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Abstract

The goal of this study is to understand how the microinclusions affect the

fatigue life of rolling bodies. In order to do this, a numerical method was con-

sidered, and its results were correlated with experimental ones, investigating

whether a microinclusion threshold parameter could be defined, to be related

to the life bearing requirements.

Many phenomena are involved in damage of rolling elements of bearings.

Rolling contact fatigue is the main cause of failure, along with contact pres-

sure related fatigue and dimensional instabilities effect. Most of those are

well known, and are described by wide experimental, analytical and numer-

ical literature. Damage phenomena are related to material properties and

manufacturing processes.

Nowadays, steels are well-suited in bearings manufacturing, and they repre-

sent the most established materials for these applications. Each of these is not

free of non metallic inclusions because of the manufacturing process. These

inhomogeneities have an important role on the fatigue performances, since

the damage evolution of the rolling elements of bearings is affected by the

microinclusions present in the material. This study is focused on the AISI

52100 (100Cr6), that is the main steel in bearings production.

Non metallic inclusions like sulfides, carbides and oxides act like stress

concentrators, and this can originate cracks which lead to failure. Inclusions

have different composition, dimension, configuration and distribution so their

effect on the fatigue life changes depending on these parameters. For this

reasons, different types of non metallic inclusions were analyzed, in order to

have an overview of the phenomena.

The stresses around the non metallic inclusions are evaluated thanks to a

MATLAB code [16] based on the Eshelby solution for this type of problem

[4]. Then, this stresses are counted in order to evaluate a microinclusion

threshold parameter. A correlation between stress computed by the model

and experimental failures (performed thanks to fatigue test rigs and a rotating

bending machine) has been shown, with a good matching of the data.
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Chapter 1

Introduction

Tsubaki Nakashima Co., Ltd. manufactures and sells steel balls and preci-

sion products worldwide. In particular, the group is a global leader of rolling

contact elements as premium quality precision balls, rollers, cages, and sheet

metal parts.

Pinerolo plant, where this study was carried out, is specialized in ball manu-

facturing for bearings production.

The bearing is a part of the machine that allows one part to rotate or move

in contact with another part with as little friction as possible. Additional

functions include the transmission of loads and enabling the accurate location

of components. A bearing may have to sustain severe static as well as cyclic

loads while serving reliably in difficult environments [2].

A wide variety of bearing designs exists to allow the demands of the appli-

cation to be correctly met for maximum efficiency, reliability, durability and

performance.

Bearings are composed of different elements: cylinders or balls as rolling el-

ements and external and internal rings, which form the raceways. Also the

lubrication between the parts is very important.

Fatigue life performances of the rolling elements have a key role to prevent

premature failures of the bearings during working operations. For this reason,

it is important to understand how the microinclusions affect the life of the

balls and consequently of the bearing.

It is now been clearly established that fatigue resistance correlates strongly

with steel cleanliness. Non metallic inclusions play an essential role in the

length of the rolling contact fatigue (RCF) life. However, inclusions are in-

evitably present in steels, they cannot be eliminated in the steelmaking process

[11]. On the other hand, the improvement of the technologies allows to reduce
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the total quantity of these non metallic inclusions, improving the fatigue life.

In general, rolling contact fatigue is driven by two phenomena: surface

originated pitting and subsurface originated spalling. These two are different,

at the point that they can be considered separately. The first one can be

prevented with better lubricants or a better surface finish [12], while there

are not many ways to stop subsurface originated fatigue. Subsurface cracks

mostly occur at stress concentration sites such as material defects, voids and

non-metallic inclusions. Such inclusions act like stress risers, leading to cracks

and final failure [14]. The inclusions are very critical since they are in a

position where the shear stress due to the Hertzian contact is maximum.

Many studies, both experimental and numerical ones, have been carried

out to understand the most important factors that affect RCF life. Nowadays

it is known that they are: inclusion composition, size, shape and location [11].

The relationship between the RCF life and the maximum inclusion size has

been studied by Nagao et al.[15] and Seki [18], but the results are different of

one order of magnitude even if the size of the inclusion is the same. For this

reason, Hasmioto et al. [11] made experimental tests to analyze the role of

the composition using different deoxidation post-processes. The size and com-

position are evaluated thanks to an optical microscopy and an X-ray energy

dispersive spectroscopy (XREDS). The tests showed that the RCF life in case

of similar sized inclusions, is affected primarly by the chemical composition.

In particular, they showed that RCF life is improved reducing the oxygen con-

tent as the size of the oxides. Moreover, they examined the length of the crack

around the inclusions throughout the test, finding out that the crack length

controlling RCF life is influenced by the interface condition between the inclu-

sion and the matrix. Since matrix-MnS and matrix-TiN interfaces showed no

cavities, they suggested that the oxide inclusions play the most detrimental

role in the material’s RCF. Also S. M. Moghaddam et al.[14] and J. Guan et

al.[9] studied the effect of the inclusion composition, considering the inclusion

elastic modulus. The maximum von Mises stress increases with the increase

of the elastic modulus of the inclusion and it appears at the interface between

inclusion and surrounding material.

The effect of size, stiffness and depth has been shown in [14] and in [9]. The

authors of [14] and [9] developed a model that takes advantage of the Voronoi

tessellation to construct the FEM domain. In this way, the model is able to

capture the butterfly wing formation, crack initiation and crack propagation.

Moreover, the model was used to study the different RCF life varying size,
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stiffness and depth.

Regarding the size, a comparison between a 16 µm and a 8 µm inclusions

with the same stiffness value and depth, has been made [14]. Similar test

were performed in [9], with a set of inclusions which is set to vary from 5 µm

to 20 µm. No strong influence on stress concentration was found, but it is

known that larger inclusions subject larger volumes of the material to stress

concentration. Furthermore, larger inclusions have a higher chance of being

located at the critical depth.

For what concerns the inclusion location, the stress profile changes at the

inclusion depth, while the rest of the profile remains pristine. Inclusions lo-

cated at 0.5 times the contact half width (b) are critical [14], since there is the

maximum von Mises stress calculated from the Hertz theory. For a certain

value of depth, the stress rise remains below the original stress at 0.5b, so the

inclusion will not be the controlling phenomenon of the RCF life. J.Guan et

al. [9] showed that the highest stress concentration is located at about 0.75b

but both [14] and [9] lead to the same conclusion.

Taking into account the shape of the inclusion, Stienon et al.[1] showed that

stress fields obtained with simplified shape are in good agreement with those

obtained with real shape, therefore is reasonable to use simplified shapes to

simulate the stress concentration around the inclusion.

J. Courbon et al.[8] examined the interaction between multiple inclusions

(pairs, clusters and stringers) using the Moschovidis and Mura extension [17,

21] of the Eshelby method [4]. They found out that the orientation of the

axes according to which the inclusions are arranged, plays a fundamental role

on the stress field.

Once that the effect of microinclusions on the material matrix is clarified,

it would be very useful to have a model that is capable to predict the bearing

fatigue life considering the steel cleanliness. Lamagnere et al. [12] presented

a model that calculates the fatigue limit H1 of the bearing steel, it is the

maximum Hertzian pressure that would not introduce any plastic deformation.

This threshold is derived from the comparison between the local shear stress

around the inclusion and the microyield stress of the matrix.

The idea of a stress threshold below which a material would not be damaged

was first introduced by Weibull [20], and then developed in bearing fatigue life

models by several authors [6, 7], but without considering the steel cleanliness.

The local shear stress around the inclusion is calculated with the Eshelby

method [4], while the microyield stress of the matrix is evaluated by means of
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experimental compression tests.

The current work investigates the effect of microinclusions on fatigue life

of a steel alloy (100Cr6) for bearing rolling elements. Fatigue damage and

failure mechanisms are studied by experimental testing on test bench and

analytical models are considered, to relate life of rolling elements to the mi-

croinclusion parameters. A dedicated 3D solver implementing Eshelby model

[4] was developed to estimate the stress distribution surrounding the microin-

clusion. The simulated load corresponds to experimental load applied to a

set of ball bearing undergoing fatigue testing. The calculated stresses will be

used as input for a microinclusion threshold estimation model to estimate the

life of the ball bearing. It has to be observed that microinclusion chemical

composition, shape, dimension, depth and configuration are introduced in the

numerical model after experimental failure observation. This procedure aims

at validating numerical model and life estimation model on bearing balls.
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Chapter 2

Rolling Contact Fatigue

The fatigue life of bearings is determined primarily by two factors: the de-

tachment of material (spalling) following the initiation of cracks below the

contact surface and spalling due to surface irregularities and due to distress

caused by surface roughness [2]. In this study the focus is on the first of these

failure mechanism, since inclusions are located at a certain depth respect to

the surface and the crack starts from the inclusion itself. Nowadays, the bear-

ing steels are clean, in the sense that the number of inclusion is not as big as

was in the past, but inclusions persist.

In this project, the analyses on microinclusions were made on failed balls

coming from Test Rigs. A ball is considered failed when is no longer capable

to perform rotations or excessive vibrations and noise occur. The spalling

phenomenon is the cause of failure of the balls with inclusions, in concomitance

with overload but it can happen also without a particular inclusion, so due to

pure overload. Spalling begins with microcracks initiating on the subsurface

of the rolling body, followed by coalescence of multiple microcracks which then

reach the surface.

