agarwal, �Evaluation of the Raw Microproces-

sor: An Exposed-Wire-Delay Architecture for ILP and Streams�, SIGARCH

Comput. Archit. News 32, March 2004.

[38] R. Hartenstein, �Coarse grain recon�gurable architecture�, ASP-DAC '01

Proceedings of the 2001 Asia and South Paci�c Design Automation Conference,

pp. 564-570, Yokohama, Japan.

[39] R. Airoldi, F. Garzia, O. Anjum and J. Nurmi, �Homogeneous MPSoC as

baseband signal processing engine for OFDM systems�, International Sympo-

sium on System on Chip (SoC), 2010, pp. 26-30, Sept. 2010, doi: 10.1109/IS-

SOC.2010.5625562.

[40] Man-On Pun, M. Morelli and C-C Jay Kuo, �Multi-carrier techniques for

broadband wireless communications: a signal processing perspective�, copyright

c©2007 by Imperial College Press, December 2007.

[41] S. Afrasiabi Gorgani, �Peak Power Reduction In Multicarrier Waveforms�, Mas-

ter Thesis, pp. 77, May 2014, Tampere University of Technology, Tampere, Fin-

land.

[42] J. Heiskala and J. Terry, �OFDM Wireless LANs: A Theoretical and Practical

Guide�, 336 pages, SAMS, 2001, ISBN: 0672321572, Indianapolis, Indiana, USA.

[43] E. Perahia and R. Stacy, �Next Generation Wireless LANs 802.11n and

802.11ac�, 2nd edition, p. 452, 2013, Cambridge University Press.

[44] Supplement to IEEE Standard for Information Technology - Telecommunica-

tions and Information Exchange Between Systems - Local and Metropolitan

Area Networks - Speci�c Requirements. Part 11: Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) Speci�cations: High-Speed Physical

Layer in the 5 GHz Band, IEEE Std 802.11a-1999, 1999, New York, NY, USA.

[45] JERRY R. HAMPTON, �Introduction to MIMO Communications�, Published

in the United States of America by Cambridge University Press, New York,

ISBN: 978-1-107-04283-4, First published 2014.

[46] NADER AL-GHAZU, �A Study of the Next WLAN Standard IEEE 802.11ac

Physical Layer�, KTH School of Electrical Engineering (EE) Signal Processing,

p. 68, 2013, XR-EE-SB 2013:001.

66

[47] A. F. Molisch, �Wireless Communication�, 2nd Edition, John Wiley and Sons

Ltd., p. 884, December 2010, ISBN: 978-0-470-74186-3.

[48] A. Peled and A. Ruiz, �Frequency domain data transmission using reduced

computational complexity algorithms�, Acoustics, Speech, and Signal Proces-

sing, IEEE International Conference on ICASSP '80, Vol. 5, IEEE, April 1980,

doi: 10.1109/ICASSP.1980.1171076.

[49] M. Valkama and M. Renfors, �COMMUNICATION THEORY�, http://www.cs.

tut.�/kurssit/TLT-5206/general.html

[50] L. Liang, J. Shi, L. Chen and S. Xu, �Implementation of Automatic Gain Cont-

rol in OFDM digital receiver on FPGA�, 2010 International Conference on

Computer Design and Applications (ICCDA), vol. 4, pp. 446-449, June 2010.

[51] http://www.mathworks.com

[52] A. Mueen, A. Nath and J. Liu, �Fast approximate correlation for massive time-

series data�, Proceedings of the 2010 ACM SIGMOD International Conference

on Management of data, pp. 171-182, Indianapolis, Indiana, USA, June 2010.

[53] L. Harju and J. Nurmi, �Hardware platform for software-de�ned WCD-

MA/OFDM baseband receiver implementation�, IET Computers and Digital

Techniques, vol. 1, no. 5, pp. 640-652, September 2007.

[54] J.-J. van de Beek, P.O. Borjesson, M.-L. Boucheret, D. Landstrom, J.M. Arenas,

P. Odling, C. Ostberg, M. Wahlqvist and S.K. Wilson, �A time and frequency

synchronization scheme for multiuser OFDM�, IEEE Journal on Selected Areas

in Communications, vol. 17, no. 11, pp. 1900-1914, 1999.

