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Abstract

In this thesis, a multidimensional numerical model is developed to simulate the behavior
of phase change materials. The approach is based on the Link-Wise Artificial Compressibil-
ity Method to solve the velocity field of the fluid domain, finite difference operators for the
temperature field, and the Enthalpy method formulation to treat the phase change physical
status. To verify the model, the numerical results of the mono-dimensional test case are
compared with the ones obtained from the analytical Neumann’s method. The verification
test case is a mono-dimensional domain with simple initial and boundary conditions, also
transport phenomena are omitted from the solution. Afterwards, multi-dimensional sim-
ulations are performed without omitting the effect of the buoyancy force and advection.
First of all, the model is applied to simulate melting in a 3D domain in absence of gravity.
Then, the same simulations are run while considering transport phenomena, to show the
effects of bouyancy in melting problems.
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Nomenclature

T = temperature

t = time

u = velocity

L = latent heat

f = liquid fraction

h = enthalpy

cp = heat capacity at constant pressure

cs = speed of sound

N = nodes

F = external force

g = gravity acceleration

x = space index

w = stencil weight

f = equilibrium function

i, j, k = spatial indices

Greek symbols

κ = (α/cpρ) thermal diffusivity

ρ = density

α = thermal conductivity

ξ = lattice velocity
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δx = mesh size or space step

δt = time step

ν = kinetic viscosity

ζ = artificial compressibility

β = thermal coefficient expansion

ω = relaxation frequency

Subscripts and superscripts

l = liquid and liquid fraction threshold

s = solid

α = stencil position

e = equilibrium function

o = odd part

m = melting temperature

0 = cold wall index

1 = hot wall index

(’) = dimensionless units

(*) = lattice units

Dimensionless numbers

Ste = Stefan number

Ma = Mach number

Pr = Prandtl number

Ra = Raylaigh number

Re = Reynolds number

Fo = Fourier number



Introduction

Nowadays, one of the biggest issue of our society is the contrast between the increasing
energy demand and the depletion of the fossil resource with their negative impact on the
environment. Therefore, one key aspect to solve this problem is the role that renewable
energies such as solar radiation, ocean waves, wind, and biogas have in supplying zero
emissions energy for different applications. However, the intermittency of these renouvable
sources is one of their main issue, that can be surpassed with energy storage systems that
narrow the gap between energy availability and demand by storing different source energy
that can later on be used.

In residential buildings a great amount of energy is used to control the building tem-
perature conditions via different devices. Even if the construction materials have become
more efficient in terms of insulation properties, only if used in conjunction with thermal
energy storages (TES) the building energy footprint decreases with more benefits for the
environment and society. TES are passive systems that use natural mechanisms to exploit
external sources, like the sun’s radiation, to store thermal energy, which is then released
when needed, without relay on electric devices. These type of systems help to increase the
thermal efficiency of the building while reducing the demand of energy, because the energy
sources are "free".

Figure 1. TSE classification.
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TESs are classified according to the type of process and material that are used to store
heat. Thermo-chemical systems work by absorbing and releasing energy while a chemical
reaction occurs inside the material. Meanwhile, for thermal systems energy is stored in
form of sensible or latent heat. For this applications mainly inorganic, organic and pure
materials are used such as paraffis, hydrated salts or metal.

To stock sensible heat the material undergoes a temperature variation while is in contact
with the environment. The amount of "capacity" of the TES is directly related to specific
heat and the total temperature difference inside the material:

Q =
Ú

∆T
mcpdT (1)

Therefore, materials with high specific heats are preferred. A very simple application of
this technologies are concrete walls, that exposed to sun’s radiation heat up and released
the thermal energy during the night.

Thermal energy can be also stored in form of latent heat when phase change material
(pcm) are used. In case of solar TES the sun’s heat is absorbed by a melting material,
that releases energy when it solidifies:

Q =
Ú

∆Ts
mcpdT +mfL+

Ú
∆Tl

mcpdT (2)

This type of latent heat storage solutions offer higher energy storage capacity than sensible
heat systems, and a major part of the sun’s energy is used if compared with photo-voltaic
applications.

The design of solar TES systems with pcm for thermal applications is strongly related
to the computational fluid dynamic approach used to simulate phase change phenomena.
However, even if the market offers different type of software, their computation perfor-
mances can be increased using high performance computing as parallel programming. For
this aim, using the energy equation as reference, a new numerical model is presented where
the Enthalpy method is implemented on the Hybrid Thermal Link-Wise Artificial Com-
pressibility Method (HT LW-ACM) to simulate with high accuracy the velocity field, phase
status and temperature profile of melting materials. In details, this new model is able to
solve phase change problems considering also the presence of the buoyancy force and mass
and momentum mass transport phenomena.

This thesis is articulated in four main chapters. The first describes the phase change
problem through the energy equation. The problem solution is computed developing the
new Enthalpy HT LW-ACM numerical method. Also, the Neumann’s analytical solution
is briefly described. In the second chapter a general description of parallel computing is
presented, highlighting the main computational aspects of the parallel code like the multi-
processors setting or how the memory hierarchy is handled. The third chapter is dedicated
to verify the effectiveness of the numerical approach by comparing its results with Neu-
mann’s on the mono-dimensional test case. Finally, in the last chapter multidimensional
simulations are run to analyze the effect of advection on phase change.



Chapter 1

Modelling phase change materials

1.1 Introduction
Phase change phenomena are classified as moving boundary problems, or Stefan problems,

because they are associated with a time-dependent moving interface, which separates the
two different states of the material. Therefore, the boundary position is a function of time
and space and it is deeply effected by the different thermal phenomena that occur inside
the material.

Furthermore, between two different phases the thermal properties change considerably:
the various thermal mechanism (convection, conduction diffusion and radiation) are related
to the thermophysical properties of the material and its state, resulting in different rates
of energy, mass and momentum. For example, for solid state the diffusion mechanisms
are not feasible and the rate of energy associated to the movement of the material is
null. Therefore, those different thermal phenomena play an important role to solve the
time-dependent moving boundary problems.

Initially, the only solution for the Stefan problems was achieved via analytical methods.
These techniques offer an exact solution for the one-dimensional case of an infinite or semi-
infinite region with simple initial and boundary conditions, where the thermal properties
do not change in time. In reality, phase change problems rarely occur in one-dimension
and the boundary conditions tend to be more complex. Also, this thype of approach
does not assess for the various transport phenomena, that occur simultaneously with other
thermal mechanisms. Thus, these models are not applicable in practice, but they are used
as standard references to validate other type of models.

A different approach to solve the Stefan problems lays on the usage of numerical meth-
ods based either on finite difference or finite element schemes. In fact, finite different
techniques can be used in multidimensional problems with complex geometries because of
their simplicity in formulation and programming. The evolution of numerical models is
deeply related with the age of modern computers: two main eras in these numerical models

13
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can be defined. The first era is based on numerical models developed upon a single equa-
tion and omission of convection, due to the limited power of the earlier computer. In the
second era, the advent of modern supercomputers had led to more sophisticated numerical
models that are able to handle multi-dimensional phenomena with convection, as well as
complex geometry and complex boundary conditions.

1.2 Energy equation
In litterature there are different method to model PCM. The phase change can be de-

scribed in term of energy variation using the energy equation. However, its basic formu-
lation must be adapt to asses also the presence of the phase change interface inside the
material by coupling a new energy term refered as the liquid fraction term.

The basic energy equation is a partial differential equation that describes the heat flux
inside a material due to both advection and conduction phenomena, if a certain temper-
ature gradient is applied. Without taking into account the viscous heating and pressure
effects, it is possible to define the energy equation as:

∂T

∂t
+ u · ∇T = κ∇2T (1.1)

where k∇2T refers to conduction and u · ∇T to advection. This last term refers to the
presence of transport phenomena in the fluid phase. By solving the energy equation the
temperature T (x, t) and the relative heat flux are computed. It is possible to simplify the
energy equation by omitting advection1, so the conduction driven problem is written as:

∂T

∂t
= κ∇2T (1.2)

For phase change phenomena this expression is corrected by adding a new term that
assesses the phase change variation of energy in conduction driven problem. This term is a
function of the latent heat L, the liquid fraction f and its time first derivative ∂f/∂t. The
latent heat is responsible of the energy variation on the interface2, while the liquid fraction
defines the phase status of the material and the simultaneously presence of liquid and solid
on the interface. For the fully solid and liquid regions f = 0, 1 respectively, while around
the interface 0 < f < 1. In particular, the movement of the boundary in the medium is
described by the first time derivative of the liquid fraction. Overall, this term, referred as
the liquid fraction term, describes the reason why during melting the liquid increases and
a subtraction of thermal heat occurs:

∂T

∂t
= κ∇2T − L

cp

∂f

∂t
(1.3)

1This simplified version of (1.1) is a combination of the Fourier’s law with the conservation of energy
2In case of fusion the energy is absorbed, for solidification it is released. The sign of this term is negative

for melting and positive for solidification.
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This equation is valid for both isothermal and non-isothermal phase change transformation.

To be more precise (1.3) must be corrected again by reincorporating the advection terms:

∂T

∂t
+ u · ∇T = κ∇2T − L

cp

∂f

∂t
(1.4)

This equation is the complete differential equation to solve the moving boundary problem
for phase change materials. More in details, the advection term describes the transport
phenomena inside the liquid part of the material. Meanwhile, for the solid part of the
domain only conduction occurs being the velocity field null. The liquid fraction time
derivative is used only on the interface to chose if the material is liquid or solid, also it
accounts the sudden variation in energy.

1.3 Analytical method
Analytical methods have been always considered the most reliable tool in modelling

moving boundary problems, because their solutions are elegant and easy to implement.
However, their formulations is based over some strict constrains: the dimension of the
problem, the initial and boundary conditions and the constant not-variable thermophysical
properties. Analytical solutions are formulated over a one-dimension infinite or semi-
infinite region of space (0 < x < ∞), with simple initial conditions:

{t = 0 : ∀x → T (x, 0) = T0} (1.5)

and easy to understand boundary conditions:

{∀t > 0 : x = 0 → T (x, t) = T0, x = ∞ → T (x, t) = T1} (1.6)

where T1 is the hot wall temperature, corresponding to the first point in space to melt and
T0 is the cold wall temperature as well as the initial temperature. The temperatures are
imposed so that the melting temperature Tm lies between the two: T0 < Tm < T1. Consid-
ering constant thermophysical properties the phase change is driven by the dimensionless
number called Stefan number :

Ste = cp∆T/L (1.7)

∆T = T1 − T0 is the maximum temperature difference that occurs in the material.