Failure can also occur in a more dramatic way by crack formation along

the entire section of a bearing rolling element, but this can be prevented by

stopping the test benches when vibrations exceed the limits. Typically, when

the vibrations evaluated by the test rig start to increase, the formation of

spalls and pits among the balls and the raceways is begun.

9
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2.1 Factors that influence RCF Life

There are many factors that can affect the RCF life of a component, like:

• contact pressure

• material properties

• lubricant properties

• surface roughness

• relative slip during the rotation between the elements

• microstructure

• cleanliness condition

Since the aim of the study is to analyze the effect of microinclusions on

the bearing life, the focus is on the cleanliness condition.

10
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2.2 Cleanliness

Non-metallic inclusions affect negatively the fatigue life of a rolling body, like

a ball in a bearing. They are detrimental also in case of components that

are stressed with alternating stresses in general, so subjected to fatigue, like

the specimens used in the rotating bending machine analyzed in this study.

Inclusions are inevitably present in steels, because they cannot be eliminated

in the steelmaking process. When using modern steelmaking processes to

decrease the amount of oxide inclusions, the other impurities such as sulfides

or nitrides may grow larger [11].

The inclusions may also be brittle, and the resulting cracks concentrate

stress and then may nucleate from these discontinuities into the subsurface of

the rolling element. A non-metallic inclusion, even if it is uncracked, produces

a mechanical heterogeneity which locally changes the stress distribution. In

such circumstances, the depth in which the maximum shear stress and then

the maximum damage is expected could not coincide with that calculated

from the Hertzian theory of normal contact of homogeneous steel [2]. Further

clarifications on the severity of different types of inclusions will be showed in

the next chapters.

There are several parameters that are useful to characterize the inclusions:

• Dimension

• Shape

• Depth

• Chemical composition

– Oxides

– Nitrides

– Carbides

– Silicates

– others

• Configuration

11
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2.2.1 Dimension

Considering several cases of microinclusions, the size of them can change sig-

nificantly depending on the inclusion type. Inclusion size affects the stress

distribution around the inhomogeneity; in particular the stressed volume in-

creases with the increase of the inclusion size. The maximum value of the

stress (like the maximum von Mises stress) due to the presence of the in-

clusion, does not depend strongly on the inclusion size [9], as the Eshelby

numerical model will confirm.

2.2.2 Shape

Inclusions can have different shape depending on their chemical composition.

Typically Al2O3 inclusions have a spheroidal or ellipsoidal shape, while for

example Nitrides and Carbides are sharper. The effect of the shape of an

ellipsoidal inclusion will be seen in the next chapters.

2.2.3 Depth

Inclusions can appear at a random depth in the component volume. Due to

the stress distribution under the surface of the object, it is possible to say that

if the defect is positioned too far from the surface, the stress concentration

effect can be neglected. On the other hand, if the inclusion is located at a

critical depth (that depends on geometrical parameters of the contact), it is

detrimental for the fatigue life [9].

2.2.4 Chemical composition

The chemical composition is an important factor, because it is related with

the Young modulus. Most of non-metallic inclusions have an elastic modulus

higher than the matrix one. Increasing the difference between the two mod-

ula, the maximum von Mises stress or Tresca stress will increase [9].

Another parameter that is influenced by the chemical composition is the Pois-

son ratio. As seen for the Young modulus, if the difference between the two

Poisson ratios increases, the stress will have a major increase.

2.2.5 Configuration

The configurations in which the inclusions are present affect the endurance

limit of the bearing steel. Examples of these configurations are pairs, clusters

12
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and stringers.

When two or more inclusions are next to each other, with a distance that is

under a certain limit, the approximation of an uniform applied strain field

in the inclusion area is no longer valid [8], so the Eshelby model should be

revised. Further clarifications on this aspect will be seen in the next chapters.

13
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2.3 Hertz Theory

The problem of elastic contact between two elastic bodies was first solved

by Heinrich Rudolf Hertz. His purpose was to determine mathematically

how bodies in ’point contact’ when undeformed will behave when loaded one

against the other. He obtained his results within the classical theory of elas-

ticity.

Contact conditions:

1. Geometry:

• two bodies in contact

• in a non-singular point of their surfaces (regular at least to the sec-

ond derivative); then (first derivatives) the common tangent plane

exist

2. Material:

• elastic, isotropic

• no friction

3. Hypothesis:

• small contact surface (length and width small compared to curva-

ture radii od bodies in contact)

2.3.1 Local geometry

The properties of body 1 are, developed up to the 2nd order derivative at point

(0,0):

z1 ' 0 + 0 · x+ 0 · y +
1

2

[
∂2z1

∂x2
x2 + 2

∂2z1

∂x∂y
xy +

∂2z1

∂y2
y2

]
+ ... (2.1)

Where:

• z1 = z1(x, y)

• z1(0, 0) = 0

• ∂z1
∂x (0, 0) = 0

14
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• ∂z1
∂y (0, 0) = 0

• αxx =
1
2·
∂2z1
∂x2

= 1
2 ·

1
Rxx,1

• αyy =
1
2·
∂2z1
∂y2

= 1
2 ·

1
Ryy,1

Rxx and Ryy are the curvature radii of the section with plane xz and of

the section with plane yz, respectively.

15



Francesco Morosi CHAPTER 2. ROLLING CONTACT FATIGUE

For body 2, the properties can be defined similarly, and the curvature radii

are:

• βxx =
1
2·
∂2z2
∂x2

= 1
2 ·

1
Rxx,2

• βyy =
1
2·
∂2z2
∂y2

= 1
2 ·

1
Ryy,2

If body 2 is concave, the coefficients β would be negative.

At all points (x, y) z1 − z2 ≥ 0 since interpenetration does not occur.

Moreover, experimental observations suggest that when two bodies are pressed

one against to each other they will touch over a surface having an elliptical

contour (Fig. 2.1).

16
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Figure 2.1: Interference fringes of two transparent bodies in contact, loaded

Moreover, rigid body motion combines with elastic deformation when the

two bodies are approaching, so that the deformed shape of the bodies are

related to the elastic properties of the material (Eq. 2.2). On each area

element:

dA = dx′dy′

inside the contact surface at a point (x’,y’), an infinitesimal force dF is applied:

dF = p(x′, y′)dx′dy′

which produces at any other point of coordinates (x,y) a contribution to dis-

placements:

du =
1−ν2
πE

1
rb
· p(x′, y′)dx′dy′

u(x, y) =
1−ν2
πE

∫ ∫ p(x′,y′)
r′ dx′dy′

where: rb =
√

(x− x′)2 + (y − y′)2

u1(x, y)

u2(x, y)
=

1−ν21
E1

1−ν22
E2

(2.2)
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Hertz found that, with a contact force F :

F =
∫ ∫

p(x, y) · dx · dy

p =
3
2
F
πab ·

√
1− X2

a2
− Y 2

b2

with: a,b semi axes of the elliptic contact surface. The values of the semi axes

depend on the solution of an integral equation, which is normally given in

numerical form.

2.3.2 Stress

Experimental evidence shows that failure starts at points below the surface.

For this reason, it is interesting to know the 3D stress status along the z−axis,
which is the one that is parallel to the applied force. In this way, it is possible

to calculate the principal stresses ans then the maximum tangential stress,

the von Mises stress and so on.

The stresses below the surface, for the sphere-sphere contact and for the

cylinder-cylinder contact, are represented below (Fig. 2.2, Fig. 2.3) and that

is similar to what happens in the sphere-ring contact inside a bearing.

18
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Figure 2.2: Subsurface stresses: sphere-sphere contact

Figure 2.3: Subsurface stresses: cylinder-cylinder contact
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Many researches have been conducted to study which shear stress (maxi-

mum tangential stress, von Mises stress, Tresca stress) is the one that has to

be considered in the context of fatigue of contacting bodies [10, 19]. Their

roles can in principle be determined by comparing the respective stress distri-

butions against the location of maximum damage in experiments. However,

whichever shear stress is considered, the maximum occurs below the contact

surface and this has significant consequences to the development of damage.

Notice that the shear stress is proportional to the contact pressure p0 but the

proportionality constant will depend on the geometry of the contact [2].

20



Chapter 3

Balls manufacturing process

Heading

The balls production starts from a wire which is fed from a coil into a machine

that cuts it in short pieces. After that, the pieces are formed into a rough

sphere by pressing in a hemispherical matrix. In this process, the wire is not

heated before being headed. For this reason, the process is called cold heading.

Soft grinding

After heading, the balls show a ring around the middle due to the moulding,

the soft grinding phase allows to remove this exceeding material. The ball

bearings pass through two cast iron disks that presents rough grooves in which

the ball was filed. The balls are left oversized because of the following process

of surface finishing which brings the balls to their finished size.

Heat Treatment

Normally, the Heat Treatment phase consists in Quenching followed from Tem-

pering. The balls pass through a heat-treating furnace at about 840 degrees

Celsius (Austenitization temperature) and then they are dropped into an oil

or water bath to cool them almost instantly. This process makes the balls

harder than before the treatment, but also give a brittle steel, whereby the

balls are also tempered.