[55] J. Rinne, �Multicarrier Techniques�, http://www.cs.tut.�/kurssit/ TLT-5706/

[56] T. Hwang, C. Yang, G. Wu, S. Li and G.Y. Li, �OFDM and Its Wireless Applica-

tions: A Survey�, IEEE Transactions on Vehicular Technology, vol. 58, no. 4,

pp. 1673-1694, May 2009.

[57] R. G. Lyons, �Understanding Digital Signal Processing�, Boston, MA, USA:

Addison-Wesley, 1999.

[58] W. Hussain, F. Garzia and J. Nurmi, �Evaluation of Radix-2 and Radix-4 FFT

Processing on a Recon�gurable Platform�, in Proc. IEEE International Sympo-

sium on Design and Diagnostics of Electronic Circuits and Systems, pp. 249-254,

Vienna, Austria, April 2010, doi: 10.1109/DDECS.2010.5491775.

67

[59] S. Takaoka and F. Adachi, �Pilot-assisted adaptive interpolation channel estima-

tion for OFDM signal reception�, IEEE 59th Vehicular Technology Conference

(VTC 2004-Spring), vol. 3, pp. 1777-1781, May 2004.

[60] R. Hajizadeh, K. Mohamedpor and M.R. Tarihi, �Channel Estimation in OFDM

system Based on the Linear Interpolation, FFT and Decision Feed-back�, 18th

Telecommunication forum TELFOR, Serbia, Belgrade, November 2010.

[61] S. Coleri, M. Ergen, A. Puri and A. Bahai, �Channel Estimation Techniques

Based on Pilot Arrangement in OFDM Systems�, IEEE TRANSACTIONS ON

BROADCASTING, pp. 223-229, vol. 48, no. 3, 2002.

[62] M. Renfors and M. Valkama, �DIGITAL TRANSMISSION�,

http://www.cs.tut.�/kurssit/TLT-5406/

[63] Filipo Tosato and Paola Bisaglia, �Simpli�ed Soft-Output Demapper for Binary

Interleaved COFDM with Application to HIPERLAN/2�, IEEE International

Conference on Communications, HPL-2001-246, October 2001, New York, NY,

USA.

[64] R.V. Nee and R. Prasad, �OFDM for Wireless Multimedia Communications�,

Copyright 2000 by Artech House, Inc. Norwood, MA, USA.

[65] J. Kylliainen, T. Ahonen and J. Nurmi, �General-purpose embedded proces-

sor cores - the COFFEE RISC example�, Processor Des.: Syst.-Chip Comput.

ASICs FPGAs, J. Nurmi, Ed. Kluwer Academic Publishers Springer Publishers,

ch. 5, pp. 83-100, 2007, doi: 10.1007/978-1-4020-5530-0-5.

[66] C. Brunelli, F. Garzia, C. Giliberto and J. Nurmi, �A dedicated DMA Logic

addressing a time multiplexed memory to reduce the e�ects of the system buss

bottleneck�, in Proc. 18th Int. Conf. Field Program. Logic Appl., 2008, pp.

487-490.

[67] F. Garzia, C. Brunelli and J. Nurmi, �A pipelined infrastructure for the di-

stribution of the con�guration bitstream in a coarse-grain recon�gurable ar-

ray�, in Proceedings of the 4th International Workshop on Recon�gurable

Communication-centric System-on-Chip (ReCoSoC '08). Univ Montpellier II,

July 2008, pp. 188-191, ISBN:978-84-691-3603-4.

[68] J. E. Volder, �The CORDIC Trigonometric Computing Technique�, IRE Tran-

sactions on Electronic Computers, pp. 330-334, September 1959.

[69] P. K. Meher, J. Valls, T-B Juang, K. Sridharan and K. Maharatna, �50 Years of

CORDIC: Algorithms, Architectures and Applications�, IEEE Transactions on

68

Circuits and Systems-I: Regular Papers, vol. 56, no. 9, pp. 1893-1907, September

2009.