For 1D problems the energy equation is applied with some modifications. Transport
phenomena are not considered and the liquid fraction is replaced with the position of the
moving interface X(t). In details, the position of the interface scaled over the total length
of the region corresponds to the liquid fraction of the domain.
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1.3.1 Neumann’s method
The simplest case to model a PCM is the one-phase problem. In this approach (1.5)

is modified so that T (x, 0) = Tm and (1.6) does not change. It is called the one-phase
problems since only the liquid part increases its temperature, while the solid phase is kept
at the melting conditions.

The Neumann’s approach extends the one-phase problem to the two-phase problem. This
new more realistic scenario imposes that the cold wall temperature is equal to the initial
temperatures T0, which is lower than Tm and rises to T1 > Tm and (1.6) does not change.
The problem is formulated ∀t > 0, recalling X(t) the interface position:

• For 0 < x < X(t): solid region

∂T

∂t
= κs

∂2T

∂x2 (1.8)

• For X(t) < x < ∞: liquid region

∂T

∂t
= κl

∂2T

∂x2 (1.9)

• For x = X(t): interface
T (X(t), t) = Tm (1.10)

Imposing the Stefan condition, which corresponds to the thermal equilibrium in the inter-
face for the melting process the differential temperature relation is:

κs
∂2T

∂x2 − κl
∂2T

∂x2 = L

cp

dX

dt
(1.11)

during the melting process the interface absorbs massive latent heat advancing at a cer-
tain speed in the medium. Moreover, for an isothermal melting process the temperature
condition for x = X(t) is:

Tl = Ts = Tm (1.12)

The final analytical solution is written as:

• Solid temperature:
Ts = T0 + (Tm − T0) erfc (x∗)

erfc (x∗
sl)

(1.13)

• Liquid temperature:
Tl = T1 + (Tm − T1) erf (x∗)

erf (x∗
sl)

(1.14)
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where x∗ = x/2
√
κt is the dimensionless position and the value of the dimensionless inter-

face position x∗
sl is obtained solving the transcendent equation3:

Tm − T0

Tm − T1

exp(−(x∗
sl)2)

erfc (x∗
sl)

+ exp(−(x∗
sl)2)

erf (x∗
sl)

−
√
π

Ste
x∗
sl = 0 (1.15)

This analytical solution can only be obtained in a rectangular coordinate system.

Figure 1.1: Temperature evolution of the two-phase problem.

1.4 Numerical method
Numerical methods are a new way to approach differential problems by using finite differ-

ence techniques, which enable to approximate differential operators with simple numerical
expression. The solutions found with those methods are defined as strong numerical solu-
tions that do not depend on the problem space dimension. Therefore numerical schemes
are highly recommended for complex multi-dimensional geometries with complex boundary
and initial conditions[1].

The energy equation can be numerically solved by coupling both conduction and ad-
vection, which was not allowed in the analytical solutions4. This is possible because the
Navier-Stokes equations (INSE) are coupled with the energy equation to compute the hy-
drodynamic fluid properties that assess for transport and advection phenomena.

3Equation (1.15) is the simplified version counting on costant thermophysical properties that do not
change according to phase.

4Recalling that the analytical solution considered the advection term null[2].
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A direct numerical solution of the phase change problem can not be formulated because
the liquid fraction and temperature time derivative are expressed in the same formula.
Moreover, the liquid must computed according to temperature, which depends on the
status of the material, but this is expressed via the liquid fraction. Hence, a latent-heat
evolution method is used to uncoupled this two terms to define the numerical solution.
However, the latent-heat method is defined as a weak numerical solution[1], which avoids
to explicit the position of the moving boundary, but it focuses on reformulating it in a new
way.

To properly asses the numerical solution a particular strategy is outline. First of all, the
continuum space domain is divided into independent nodes. The nodes, better referred as
mesh points, are fixed in space and defined by the following properties: velocity, density,
momentum, temperature, enthalpy and liquid fraction. Secondly, the simulation time is
split into discrete time steps of size δt. Finally, through updating rules, applied at each
time step, the node properties are computed at each time step. Finally, recalling the
discrete temperature and liquid fraction functions, the PCM behavior is modeled.

1.4.1 Problem formulation
The energy equation is formulated according to the physical status of the nodes, through

which the domain is discretized. For fully solid nodes, only conduction occurs, while
advection is added for the fully liquid ones. However, for the mesh points on the interface
the problem is more complex. First of all, they are defined as the nodes where the liquid
fraction f changes in time: for melting it goes from 0 to 1. Secondly, the advection term
can not be applied directly, but it has to be modeled according to the nodes properties. By
setting a liquid fraction threshold fl it is possible to define whether a node on the moving
boundary is treated as liquid or solid. Therefore, the general problem formulation is:

∂tT = κ∇2T full solid node f = 0
∂tT = κ∇2T − ∂tf/Ste interface solid node f ≤ fl

∂tT + u · ∇T = κ∇2T − ∂tf/Ste interface liquid node f > fl

∂tT + u · ∇T = κ∇2T full liquid node f = 1

(1.16)

This problem formulation considers all the thermal effects for a melting PCM. At each
time step the position of the moving interface is not described, but it can be computed
in the data post-processing because it is defined from the liquid fraction, ensuring the
consistency with the latent-heat method.

1.4.2 Spatial mesh
The space domain is divided into an integer number of mesh points N linked to their

nearest neighboring nodes on the mesh via a lattice, which is based over a regular Cartesian
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grid of mesh size δx. This lattice is defined as a stencil of dimensions DnQm, where "Dn" is
the "n dimensions" of the space domain and "Qm" the amount of discrete velocities ξα linked
in a single stencil, with α = 0, ..., Q − 1. The stencil is chosen according to the domain
dimension, for example the D1Q3 stencil is used for mono-dimensional problem, while the
D3Q19 for three dimension applications where the total number of node isN = Lx×Ly×Lz,
and Li is the index total nodes.

Figure 1.2. The D3Q19 stencil - the arrows represent the ξα velocities.[6]

The D3Q19 stencil is represented as a cube of mesh size δx with one central node and
18 neighboring nodes, that are disposed on its surface symmetrically to ensure mass and
momentum conservation. The coordinates of the 19 velocities in this stencil are:

ξα =


(0, 0, 0) α = 0
(±1, 0, 0), (0,±1, 0), (0, 0,±1) α = 1, ..., 6
(±1,±1, 0), (±1, 0,±1), (0,±1,±1) α = 7, ..., 18

(1.17)

1.4.3 Enthalpy method
The Enthalpy method is the latent heat based model to evaluate the liquid fraction

change rate in the energy equation. This method illustrates the physical relation between
liquid fraction, temperature and enthalpy h using the latent heat L to account for the
energy variation on the interface.

The h− T relation is a step function for isothermal phase change problems5:
5Depending on the test case and material properties. For metal a non isothermal phase change occurs

so the h − T function is a linear curve defined between the solidus and liquidus temperature range.
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Figure 1.3. Enthalpy-Temperature curve for isothermal transformation.

h =

csT T < Tm solid phase
clT + L T > Tm liquid phase

(1.18)

For the interface T = Tm, so the enthalpy lays between the solid and liquid enthalpy limits:

csTm ≤ h ≤ clTm + L (1.19)
Assuming constant thermal properties, that do not change regarding the phase status, the
curve slopes of (fig:1.3) are equal, which means that the heat capacities cs and cl are the
same.

The liquid fraction change rate is related to the state change rate, being the liquid
fraction able to express the domain status. Similarly, the enthalpy time evolution is pro-
portional to the state change rate. Therefore, the liquid fraction and enthlapy change are
proportional in the control volume. For melting6, it yields:

dh

dt
= −Ldf

dt
(1.20)

This relation is able to predict the moving boundary with high accuracy depending on the
enthlapy conditions expressed previously (1.18). Finally, the more direct h − f melting
function is formulated as:

f = h− hs
hl − hs

(1.21)

where, hs = cpT0 is the enthalpy of the cold wall and hl = cpT1 the enthalpy of the hot
wall.

Furthermore, the liquid fraction can not be a negative value or superior of 1: for solid
f = 0 and for liquid f = 1. Thus, the previous equation is redefined as:

0 ≤ f = h− hs
hl − hs

≤ 1 (1.22)
6For solidification the sign is changed and became positive.
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The update liquid fraction rule is defined starting at time step t and evolving at t + 1
for each mesh point. The enthalpy formulas (1.18) and (1.19) are expressed in the single
system:

ht+1 =


cpT

t+1 T t+1 < Tm solid phase
cpT

t+1 + L T t+1 > Tm liquid phase
cpT

t+1 + Lf t T t+1 = Tm interface
(1.23)

More in details, for the nodes on the interface the enthalpy is a function of the liquid fraction
computed in the previous time step. Coupling (1.22) and (1.23), where h is substituted
with the current time step by ht+1 and f with f t+1, it yields:

f t+1 =


0 ht+1 < hs

1 ht+1 > hl

(cpTm + Lf t − hs)/(hl − hs) hs < ht+1 < hl

(1.24)

the liquid fraction on the interface is also express as:

f t+1 = cpTm + Lf t − cpT0

cp∆T + L
(1.25)

which is simplified using the dimensionless Stefan number (1.7):

f t+1 = (T t+1 + Tm)Ste+ f t (1.26)

In conclusion, the updating Enthalpy rule for the liquid fraction is formulated in dimen-
sionless quantities as:

f t+1 =


0 T t+1 ≤ Tm − f t/Ste

1 T t+1 ≥ Tm + (1 − f t)/Ste
(T t+1 + Tm)Ste+ f t otherwise

(1.27)

The Enthalpy method is reformulated in the general Enthalpy method algorithm. Assum-
ing to have at disposal the temperature profile evolution T (x, t), the working algorithm is:
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Algorithm 1. Enthalpy method formulation: updating rule
1: for all time step t do
2: for all mesh point x do
3: load T t
4: load f t(x, T )
5: if T t+1 ≤ Tm − f t/Ste then
6: compute f t+1 = 0
7: else if T t+1 ≥ Tm + (1 − f t)/Ste then
8: compute f t+1 = 1
9: else
10: compute f t+1 = (T t+1 + Tm)Ste+ f t

11: end if
12: end for
13: end for

1.4.4 Link-Wise Artificial Compressibility method
By itself, the energy equation only describes the thermal interactions in the medium.

In presence of fluid the heat flux is also function of the hydrodynamic behavior of the
material. Considering an isothermal flow simulation the fluid properties are expressed
in the incompressible Navier-Stoke equations (INSE). Those are solved via a particular
numerical scheme called Link-Wise Artificial Compressibility method (LW-ACM).