Peening

After heat treatment, the balls are subjected to peening, which is a cold work-

ing process used to produce a subsurface residual stress that can be beneficial

if it is compressive and localized immediately below the surface [2].

21



Francesco Morosi CHAPTER 3. BALLS MANUFACTURING PROCESS

Surface Finish

Right after peening, the balls, which are oversized, begin the last process; the

balls pass into grinding wheels that grind the balls down so that they are

round within cents of micron. After this, the balls are lapped to their final

surface finish.
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Chapter 4

Materials and Methods

The project presented here is composed by an analytical part, supported by

a numerical code, and an experimental part, that includes rotating bending

fatigue tests performed on specimens and ball bearings tests executed on RCF

benches.

Starting from the cases analyzed experimentally, some parameters have been

changed in the numerical model, in order to understand the effect of the

various parameters.

The RCF benches are useful to study the failures due to microinclusions of

the spheres, that are mounted inside the bearing. Nevertheless inclusions are

already present in the steel, from the steel making process; for this reason also

rotating bending fatigue tests on steel samples were performed. In these type

of tests, the goal is to analyze the fatigue behavior of the pure steel, thanks

to standard specimens.

When the specimen or a ball fails, an analysis of the fracture was made,

evaluating the inclusion presence and characterization.

The last aim of this project was to define a threshold parameter to estimate

the fatigue life of the balls that accounts the inclusion presence.
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4.1 Experimental set up

The experimental tests provided real data about the inclusions; thanks to this

data the stress distribution around the inclusion was calculated. Moreover,

these informations were helpful to have a general knowledge of the real prop-

erties of the inclusions present in the steel, and so to have a solid database for

the numerical simulations.

4.1.1 Rotating bending fatigue tests

The rotating bending fatigue test has the objective to test the raw material

(Fig. 4.3). The steel wire was cut in 150mm samples and then straightened

to nullify the curvature of the coil (Fig. 4.1) . Then, the sample was quenched

(for 12 minutes at 850◦C) in salt water or oil to obtain the same properties of

the steel balls.

Figure 4.1: Raw steel coil cut and final specimen

From the sample, the standard specimens were obtained, following the

drawing below (Fig. 4.2), as requested by the ISO 1143 specification.
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Figure 4.2: Specimen geometry

Furthermore, additional checks were made:

• Roughness

Thanks to a roughness meter, every part of the specimens was inspected

(tangs, junctions and central cross section) to know if the standard lim-

its were respected. If not, an accurate polishing was made and the

roughness re-checked.

• Visual Inspection

This operation is mandatory to avoid any scratch or surface defect that

could affect the test.

• Mounting procedure

The specimen was clamped thanks to a torque wrench and the tangs

were covered with a thin layer of anti-fretting paste that prohibits the

rubbing of the specimen inside the machine. After that, the rotational

speed was kept at a low level to verify the correct mounting and the

screws of the moving head were tightened so as to obtain two fixed

supports.

This procedure had the purpose to avoid any brake of the specimens that is

not caused by a non metallic inclusion.
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Staircase analysis

The rotating bending machine rotates and bends the specimen. The inclusion

content of the steel was tested trough several specimens of different staircase

analyses : this method allows to estimate the fatigue limit of the steel. It

consists of testing the first specimen at a stress condition that is supposed to

be about the fatigue limit of the material: if it reaches the life target without

failing, the next specimen is tested at a higher stress condition; otherwise, in

case of failure, the stress level of the next specimen is reduced. The ∆σ is

fixed before starting the test campaign.

The load applied at the minimum cross section is controlled by a PC software,

as the rotational speed. The test characteristics were:

• Stress frequency: 58.3Hz (3500 rpm)

• Test machine loading sistem: 4 points

• Life target: 5 · 106cycles

• ∆σ = 25 MPa

Figure 4.3: Rotating bending machine
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4.1.2 Test Rigs for bearing balls

The fatigue test of the balls was designed in order to single out the failure

cause only on the tested balls without damaging the other parts of the bearing,

like the inner ring, outer ring and cage. In order to ensure the reliability of

different tests and so to have the same test conditions, a process protocol that

is established since many years, was adopted. The same test conditions are

mandatory to compare the fatigue life of different balls, respect to the inclusion

presence and properties. Because of the high contact pressure between the

balls and the raceways, it could be possible to have a damaging of inner and

outer rings that consequently generates balls damaging which invalidate the

test.

Rigs structure and properties

Each test bench (Fig. 4.4) is made up of a shaft in which are assembled two

types of 1stgeneration HUB bearings::

• Angular contact ball bearing (φ 11, 112mm)

• Angular contact ball bearing (φ 10, 500mm)

The shaft is connected to an electric motor that transmit the rotation. A

hydraulic piston driven by a pneumatic one, provides the axial load to the

bearings. The loaded side of the shaft is the one with φ11, 112mm balls, and

the study is focused on those balls, not on the φ10, 500mm ones. The latter

ones have only a support function.

The test bench is able to detect:

• vibrations through an accelerometer

• temperature through to a thermocouple

• load level through to a load cell

Both the accelerometer and the thermocouple are placed on tested bearings

(balls with φ 11, 112mm). These two sensors are very important for the man-

agement of the tests, indeed every variation of the nominal condition may have

important consequences. For this reason, the three parameters display real

time on the computer monitor connected with test rigs and for each minute

of the test, temperature and vibrations are recorded.
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• A high level of load may produce high pressure on balls that leads to

premature failure

• A high temperature can arise due to excessive or limited lubricant, or a

marked roundness of the balls and so excessive contact pressure

• A high level of vibrations may suggest a marked roundness of the balls

or a failure of one of the bearing components.

The tested bearing mounts only one row of 7 balls (instead of 14 balls) to

increase the contact pressure between the rings and the tested balls. Only

one row is necessary since there’s unidirectional load. The grease is the Shell

Gadus S3 V220.

Regarding the no-tested bearing, only one cage is assembled (as explained for

the tested case) with a complete set of 15 balls. The grease in this case is the

Shell Gadus S2 V100.

The cleanliness during the assembly is mandatory, since any contamination of

the lubricant can lead to a reduction in the bearing fatigue life.

Figure 4.4: Test rigs for balls bearing tests
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Test procedure

The test conditions are summarized below:

• Ball diameter: φ 11, 112mm

• Ball material: 100Cr6

• Ball number in each test bearing: 7

• Ball number in each no-test bearing: 15

• Applied Load: 34400N

• Grease for tested balls: Shell Gadus S3 V220

• Grease for tested balls: Shell Gadus S2 V100

• Load limit: 37500N

• Vibration limit: 15 mm
s2

• Temperature limit: 145◦C

• Releasing load interval: 25s every 300s

• Data acquisition period: 60s

The test can start when the two bearings are mounted on the shaft and the

bench is correctly assembled. During the firsts 10 minutes, the load is only the

30% of the nominal one to obtain a homogeneous distribution of the lubricant

and the optimal centering of the shaft. After this short time, the load is raised

until the nominal one. Every 5 minutes the load is released for 25 seconds to

allow the spinning of the balls.

Each 20 hours the rigs are stopped so as to change the rings, the lubricant,

the cages, and the balls of the no-tested bearing. In this way, the element of

the bearing that will fail earlier will be the ball in most cases.

It is possible to have premature stops due to:

1. High temperature

If the temperature overcomes 145◦C, the machine stops. This temper-

ature was chosen because 150◦C is the tempering temperature of the

steel, over this limit there is the possibility of microstructural changes

(hardness reduction) of the rolling elements and then a reduction of

fatigue life.
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2. Vibrations

When the vibrations level is higher than 15mms2 , the machine stops.

That level was chosen according to the testing developed experience: if

a lower level is set, the machine would stop for external vibrations and

if a higher level is set, a ball could be broken but the machine would not

stop, ruining the test.

3. Load

In order to prevent the overload, the test is stopped if the load limit is

exceeded.

At every stop of the bench, it must be disassembled and cleaned. The com-

ponents must be inspected completely, and different situations can arise:

• Stops before 20 hours:

The test bearing has to be inverted or changed if both sides have been

already used, while the rings of the support bearing can be maintained

if they are in good status. The φ 10, 500mm balls have to be changed.

• Programmed stops at 20 hours:

Both the test bearing and the support bearing must be inverted or

changed, as the φ 10, 500mm balls.

After this operation, everything is lubricated and assembled. This accurate

maintenance ensures that the balls break first. Moreover, at each stop, the

roundness and weight of the balls is measured to know the damage evolution.

The test is considered finished in two cases:

• Failure of the tested balls

• Excessive vibrations or temperature due to a marked roundness of the

balls.
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4.1.3 After failure analyses - Spheres

When one ball had failed, the after failure analyses started. Here the procedure

is presented:

1. A stereomicroscope inspection was made on each failed ball, to evaluate

if the failure started from an inclusion. In this case, few photos at

different magnification were taken.

2. The SEM (Fig. 4.6) analysis allowed to know the chemical composition

and the dimension of the inclusion.