[70] J. E. Meggitt, �Pseudo Division and Pseudo Multiplication Processes�,

IBM Journal of Research and Development, pp. 210-226, April 1962, doi:

10.1147/rd.62.0210.

[71] M. D. Greenberg, �Foundations of Applied Mathematics�, Dover Publications,

Inc. Mineola, New York, USA, p. 656, 1978, ISBN: 9780486492797.

[72] V. S. Ryabenkii and S. V. Tsynkov, �A Theoretical Introduction to Numerical

Analysis�, p. 537, Boca Raton, FL, USA: CRC Press, ISBN: 1584886072, 2006.

[73] �Design implementation and optimization quartus-II handbook version 13.1�,

San Jose, CA, USA, Altera Corporation, May 2013.

[74] W. Hussain, R. Airoldi, H. Ho�mann, T. Ahonen and J. Nurmi, �HARP2:

An X-scale recon�gurable accelerator-rich platform for massively-parallel signal

processing algorithms�, Springer's J. Signal Process. Syst., vol. 85, no. 3, pp.

341-353, 2015.

[75] D. Westcott, D. Coleman, P. Mackenzie and B. Miller, �CWAP Certi�ed Wi-

reless Analysis Professional O�cial Study Guide�, Sybex, p. 696, March 2011,

ISBN: 978-0-470-76903-4.

[76] K. Ian and J. Rose, �Measuring the gap between FPGAs and ASICs�, IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 26, no. 2, pp. 203-215,

2007.

[77] F. Garzia, �From run-time recon�gurable coarse-grain arrays to application-

speci�c accelerators design�, Ph.D. dissertation, Tampere University of Tech-

nology (TUT), Tampere, Finland, 2009, p. 125, TUT Publications 860, ISBN:

978-952-15-2280-2.

[78] W. Hussain, J. Nurmi, J. Isoaho and F. Garzia, �Computing Platforms

for Software-De�ned Radio�, p. 240, Springer, ISBN: 978-3-319-49678-8, doi:

10.1007/978-3-319-49679-5, 2017.

[79] https://www.mentor.com/products/fv/modelsim

69

APPENDIXE 1

Simulation of The OFDM

%% OFDM t r an s c e i v e r with IEEE 802.11n %%%%%%%%

%% By Mohammad Hosseinvand %%%%%%%%%%%%%%%%%%%

%% FFT: 128 %64 QAM%%%%%%%%%%%%%%%%%%%%%%%%%

%% Number o f P i l o t s : 6 {−53 ,−25 ,−11 ,11 ,25 ,53}%%

%%

%%

c l e a r a l l ;

c l c ;

%% ∗∗∗ I n i t i a l i z e the parameters ∗∗∗
% 802.11n 40MHz channel : 114 sub−c a r r i e r s (108 data , 6 p i l o t)

Bit_Num = 6 ;

FFT_Num = 128 ;

Carrier_Num = 108 ;

OFDM_per_Symbol = 1 ;

% CP=32;

LI = 19 ; % B/W −11 to +11 p i l o t s , the re are 19 data

Np = 6 ;

Ca r r i e r s = 1 : Carrier_Num+Np; % Total no . c a r r e i r s 114

N_Num = Bit_Num∗Carrier_Num∗OFDM_per_Symbol ;

%% ∗∗∗ Generate the random binary stream ∗∗∗

BitTx = round (rand (1 , (N_Num))) ;

%% ∗∗∗ Modulate (gene ra t e s 64QAM symbols) ∗∗∗

N_Num =length (BitTx) ;

SymQAMtmp = reshape (BitTx , 6 ,N_Num/ 6) . ' ;

SymQAMtmptmp = bi2de (SymQAMtmp, 2 , ' l e f t −msb ') ;

QAMTable = [−7−7j , 7−7j , −1−7j , 1−7j , −5−7j , 5−7j , . . .
−3−7j , 3−7j , −7+7j , 7+7j , −1+7j , 1+7j , . . .

70

−5+7j , 5+7j , −3+7j , 3+7j , −7−1j , 7−1j , . . .
−1−1j , 1−1j , −5−1j , 5−1j , −3−1j , 3−1j , . . .
−7+1j , 7+1j , −1+1j , 1+1j , −5+1j , 5+1j , . . .