The INSE are expressed as:

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u+ F (1.28)

∇ · u = 0 (1.29)
where ρ and ν are the density and kinematic viscosity, p the pressure and F is the external
force per unit mass due to gravity.

The LW-ACM resorts to solve the INSE without the Poison solver process, instead the
continuity equation is replaced by the artificial compressibility equation (ACE):

ζ
∂p

∂t
+ ∇ · u = 0 (1.30)

where ζ is the artificial compressibility, linked to the artificial density ρa by p = ρα/ζ,
yielding cs = 1/

√
ζ. The presence of the pressure time derivative enables for explicit time-

integration. Therefore, the LW-ACM formulation is defined as a discrete formulation of
the ACM, that operates on the spatial mesh based over the DnQm stencil.

In LW-ACM the fluid is represented by the set of Q dependent variables inside the
stencil, which are expressed through the local equilibrium functions {fα} defined at the
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mesh point:
ρ =

Ø
α

fα (1.31)

ρu =
Ø
α

fαξα (1.32)

setting cs = 1/
√

37 the equilibria become:

f (e)
α (ρ,u) = wαρ

3
1 + 3u · ξα + 9

2 (u · ξα)2 − 3
2u

2
4

(1.33)

and the weights wα associated to the velocity set for the D3Q19 stencil are:

wα =


1/3 for α = 0
1/18 for α = 1, ..., 6
1/36 for α = 7, ..., 18

(1.34)

Expressing the odd part of the equilibrium functions it is possible to simplify the updating
rule as:

f (e,o)
α (ρ,u) = 1

2
1
f (e)
α (ρ,u) − f (e)

α (ρ,−u)
2

(1.35)

Therefore, the updating rule is expressed as:

fα(x, t+ 1) = f (e)
α (x− ξα, t) + 2

3
w − 1
w

4 1
f (e,o)
α (x, t) − f (e,o)

α (x− ξα, t)
2

(1.36)

where the kinematic diffusivity is related to the relaxation frequency w:

ν = 1
3

3 1
ω

− 1
2

4
(1.37)

this last relation is also expressed as 1 − 6ν = 2
1
w−1
w

2
.

To sum it up, the LW-ACM is a new approach to solve the INSE modified via the ACE,
which operates on the DnQm lattice to simulate isothermal flows, since the equilibrium
functions are temperature independent. The LW-ACM is only applied on the mesh points
that are fluid, whether for the solid part of the material the velocity is null and the density
is kept constant regarding the temperature gradient.

From an implementation point of view, the updating rule is summarized in the general
LW-ACM algorithm formulation. The algorithm is been developed to keep at lowest the
request for the computational power. Hence, at each time step only ρ, u are store.

7To be consistent with the sound speed in the acoustic scaling.
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Algorithm 2. LW-ACM general single step formulation
1: for all time step t do
2: for all mesh point x do
3: for all index α do
4: apply the boundary conditions
5: load ρ(x− ξα, t) and u(x− ξα, t)
6: compute (1.33): f (e)

α (x− ξα, t)
7: compute (1.35): f (e,o)

α (x− ξα, t)
8: end for
9: for all index α do
10: compute (1.36): fα(x, t+ 1)
11: end for
12: compute (1.31) and (1.32): ρ(x, t+ 1) and u(x, t+ 1)
13: end for
14: end for

1.4.5 Hybrid thermal LW-ACM
The Hybrid thermal (HT) method is a numerical scheme implemented on the isothermal

LW-ACM to model the temperature evolution inside the control volume according to all
thermal phenomena. With this new approach the fluid behaviors are described under the
presence of gravity and temperature gradient in the domain.

The energy equation is simplified with finite difference schemes[6] that operate on the
same grid points of the LW-ACM. Using i, j, k as the mesh indices, and t the time index,
for the D3Q19 the temperature time dependent operator is expressed as:

∂̃tTi,j,k = T ti,j,k − T t−1
i,j,k (1.38)

for conduction, its operator ∇2T is simplified in:

∇̃2T = 2(T ti+1,j,k + T ti−1,j,k + T ti,j+1,k + T ti,j−1,k + T ti,j,k+1

+ T ti,j,k−1) − 1
4(T ti+1,j+1,k + T ti−1,j+1,k + T ti+1,j−1,k + T ti−1,j−1,k

+ T ti,j+1,k+1 + T ti,j−1,k+1 + T ti,j+1,k−1 + T ti,j−1,k−1 + T ti+1,j,k+1

+ T ti−1,j,k+1 + T ti+1,j,k−1 + T ti−1,j,k−1) − 9T ti,j,k

(1.39)

while, for advection, which is defined using u · ∇T . Where u = (ux, uy, uz) is the velocity
vector of the mesh point and the temperature divergence is expressed as:

∂̃x,y,zT
t
i,j,k = T ti+1,j,k − T ti−1,j,k

− 1
8(T ti+1,j+1,k − T ti−1,j+1,k + T ti+1,j−1,k − T ti−1,j−1,k

T ti+1,j,k+1 − T ti−1,j,k−1 + T ti+1,j,k−1 − T ti−1,j,k−1)

(1.40)
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For the D3Q19 stencil, the numerical solution of the energy equation is formulated as:

T t+1
i,j,k = (1 − 9κ)T ti,j,k + 2κ(T ti+1,j,k + T ti−1,j,k + T ti,j+1,k + T ti,j−1,k + T ti,j−1,k + T ti,j,k+1

+ Ti,j,k−1) − 1
4κ(T ti+1,j+1,k + T ti−1,j+1,k + T ti+1,j−1,k + T ti−1,j−1,k + T ti+1,j,k+1 + T ti−1,j,k+1

+ T ti+1,j,k−1 + T ti−1,j,k−1 + T ti,j+1,k+1 + T ti,j−1,k+1 + T ti,j+1,k−1 + T ti,j−1,k−1)

− uxti,j,k(T ti+1,j,k − T ti−1,j,k − 1
8(T ti+1,j+1,k − T ti−1,j+1,k + T ti+1,j−1,k

− T ti−1,j−1,k + T ti−1,j,k+1 − T ti−1,j,k−1 + T ti+1,j,k−1 − T ti−1,j,k−1))

− uyti,j,k(T ti,j+1,k − T ti,j−1,k − 1
8(T ti+1,j+1,k − T ti+1,j−1,k + T ti−1,j+1,k

− T ti−1,j−1,k + T ti,j+1,k+1 − T ti,j−1,k+1 + T ti,j+1,k−1 − T ti,j−1,k−1))

− uzti,j,k(T ti,j,k+1 − T ti,j,k−1 − 1
8(T ti+1,j,k+1 − T ti+1,j,k−1 + T ti−1,j,k+1

− T ti−1,j,k−1 + T ti,j+1,k+1 − T ti,j−1,k+1 + T ti,j+1,k−1 − T ti,j−1,k−1))
(1.41)

More in details, the advection phenomenon occurs when the fluid is exposed to a tem-
perature gradient and under the action of the buoyancy force F . Physically, the thermal
gradient is responsible of the local variation of density inside the fluid, while the external
force induces transport phenomena.

In solid region, since u = 0 and being the density constant, the advection term of the
energy equation is null.

The external force per unit of mass F is expressed as:

F = −β(T − Ta)g (1.42)

where β is the thermal coefficient expansion, T the local temperature and Ta the fluid
average temperature, g is the external acceleration of the fluid due to gravity.

On the LW-ACM the implementation of F 8 is realized by a new additional term in
(1.36):

fFα (x, t+ 1) = fα(x, t+ 1) + f (e,o)
α (ρ(x, t),F (x, t)) (1.43)

The numbers of computation steps required to perform the HT LW-ACM confronted with
the isothermal case are only two. The first is the correction of the equilibrium functions
and the computation of the buoyancy force, the second is the coupling of the temperature
operators to compute the temperature of the mesh points. Therefore, this new approach
does not increase the complexity of the algorithm and the request of computation power.
Also, the only variable to be stored are: the temperature, density and velocity at each time
step for all the nodes.

8In the INSE the external force is defined, but in the previous LW-ACM this term was not expressed
because the method is isothermal.
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Algorithm 3. HT LW-ACM general formulation
1: for all time step t do
2: for all mesh point x do
3: for all index α do
4: apply the boundary conditions
5: load T (x− ξα, t), ρ(x− ξα, t) and u(x− ξα, t)
6: compute (1.43): f (e)

α (x− ξα, t) and f (e,o)
α (x− ξα, t)

7: compute (1.41): T (x, t+ 1)
8: compute (1.42): F
9: compute fα(x, t+ 1)
10: end for
11: compute ρ(x, t+ 1) and u(x, t+ 1)
12: end for
13: end for

Enthalpy Hybrid Thermal LW-ACM
The HT LW-ACM does not solve the phase change problem. Its numerical solution can

only be applied for solid or liquid domain. In fact, the temperature for the fully solid or
liquid mesh points is computed via (1.41). But, for the melting nodes, which are partially
solid or fluid, the Enthalpy method is implemented on the HT LW-ACM to model PCMs.

The general phase change solution is defined using (1.16), where the conduction and
advection terms are already expressed with (1.39) and (1.40). The temperature time
derivative is solved by a simple finite difference scheme, that is also used to express the
time dependent liquid fraction term ∂tf :

∂tf = f ti,j,k − f t−1
i,j,k (1.44)

The values of the liquid fraction for the nodes on the moving boundary is expressed in
(1.27) as:

f t = (T t + Tm)Ste+ f t−1 (1.45)
It is important to notice that the updating Enthalpy rule is applied after the temperature
is been computed for all the mesh points at the current time step.

To solve the energy equation, for solid and liquid nodes the temperature time solution
is based on (1.41), which is extended to the melting nodes by coupling the liquid fraction
term in the temperature expression T t+1

i,j,k = T (x− ξα, t):

T t+1
i,j,k = T (x− ξα, t) − 1

Ste
(f ti,j,k − f t−1

i,j,k) (1.46)

The time relation T − f is achieved by coupling the liquid fraction effect on temperature
with one time step of difference.

The general formula T (x − ξα, t) is modified according to the nodes phase status,
recalling null the advection term for solid nodes. Meanwhile, on the interface the partially
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melted nodes are treated as solid or liquid based on their liquid fraction. If f ≤ 0.5 the
node is solid, otherwise liquid based on the liquid fraction threshold fl = 0.5.

1.4.6 Boundary conditions

For the boundary nodes the link-wise formulation is modified to asses the presence of
the walls through which heat is exchange. The boundary conditions are split between the
geometrical boundary conditions and the thermal boundary conditions.

The first are applied only in presence of liquid boundary mesh points to assess the fluid
interaction between the nodes and the walls. By contrast, the wall boundary conditions
are not applied in case of solid nodes.