3. The inclusion depth was evaluated thanks to a gauge meter (Fig. 4.5).

Figure 4.5: Gauge meter
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4.1.4 After failure analyses - Specimens

Similarly to the failure analyses of the spheres:

1. An optical inspection was made on the fracture of the specimen, few

photos at different magnification were taken and the distance from the

surface and the dimension of the inclusion were detected.

2. The SEM (Fig. 4.6) analysis allowed to know the chemical composition

and dimension of the inclusion.

Figure 4.6: Scanning Electron Microscope
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4.2 Stresses calculation

Since the inclusion depth was known, it was possible to calculate the stress at

the corresponding position, both for spheres and specimens. The Tresca and

von Mises equivalent stresses were evaluated:

• the first one states that the yielding of the material is reached when the

maximum tangential stress reaches a threshold value τmax = k. In this

case the stress limit is:

τmax =
{ |σI−σII |

2

}
,
{ |σII−σIII |

2

}
,
{ |σI−σIII |

2

}
• the second one claims that the yielding occures when the deformation

distorting strain reaches a limit value. The stress limit is:

σid,V M = 1√
2

√
(σ2

1 − σ2
2)2 + (σ2

2 − σ2
3)2 + (σ2

1 − σ2
3)2

These stresses are the ’ideal’ ones, that do not consider the presence of the

inclusion: they will be modified by the Eshleby solver.

In the sphere case, the Hertz theory was used, while in the specimen case the

stress can be computed easily from the De Saint Venant theory.

4.2.1 Hertzian stress - Spheres

Starting from the geometry of the contact and the load applied, the distribu-

tion of the stress under the surface is known. Only seven components of the

tensor are different from zero, since the applied load is purely axial. Moreover,

being two pairs of stresses equal, only five are significant.

To compute the equivalent stresses, the tensor with seven components was

diagonalized in order to get a matrix with only the three principal stresses

different from zero.
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Load [N] 34400

Max Hertzian pressure [MPa] 6001

Contact ellipse semi-axes [mm] 1.934 0.431

Poisson ratio 0.35

Young modulus [GPa] 210

Table 4.1: Contact parameters

Figure 4.7: Sub-surface stresses, corresponding to 34400 N
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Figure 4.8: Sub-surface Tresca Stress, corresponding to 34400 N
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4.2.2 Stress - Specimens

The rotating bending machine applies the force as shown in Fig. 4.9.

Figure 4.9: Rotating bending machine - Load condition

The applied stress on the specimen can be found starting from the free

body diagram (Fig. 4.10):

Figure 4.10: Free body diagram
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Since the geometries of the machine and of the specimen are known, the

bending moment trend and the applied stress are:

(a) Bending moment trend (b) Applied stress

The load applied from the machine generates a uniform bending moment

on the specimen (Fig. 4.11a), for this reason the applied stress from point

C to point D changes only because of the variation of the cross section area.

In the central part of the specimen the stress is maximum, because the cross

section area is minimum (Fig. 4.11b).

At this point, knowing the applied stress at the surface, it was possible to

know the stress at each depth changing the y coordinate, and so the ’ideal’

stress at the inclusion level.

In the specimen case, there is only one principal stress, so the corresponding

Tresca one is:

τmax =
σxx
2
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4.2.3 Stress variation

All the data required from the Eshelby solver was known (inclusion dimension,

depth, chemical composition and configuration, stress at the inclusion depth).

To have a complete description of how the solver works, please see chapter

5.2.

It is necessary to underline that the third dimension of the inclusion it is

not easy to determine, in this study the one along the z-axis. Nevertheless,

thanks to the experience, it’s possible to say that it is similar to one of the

two other dimensions. When the inclusion detaches from the surface fracture,

it is possible to detect the third dimension and in every case it is similar to

the others dimensions. Moreover, since the stress analysis was performed on

the xy plane the z dimension in not affecting the stress field.

The code reads the input stress tensor at the correct depth from an Excel

file and, with all the inclusion data, it calculates the ’new’ stress tensor and

the Tresca and von Mises stresses. Moreover, it plots a 3D graph in which

the stress state inside and outside the inclusion. The grid limits were chosen

with respect to the perturbation of the stress state due to the inclusion: when

the stress outside the inclusion decreases at the matrix-free level the grid is

interrupted.

38



Chapter 5

Model

5.1 Eshelby model

The Eshelby model allows to compute the stress field around an ellipsoidal in-

clusion. A region (inclusion) in an infinite homogeneous, isotropic and elastic

medium (matrix) undergoes a change of shape and size. Under the constraint

of the matrix, the inclusion has an arbitrary homogeneous strain. The objec-

tive is to evaluate the elastic fields of the inclusion and of the matrix [4].

Eshelby investigated the elastic fields thinking to cut round a generic region

and removing it from the matrix. In this way the region can change its shape,

since it is unconstrained. Then, applying forces to the region and so restoring

it to its original form, put it back in the matrix. The stress is now zero and

has a constant value inside the inclusion. The applied surface tractions have

become built in as a layer of body force spread over the interface between ma-

trix and inclusion. To complete the solution, this unwanted layer is removed

by applying an equal and opposite layer of body force; the additional elastic

field thus introduced is found by integration from the expression for the elastic

field of a point force [4].

The result that Eshelby found was that if the inclusion is ellipsoidal and

the matrix in which it is embedded is subjected to an homogeneous load, the

stress within the inclusion is uniform. This means that the elastic stress and

strain don’t change with the position inside the inclusion.

Mura [17] defined an inclusion as a subdomain Ω in a domain D. The

eigenstrain ε∗ij(x) is given in Ω and zero in D−Ω. This is the inclusion prob-

lem, as the elastic modulus is the same for both subdomain and domain. The

displacement uj, strain εij, and stress σij are expressed by [17]:
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ui(x) = −Ckjmn
∫

Ω

ε∗(x’)Gij,k(x-x’)dx’ (5.1)

εij(x) = −1

2

∫
Ω

Cklmnε
∗
mn(x’)(Gij,k(x-x’)) +Gjk,li(x-x’)dx’ (5.2)

σ(x) = −Cijkl(
∫

Ω

Cpqmn ∗ ε∗mn(x’)Gkp,ql(x-x’)dx’ + ε∗kl(x)) (5.3)

where:

• Cijkl is the stiffness tensor

• Gij is Green’s function

• x is the position vector

• x’ denotes the position of a point source

Since the strain and stress fields inside the inclusion are uniform:

εij(x) = Sijklε
∗
kl for x ∈ Ω (5.4)

with Skl as the Eshelby tensor [17]. This tensor contains several inte-

grals, approximated with tolerance of order 10−16 by the MATLAB function

elliptic12 [13], the solutions are quasi-analytical [17].

Regarding the strain field outside the inclusion:

εij(x) = Sijklε
∗
kl for x ∈ D − Ω (5.5)

Having this expression of the strain for both inside and outside the inclu-

sion, the stress can be obtained as follows:

σij = Cijklεkl(x) (5.6)

5.1.1 Equivalent inclusion method

If the elastic field that has to be evaluated is characterized by different elas-

tic moduli, as the subdomain moduli is different from the one of the matrix,

this makes the problem different. In this case the problem is called ’the in-

homogeneity problem’, while in the case of the same elastic modulus it is
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called ’the inclusion problem’. The correlation between the two was argued

by Eshelby [4]: the stress perturbation due to the presence of an ellipsoidal

inhomogeneity of an homogeneous applied stress σ∞ij , can be determined by an

inclusion problem when the eigenstrain ε∗ is chosen correctly. This is called

the equivalent inclusion method [16].

Mura [17] gives the strain and stress fields as follows:

εij = ε∞ij + Sijmnε
∗
mn (5.7)

σij = σ∞ij + Cijkl(Sklmnε
∗
mn − ε∗mn) for x ∈ Ω (5.8)

εij(x) = ε∞ij +Dklmn(x)ε∗mn (5.9)

σij(x) = σ∞ij + CijklDklmn(x)ε∗mn for x ∈ D − Ω (5.10)

Note that equations (5.7)(5.9) are similar to (5.4)(5.5) respectively, but

the equations describing the equivalent inclusion method (5.7)(5.9) have the

term ε∞ij that represent a remote strain induced by the homogeneus stress σ∞ij .

The same goes for the equations regarding the stress (5.8)(5.10), but here the

eigenstrain is stress-free, so it has to be subtracted from the total strain when

calculating the stress inhomogeneity.
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5.2 Numerical solver

In order to evaluate the effects of various types of inclusions and matrices, a 3D

numerical MATLAB solver that implement the Eshelby solution was used. In

particular, it allowed to determine the stress field around the microinclusion.

