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Abstract 
 

The present thesis deals with the structural instability of axially compressed thin-

walled beams with open cross-section. Experimental and numerical (FEM) results will 

be shown for cruciform section beams with stiffeners placed in different positions. 

Such stiffeners are represented by longitudinal plates, which connect the flanges on 

a beam portion, thus providing intermediate warping restrictions. 

This work is structured into five chapters. 

Chapter 1 is an introductory chapter in which the problem is framed and early studies 

are mentioned. 

Chapter 2 gives some remarks on the instability of thin-walled beams subject to 

compressive axial load. 

Chapter 3 presents the experimental set-up and the instrumentation used to 

investigate buckling, as well as the programs used for data acquisition and 

processing. Furthermore, this chapter describes the experimental campaign and the 

results obtained under two end warping constraint conditions, i.e. free and (partially) 

restrained warping. 

Chapter 4 is devoted to the numerical analyses. The numerical simulations were 

implemented in Lusas finite element code, and the results were compared with the 

experimental ones. 

Finally, chapter 5 presents some conclusive considerations regarding the results 

obtained. 
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Chapter 1 
 

Introduction 
 

The main problem in civil engineering is collapse. This can happen for two basic reasons: 

- the material overcomes its resistance so the structure reaches unbearable stress levels; 

- the structure loses stability and collapses because its stress levels are lower than the 

resistance limits of the materials; 

The present thesis focuses on the structural instability of open thin-walled beams. In 

particular, the static behaviour of compressed beams of cruciform section (double I) with 

stiffeners placed in different positions, was investigated experimentally and numerically. 

The stiffeners (buttens) are designed to increase the stiffness against cross-sectional 

warping. I have conducted an  experimental campaign and a numerical analysis where two 

end constraint conditions were used: free warping and restrained warping. In this way a static 

stability study was carried out for each specimen to identify the buckling load. The results 

obtained were compared with the results from other experimental campaigns and finite 

element models. 

In structural engineering, cruciform-sections are mostly used for compressed elements such 

as columns. Slender elements with cruciform sections are subject to compression instability 

which is generally manifested by pure torsion which consists in twisting around its own axis. 

This phenomenon will be dealt with in the next chapters. 

 In Italy the most important structure with cruciform columns is the De Cecco Headquarters in 

Pescara (figure 1.2), designed by Massimiliano Fuksas. 
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Figure 1.2 – Directional pole De Cecco 

Before this thesis, other studies were carried out on compressed thin-walled beams with a 

double I symmetric section in aluminum in order to identify the buckling load. To test these 
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beams, a universal testing machine (MTS) and piezoelectric pickups were used. The 

specimens were tested under two axial constraint conditions, these are free and partially 

restrained warping of the end sections. The specimens were therefore subjected to 

increasing compressive axial displacement up to the post-buckling condition. Following this 

approach, several specimens were tested in order to study the effects of warping rigidity on 

buckling loads. The instability that has occurred is torsional, so the cross-section rotates 

around the beam axis, which remains straight. 

Considering the beam in a free warping condition, the experimental critical load is about 16 

kN, while the value given by the FEM is 16.5 kN. On the other hand, considering the beam in 

a semi-restrained warping condition, the experimental critical load is about 22 kN, while the 

value given by the FEM, for a fully restrained end warping, is 38.4 kN. 

The buckled shape of the beam is similar in both constraint conditions. The difference is in 

the warping of the end sections, in one case it happens and in the other it doesn’t. 
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                           (a)                                                                                        (b) 
Figure 1.3 - (a) Instability of the beam in the free warping condition: torsion buckling mode, detail of warping of the end 
sections. (b) Instability of the beam in the partially (experiments) and fully (FEM models) restrained warping condition: 
torsion buckling mode, detail of the end sections and top view of the plastic post-buckling twisted configuration. 

The experimental results show an influence of warping and warping constraints. It was 

noticed that there was an increase of buckling loads due to the restriction of warping 

deformation of the end sections. (G. Piana et al., 1, 2017) 

Another study was conducted before this thesis. It investigated the effect of an internal 

warping constraint (intermediate stiffener) on the stability of the same thin-walled profile. The 

stiffener connected the external flanges of the cross-section in such a way as to provide a 

four-cell box section. 

Through numerical simulations, conducted by a finite difference (FD) model, it was shown 

that the introduction of a local stiffening could increase the critical load for torsion buckling 
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when the profile was axially compressed. However, the result also indicated that a wrong 

position of the stiffener (around the midpoint of the beam) could decrease the critical load. 

This is a counterintuitive result that requires a validation. The experiments and the numerical 

(FEM) simulations of the present thesis aim at a deeper investigation of this problem.  

 
Figure 1.4 – Buckling compressive loads vs. locations of the stiffened cross-section: (a) free, (b) fully restrained, and 
(c) semi-restrained warping conditions. 

For example, considering the beam with stiffness placed near one of the ends, in the 

condition of free warping in both ends of the beam, the critical load can increase up to 10%. 