The geometrical boundary conditions are simulated using the no-slip boundary condi-
tions: the walls are located halfway between two consecutive nodes and aligned along the
mesh. The nodes of the stencil outside the control volume are counted as solid. In this case
the modified bounce-back rule is applied, which consist in bouncing back the data between
the solid and fluid nodes.

The ideal bounce back situation consists in two main step. The first is the streaming
step, where the equilibrium functions are sent to the solid nodes. Afterwards, the collision
step is performed on the solid node data. The new calculated equilibrium functions are
then bounced back to the liquid mesh points in a streaming process. By aligning the wall
halfway in the stencil, the two steps are summarized in a single operation: the equilibrium
functions travel half way to the wall and after colliding are bounced back of the same
distance to the central mesh point. Therefore, only two streaming process will take place.

Figure 1.4. Bounce back graphical explanation for the D3Q19 along the x direction: the
continues arrows represent the streaming step, the hatched ones the collision
step. In black the in-wall nodes, and in white the domain mesh points.
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Finally, the bounce back operator BB(α) is defined for boundary fluid mesh points xf
as:

fBB(α)(xf , t) = f (e)
α (xf , t) +

3
2 − 2

ω

4
f

(e,o)
BB(α)

(xf , t) (1.47)

Furthermore, the equilibrium functions are bounced back from the wall nodes to their
symmetrical nodes inside the lattice. For example, in the D3Q19 stencil, fBB(2)(xf , t) is
computed using f1(x, t). Therefore, due to the highly symmetry of the stencil node 1 is
bounced back in 2 and vice-versa, 3 with 4, 5 with 6 and so on.

Generally, the bounce back operations is performed when a liquid node and a solid
node interact in the lattice, so this rule is also applied when a solid node is in contact with
a liquid node on the phase change interface.

The thermal boundary conditions are on the second-order interpolation scheme. Refering
to the nodes on the lattice, if the node lays outside the domain is temperature is set
according to the thermal wall conditions and used in (1.41). For isothermal walls, the
in-wall node temperature is Twall, while for adiabatic conditions the in-wall temperature is
computed using a linear function to interpolate the value of temperature.

1.4.7 Main algorithm
The main algorithm is the procedure that is followed to properly solve the phase change

problem with the Enthalpy HT LW-ACM. The algorithm main focus is to keep at lowest
the number of computational steps required and to use efficiently the computation power.

The Enthalpy method implementation on the HT LW-ACM is realized by adding a first
step in (3), in which the liquid fraction variation ∆f is computed according to (1.45). If
this value differs from zero then the node is melting, and based on the fl is chosen to be
treated as liquid or solid. Afterwards, temperature, velocity and density are computed
according to the previous conditions. Finally, the liquid fraction at the current time step
is computed.

Overall, in the final algorithm the additional steps increase the request for storing
and loading values, without increasing the computation demands. Also, this algorithm is
highly suitable for parallel computing techniques, where the temperature and fluid values
are computed in each mesh points simultaneously. This procedure decreases the computing
time requirement, but it enhances the request for more complex and powerful processing
units.
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Algorithm 4. Enthalpy HT LW-ACM general formulation
1: for all time step t do
2: for all mesh point x do
3: for all index α do
4: apply the boundary conditions
5: load T (x− ξα, t), ρ(x− ξα, t) and u(x− ξα, t)
6: load f t and f t−1

7: compute ∆f = f t − f t−1

8: if f t ≤ 0.5 then
9: compute T t+1 = T (x− ξα, t) − 1

Ste
∆f

10: impose u = 0 and ρ = 1
11: elsef t > 0.5
12: compute T t+1 = T (x− ξα, t) − 1

Ste
∆f

13: compute fFα (x, t+ 1)
14: compute ρ(x, t+ 1) and u(x, t+ 1)
15: end if
16: end for
17: compute f t+1

18: end for
19: end for

1.4.8 Physical and lattice units

The proposed solution of the phase change problem is based on the implementation of the
Enthalpy and Hybrid Thermal method over the LW-ACM. In the link-wise formulation the
units of quantities defined directly on fi are defined as mesh-dependent quantities called
lattice units, because the equilibrium functions are computed on the lattice. These mesh-
dependent units are not the proper choice to model PCMs, because as the mesh size tends
to zero so the lattice values are affected: for instance the mesh dependent velocity fields
u = q

i vifi/
q
i fi tends to zero as the mesh spacing vanishes. Therefore, to solve this

problem, the corresponding mesh-independent physical units are computed using aimed
scaling techniques.

The lattice units quantities are used to perform the computations and only during the
post-processing phase the corresponding mesh-independent physical units are computed9.
To this aim, the energy equation is formulated in its lattice units via the acoustic scaling,
where the physical units are scaled first in the dimensionless values and then into the
corresponding lattice units.

9The post-processing phase is not necessary since the finite-difference formulation of this method can
be done directly in physical units.
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Physical Dimensionless(’) Lattice(*)
u = α/L 1 Ma/

√
3

L 1 N

t Fo = κt/L2 FoN
√

3/Ma

ν Pr MaPrN/
√

3
κ 1 MaN/

√
3

δx 1/N 1
δt Ma/(N

√
3) 1

cs 1/Ma 1/
√

3
T (T − T0)/∆T (T − T0)/∆T

Table 1.1. Acoustic scaling table.

Applying this scheme the energy equation becomes:

∂T (∗)

∂t(∗) + u(∗) · ∇(∗)T (∗) = κ(∗)∇2(∗)T (∗) − 1
Ste

∂f

∂t(∗) (1.48)

where the (∗) is not used to simply the notation in the scaled formulas. From this scaled
energy equation, the phase change problem is formulated as a function of the number of
nodes N of the spatial mesh and the various dimensionless numbers. Meanwhile, the liquid
fraction is not scaled in lattice units, since it is a dimensionless value. The buoyancy force
its scaling formula is scaled using:

g(∗)β(∗) = Raν2

PrN3∆T = RaMa2

3N∆T (1.49)



Chapter 2

HPC: CUDA

2.1 Introduction

The term High Performance Computing, HPC, refers to the practice of aggregating
several technologies and system software to solve computational problems with high per-
formances in the order of PetaFLOPS1. In HPC the computational resources are optimized
effectively to enhance the computation power and decrease the simulation time using Par-
allel Computing.

Parallel Computing is a way to execute many calculations or processes concurrently
to effiecently work with large data sets. Its primary objective is to increase the available
computation power for faster simulations, this is achieved by dividing the workload in small
chunks or components, which are concurrently executed at the same time. The results
are then recollected and coupled together. However, the main issue of this procedure is
related to the type of problems: the more the problem can be parallelized the more HPC
and Parallel Computing become the most reliable tools to solve it. For example, CFD
simulations are highly parallelized due to the large data-set required to solve them.

HPC evolution is linked to the increasing demand for processing speed and power. In
order to meet these requests, manufacturers, meanly Intel and AMD, started to develop
CPU microprocessor architectures that have not satisfied the computational performance
requested. To fill this gap, in 2006 NVIDIA firstly released the free CUDA free framework2

for parallel computing on NVIDIA GPUS. Therefore, GPUs have emerged as highly par-
allel, multithreaded, manycore processor with high computational horsepower recalled as
General Purpose GPUs (GPGPUs).

1PetaFLOPS is the acronym of: 1015 FLoating Point Operations Per Second.
2Nowadays its release is free as an open-source framework.

31
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Figure 2.1. CPU and GPU layout comparison (In green the transistors).[11]

More in details, the reason behind the GPGPU triumphs over the CPU it is based
on how data are handled. The GPU dedicates more transistors3 to data processing by
offering a compute-intensive, highly parallel computations with high arithmetic intensity4,
with less flow control and less execution time due to its local memory. Meanwhile, the
CPU is responsible of data caching and flow control, having less transistors dedicated to
data processing.

2.2 CUDA
Compute Unified Device Architecture (CUDA) is a general purpose parallel computing

platform and programming model for parallel computing developed to work on NVIDIA
GPUs. CUDA allows the user to develop the program in C5 as the main language with
minimal set of language extensions required. The main three key abstractions fo NVIDIA
are: the hierarchy of thread groups, shared memories and barrier synchronization.

2.2.1 Architecture and Hardwre
The architecture model of parallel programming6 is based over a strict hierarchy, this

helps to properly handle the fluxes of data that move between the different hardware
components. A CPU-based Host controls different Compute Devices as CPUs and GPUs.
Each of them is made by multiple Compute Units and within these are multiple Processing
Elements. At the deeper level the processing elements execute the Kernel, which represents
a given instruction.

3Which represent the physical computing cores.
4The ratio of arithmetic operations to memory operations.
5Also other programming environments can be use, like FORTRAN.
6i.e. CUDA and OpenCL.
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NVIDIA hardware definitions may change according to different documents: the com-
puting units are called "Stream Multiprocessor" (SMs) or "CUDA cores", meanwhile the
processing elements can be defined as "threads". Never the less, the architecture model
and its hardware hierarchy remain untouched. NVIDIA defines a CUDA kernel as a C
functions, executed in parallel by the threads.

Figure 2.2. CUDA hierarchy.[7]

2.2.2 Execution Model
The execution model is the way the various devices interact in terms of data flows and

computation tasks. At the top level the Host uses the CUDA API platform to query
and select the compute device. Then, it submits the work instructions and it manages
the workload across the different devices7. Meanwhile, at the lower level, in the heart of
parallel computing, kernels8 are run over each thread. This top level model can be recall
as the execution hierarchy.

At the lower level, in the heart of CUDA code, kernels are executed in each processing
unit over a N-dimensional computation domain. This domain, or (CUDA) grid, is partition
into several work-groups, called by NVIDIA thread blocks or blocks. Within a single block
a number of independent elements of execution called work-item or (CUDA) threads are
grouped; within a work-group a thread has a unique ID accessible through the kernel.
When a kernel is launched the data structure is partition into several blocks of threads
that run cooperatively in parallel the instructions.

The lower execution model guides the programmers to split the problem into sub-
problems that are solved independently in parallel work-groups. Inside each block a finer
partition of the sub-problem is solved cooperatively in parallel by all threads. In each block

7The Host interacts with the GPUs via a code of instructions made in C language.
8CUDA kernels are written in a specific language, that can be refer as CUDA code.
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Figure 2.3. CUDA Grid.[11]

the execution is independent form each sub-regions. Therefore, it is possible to see that
at the lower level a threads hierarchy is present, that helps to increase the computation
performances.