−3+1j , 3+1j , −7−5j , 7−5j , −1−5j , 1−5j , . . .
−5−5j , 5−5j , −3−5j , 3−5j , −7+5j , 7+5j , . . .

−1+5j , 1+5j , −5+5j , 5+5j , −3+5j , 3+5j , . . .

−7−3j , 7−3j , −1−3j , 1−3j , −5−3j , 5−3j , . . .
−3−3j , 3−3j , −7+3j , 7+3j , −1+3j , 1+3j , . . .

−5+3j , 5+3j , −3+3j , 3+3 j] ;

SymQAM = QAMTable(SymQAMtmptmp+1);

%% ∗∗∗ Generate the preamble s i g n a l ∗∗∗

fsMHz = 40 ; % sampling f requency

nFFTSize = 128 ;

% f o r each symbol b i t s a1 to a114 are a s s i gned to s ub c a r r i e r

% Short preamble

subca r r i e r Index = [−58:−2 2 : 5 8] ;

S1 = [z e r o s (1 , 6) 0 0 1+1 j 0 0 0 −1−1 j 0 0 0 1+1 j . . .

0 0 0 −1−1 j 0 0 0 −1−1 j 0 0 0 1+1 j 0 0 0 . . .

0 0 0 0 −1−1 j 0 0 0 −1−1 j 0 0 0 1+1 j 0 0 0 . . .

1+1 j 0 0 0 1+1 j 0 0 0 1+1 j 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 0 1+1 j 0 0 0 −1−1 j . . .

0 0 0 1+1 j 0 0 0 −1−1 j 0 0 0 −1−1 j 0 0 0 1+1 j . . .

0 0 0 0 0 0 0 −1−1 j 0 0 0 −1−1 j 0 0 0 1+1 j . . .

0 0 0 1+1 j 0 0 0 1+1 j 0 0 0 1+1 j 0 0 z e r o s (1 , 5)] ;

S1 = sq r t (19/4)∗ (S1) ;

% Long preamble

S2 = [z e r o s (1 ,8) ,1 ,1 , −1 , −1 ,1 ,1 , −1 ,1 ,1 ,1 ,1 ,1 ,1 , . . .
−1 ,−1 ,1 ,1 ,−1 ,1 ,−1 ,1 ,1 ,1 ,1 ,1 ,1 , . . .

−1 ,−1 ,1 ,1 ,−1 ,1 ,−1 ,1 ,−1 ,−1 ,−1 ,−1 ,...
−1 ,1 ,1 ,−1 ,−1 ,1 ,−1 ,1 ,−1 ,. . .

1 ,1 ,1 ,1 ,−1 ,−1 ,−1 ,1 ,0 ,0 ,0 ,−1 ,1 , . . .
1 ,−1 ,1 ,1 ,−1 ,−1 ,1 ,1 ,−1 ,1 ,−1 ,. . .

1 ,1 ,1 ,1 ,1 ,1 , −1 ,−1 ,1 ,−1 ,1 ,−1 ,1 , . . .
1 ,1 ,1 ,1 ,−1 ,−1 ,1 ,1 ,−1 ,1 ,−1 ,1 , . . .

71

−1 ,−1 ,−1 ,−1 ,−1 ,1 ,1 ,−1 ,−1 ,1 ,−1 ,1 ,−1 ,1 ,1 ,1 ,1 , z e r o s (1 , 7)] ;

S1_td = i f f t (S1 , 1 2 8) ;

S2_td = i f f t (S2 , 1 2 8) ;

% STEP3 Adding CP to the time domain preamble symbol 1 and symbol 2

CP = c e i l (FFT_Num/4) ;

S2_tdcp = [S2_td (end−CP+1:end) S2_td S2_td] ;

% Concatenating mul t ip l e symbols to form 10 shor t preamble

S1_tdcp = [S1_td S1_td S1_td (1 : 3 2)] ;

preamble = [S1_tdcp S2_tdcp] ;