Healy [3] proposed a MATLAB code that was able to consider the Eshelby

solution for an inclusion with semiaxes a1 = a2 6= a3. The one that was used in

this work, allows to consider a general ellipsoidal inclusion or inhomogeneity

with three different semiaxes, and it is based on the one developed by Meng

et al. [16]. The code has been revisited to adapt it to the particular case

of inclusions in ball bearings. As explained by Meng et al. [16], the main

script, incl prob handles the input data structure, calls the Eshelby solver,

Esh sol, and presents the results. The input structure incl has attributions:

• Em Young’s modulus of the matrix

• vm Poisson ratio of the matrix

• Eh Young modulus of the inhomogeneity

• vh Poisson ratio of the inhomogeneity

• dim the ellipsoidal dimensions ai

• ang rotation angles around coordinate axes

• stressvec remote stress σ∞ij

• eigp initial eigenstrain εpij

• grid observation grid(s) where we evaluate the solutions

where the stress and strain tensors are in the form of six-component vectors

because of the symmetry. The Esh sol function reads the input data and

output arguments, ”disp”,”stress” and ”strain”. The routines called by this

function in the order of appearance:

Ctensord constructs the stiffness tensors Cijkl and C∗ijkl for given elastic mod-

uli (Em, vm) and (Eh, vh). From the stress-strain correspondence, (5.6), it’s

possible to calculate the remote strain ε∞ij for the remote stress σ∞ij . Note

that if Cijkl = C∗ijkl, σ
∞
ij = 0 and εpij 6= 0, it is the original inclusion problem.

Esh int constructs the Eshelby tensor Sijkl for a given vm and ellipsoid di-

mension ai. With C∗ijkl, ε
∞
ij and Sijkl it’s possible to calculate the fictitious
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eigenstrain ε∗ij.

Esh D4 constructs the tensor Dijkl(x) for given vm, ai and coordinates xi.

With Dijkl, it’s possible to calculate the exterior strain and stress.

Esh disp constructs the displacements ui for given vm, ai, xi, and ε∗ij.

Esh D4 disp merges the functionalities of Esh D4 and Esh disp.

Since the objective is to find the stress field perturbation, only Esh D4 rou-

tine is chosen, the displacement given by Esh disp it is not considered at this

stage.

43



Chapter 6

Numerical Simulations

In order to evaluate the functionalities of the code and the different effects of

the several parameters, numerical simulations were made. These numerical

tests are based on experimental data coming from failures on test rigs, so the

results should be truthful respect to the experimental cases. This means that,

taking into account a real found microinclusion, the parameters were changed

consciously, simulating the different effects on the stress field.

Before starting the parametric analysis, it is necessary to point out that the

simulated load on the bearing is static and purely axial, and it’s equal to the

one applied at the test rigs for experimental tests.

Since the axial load on each ball it is known, as the geometry of the bearing,

it is possible to evaluate the normal load (respect to the contact). Thanks to

the Hertz theory and the Poisson ratio of the bearing material, the contact

pressure can be estimated, as the pressure tensor at each depth (Fig. 6.1).

The tensor found at the depth at which the inclusion is present, is the input

of the code.
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Figure 6.1: Sub-surface stresses, axial load equal to 34400 N

6.1 Dimension

The inclusion size affects the stress field around the inclusion: increasing the

inclusion dimension, the area subjected to a stress perturbation increases. On

the other hand, the Tresca stress peak value does not change significantly

(Table 6.1). These results agree to what Guan et al. [9] and Moghaddam

et al. [14] found. Obviously, a larger inclusion can be located at the critical

depth with an higher probability respect to a smaller one.

Regarding a ball baring case, having a larger stressed area, it means that it

will be subjected to the load more frequently.

Stress peak increment at NMI boundary

Size of the semiaxis [µm] Tresca peak Increment

From 0.5x0.5x0.5 +39%

To 50x50x50 +39%

Table 6.1: Effect of the inclusion dimension
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Figure 6.2: Stress perturbation due to a spheroidal inclusion - 0.5 µm radius

Figure 6.3: Stress perturbation due to a spheroidal inclusion - 50 µm radius
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6.2 Shape

Changing the two semiaxes of the inclusion perpendicular to the force direc-

tion, the effect of the shape has been evaluated. The force direction is parallel

to the z-axis, so the two semiaxes are directed as x and y. The ratio between

the two has been changed until one order of magnitude and the results are

showed below (Table 6.2):

Stress peak increment at NMI boundary

Case number Shape [y/x] Tresca peak Increment

1st 1 +39%

2nd 2 +42%

3rd 10 +49%

Table 6.2: Effect of the inclusion shape

Figure 6.4: Stress perturbation: effect of the shape - 1st Case
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Figure 6.5: Stress perturbation: effect of the shape - 2nd Case

Figure 6.6: Stress perturbation: effect of the shape - 3rd Case

48



Francesco Morosi CHAPTER 6. NUMERICAL SIMULATIONS

The shape plays an important role on the stress increment at the inclusion

boundary, if the semiaxes ratio increases, the stress peak increases in a not

negligible way.

6.3 Depth

An important factor for the stress peak at the inclusion boundary is the depth

at which the inclusion is located. From the Hertz theory, it is known that the

maximum equivalent stress is located at a certain depth below the surface.

This depth can be identified, with a good approximation, as:

Depthσeq,max
= 0.75 · b

where b is the contact half width.

The stress increment [%] due to the NMI remains the same inde-

pendently form the depth as shown in Table 6.3. At the critical depth,

the original stress calculated by Hertz is maximum, so the absolute increase

is larger, Fig. 6.7.

Stress peak increment at NMI boundary

Case number Depth/b Tresca peak Increment

1st 35% +39%

2nd 71% +39%

3rd 175% +39%

Table 6.3: Effect of the depth
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Figure 6.7: Stress perturbation: effect of the depth

6.4 Chemical composition

6.4.1 Inclusion Composition

Most inclusions in bearing steels, are non metallic (NMI), and typically they

are stiffer than the matrix. In fact, referring to experimental cases, few of

the most common ones are Allumina (Al2O3), Titanium nitrides (TiN) and

Titanium carbides (TiC) and each of them has an elastic modulus that is

approximately 1.8 times or higher than the elastic modulus of the pure

steel. Also other types of inclusions can be found in steels, typically they

are not detrimental as the ones presented above since they are not as stiff as

those.

In the cases presented here, the peak increment remains almost the same

(between +36% and +39%), but this effect is due to the very similar Young
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modulus. Major changes on the elastic modulus will lead to larger increments,

since they are related to the difference between Em and Eh: if the ∆E increases,

the peak increases.

Another parameter is the Poisson ratio (νm and νh), index of the shrinkage and

the expansion of the sample. Similarly to what seen for the Young modulus,

if the ∆ν increases, also the peak increases.

Stress peak increment at NMI boundary

Case number Composition Tresca peak Increment

1st Al2O3 +36%

2nd TiN +36%

3rd TiC +39%

Table 6.4: Effect of the composition

6.4.2 Matrix composition

Similarly to the inclusion case, the chemical composition of the matrix influ-

ences the stress field since ∆E and ∆ν change considering the type of matrix.

In this work, the matrix considered was only the 100Cr6, that is largely used

for bearing production. Considering other bearing steel alloys, already used

or in development, they can lead to negligible variations as the input value

for calculations are Poisson ratio and Young’s modulus.

6.5 Configuration

Experimental evidence shows that inclusions can appear in pairs, clusters and

stringers. In order to be aligned with experimental cases and to the ASTM

E45 Standard [5], few cases have been considered for the numerical analysis.

The Standard provides a solution for the stringer case, that is considered with

a minimum of three particles. In this case, the stringer can be considered as

a stand-alone inclusion with an elongated semiaxes that covers the distance

from the first to the last inclusion of the stringer.

As suggested by the E45 [5], the particles have to be placed at a certain dis-

tance limit from the centerline of the stringer itself, and the distance between
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them has to be less than a certain threshold. Considering a stringer as a stand

alone inclusion with elongated semiaxis, it is similar to what has been shown

in the shape section (Table 6.2).

6.6 Conclusions

As proposed in [9], if the inclusion is far from the surface it will be not the

main source of the spalling. According to the present research, in the worst

case, the stress increase is approximately +50%.

The depth threshold below which the stress remains below the maximum stress

calculated by Hertz is approximately 188% the contact half width, Fig. 6.8.

This result is in good agreement with [9, 14].

Figure 6.8: Depth threshold

52



Chapter 7

Failures on balls

Seven broken balls coming from test rigs were analyzed. In five cases more

than one inclusion was present in the fractured area: for this reason the con-

sidered one was the one with the major increase of stress, since it was the

worse from the fatigue life point of view. Nevertheless, also the other inclu-

sions will be reported in the appendix A. Probably, also in the other two cases

the balls had few inclusions, but it could happen that they remained under

the material that was peeling.

Regarding the chemical composition, if the presence of some elements was

negligible (evaluating the spectrum) these elements were neglected when con-

sidering the composition. Otherwise, if the presence of some elements was not

negligible, a weighted average of them was performed to obtain the Young

modulus and the Poisson ratio. It happened that for some inclusions, the

dimensions were not clear, as the chemical composition and so the Young and

Poisson parameters. Further clarifications are presented in this chapter.
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7.1 Case 1

The test n◦ 1 presented a failed ball after 11.2 [h]. In this case, there was

more than one inclusions in the fractured area. The one showed below is the

most critical under the stress rise point of view. The fracture analyses at the

optical microscope it is reported:

(a) 8x magnif. (b) 16x magnif.