NVIDIA GPU parallelism can be recalled as: "fine-grained9 data parallelism and thread
parallelism, nested within coarse-grained data parallelism and task parallelism"[11]. In
paralleling computing a fine-grained parallelism and thread parallelism refers to a frequent
data transfer between the processors, with small tasks in terms of code size and execution
time. Meanwhile a coarse-grained data parallelism and task parallelism means that data
communication is infrequently and takes places only after larger amounts of computation.

Having described previously the top and lower level framework, the basic pipeline for a
GPGPU CUDA application is outlined:

9granularity is the amount of computation in relation to communication (or transfer) of data
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1. The CPU host defines a N-dimensional computation region over the DRAM memory
to set the index of the computation domain used to enumerate the work-groups and
the work-items.

2. The host defines a group of work-items into work-groups, sharing the same local
memory and working concurrently in the compute unit.

3. The hardware will load the DRAM memory in the GPU RAM and execute each block
following the work queue.

4. The multiprocessor will execute only 32 threads at the time10, when the work-group
contain more threads a serialization will occur, effecting the local memory consistency.

The CUDA execution model reflects the capability of the GPU threads to be organized
into working-groups sharing the same data-structure and local memory. Overall, this helps
to manage the workload of the GPU and the frequent communication inside of it between
the processors. Overall, this execution model reduce the working time and increase the
GPU performances.

2.2.3 Scalable Programming Model
The latest multicore CPUs and manycores GPUs technologies aim to develop system with

a large number of parallel processors. Thus to follow the increasing number of computing
units available, the application softwares are becoming much complex in order to scale the
massive parallelism request. Fortunately, CUDA parallel programming model is not effect
by this issue, because it is design to maintain a familiar standard programming close to C.
Hence, the same CUDA program can be executed with two different GPUs, with different
number of SMs, with the same final results, but in terms of performances, the higher are
the SMs in the GPU the lower is the computational time required.

Having a scalable programming model like CUDA involves that the CPU host must
invoke a specific kernel that is used to enumerate, organize and distribute the threads
into the different blocks to create the CUDA grid. Also, while this program scalability is
executed a memory partitions is run to control the data flows inside the GPU. As thread
blocks terminate their task, new blocks are launched on the vacated multiprocessors.

10NVIDIA calls them "warp group".
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Figure 2.4. Scalability model.[11]

2.2.4 Hardware Implementation
Inside a multiprocessor unit, as a GPU, thousand of threads must be managed with

unique architectures. According to the Flynn’s taxonomy, it is possible to distinguish four
parallel architectures based on how the Instruction and Data Streams are handled. These
two streams can be: Single or Multiple. By combining all the possibility, four different
classification are available:

(a) Single instruction, single data (SISD)

(b) Single instruction, multiple data (SIMD)

(c) Multiple instruction, single data (MISD)

(d) Multiple instruction, multiple data (MIMD)

CUDA is based on the SIMD architecture. In this technology a single identical instruction
is run over the threads that will execute the same code simultaneously with different data.
In SIMD the data are store in blocks that are loaded in a single operation. Therefore,
this architecture reduces the computational time considerably compared with standard
CPU. Furthermore, threads are executed in groups of 32 parallel threads called warps. In
the warp the threads have the same program address with their own specific instruction
address counter and register state, being fee to branch and run independently.
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ù
Figure 2.5. SIMD scheme.[11]

The NVIDIA warp group organization forces full computational efficiency only when all
32 threads work simultaneously. This limitation is reflected on the global problem work
sizes, since the work-groups must fit evenly into the entire data structure. Furthermore,
the work-group size must be less than the maximum threads that can work concurrently
within a work-group11. If this condition is not achieved the host program will crash 12.

2.2.5 Memory Hierarchy
The memory hierarchy is structured in order to efficiently organize the parallel computa-

tional task. Each CUDA threads can access data from different memory space. Each thread
has a private local memory, while each block has a shared accessible memory dedicates to
the threads of the block during the execution routine. All threads have access to the same
global memory and to two additional read-only memories: the constant and texture mem-
ory spaces. More in details, the memeoriy accesses are optimized for their memory usages.
All of them are persistent when kernel are launched by the same application.

11The CL_KERNEL_WORK_GROUP_SIZE flag.
12In the worst case scenario the OS can crash.
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Figure 2.6. Memory hierarchy.[11]

2.2.6 Heterogeneous Programming
CUDA is defines as a "Heterogeneous Programming" framework because it uses more than

one type of processor or core to execute the program. In fact, in the CUDA architecture
the (CPU)Host and (GPU)Compute devices are different physical components. The Host
device is where the program is launched and executed, meanwhile in the Compute device
parallel computations are performed. Hence, the threads, that are located on the GPU,
behave as coprocessors.

The two devices have their own separate memory space in DRAM: the host memory for
the CPU and the computing memory device for the GPU. Therefore, the C program must
have the ability to manage the device memory allocation and deallocation as well as data
transfer between host and device. To simplify this program aspect a unified memory is
used to bridge the host and computing device memories as a single one coherent memory
image with a common address space. Thus, the CPU and GPU can easily access a common
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memory space boosting the execution time by eliminating the need to explicitly mirror data
on host and device.

Figure 2.7. Heterogeneous Programming.[11]

2.3 Enthalpy HT LW-ACM: main code aspects
The Ethalpy HT LW-ACM formulation of Algorithm 4 is highly suitable to be par-

allelized on GPUs, leading to less time consuming simulations with respect of standard
methods. In practice, a code is written in C to invoke the kernels that control the GPU,
that are written in the CUDA enviroment (.cu).

The serial implementation of the Ethalpy HT LW-ACM algorithm is realized using three
for loop: one time loop, one loop to select the mesh point and the last to select the
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surrounding nodes indexed by α in the lattice. Therefore, for each time step, when the
central stencil node is selected the updating rules are applied to the neighboring stencil
nodes one at the time. The updated local quantities of temperature, velocity, density and
liquid fraction are stored. After the index for loop is completed the mesh points values
can be computed. It is possibile to notice how the serial implementation is dependent of
the number of nodes, meaning that increasing the domain dimension will negativetly effect
the computation time and increase the request of computation power. By contrast, even
if the time loop remains unchanged, in the parallel implementation the two spatial for
loops are not used, because the updated properties are computed simultaneously for each
node decreasing the computation time. Therefore, the parallel implementation is a much
efficient way for the Enthalpy HT LW-ACM.

2.3.1 Main: main.c
The Host device controls the Computing device via the main.c C script, where the

streams of data and the various instructions are launched from the CPU to the GPU. The
GPU main instructions are grouped in the compute.cu CUDA kernel, that is launched on
the main.c at each time step inside the time for loop. The main structure of the main
is:

1 i n t main ( i n t argc , char ∗∗ argv )
2 {
3 <Load the var i ous parameters>
4 <Load the computation domain>
5

6 s t r u c t t imespec s ta r t , stop ;
7 i n t t ;
8 double r = 1 . ;
9 bool cvg = f a l s e ;

10 c lock_gett ime (CLOCK_REALTIME, &s t a r t ) ;
11

12 <Read the var i ous parameters>
13 <Read the computation domain>
14

15 i n i t_dev i c e (&D, P. dev i c e ) ; //Device i n i t i a l i s a t i o n
16

17 f o r ( t = 0 ; t < P.T && ! cvg ; t += 2) {
18 launch_compute_kernel(&D) ;
19 . . .
20 }
21 c lock_gett ime (CLOCK_REALTIME, &stop ) ;
22

23 <Export and pr in t r e s u l t s >
24

25 re turn EXIT_SUCCESS;
26 }

Furthermore, the time loop is created so that two instances of the same value apart
of one time step are located in the global memory: one is used only to read data from
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memory, the other to write data in memory. This specification is useful to compute the
liquid fraction time difference that must be loaded in the temperature expression.

2.3.2 Computation kernel: compute.cu

To take advantageous of this massive parallelism, the GPU is instructed to assign each
thread to a single node of the mesh to create the CUDA grid mapped from the computation
domain. Inside the gird, the threads can be arrenged into a two dimensional grid of one-
dimension blocks, but for three dimensional simulations a cube of size 8x8x8 is prefered to
reduce the rate of data transfer increasing the efficency of the code, and in particular the
threads block sizes are imposed since the coalesced memory accesses are issued by warps
made of 32 threads. Also, to fit evenly the mesh points in the CUDA grid the number of
nodes of the spatial mesh must be a multiple of 8 for each index. Hence, each block of
threads is associated to a block of nodes13. The neighboring nodes of a block are referred
as halos of the block, and they are used to link the different nodes blocks togheter: the
threads on the surface of each single block are responsible for the nodes at the face of halo
and the threads on the edges of the block handle the node at the edge of the halo.

Figure 2.8. Data access to the halo of a block: the plain discs are the active threads,
whether the hollow ones represents the nodes for which data are read.[4]

In practice, in a single block the threads first load from the device memory into the
shared memory the temperature, velocity, density and liquid fraction arrays for the block
and its halo. Then each thread carries out the read data operations for its single node.
Once all data is available, the threads perform the computation instructions. Afterwards,
the new values are written to the global memory.

13Since the nodes are multiple of 8, and the threads blocks are 8x8x8, the nodes block is a multiple of
the threads block.
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To ensure that all the threads have completed their task, which also means that all the
operations inside a kernel are terminated, the synchronization barrier __syncthreads() is
used to enque the work and wait for the completion.

1 __global__ void compute ( f l o a t 4 ∗ dr , f l o a t ∗ tr , f l o a t ∗ l r , f l o a t 4 ∗ dw, f l o a t ∗
tw , f l o a t ∗ lw )

2 {
3 // I n i t i a l i s a t i o n . . .
4

5 get_coord inates (&x , &y , &z ) ;
6 g = get_geometry (x , y , z ) ;
7

8 <Load Momenta>
9 <Load Temperature>

10 <Load Liquid f r a c t i on >
11

12 <Load the halo>
13 __syncthreads ( ) ;
14

15 // Apply boundary cond i t i on s . . .
16 <Apply BC>
17 __syncthreads ( ) ;
18

19 //Computations . . .
20

21 <Compute and s t o r e Temperature>
22 <Compute Momenta>
23 <Compute and s t o r e Ve loc i ty and Density>
24 <Compute and s t o r e the Liquid f r a c t i on >
25 }
26

27 extern "C" void launch_compute_kernel ( domain∗ D)
28 {
29 <Launch kerne l>
30 }

The <Launch kernel> operation consist in organizing the data stream. In fact the
writing and reading arrays are not the same: the updated values are stored in tw, dw, lw
arrays, that are then written on the reading arrays: tr, dr, lr. More in details the writing
arrays store the values at the t− 2 step, while the reading at the previous time step t− 1:

1 s t a t i c dim3 block (S , S , S) ;
2 s t a t i c dim3 gr id (D−>Nx, D−>Ny, D−>Nz) ;
3

4 compute<<<grid , block>>>(D−>d0 , D−>t0 , D−>l0 , D−>d1 , D−>t1 , D−>l1 ) ;
5 cudaThreadSynchronize ( ) ;
6 compute<<<grid , block>>>(D−>d1 , D−>t1 , D−>l1 , D−>d0 , D−>t0 , D−>l0 ) ;
7 cudaThreadSynchronize ( ) ;
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The momentum, temperature and liquid fraction of each mesh point are loaded in the
kernel, refering to the computation node as e00:

1 m[ e00 ] = dr [_(x , y , z ) ] ; //momentum
2 t [ e00 ] = t r [_(x , y , z ) ] ; // temperature
3 l [ e00 ] = l r [_(x , y , z ) ] ; // l i q u i d f r a c t i o n
4 dl = l [ e00 ] − lw [_(x , y , z ) ] ; //Delta l i q u i d f r a c t i o n

The momentum array is a float4structure array that contains four float storing fields:
three for the velocity and one for the density. While, the temperature and liquid fraction
are two different float arrays. The dl is used to load the liquid fraction variation of the
previous time step needed in (1.46).