%% ∗∗∗ Generate the p i l o t s i g n a l ∗∗∗

train_sym1 = round (rand (1 , (2 ∗OFDM_per_Symbol))) ;

train_sym2 = round (rand (1 , (2 ∗OFDM_per_Symbol))) ;

t = 2∗(train_sym1 .∗2−1)+(train_sym2 .∗2−1);

t r e a l = t (1 : 2 : 2 ∗OFDM_per_Symbol) ;

timage = t (2 : 2 : 2 ∗OFDM_per_Symbol) ;

tra in ing_symbols1 = t r e a l+1 i ∗ timage ;

tra in ing_symbols2 = train ing_symbols1 . ' ;

t ra in ing_symbols = repmat (training_symbols2 , 1 ,Np) ;

p i l o t = [1 , 2 9 , 4 3 , 6 2 , 7 6 , 1 0 4] ; % Star t p o s i t i o n o f p i l o t s

%% ∗∗∗ P/S trans form ∗∗∗

SymQAM1 = reshape (SymQAM, Carrier_Num ,OFDM_per_Symbol) . ' ;

%% ∗∗∗ I n s e r t the p i l o t symbols ∗∗∗

s i g n a l = 1 : Carrier_Num+Np;

s i g n a l (p i l o t) = [] ;

72

SymQAM2(: , p i l o t) = train ing_symbols ;

SymQAM2(: , s i g n a l) = SymQAM1;

SymQAM3 = SymQAM2. ' ;

%% ∗∗∗ IFFT trans form ∗∗∗

SymIFFT=i f f t (SymQAM3,FFT_Num, 1) ;

%% ∗∗∗ GI I n s e r t i o n ∗∗∗

SymTxtmp = ze ro s (FFT_Num+CP,OFDM_per_Symbol) ;

SymTxtmp(1 :CP, :) = SymIFFT(FFT_Num−CP+1:FFT_Num, :) ;

SymTxtmp(CP+1:CP+FFT_Num, :) = SymIFFT ;

SymTx = reshape (SymTxtmp, 1 , (FFT_Num+CP) ∗OFDM_per_Symbol) ;

%% ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Transmitter ends ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%% ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Rece iver s t a r t s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%% ∗∗∗ Packet de t e c t i on ∗∗∗
SymRxdel = [z e r o s (1 ,CP) SymTx(1 : l ength (SymTx)−CP)] ; % Delayed

y = xcorr (SymTx, SymRxdel) ;

[m, n] = max(y) ;

t_of f set_Packet_detect ion = n−1;
SymRx = y(t_of fset_Packet_detect ion+1:end) ;

p l o t (abs (y))

% s e t (gca , ' xt i ck ' , [0 : 1 0 : 1 6 0])

% s e t (gca , ' yt i ck ' , [0 : 5 : 5 0])

yy = f i l t e r (ones (1 ,CP) , 1 , y) ; % Sum−window
yy_abs = abs (yy) ;

pos_s = [] ;

val_s = [] ;

% f o r i i =1:4 ,

% ys=yy_abs ((i i −1)∗(FFT_Num+CP)+(1:FFT_Num)) ; % Search window

73

% [va l est_pos]=max(ys) ;

% val_s=[val_s va l] ;

% pos_s=[pos_s est_pos] ;

% end

%% ∗∗∗ GI Removal ∗∗∗
SymRxtmp = reshape (SymTx,FFT_Num+CP,OFDM_per_Symbol) ;

SymRx = SymRxtmp(CP+1:CP+FFT_Num, :) ;

SymRx = reshape (SymRx, 1 , 1 2 8) ;

%% ∗∗∗ Time o f f s e t e s t imat i on ∗∗∗

Toff = input (' Enter time o f f s e t (f o r example 1 0 0) : ') ;