Figure 7.1: Test 1 - 11.2 h - Fracture inspection

The SEM analyses detected the inclusion dimensions and composition:

Figure 7.2: Test 1 - 11.2 h - 2000x magnif.
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(a) Chemical composition (b) Spectrum

Figure 7.3: Test 1 - 11.2 h - SEM analyses

Since there are few elements in the inclusion slot, it’s necessary to specify

how the Young modulus is found: in this case the TiC composition was

chosen, as the other elements (Cr, V, S, Zr) are in relatively small quantities

and they have an elastic modulus that is quite small respect to the TiC. In

this way, the adopted composition is the most critical one.

Figure 7.4: Test 1 - 11.2 h - Simulated stress inside and outside the inclusion

55



Francesco Morosi CHAPTER 7. FAILURES ON BALLS

Original Maximum Increase [%]

Tresca [MPa] 2319 3650 43

Matrix Inclusion Ratio

Young Modulus [GPa] 210 380 1.81

Poisson Ratio 0.35 0.17 /

x y z

Inclusion dimensions [µm] 1.67 4.34 1.67

Inclusion depth [µm] -453

Applied Load [N] 34400

Cycles to failure [·106] 0.46

Table 7.1: Test 1 - 11.2 h - Results
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7.2 Case 2

The test n◦ 2 presented a failed ball after 33.9 [h]. Also in this case, there

was more than one inclusion in the fractured area. The one showed below is

the one chosen with the same criteria used for Case 1.

(a) 8x magnif. (b) 16x magnif.

Figure 7.5: Test 2 - 33.9 h - Fracture inspection

The SEM analyses detected the inclusion dimensions and composition:

Figure 7.6: Test 2 - 33.9 h - 2000x magnif.
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(a) Chemical composition (b) Spectrum

Figure 7.7: Test 2 - 33.9 h - SEM analyses

The inclusion composition is Alumina (Al2O3) with a minor presence of

other oxides.

Figure 7.8: Test 2 - 33.9 h - Simulated stress inside and outside the inclusion
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Original Maximum Increase [%]

Tresca [MPa] 2319 3189 37

Matrix Inclusion Ratio

Young Modulus [GPa] 210 375 1.79

Poisson Ratio 0.35 0.22 /

x y z

Inclusion dimensions [µm] 1.67 2.67 1.67

Inclusion depth [µm] -562

Applied Load [N] 34400

Cycles to failure [·106] 1.40

Table 7.2: Test 2 - 33.9 h - Results
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7.3 Case 3

The test n◦ 3 presented a failed ball after 46.9 [h]. Only one inclusion was

found in the spalling area.

(a) 10x magnif. (b) 60x magnif. - BSD

Figure 7.9: Test 3 - 46.9 h - Fracture inspection

The SEM analyses detected the inclusion dimensions and composition:

(a) 60x magnif. - SE1 (b) 700x magnif

Figure 7.10: Test 3 - 46.9 h - SEM fracture inspection

The inclusion is composed by different parts, as stated previosuly (chapter

6), it is considered as a stand alone inclusion with elongated semiaxes.
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(a) Chemical composition (b) Spectrum

Figure 7.11: Test 3 - 46.9 h - SEM analyses

Figure 7.12: Test 3 - 46.9 h - Simulated stress inside and outside the inclusion
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Original Maximum Increase [%]

Tresca [MPa] 2210 3146 42

Matrix Inclusion Ratio

Young Modulus [GPa] 210 375 1.79

Poisson Ratio 0.35 0.22 /

x y z

Inclusion dimensions [µm] 7.00 49.00 7.00

Inclusion depth [µm] -600

Applied Load [N] 34400

Cycles to failure [·106] 1.94

Table 7.3: Test 3 - 46.9 h - Results
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7.4 Case 4

The test n◦ 4 presented a failed ball after 21.0 [h]. The inclusion was found

in the center of the spalling area.

(a) 10x magnif. (b) 60x magnif. - SE1

Figure 7.13: Test 4 - 21.0 h - Fracture inspection

The SEM analyses detected the inclusion dimensions and composition:

(a) 120x magnif. - BSD (b) 1500x magnif - BSD

Figure 7.14: Test 4 - 21.0 h - SEM fracture inspection
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(a) Chemical composition (b) Spectrum

Figure 7.15: Test 4 - 21.0 h - SEM analyses

The inclusion has a circular shape, the three semiaxes are equal in size.

The composition is Alumina (Al2O3) with a minor presence of Calcium oxides.

Figure 7.16: Test 4 - 21.0 h - Simulated stress inside and outside the inclusion
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Original Maximum Increase [%]

Tresca [MPa] 2748 3743 36

Matrix Inclusion Ratio

Young Modulus [GPa] 210 375 1.79

Poisson Ratio 0.35 0.22 /

x y z

Inclusion dimensions [µm] 12.50 12.50 12.50

Inclusion depth [µm] -284

Applied Load [N] 34400

Cycles to failure [·106] 0.87

Table 7.4: Test 4 - 21.0 h - Results
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7.5 Case 5

The test n◦ 5 presented a failed ball after 35.0 [h]. The fractured area pre-

sented more than one inclusion, the chosen one was the most detrimental in

terms of stress, as Case 1 and Case 2.

(a) 10x magnif. (b) 50x magnif. - SE1

Figure 7.17: Test 5 - 35.0 h - Fracture inspection

The SEM analyses detected the inclusion dimensions and composition:

(a) 60x magnif. - BSD (b) 2000x magnif - BSD

Figure 7.18: Test 5 - 35.0 h - SEM fracture inspection
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(a) Chemical composition (b) Spectrum

Figure 7.19: Test 5 - 35.0 h - SEM analyses

The inclusion is composed by Titanium carbides (TiC) and Silicon oxides

(SiO2). Since the presence of both is quite important, the Young modulus was

computed with a weighted average of the two, looking the Spectrum obtained

with the SEM analysis. This leaded to a stress increase that is reduced to

21%: considering the inclusion as TiC would have been too detrimental.
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Figure 7.20: Test 5 - 35.0 h - Simulated stress inside and outside the inclusion

Original Maximum Increase [%]

Tresca [MPa] 2609 3168 21

Matrix Inclusion Ratio

Young Modulus [GPa] 210 280 1.33

Poisson Ratio 0.35 0.21 /

x y z

Inclusion dimensions [µm] 4.50 4.50 4.50

Inclusion depth [µm] -436

Applied Load [N] 34400

Cycles to failure [·106] 1.45

Table 7.5: Test 5 - 35.0 h - Results
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7.6 Case 6

The test n◦ 6 presented a failed ball after 11.2 [h]. The fractured area pre-

sented more than one inclusion.

(a) 10x magnif. (b) 20x magnif.

Figure 7.21: Test 6 - 11.2 h - Fracture inspection

The SEM analyses detected the inclusion dimensions and composition:

(a) 60x magnif. - BSD (b) 800x magnif - BSD

Figure 7.22: Test 6 - 11.2 h - SEM fracture inspection
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(a) Chemical composition (b) Spectrum

Figure 7.23: Test 6 - 11.2 h - SEM analyses

The inclusion composition is Allumina (Al2O3) with a minor presence of

Calcium oxides.

Figure 7.24: Test 6 - 11.2 h - Simulated stress inside and outside the inclusion
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Original Maximum Increase [%]

Tresca [MPa] 2759 3706 34

Matrix Inclusion Ratio

Young Modulus [GPa] 210 375 1.79

Poisson Ratio 0.35 0.22 /

x y z

Inclusion dimensions [µm] 12.34 10.00 10.00

Inclusion depth [µm] -326

Applied Load [N] 34400

Cycles to failure [·106] 0.46

Table 7.6: Test 6 - 11.2 h - Results
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7.7 Case 7

The test n◦ 7 presented a failed ball after 90.7 [h]:

(a) 10x magnif. (b) 160x magnif.

Figure 7.25: Test 7 - 90.7 h - Fracture inspection

The SEM analyses detected the inclusion dimensions and composition:

(a) 60x magnif. - BSD (b) 2000x magnif - BSD

Figure 7.26: Test 7 - 90.7 h - SEM fracture inspection
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(a) Chemical composition (b) Spectrum

Figure 7.27: Test 7 - 90.7 h - SEM analyses

In the inclusion area were found S, Mn and Calcium. In this case it’s tricky

to found the correct Young Modulus since the composition it’s not so clear.

Nevertheless, this type of inclusion was not so critical (as Al2O3 or carbides

and nitrides), in fact the test lasted way more than the others.

Figure 7.28: Test 7 - 90.7 h - Simulated stress inside and outside the inclusion
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Original Maximum Increase [%]

Tresca [MPa] 2636 3173 20

Matrix Inclusion Ratio

Young Modulus [GPa] 210 289 1.38

Poisson Ratio 0.35 0.21 /

x y z

Inclusion dimensions [µm] 3.50 2.00 2.00

Inclusion depth [µm] -450

Applied Load [N] 34400

Cycles to failure [·106] 3.75

Table 7.7: Test 7 - 90.7 h - Results
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Failures on specimens

Also for the specimens, seven cases were analyzed. The inclusion from which

the fracture started, was composed by Al2O3 plus others oxides in five of the

cases. Only in one specimen no Aluminum was found. The remaining speci-

men had an inclusion but probably it broke off when the rupture happened,

so it was not possible to identify the inclusion composition.