The halo threads load the data of the neighboring nodes from the storage arrays in
function of the node position inside the lattice. The node lattice index referes to the
discrete velocity ξα: for instace using the D3Q19 stencil, the 15th node, e015, loading data
instructions are:

1 i f ( g & G_HALO) {
2 . . .
3 m[ e15 ] = dr [_(x , y+1,z+1) ] ;
4 t [ e15 ] = t r [_(x , y+1,z+1) ] ;
5 l [ e15 ] = l r [_(x , y+1,z+1) ] ;
6 . . .
7 }

The boundary conditions are applied similarly to the way the halo nodes are assessed.
According to the bounce back rule the wall node properties are bounced back to its sim-
metric node in the lattice. The temperature and liquid fraction wall nodes conditions are
set as outlined in the previous chapter:

1 #de f i n e adia ( a , b ) (4/3∗ t [ a ]−1/3∗ t [ b ] )
2

3 i f ( g & G_WALL) {
4 . . .
5 //For ad i aba t i c wa l l s
6 t [ e05 ] = adia ( e00 , e06 ) ;
7 l [ e05 ] = 1 ;
8 . . .
9 //For heated wa l l s

10 t [ e01 ] = T;
11 l [ e01 ] = 1 ;
12 }

After the data are loaded, the threads are free to perform the next set of instructions:
temperature, velocity and density are computed14 and their updated values are written in

14Those values are computed following the procedure of the computing algorithm: Algorithm 4.
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the correspective storing arrays. Temperature is loaded in the float tw array, momenta
in the float4structure dw array. Once the node properties are computed, the liquid
fraction can be computed following the Enthalpy method, this values is then stored in the
float lw array.

1 i f ( tn < T0)
2 lw [_(x , y , z ) ] = LFS ;
3 e l s e i f ( tn > k5 ∗(1 − l [ e00 ] ) )
4 lw [_(x , y , z ) ] = LFL ;
5 e l s e
6 lw [_(x , y , z ) ] = ( tn − T0) /k5 + l [ e00 ] ;

2.3.3 GPU setting: init.cu
In the main the computation kernel is launched only after the GPU settings are defined

in the initialisation kernel: init.cu. This is also used to set the initial problem conditions
and to define the size of the various arrays used in the storing and reading process.

1 __global__ void i n i t ( f l o a t 4 ∗ d0 , f l o a t ∗ t0 , f l o a t ∗ l 0 )
2 {
3 <Load I n i t i a l cond i t i ons>
4 }
5 void in i t_cons tan t s ( domain∗ D){
6 <Load the domain constant
7 }
8 extern "C" void in i t_dev i c e ( domain∗ D, i n t id )
9 {

10 <Set the GPU device>
11 <Set the read ing and s t o r i n g arrays>
12 <Set the threads block>
13 }

The GPU device setting aims at defining the id of the selected Computing devices to
launch all the computation required:

1 The GPU i s s e t us ing :
2 s t a t i c dim3 block (S , S , S) ;
3 s t a t i c dim3 gr id (D−>Nx, D−>Ny, D−>Nz) ;
4

5 D−>id = id ;
6 cudaSetDevice ( id ) ;
7 cudaSetDeviceFlags ( cudaDeviceMapHost ) ;

The initial conditions are imposed in the simulation inside the initialisation kernel. For
melting the full solid inital domain at temperature T0 is defined in the code as:

1 __global__ void i n i t ( f l o a t 4 ∗ d0 , f l o a t ∗ t0 , f l o a t ∗ l 0 )
2 {
3 i n t x , y , z ;
4
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5 get_coord inates (&x , &y , &z ) ;
6 d0 [_(x , y , z ) ] = momenta (1 , 0 , 0 , 0) ;
7 t0 [_(x , y , z ) ] = T0 ;
8 l 0 [_(x , y , z ) ] = 1 ;

The reading and storing arrays dimensions, as well as the threads block mapping are
created according to the requirement dimension as:

1 extern "C" void in i t_dev i c e ( domain∗ D, i n t id )
2 {
3 i n i t_cons tan t s (D) ;
4

5 dev i c e_a l l o c (D−>d0 , D−>s i z e , f l o a t 4 ) ;
6 dev i c e_a l l o c (D−>t0 , D−>s i z e , f l o a t ) ;
7 dev i c e_a l l o c (D−>l0 , D−>s i z e , f l o a t ) ;
8

9 dev i c e_a l l o c (D−>d1 , D−>s i z e , f l o a t 4 ) ;
10 dev i c e_a l l o c (D−>t1 , D−>s i z e , f l o a t ) ;
11 dev i c e_a l l o c (D−>l1 , D−>s i z e , f l o a t ) ;
12

13 D−>ix = NULL;
14 i f (D−>ix_ ) dev i c e_a l l o c (D−>ix , D−>x_size , byte ) ;
15 D−>iy = NULL;
16 i f (D−>iy_ ) dev i c e_a l l o c (D−>iy , D−>y_size , byte ) ;
17 D−>i z = NULL;
18 i f (D−>iz_ ) dev i c e_a l l o c (D−>iz , D−>z_size , byte ) ;
19 D−>jx = NULL;
20 i f (D−>jx_ ) dev i c e_a l l o c (D−>jx , D−>x_size , byte ) ;
21 D−>jy = NULL;
22 i f (D−>jy_ ) dev i c e_a l l o c (D−>jy , D−>y_size , byte ) ;
23 D−>i z = NULL;
24 i f (D−>jz_ ) dev i c e_a l l o c (D−>jz , D−>z_size , byte ) ;
25

26 i n i t <<<grid , block>>>(D−>d0 , D−>t0 , D−>l0 ) ;
27 i n i t <<<grid , block>>>(D−>d1 , D−>t1 , D−>l1 ) ;
28 cudaThreadSynchronize ( ) ;
29 }
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Chapter 3

Validation

3.1 Introduction
The validation is a fundamental step when a new numerical method is elaborated to

prove that it is a valid alternative to consolidated methods like analytical solutions. The
proposed Enthalpy HT LW-ACM is a nouvelle approach that is confronted with the analyt-
ical Nuemann’s method to test its effectiveness, consistency and validity. The Neumann’s
approach is chosen to be the reference method due to its capability on predicting the
time dependent position of the moving phase change boundary based on the liquid frac-
tion profile. Furthermore, being the thermal link-wise formulation validated in [6], and
the Enthlapy method an established numerical approach, its implementation on the HT
LW-ACM has to be validated.

Two main temperature based quantities are used to verify the implementation: the
liquid fraction and the heat flux. The first is a volumetric quantity that expresses the
phase change status of the domain. While, the heat flux is a superficial value used to
describe the temperature effects on the domain.

3.2 Test case
For validation purposes the test case is chosen coherently to the analytical method

constrains: the problem is formulated on a one-dimension domain, with simple initial and
boundary conditions and constant thermophysical properties. In mono-dimensional phase
change problems the buoyancy force is not assessed, omitting the advection phenomenon.

The link-wise formulation is been generalized for three-dimensional simulations on the
D3Q19 stencil, but it can be rearranged for mono-dimension problem using the D1Q3
stencil, where three nodes are placed in order on the same axis.

47
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Figure 3.1. The D1Q3 stencil.

The coordinates of the discrete velocities and weights for this stencil are:

ξα =


0 α = 0
1 α = 1
−1 α = 2

(3.1)

wα =

4/6 for α = 0
1/6 for α = 1, 2

(3.2)

The temperature, computed based on centered finite difference scheme, is computed
omitting the advection part:

T t+1
0 = T t0 + κ

1
T t1 + T t2 − 2T t0

2
− ∆f t
Ste

(3.3)

Meanwhile, the equilibrium general expression (1.33) and modified bounce back (1.47)
rules are applied without any great modifications on the mesh points. Also, the Enthalpy
updating rule is applied straight on, since it is used to compute the liquid fraction of one
node by recalling its thermal conditions.

For consistency, to confront the analytical and numerical solutions the two results have to
be scaled in the same units. The proposed numerical scheme is formulated in lattice units,
while the Neumann’s solution in physical units. Those can be scaled in the mesh-dependent
units using the acoustic scaling techniques of (Table (4.1)): the thermal diffusivity κ as
MaN/

ñ
(3), the problem size L as N and the temperature is expressed in the dimensionless

units scaled with the ∆T . Similarly, the physical evolution time is scaled in lattice units
using Fo, through this it is possible to define the correspondence between the real time
and the lattice time evolution.

The validation test case consists in a melting problem expressed in a mono-dimension
domain made of 120 nodes at initial temperature T0 = 0, which is completely solid: f = 1,
ρ = 1 and u = 0 for all the nodes. The two nodes on the boundary N = −1 and 121 are at
temperature T0 = 0 and T1 = 1 respectively, while the melting temperature is Tm = 0.5.
For this test Ste and Pr are set to one, while Ma = 1e− 4. The number of time iteration
is 10e + 4. Since transport phenomena do not occur the buoyancy force has not to be
computed through Ra.
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3.3 Results
The results of the Enthalpy HT LW-ACM are confronted with Neumann’s to validate it

effectivness in phase change modelling. The node thermal status is shown in the temper-
ature evolution comparison, while the liquid fraction is used for the domain phase status.
From the total thermal flux Qt is possible to understand the amount of energy flux re-
queired for the phase change to occur.