SymRx2 = [z e r o s (1 , Tof f) ,SymRx] ;

i f l ength (SymRx2)>length (S1_tdcp)

pad = length (SymRx2)− l ength (S1_tdcp) ;
S1_tdcp = [S1_tdcp z e ro s (1 , pad)] ;

e l s e i f l ength (SymRx2)<length (S1_tdcp)

pad = length (S1_tdcp)− l ength (SymRx2) ;
SymRx2 = [SymRx2 ze ro s (1 , pad)] ;

end

out_len = length (SymRx2) ;

out = ze ro s (1 , out_len) ;

tmp = S1_tdcp ;

f o r k = 1 : out_len

out (k) = SymRx2∗tmp ' ;

tmp = [0 tmp (1 : end −1)] ;
end

f i g u r e ()

% abs_corr = abs (out) ;

[maxval , index] = max(out) ;

p l o t (abs (co r r (out)) , ' Linewidth ' , 1 . 5)

ax i s ([0 160 0 80])

[m, n] = max(out) ;

t_offset_Time_estimation = n−1;
p l o t (abs (co r r (out)) , ' Linewidth ' , 1 . 5)

74

%% ∗∗∗ FFT trans form ∗∗∗

SymRx = reshape (SymRx,FFT_Num,OFDM_per_Symbol) ;

SymFFT = f f t (SymRx,FFT_Num, 1) ;

SymFFT = SymFFT(1 : Carrier_Num+Np , :) ;

%% ∗∗∗ Channel Est imation ∗∗∗

% Extract p i l o t s from re c e i v ed s i g n a l

SymFFT1 = SymFFT. ' ;

Rx_training_symbols = SymFFT1(: , p i l o t) ;

Rx_training_symbols0 = reshape (Rx_training_symbols , . . .

OFDM_per_Symbol∗Np, 1) ;

% reshape o r i g i n a l p i l o t s

tra in ing_symbols0 = reshape (training_symbols , 1 ,OFDM_per_Symbol∗Np) ;
tra in ing_symbols1 = diag (tra in ing_symbols0) ;

tra in ing_symbols2 = inv (tra in ing_symbols1) ;

Hls = (tra in ing_symbols2)∗Rx_training_symbols0 ;

Hls1 = reshape (Hls ,OFDM_per_Symbol ,Np) ;

HLs = [] ;

HLs2 = [] ;

f o r k = 1 :Np−1
HLs2 = [] ;

f o r j = 1 :18

HLs1 (: , 1) = (Hls1 (: , k+1)−Hls1 (: , k)) ∗ (j −1)/LI+Hls1 (: , k) ;

HLs2 = [HLs2 , HLs1] ;

end

HLs=[HLs , HLs2] ;

end

HLs = [HLs , HLs2] ;

SymFFT1 = SymFFT. ' ;

SymFFT2 = SymFFT1(: , s i g n a l) ;

SymFFT3 = SymFFT2./HLs ;

SymFFT = SymFFT3 . ' ;

75

%% ∗∗∗ Demodulate ∗∗∗

SymDeQAMtmp = reshape (SymFFT, 1 ,OFDM_per_Symbol∗Carrier_Num) ;

m = r e a l (SymDeQAMtmp) ;

n = abs (r e a l (SymDeQAMtmp)) ;

p = imag (SymDeQAMtmp) ;

q = abs (imag (SymDeQAMtmp)) ;

s = 2∗(m==n)−1;
t = 2∗(p==q)−1;

SymDeQAMtmpshift = SymDeQAMtmp+((−2)∗(s+1 i ∗ t)) ;

b i t 0 = imag (SymDeQAMtmp) ;

b i t 1 = imag (SymDeQAMtmpshift) ;

b i t 2 = r e a l (SymDeQAMtmp) ;

b i t 3 = r e a l (SymDeQAMtmpshift) ;

SymDeQAMtmptmp = ze ro s (Bit_Num,OFDM_per_Symbol∗Carrier_Num) ;

SymDeQAMtmptmp(1 , :)= b i t 0 ;

SymDeQAMtmptmp(2 , :)= b i t 1 ;

SymDeQAMtmptmp(3 , :)= b i t 2 ;

SymDeQAMtmptmp(4 , :)= b i t 3 ;

f o r j =1:(Bit_Num∗OFDM_per_Symbol∗Carrier_Num)

i f SymDeQAMtmptmp(j)>0

SymDeQAMtmptmp(j)=0;

e l s e SymDeQAMtmptmp(j)=1;

end

end

SymDeQAM = reshape (SymDeQAMtmptmp, 1 , . . .