It has to be noticed that when Al2O3 was present, the Young modulus and

the Poisson ratio were the ones of the Al2O3 itself, since they are the most

critical in this case and it’s very difficult to determine the factors taking into

account every element.

The inclusions were all similar also in terms of dimensions and depth, and

basically they can be approximated as circular.

Differently from the ball case, no more than one inclusion was present in the

fractured area.
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8.1 Case 1

The specimen n◦ 1 failed after 2.80 · 106 cycles:

(a) 20x magnif. (b) 63x magnif.

Figure 8.1: Specimen 1 - Fracture inspection

(a) Specimen 1 - 50x magnif. (b) Specimen 1 - 200x magnif.

Figure 8.2: Specimen 1 - Inclusion dimensions

(a) Specimen 1 - 227x magnif. (b) Specimen 1 - 550x magnif.

Figure 8.3: Specimen 1 - SEM fracture inspection
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(a) Quantitative result. (b) Spectrum

Figure 8.4: Specimen 1 - 2.8 · 106 cycles - SEM Analyses

The inclusion composition was not only Al2O3, also Ca and S were present,

inducing the possibility to have also these types of oxides. As explained before,

it’s difficult to find the elastic modulus of such a mixed inclusion, so the most

critical one (Al2O3) was chosen.
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Figure 8.5: Specimen 1 - 2.80 · 106 cycles - Simulated stress inside and outside
the inclusion

Original Maximum Increase [%]

Tresca stress [MPa] 501 683 36

Original stress [MPa] 1125

Stress at the depth [MPa] 1003 1366 36

Matrix Inclusion Ratio

Young Modulus [GPa] 210 375 1.79

Poisson Ratio 0.35 0.22 /

x y z

Inclusion dimensions [µm] 17.5 17.5 17.5

Inclusion depth [µm] -245

Cycles to failure [·106] 2.8

Table 8.1: Specimen 1 - 2.80 · 106 cycles - Results
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8.2 Case 2

The specimen n◦ 2 failed after 1.36 · 106 cycles:

(a) 20x magnif. (b) 63x magnif.

Figure 8.6: Specimen 2 - Fracture inspection

(a) Specimen 2 - 100x magnif. (b) Specimen 2 - 200x magnif.

Figure 8.7: Specimen 2 - Inclusion dimensions

(a) Specimen 2 - 200x magnif. (b) Specimen 2 - 800x magnif.

Figure 8.8: Specimen 2 - SEM fracture inspection
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Figure 8.9: Specimen 2 - Spectrum

In this case the inclusion was a typical Al2O3 with circular shape.

Original Maximum Increase [%]

Tresca stress [MPa] 577 787 36

Original stress [MPa] 1200

Stress at the depth [MPa] 1155 1573 36

Matrix Inclusion Ratio

Young Modulus [GPa] 210 375 1.79

Poisson Ratio 0.35 0.22 /

x y z

Inclusion dimensions [µm] 13.5 13.5 13.5

Inclusion depth [µm] -85

Cycles to failure [·106] 1.36

Table 8.2: Specimen 2 - 1.36 · 106 cycles - Results
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8.3 Case 3

The specimen n◦ 3 failed after 2.74 · 106 cycles:

(a) 20x magnif. (b) 63x magnif.

Figure 8.10: Specimen 3 - Fracture inspection

(a) Specimen 3 - 100x magnif. (b) Specimen 3 - 200x magnif.

Figure 8.11: Specimen 3 - Inclusion dimensions

(a) Specimen 3 - 800x magnif. - BSD (b) Specimen 3 - 4000x magnif.

Figure 8.12: Specimen 3 - SEM fracture inspection
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Figure 8.13: Specimen 3 - 800x magnif. - SE1

As the Fig. 8.12, 8.13 represent, the inclusion was not present in the in-

spected area. This can happen when the inclusion detaches from the surround-

ing material during the rupture of the specimen. No TiC or TiN inclusions

(that are more critical than Al2O3) were found in all the tested specimens, so

Al2O3 was assumed.

Original Maximum Increase [%]

Tresca stress [MPa] 555 756 36

Original stress [MPa] 1200

Stress at the depth [MPa] 1109 1511 36

Matrix Inclusion Ratio

Young Modulus [GPa] 210 375 1.79

Poisson Ratio 0.35 0.22 /

x y z

Inclusion dimensions [µm] 12.5 12.5 12.5

Inclusion depth [µm] -80

Cycles to failure [·106] 2.74

Table 8.3: Specimen 3 - 1.36 · 106 cycles - Results
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8.4 Case 4

The specimen n◦ 4 failed after 4.83 · 106 cycles:

Figure 8.14: Specimen 4 - 20x magnif.

(a) Specimen 4 - 100x magnif. (b) Specimen 4 - 200x magnif.

Figure 8.15: Specimen 4 - Inclusion dimensions
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(a) Specimen 4 - 500x magnif. (b) Specimen 4 - 4000x magnif.

Figure 8.16: Specimen 4 - SEM fracture inspection

(a) Quantitative result. (b) Spectrum

Figure 8.17: Specimen 4 - 4.83 · 106 cycles - SEM Analyses

In this case the presence of Aluminum was quite low, while S, Ca and Mn

were present in a relevant quantity. These types of element are not stiff as the

oxides, in fact the stress increase was lower respect to the Al2O3 case (+21%

vs +36%).
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Figure 8.18: Specimen 4 - 4.83·106 cycles - Simulated stress inside and outside
the inclusion

Original Maximum Increase [%]

Tresca stress [MPa] 539 652 21

Original stress [MPa] 1150

Stress at the depth [MPa] 1077 1304 21

Matrix Inclusion Ratio

Young Modulus [GPa] 210 280 1.33

Poisson Ratio 0.35 0.22 /

x y z

Inclusion dimensions [µm] 12.5 12.5 12.5

Inclusion depth [µm] -142

Cycles to failure [·106] 10.1

Table 8.4: Specimen 4 - 4.83 · 106 cycles - Results
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8.5 Case 5

The specimen n◦ 5 failed after 1.60 · 106 cycles:

(a) 20x magnif. (b) 63x magnif.

Figure 8.19: Specimen 5 - Fracture inspection

Figure 8.20: Specimen 5 - Inclusion dimensions - 200x magnif.

The SEM analyses detected the inclusion dimensions and composition:

(a) Specimen 5 - 800x magnif. - SE1 (b) Specimen 5 - 800x magnif. - BSD

Figure 8.21: Specimen 5 - SEM fracture inspection
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Figure 8.22: Specimen 5 - Spectrum

It happens sometimes that the first peak on the spectrum of a SEM analysis

collects a great quantity of elements all together. A part from this peak (that

was not considered), the composition it’s similar to a typical Al2O3 type.

Original Maximum Increase [%]

Tresca stress [MPa] 591 805 36

Original stress [MPa] 1200

Stress at the depth [MPa] 1182 1610 36

Matrix Inclusion Ratio

Young Modulus [GPa] 210 375 1.79

Poisson Ratio 0.35 0.22 /

x y z

Inclusion dimensions [µm] 13.0 13.0 13.0

Inclusion depth [µm] -34

Cycles to failure [·106] 0.77

Table 8.5: Specimen 5 - 0.77 · 106 cycles - Results
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8.6 Case 6

The specimen n◦ 6 failed after 0.62 · 106 cycles:

Figure 8.23: Specimen 6 - 16x magnif.

(a) Specimen 6 - 100x magnif. (b) Specimen 6 - 200x magnif.

Figure 8.24: Specimen 6 - Inclusion dimensions
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(a) Specimen 6 - 500x magnif. (b) Specimen 6 - 4000x magnif.

Figure 8.25: Specimen 6 - SEM fracture inspection

Figure 8.26: Specimen 6 - Spectrum

Original Maximum Increase [%]

Tresca stress [MPa] 580 791 36

Original stress [MPa] 1200

Stress at the depth [MPa] 1161 1581 36

Matrix Inclusion Ratio

Young Modulus [GPa] 210 375 1.79

Poisson Ratio 0.35 0.22 /

x y z

Inclusion dimensions [µm] 12.0 12.0 12.0

Inclusion depth [µm] -74

Cycles to failure [·106] 0.62

Table 8.6: Specimen 6 - 0.62 · 106 cycles - Results
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8.7 Case 7

The specimen n◦ 7 failed after 0.06 · 106 cycles:

Figure 8.27: Specimen 7 - 16x magnif.

(a) Specimen 7 - 100x magnif. (b) Specimen 7 - 200x magnif.

Figure 8.28: Specimen 7 - Inclusion dimensions
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(a) Specimen 7 - 500x magnif. (b) Specimen 7 - 500x magnif. - BSD

Figure 8.29: Specimen 7 - SEM fracture inspection

Figure 8.30: Specimen 7 - Spectrum

Original Maximum Increase [%]

Tresca stress [MPa] 563 767 36

Original stress [MPa] 1200

Stress at the depth [MPa] 1126 1531 36

Matrix Inclusion Ratio

Young Modulus [GPa] 210 375 1.79

Poisson Ratio 0.35 0.22 /

x y z

Inclusion dimensions [µm] 11.5 11.5 11.5

Inclusion depth [µm] -138

Cycles to failure [·106] 0.06

Table 8.7: Specimen 7 - 0.06 · 106 cycles - Results
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Chapter 9

Life - Stress Relation

Considering the Tresca stress value (modified by the inclusion presence), of

the seven balls and seven specimens, two respective diagrams were made

(Fig. 9.1, 9.2).