The analytical and numerical temperature evolution at the last time step show how the
two profiles have the same trend. In particular for the liquid nodes the link-wise formulation
is very accurate for computing their thermal behavior. This result is also highlighted by
the fact that the liquid node closer to the phase change interface has the same temperature
in both models. However, these results are not obtained for the solid nodes because the
two thermal profiles differs greatly.

Figure 3.2. Temperature at t = 10e+ 4.

The reason behind the discrepancy of the temperature profiles lays on how the two
methods solve the phase change problem. Neumann’s temperature is computed using
(1.14) if the node is liquid otherwise (1.13) for solid, where the node status is computed
based on its temperature: a node is liquid if Ti > Tm, whether if Ti ≤ Tm it is solid. By
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contrast, the numerical temperature is calculated with (1.41) at each node and the phase
status is based on the liquid fraction.

In terms of the thermal flux Qt, the numerical and analytical results are the same,
showing that the local temperature variation does not effect the global domain energy.

Figure 3.3. Total thermal flux.

The local value of the liquid fraction computed with the proposed scheme is perfectly
overlapped to the numerical result, in details the nodes close to the interface have the same
values for both methods, so the phase change status inside the domain of the Enthalpy HT
LW-ACM follows exactly Neumann’s.

Furthermore, for the numerical result the total liquid fraction follows the exact solution
an globally the same amount of liquid fraction is computed at the same time step for both
methods. Similarly, the position of the interface, based on the liquid fraction scaled over
the domain follows the predicted position of the Neumann’s method, which ensures that
the phase change occurs at the time of the exact solution.

These comparisons highlight that even if the temperature profiles diverge the domain
status is not effected, moreover the link-wise formulation is able to model correctly the
phase evolution of the nodes being in synchronous with the Neumnann’s prediction.
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Figure 3.4. Liquid fraction at t = 10e+ 4.

Figure 3.5. Total liquid fraction profile.
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Figure 3.6. Interface time position.

3.4 Conclusions
The validation process aims at ensuring that the proposed Enthalpy implementation on

the HT LW-ACM is a valid tool to model phase change problems, which is performed by
confronting the numerical and exact analytical results.

The test case is chosen coherently with the analytical constrains: problem dimension,
constant properties and no buoyancy force. Therefore, the one dimension test is studied
by adapting the Enthalpy HT LW-ACM on the Q1D3 stencil. Furthermore, to confront
the results the Neumann’s solution is scaled using the acoustic scaling, which enables to
formulate the exact solution in terms of lattice units.

The results show how the temperature profiles do not perfectly match Neumann’s: the
solid nodes temperature is higher in the numerical solution, but the node on the phase
change interface is aligned with the exact value of the temperature. The reason behind
the divergence in the temperature in the domain is based on how the numerical and ana-
lytical methods compute the temperature profiles: the analytical method is based on two
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temperature functions depending on the node status, while the numerical temperature is
computed using a single function regarding the node status updated with the Enthalpy
method to compute the liquid fraction variation. Another important result is obtained
with the total heat flux, which shows that the amount of energy required for both methods
for the phase change is the same at each time step. Hence, in terms of energy the link-wise
formulation converges to the exact solution and the temperature profiles discrepancies do
not effect these simulations. Furthermore, the liquid fraction and interface confrontation
consolidate these results since the domain status profile follows with great accuracy the
Neumann’s interface and liquid fraction. In conclusion the Enthalpy HT LW-ACM is an
effective method to solve the moving boundary problem to model PCM.



Page 54 CHAPTER 3. VALIDATION



Chapter 4

Simulations

4.1 Introduction
The Enthalpy HT LW-ACM is the proposed numerical model to solve real phase change

problems, which occur in multidimensional domains without omitting the presence of the
buoyancy force and transport phenomena.

To run a simulation the thermal properties of the material have to be set, which are
scaled in lattice units, following the proper scaling technique. In practice, for the acoustic
scaling the dimensionless parameters to compute the problem quantities are: the number
of nodes for each index Lx × Ly × Lz, Ma, Ste and Pr for the thermal properties and
Ra for the magnitude of the buoyancy force. Moreover, from the energy equation and its
numerical solution the stability range of the model is defined. Furthermore, for the spatial
mesh the number of nodes N for each indexes has to be a multiple of 8 because it has to
fit evenly in the 8x8x8 CUDA grid defined on a warp of 32 threads.

Once the stability conditions are defined various simulations are performed to understand
how the algorithm behaves by changing the setting parameters and the thermal conditions
of the problem.

4.2 Numerical analysis
The melting problem main condition is that inside the material the temperature always

increases until the phase change stops as the thermal equilibrium is reached. More in
details, if this condition is not respected the simulation is not physically correct and the
results become unstable.

The temperature for each node is computed using (1.46):

T t+1
i,j,k = T (x− ξα, t) − 1

Ste
(f ti,j,k − f t−1

i,j,k)

55



Page 56 CHAPTER 4. SIMULATIONS

where the thermal properties are computed using the acoustic scaling (4.1). The liquid
fraction variation is inversely proportionate to Ste, and if T (x − ξα, t) is constant, as
Ste ¹ 1 the mesh point temperature value decreases and become negative, which is not
physical possible. Therefore, the acoustic scaling limits the range of the application due to
this effect, but for real applications Ste ranges between 0.5 to 0.01 depending on the ∆T .
Thus, to respect the melting condition and surpass the limit of stability for Ste, a different
scaling practice is applied: the non-homogeneous acoustic scaling techniques.

Physical Dimensionless(’) Lattice(*)
u Steα/L Ma/

√
3Ste

L 1 N

t Fo/Ste FoN
√

3/MaSte

ν Pr MaPrN/
√

3Ste
κ 1 MaN/

√
3Ste

δx 1/N 1
δt Ma/(N

√
3) 1

cs 1/MaSte 1/
√

3Ste
T (T − T0)/∆T (T − T0)/∆T

Table 4.1. Non-homogeneous Acoustic scaling table.

Where N represents the nodes along the y direction, perpendicular to the buoyancy
force computed as:

g(∗)β(∗) = Raν2

PrN3∆T = RaMa2

3N∆TSte2 (4.1)

This modified version of the acoustic scaling is achieved by dividing the thermal charac-
teristic by Ste in order to express the entire phase problem as a function of this value, and
the issues related to the liquid fraction weight for Ste ¹ 1 are solved.

For the numerical temperature expression the melting condition is defined with the T ti,j,k
coefficients, which have to be positive to ensure correct simulations. The thermal diffusivity
k(∗) is limited as:

(1 − 9κ)Ti,j,k ≥ 0
using the non-homogeneous acoustic scaling the stability condition is expressed as:

κ ≤ 1
9 ⇒ Ma ≤ 3− 3

2
Ste

N
(4.2)

More in details, the relaxation time τ is effected by this results: using Pr the τ − κ
relation is:

κ = ν

Pr
= 1

2

3
τ − 1

2

4
and its constrain is:

κ ≤ 1
9 ⇒ τ ≤ Pr

3 + 1
2 (4.3)
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For Pr ¹ 1 the relaxation time is τ ≈ 1/2, which is the stability limit value to force the
viscosity to be positive[8]. However, even if the stability range is respected the simulations
is susceptible to some numerical instabilities.

4.3 Multidimensional simulations
Multidimensional simulations are performed on a three dimension cube domain, which

is divided into a finite numbers of nodes Lx × Ly × Lz. Initially the domain is full solid
and kept at the solid wall temperature T0 = 0, and the buoyancy force acts along the z
direction. For the boundary conditions, opposite to the cold wall, the hot wall temperature
is T1 = 1, while Tm = 0.5. The remaining faces of the cube are adiabatic.

Figure 4.1. Three dimensional simulation domain.

The simulation parameters are set to respect the stability conditions for a 64x64x64 nodes
cube domain, and different materials can be simulated using the scaling table to scale the
thermal properties in the more convenient lattice units. The dimensioless parameters are:
Pr = 1, Ma spans from 10e − 3 to 10e − 6 and Ste between 1 − 0.5 − 0.1. In terms of
stability as Ste decreases so does Ma, and to avoid numerical instabilities it is chosen to
be always lower respect to (4.2)1.

4.3.1 Simulations without advection
The reliability of the multidimensional simulations is analyzed by comparing the nu-

merical results with Neumann’s on the Ma − Ste plane. In practice, various simulations
are made with variable values of Ma and Ste, meanwhile the other setting paremeters are
unchanged. The quantity that is used in the comparison is the interface position, which is
computed for the three dimensions as the average value in the domain. Also, the buoyancy

1Sperimentally, it is been proven that if Ma ¹ 3−3/2Ste/N the simulations are stable, and the simu-
lation time increases.
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force and the advection phenomena are not account, solving the conduction driven phase
change problem.

Figure 4.2. Interface position for simulations without advection, for variable Ste andMa.

The comparison demonstrates that the numerical multidimensional simulations are re-
liable since the link-wise formulation is able to follow the Neuamann’s interface position.
In particular, the velocity of fusion is directly proportionate toMa: as this value decreases
the interface position moves slower in the domain. This relation lays on the scaling tech-
nique for which the problem quantities are expressed in lattice units as a function of Ma:
for example the thermal diffusivity κ(∗) is proportional to Ma, so for small values of it the
amount of thermal energy decrease slowing the melting front.

The simulations stability is directly related to Ste. In fact, as this value goes to zero, to
obtain stable results, the maximum value of Ma decreases: for example if Ste = 0.1 the
simulations are stable only for Ma ≥ 3 10e − 3, this reduces the kind of simulations that
can be performed. The reduction of Ma is sliglhtly compensated with the reduction of Ste
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for the thermal properties of the material. However, it is not possible to state whether the
fusion velocity decreases if both Ste and Ma decreases simultaneously.

4.3.2 Simulations with advection
Real phase change processes are subjected to transport phenomena related to the pres-

ence of the buoyancy force. In the Enthalphy HT LW-ACM it is possible to count the
effects of buoyancy force by correcting the equilibrium function (1.43). Also, by compar-
ing the interface position of the simulations with and without advection, it is possible to
understand how transport phenomena really effect the melting process.

The effects of advection increases with the buoyancy force magnitude, which is directly
proportional to Ra, that has to be positive for natural convection. In particular for the
simulatons is set at 10e+ 6.

The bouyancy force scaled in lattice units (4.1) is directly proportionate to (Ma/Ste)2.
For stability, if Ste is reduced also a smaller value of Ma has to be imposed. Thus, their
effects in the bouyancy force are balanced when both values decreases. Furthermore, if
Ste is constant and Ma decreases the magnitude of the bouyancy force is reduced and the
velocity of fusion is effected. By contrast, keeping Ma constans while Ste changes, the
effects of transport phenomena increase and the fusion front moves faster.