Bit_Num∗OFDM_per_Symbol∗Carrier_Num) ;

76

APPENDIXE 2

Power Spectral Density of The OFDM

c l o s e a l l ;

c l e a r a l l ;

c l c ;

nFFTSize = 128 ;

% f o r each symbol b i t s a . 1 to a .108 are a s s i gned to s ub c a r r i e r

subca r r i e r Index = [−58:−2 2 : 5 8] ;

nBit = 2500 ;

ip = rand (1 , nBit) > 0 . 5 ; % gene ra t ing 1 ' s and 0 ' s

nBitPerSymbol = 114 ;

nSymbol = c e i l (nBit /nBitPerSymbol) ;

ipMod = 2∗ ip − 1 ;

ipMod = [ipMod ze ro s (1 , nBitPerSymbol ∗nSymbol−nBit)] ;
ipMod = reshape (ipMod , nSymbol , nBitPerSymbol) ;

s t = [] ; % empty vec to r

f o r i i = 1 : nSymbol

inputiFFT = ze ro s (1 , nFFTSize) ;

inputiFFT (subca r r i e r Index+nFFTSize/2+1) = ipMod(i i , :) ;

inputiFFT = f f t s h i f t (inputiFFT) ;

outputiFFT = i f f t (inputiFFT , nFFTSize) ;

outputiFFT_with_CP = [outputiFFT (97 : 128) outputiFFT] ;

s t = [s t outputiFFT_with_CP] ;

end

% snr = 0 ; %Use va r i a b l e l ength ;

% z = awgn(st , snr , ' measured ') ;

c l o s e a l l

fsMHz = 40 ;

77

[Pxx ,W] = pwelch (st , [] , [] , 4 0 9 6 , 4 0) ;

p l o t ([−2048 :2047]∗ fsMHz/4096 ,10∗ l og10 (f f t s h i f t (Pxx)) , . . .
'−r ' , ' Linewidth ' , 1) ;

x l ab e l (' Frequency 40 .0 MHz') ;

y l ab e l (' Power s p e c t r a l dens i ty (PSD) ') ;

t i t l e (' Transmit spectrum OFDM (based on 802 .11n) ') ;

l egend ('Without AWGN channel ') ;

%legend ('SNR = 0 dB ')

g r i d on

78

APPENDIXE 3

Binary to Gray Symbol Mapping For 64 QAM Modulation

%% Binary to Gray Symbol Mapping

% Make a vec to r o f 64−QAM
x = (0 : 6 3) ' ;

%%

% Convert the input vec to r (binary order to a Gray−coded)
[y ,mapy] = bin2gray (x , ' qam ' , 6 4) ;

%%

% Convert the Gray−coded symbols , back to a binary o rde r ing us ing

z = gray2bin (y , ' qam ' , 6 4) ;

%%

% Vector | z | are i d e n t i c a l .

i s e q u a l (x , z)

%%

% To make a c o n s t e l l a t i o n p l o t

Mod = comm. RectangularQAMModulator (' ModulationOrder ' , 6 4 , . . .

' BitInput ' , t rue) ;

symbols = c o n s t e l l a t i o n (Mod) ;

%%

% Plot the c o n s t e l l a t i o n symbols , Gray−coded | y | and binary | z |

s c a t t e r p l o t (symbols , 1 , 0 , ' ∗b ') ;
f o r k = 1:64

text (r e a l (symbols (k)) −0.3 , imag (symbols (k))+ 0 . 3 , . . .

dec2base (mapy(k) , 2 , 6)) ;

t ex t (r e a l (symbols (k)) −0.3 , imag (symbols (k)) − 0 . 3 , . . .

dec2base (z (k) , 2 , 6) , ' Color ' , [1 0 0]) ;

end

g r id on

ax i s ([−8 8 −8 8])

	1. POLITECNICO DI TORINO
	Design and Implementation of MIMO OFDM IEEE802.11n Receiver Blocks on Heterogeneous Multicore Architecture