Figure 9.1: Life - Stress trend for balls

92



Francesco Morosi CHAPTER 9. LIFE - STRESS RELATION

Figure 9.2: Life - Stress trend for specimens

In both cases it is possible to note that when the stress increases, the cycles

to failure decreases.

The trend line for the ball cases resulted as:

τtresca = 12135 ·N−0.091 (9.1)

with R2 = 0.7095.

The trend line for the specimens:

τtresca = 1022 ·N−0.023 (9.2)

with R2 = 0.1693.

The low value of R2 for the specimen cases is probably due to the severe

nature of tension-compression at which the specimens are subjected. Another

important factor is the probability to have, in some cases, surface defects that

can reduce the fatigue life.
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9.1 Stress threshold

9.1.1 Spheres

The maximum stress increase found in the experimental cases was +43%

(case 1). As already stated in chapter 6, it is reasonable to consider +50%

as a limit value:

τthreshold = τTrescaMax
1.5

In order to have a ’real Tresca’ that overcomes the ’maximum ideal Tresca’,

the inclusion should not be located at a distance from the surface that is more

than 188% the contact half width (chapter 6). The graph below (9.3) shows

the proof that the critical inclusions found on failed balls are not shallower

than this value.

Figure 9.3: Stress Threshold - Experimental Cases
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Chapter 10

Conclusions

The main target of the thesis was to evaluate the influence of microinclusions

on the fatigue life of rolling bodies. For this reason, the effect on the stress

field of balls and specimens made of 100Cr6 was studied.

The spheres were tested thanks to Test Rigs, while a Rotating bending fatigue

machine was used for specimens. The fracture analyses were assessed thanks

to a gaugemeter, an optical microscope and a Scanning Electron Microscope.

A numerical solver that implements the Eshelby solution for the inclusion

problem was developed to analyze the cases above. Some simulations were

made to understand the functionalities of the code and the effect of the differ-

ent parameters: dimension, shape, depth, chemical composition and configu-

ration were evaluated. Moreover, the code was useful to simulate the stress

state of the experimental cases.

Seven specimens and seven balls were considered, for each case all the inclu-

sion properties were found and the stress state mesh was evaluated.

The survey pointed out that inclusions that are shallower than a certain value

are not critical for failures. The difference between the Young modulus of the

inclusion and the one of the matrix, as the Poisson ratio, is very important

for the distribution of stress variation. If the difference is notable, the stress

peak will be prominent. Another key factor is the shape, if the inclusion can

be approximated as an elongated ellipse, the stress peak increment is greater.

There was a wide range of inclusion types found in balls, with also different

shapes and dimensions, while in specimens they had similar properties.
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Chapter 11

Future works

Nowadays, the steel balls for bearing applications are more and more able to

perform at a very high level from the fatigue life point of view. One of the

most critical parameters that affect the performances is the inclusion presence.

For this reason it’s necessary to extend the present study with a life model

that is able to predict the fatigue life of the rolling element considering the

inclusion presence.

From the stress computation point of view, a better characterization of the

inclusions Young modulus and Poisson ratio is mandatory. Also the effect of

residual stresses should be analyzed in depth. When the stress evaluation will

be complete, the life model should take into account the spinning of the ball

inside the bearing, so how many actual stress cycles the inclusion suffers.
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Appendix A

Balls - others inclusions

A.1 Case 1

A.1.1 Second inclusion

Figure A.1: Test 1 - 2ndincl. - 2000x magnif. and stress
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Figure A.2: Test 1 - 2ndincl. - SEM analyses

A.1.2 Third inclusion

Figure A.3: Test 1 - 3rdincl. - 2000x magnif. and stress

Figure A.4: Test 1 - 3ndincl. - SEM analyses
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A.2 Case 2

A.2.1 Second inclusion

Figure A.5: Test 2 - 2ndincl. - 2000x magnif. and stress

Figure A.6: Test 2 - 2ndincl. - SEM analyses
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A.2.2 Third inclusion

Figure A.7: Test 2 - 3ndincl. - 2000x magnif. and stress

Figure A.8: Test 2 - 3ndincl. - SEM analyses
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A.3 Case 5

A.3.1 Second inclusion

Not possible to estimate correctly the Young Modulus.

Figure A.9: Test 5 - 2ndincl. - 2000x magnif.

Figure A.10: Test 5 - 2ndincl. - SEM analyses
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A.4 Case 6

A.4.1 Second inclusion

Figure A.11: Test 6 - 2ndincl. - 2000x magnif. and stress

Figure A.12: Test 6 - 2ndincl. - SEM analyses

A.4.2 Third inclusion

Not possible to estimate the Young Modulus and the inclusion dimension.
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Figure A.13: Test 6 - 2ndincl. - 2000x magnif.

Figure A.14: Test 6 - 3ndincl. - SEM analyses

A.5 Case 7

A.5.1 Second inclusion

Not possible to detect the inclusion dimensions.

Figure A.15: Test 7 - 2ndincl. - 2000x magnif.
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Figure A.16: Test 7 - 2ndincl. - SEM analyses

A.5.2 Third inclusion

Figure A.17: Test 7 - 3ndincl. - 2000x magnif. and stress

Figure A.18: Test 7 - 3ndincl. - SEM analyses

110



Bibliography

[1] Stienon A. et al. “A new methodology based on X-ray micro-tomography

to estimate stress concentrations around inclusions in high strength

steels”. In: Mater Sci Eng A (2009).

[2] H.K.D.H. Bhadeshia. Steels for bearings. SKF University Technology

Centre for Steels, University of Cambridge, and UK, 2012.

[3] Healy D. “Elastic field in 3D due to a spheroidal inclusion - MATLAB

code for Eshelby’s solution”. In: Computers and Geosciences (2008).

[4] J.D. Eshelby. The determination of the elastic field of an ellipsoidal

inclusion, and related problems. Department of physical metalurgy, Uni-

versity of Birmingham, 1957.

[5] ASTM Int. Standard Methods for Determining the Inclusion Content of

Steel, E45.

[6] E. Ioannides and T.A. Harris. “A Physically based model for endurance

limit of bearing steels”. In: Journal of Tribology (1985).

[7] T.A. Ioannides E. Harris and M. Ragen. “Endurance of aircraft gas

turbine mainshaft ball bearings - Analysis using improved fatigue life

theroy: Part I”. In: Journal of Tribology (1990).

[8] Courbon J. et al. “Influence of inclusion pairs, clusters and stringers on

the lower bound of the endurance limit of bearing steels”. In: Tribology

International (2003).

[9] Guan J. et al. “Effects of non-metallic inclusions on the crack propaga-

tion in bearing steel”. In: Tribology International (2016).

[10] P.K. Pearson J.F. Braza and C.J. Hannigan. “The performance of 52100,

M-50 and M-50 NiL steels in radial bearings”. In: International Off-

Highway and Powerplant Congress SAE Techincal Paper Series (1993),

pp. 1–13.

111



Francesco Morosi BIBLIOGRAPHY

[11] Hashimoto K. et al. “Study of rolling contact fatigue of bearing steels in

relation to various oxide inclusions”. In: Materials and Design (2010).

[12] P. Lamagnere et al. “A Physically based model for endurance limit of

bearing steels”. In: Journal of Tribology (1998).

[13] Igor M. “Elliptic integrals and functions”. In: Mathworks (2005).

[14] Moghaddam S. M. et al. “Effect of non-metallic inclusions on butterfly

wing initiation, crack formation, and spall geometry in bearing steels”.

In: International Journal of fatigue (2015).

[15] Nagao M., Hiraoka K., and Unigame Y. “Influence of non metallic in-

clusion size on rolling contact fatigue life in bearing steel”. In: Sanyo

Tech. Rep. (2005).

[16] Pollard D. D. Meng C. Heltsley W. “Evaluation of the Eshelby solu-

tion for the ellipsoidal inclusion and heterogeneity”. In: Computers and

Geosciences (2011).

[17] Mura T. Micromechanics of defects in solis. Dordrecht, 1987.

[18] Seki T. “Evaluation procedures of nonmetallic inclusions size by statis-

tics and extreme value and prediction of fatigue life in bearing steels”.

In: Aichi Tech. rep. (1995).

[19] M.A. Raegan T.A. Harris and R.F. Spitzer. “The effect of hoop and ma-

terial residual stresses on the fatigue life of high speed, rolling bearings”.

In: Tribology Transactions 35 (1992), pp. 194–198.

[20] W. Weibull. A statistical theory of the strenght of Materials. Royal

Swedish Institute for Engineering Research, 1939.

[21] Moschovidis ZA. “Two ellipsoidal inhomogeneities and related problems

treated by the equivalent inclusion method”. In: Ph.D. Thesis, North-

western University, Evanston (1975).

112