For high values of Ma the advection phenomenon plays an important role in the phase
change problem increasing the velocity of melting inside the domain. More in details, in
the first time step of the melting process transport phenomena do not occur because the
liquid domain is not sufficient developed. For example, for Ste = 1 andMa = 1e−4 for the
12000th step, the melting front advances as the phase change interface without bouyancy
force. However, as fusion advance the effects of advection start to deeply effect the melting
front. From the liquid fraction position until the 20000th time step the advective simulation
follow the conduction driven model. By contrast, from the simulation cross section, the
liquid front is effected by the presence of transport phenomena, but being the interface
position computed as the average value in the domain, the two values correspond.

Small values of Ma reduce the magnitude of the bouyancy force and the effects of
advection. In particular, for Ste = 0.5 and Ma = 1e− 5, the melting node corresponds to
the conduction simulation, but the cross section shows that even if the effect of bouyancy
are reduced, still transposrt occurs in the domain. While the average interface position is
comparable to the other model. Therefore, as Ma and Ste decrease the liquid front slows
down and the thermal effects of advection are reduced.

The results show that in presence of transport phenomena the melting interface moves
inside the domain faster respect to the conduction driven problem. In fact, in presence of



Page 60 CHAPTER 4. SIMULATIONS

Figure 4.3. Interface position for simulations with advection, for variable Ste and Ma.

transport the temperature of the node is computed counting also the effect of advection,
which increases the nodes temperature. Therefore, the presence of advection add more
thermal energy increasing the phase change process velocity. By contrast, as the simulation
is slowed down, with a small valus of Ma, the effects of the buyoancy force decrease and
the interface position almost matches the position of the conduction driven simulations.
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(a) t=12000 (b) t=20000 (c) t=60000

Simulation without advection.

Simulation with advection.

Figure 4.4. Liquid fraction corss section for Ste = 1 and Ma = 1e− 4.
(a) t=12000 (b) t=20000 (c) t=60000

Simulation without advection.

Simulation with advection.

Figure 4.5. Isothermal cross section for Ste = 1 and Ma = 1e− 4.
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(a) t=50000 (b) t=85000 (c) t=120000

Simulation without advection.

Simulation with advection.

Figure 4.6. Liquid fraction corss section for Ste = 0.5 and Ma = 1e− 5.
(a) t=50000 (b) t=85000 (c) t=120000

Simulation without advection.

Simulation with advection.

Figure 4.7. Isothermal cross section for Ste = 0.5 and Ma = 1e− 5.
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4.3.3 Simulation performances
The simulation performances are typically expressed in terms of the computational time

and MLUPS, which stands for Million Lattice Updates per Second: for example if on a one
million lattice sites at a speed of one MLUPS, the lattice is updated once per second[9].
Therefore, this quantity helps to understand the computational demand of each simulation.
Meanwhile, the computational time is expressed in seconds and defines the total simulation
time from when the code is lunched, until the last command is executed. Overall, the
performaces change singificantly according to the set of lattice parameters in theMa−Ste
plane.

Ste Time [s]
1 37,3297 29,5576 26,4521 25,5506
0,5 - 31,077 27,5098 26,5121
0,1 - - 28,6364 26,9949
Ma 1,00e-03 1,00e-04 1,00e-05 1,00e-06

Table 4.2. Computational time for the only conduction driven simulations.

Ste Time [s]
1 36,0743 34,1296 26,4896 25,42
0,5 - 35,3026 28,1378 26,0154
0,1 - - 27,3007 25,9232
Ma 1,00e-03 1,00e-04 1,00e-05 1,00e-06

Table 4.3. Computation time for the complete simulations.

The simulations are performed using an NVIDIA GTX TITAN BLACK. The computa-
tional time decreases of in the best scenario 30% as Ma decreases from 1e − 3 to 1e − 6.
While the variation of Ste does not effect considerably the simulation performances. Also,
the computational time is not effected whether the advection part of the solution is consid-
ered or omitted. In details, the maximum time discrepancy for the two type of simulations
is around 4.5 [s] for Ma = 1e− 4 and Ste = 1.

The MLUPS increase as the simulation velocity is reduced with Ma, with a maximum
increment of almost 50% for Ste = 1. Simirarly with the computational time performances,
the simulations are not deeply influenced by Ste, and by the presence of bouyancy force.
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Ste MLUPS
1 1053 1330 1487 1539
0,5 - 1265 1429 1483
0,1 - - 1373 1457
Ma 1,00e-03 1,00e-04 1,00e-05 1,00e-06

Table 4.4. MLUPS performance for the only conduction driven simulations.

Ste MLUPS
1 1090 1152 1484 1547
0,5 - 1114 1397 1511
0,1 - - 1440 1517
Ma 1,00e-03 1,00e-04 1,00e-05 1,00e-06

Table 4.5. MLUPS performance for the complete simulations.

4.4 Conclusions
This chapter is dedicated to analyze the stability constrains and results of various simu-

lations. The solution of the energy equation is possible using the Enthalpy HT LW-ACM
for which the problem is scaled in the lattice units via the acoustic scaling table. However,
this techinque is not suitable for real applications for which Ste ¹ 1 because it will limit
the stability range of the simulations. Hence, to solve this problem the non-homogenous
acoustic scaling techinique is used for which all the lattice units are divided to Ste to
balance its effects when it goes to zero.

The stability conditions are expressed from the scaled temeperature function to solve
the energy equation, for which the coefficiencts for the conduction term of the central node
of the lattice are imposed to be always positive. Then using the scaling techinque, it is
possible to compute the limit valus of Ma for which the solution is stable. However, even
if this conditions is respected, the simulations can be subjected to numerical instabilities.
Furthermore, defining the maximum values of Ma enables to define the relaxation time
through Pr and the realtion between the kinetic viscosity and relaxation frequency.

For fusion problems, according to the dimensioless setting parameters different types of
materials and thermal conditions can be simulated. In fact, reducing Ste for the same
materials it means to reduce the total temperature difference inside the domain which will
effect the simulations: a small difference in temperature between the hot and cold wall
reduces the amount of energy at disposable in the domain and the fusion process is slowed
down. The melting time increases for simulations where Ste ¹ 1.

Meanwhile, if the value of Ma decreases the melting velocity reduces, because of the
acousting scaling techinques the thermal properties are directly proportionate toMa. Also,
if it is reduced the velocity of the liquid nodes decreases effecting the overall phase change.
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The only conduction driven simulations are confronted with the results obtained with
the Neumann’s method. Since the numerical method follows the analytical one, the mul-
tidimensional simulations are reliable in the Ma − Ste plane. Furthermore, the variation
of Ste effects the maximum values of Ma for the simulation stability.

For more realistic simulations the bouyancy force has to be plugged in the link-wise for-
mulation to asses the presence of transport and advection phenomena. Since, the bouyancy
force is proportional to the square of the Ma − Ste ratio, its magnitude is effected when
these values change. However, since Ma is defined according to the stability conditions,
which are proportional to Ste, if this values reduces so Ma follows, which is then compen-
sated in the bouyancy force.

Transport and advection are directly proportionate to the bouyancy force an so to the
Ma − Ste ratio. In practice, reducing the relative speed of the fluid nodes decreases the
effects of transport and advection. Therefore, the simulations for which Ma ¹ 1 behaves
like the conduction driven results. From the cross sections it is possible to see the presence
of transport phenomena, even if the overall average liquid fraction is the same.

In conclusion, the presence of the bouyancy force plays a predominant role in the
fusion velocity for high value of Ma and transport phenomena deeply influece the phase
change. If the fluid velocity is sufficiently high the liquid front advance faster in the domain,
decreasing the total melting time respect to the conduction driven model.
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Conclusion and perspectives

The main aim of this thesis is to develop a new numerical model to simulate melting ma-
terials in a multi-dimensional domain with natural convection while studying the influence
of the setting parameters to analyze different type of materials.

Phase change problems can be model using the energy equation, which correlates the
conduction and advective heat fluxes with the temperature and liquid fraction variation of
the domain. To solve this differential equation the domain is discretized into mesh points
linked over the lattice stencil and the material properties are scaled in lattice units. The
model is based on the link-wise formulation to compute the velocity field of the liquid
nodes, on finite difference operators to define the temperature profile, and on the Enthalpy
method to differs whether a node is liquid, solid or melting with the uploading node phase
status rule.

The Enthalpy HT LW-ACM is highly suitable for parallel application to increase the
computing performance. Using the CUDA enviroment, the code is structure in a such a
way that each processor of the GPU is dedicated to a single mesh point and performs the
task is assigned concurrently with the other processors. To increase the code efficiency
the domain dimensions are forced to be a multiple of the threads block to achieve better
memory access decreasing the computation time while exploiting all the computation power
at disposal. To achieve those results the synchronization barrier helps to enque work and
wait for the command to complete. For the code, after the setting parameters are lunched,
the main kernel is called to perform the temperature, velocity, density and liquid fraction
computations using the numerical expressions.

The numerical method verification is made possibile by comparing the simulation results
with the ones obtained using the analytical Neumann’s method. In details, the verification
is necessary to test the effectiveness and validity of the Enthalpy implementation over
the already esthablished HT LW-ACM. The solution is computed omitting transport and
advection phenomena on a mono-dimensional domain, with simple initial and boundary
conditions. From the temperature profile comparison the numerical and analytical solution
behaves in the same, which is then confirmed by the total thermal flux, liquid fraction and
interface position plots.

67
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For the 3D simulations the acoustic scaling is modified to obtain simulations that are
less effected by numerical instabilities when Ste < 1. For this part the test case is a
cube with two isothermal walls at different temperature, while the remaining ones are
adiabatic. To test the affidability of the multi-dimensional model on the Ma − Ste plane
the simulations are run considering only the conduction phenomena for melting materials.
Finally, more realistic simulations are performed by plugging also the advection part of
the energy equation in the solution, that shows the increment of heat transfer and of the
fusion front respect to the conduction driven models. Furthermore, the computation times
are effected by decresing as Ma goes to zero, in contrast with the behavior of the MLPUS.

Perspectives
The development and validation of the Enthalpy HT LW-ACM must be followed by

an experimental validation as a necessary perspective, also to create a reliable reference
solution that does not exists in literature. Hence, the results can serve as basis for future
applications.

The various simulations show how conduction and convection effect the phase change
behavior of the material, omitting the part of energy related to radiative heat transfer.
In fact, the domain walls heat by conduction and radiation the inner material increasing
its temperature. Also, on the fusion front, the same heat transfer mechanisms between
liquid and solid occur. Therefore, more realistic phase change phenomena can be model
by incorporating in the model the radiative heat[8].
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