If warping of both beams ends is restrained, the maximum increase is reached when the 

stiffener is placed between l/10 and 2l/10, with a percentage gain of about 9% and 10%, for 

the fully and semi-restrained case, respectively. While the maximum decrease of the critical 
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loads is attained around midpoint of the beam, with a percentage gain of about 45%, 51%, 

and 42% for free, fully and semi-strained warping, respectively. (G. Piana et al., 2, 2017) 

Finally, the last study I considered, was about the same cruciform beam but this time 

characterized by a localized cross-section reduction introduced by removing a small portion 

of the flanges on the beam. The reduction was 10 mm and simulated a local damage. This 

yielded a cruciform cross-section with negligible warping stiffness on a beam portion (10 

mm). Also in this study, the beam was analyzed under free, semi-, and fully restrained 

warping at its ends. Comparing the damaged beam with the undamaged beam, a decrease 

of the buckling loads was found of 46%, 14% and 18% respectively for free, semi- and fully 

restrained warping conditions. At the end of the test the beam underwent a torsion buckling 

with the maximum rotation at the weakened section. (G. Piana et al., 3, 2017) 

The studies mentioned above were developed at the Politecnico di Torino in cooperation with 

Sapienza University of Rome. Other studies concerning torsion, warping and stiffening 

emerged from bibliographic research. 

Figure 1.4, taken from some lecture notes of Prof. P. Gelfi at University of Brescia, illustrates 

the effect of different stiffening plates on the torsion (uniform vs. non-uniform) of in I beam. 

 
                                         (a)                                               (b) 

Figure 1.4 – (a): Torsional support; (b): semi-interlocking torsion. 

Figure 1.4 (a) shows the case where the constraint is able to prevent the torsional rotation 

but not the warping. Conversely, Figure 1.4 (b) shows the case where warping is (at least 

partially) prevented. 

In the first case there is pure torsion, while in the second one the stress state is called non-

uniform torsion and it occurs when sectional warping is not constant along the beam due to 

the presence of the constraints or because the torque varies. (P. Gelfi, 

http://gelfi.unibs.it/lezioni_acciaio/Lezione10.pdf) 

An article was written at Gdansk University of Technology dealing with “numerical simulation 

of a thin-walled beam with warping stiffeners undergoing torsion”.  
Thin-walled beams with open cross-section have relatively small torsional stiffness. The 

performance of the structure can be considerably improved by adding some constructional 
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stiffeners like battens. This types of stiffeners partially prevent cross-section warping, as 

pointed out before. 

 
Figure 1.5 – Battens in I-beam 

Numerical simulations performed for thin-walled beams with constructional stiffeners pointed 

out the essential influence of the analyzed stiffeners on the torsional behaviour of the 

structure. In fact they noticed that adding battens, the torsional rigidity of beams is increased 

by 64%. (Kreja and Szymczak, 2002) 

Another very interesting article is written by Svensson and Plum, entitled "Stiffener Effects on 

Torsional Buckling of Columns”. This paper presents an analytical evaluation of the effect of 

locally placed stiffeners. The section taken into consideration was the following: 

 
Figure 1.6 - Stiffening arrangement and stiffened section 

These stiffeners are necessary to improve the torsional stability properties as they prevent or 

partially prevent warping.  

The torsional buckling load for a column pinned at both ends is 

𝑃𝜃 =
𝐶1

𝑟2𝐿2
(𝜋2 + 𝛽2) 

While the torsional buckling load of the stiffened column is 

𝑃𝜃𝑠𝑡𝑖𝑓𝑓 =
𝐶1

𝑟2𝐿2
(𝜌𝜃

2 + 𝛽2) 
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Where: 

  - 𝛽2 =
𝐶𝐿2

𝐶1
 . In this equation L is the length of the column, and C and C1 are the 

   torsional and warping rigidities. 

  - 𝑟 = √(𝐼𝑥 + 𝐼𝑦)/𝐴 is the polar radius of gyration. 

It can be seen by comparing this expression for the unstiffened column, the effect of the 

stiffeners is measured by the value of 𝜌𝜃 ∙ 𝜌𝜃 is a function of stiffeners position z0 and 

stiffness k. 

Two special cases are treated in detail. This allows for a quantitative measure of the effect of 

stiffeners as a function of their dimensionless warping restraint stiffness, k, and position. The 

column is supposed to have been pin supported at the ends. First, the case of one stiffener is 

investigated. It is demonstrated that the optimum position z0, measured from the end of the 

column, is 0.219L for k→∞ and slightly smaller for finite values of k. The case of two 

stiffeners symmetrically placed with respect to the column midspan is characterized by the 

presence of anti-symmetrical as well as symmetrical modes. As k→∞ anti-symmetrical 

modes are decisive for the stiffeners being placed between 0.15L and 0.25L from the ends. 

For k<27 only symmetrical modes are of the interest irrespective of the position of the 

stiffeners.  

Figure 1.7 shows an analogy between the section studied in that article and the one of this 

thesis. In chapter 4 a comparative analysis will be made in numerical terms. (S. E. Svensson 

et al., 1983) 

 

 
Figure 1.7 – (a) Stiffened section of the thesis; (b) Stiffened section of the article 
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Chapter 2 
 

Remarks on the flexural-torsional buckling of 
compressed thin-walled beams with open section 
 
Thin-walled open sections are characterized by very small torsional stiffness, so that buckling 

may occur with a twisting of the sections around a longitudinal axis (torsional instability), 

possibly accompanied by an inflection in one or both main planes of inertia (flexural-torsional 

instability). 

 
 

2.1 Torsional buckling of compressed beams 
Straight-axis beams subjected to axial load may be subjected to torsional balanced 

deformation. 
We consider a beam with an open thin section and thickness δ variable with curvilinear 

abscissa s. The invariability of the shape of the section is assumed. Furthermore, the section 

can be variable with the abscissa z but the shear centres C are aligned and the straight line z 

of the centres cannot be deformed. The beam is loaded by axial compression forces. 

Deformation is characterized by the rotation θ of the straight section around the z axis, 

coinciding with the straight line of the shear centres. The derivative of θ represents the angle 

of rotation between two distant sections of the length unit. 

 

𝜃′ =
𝑑𝜃

𝑑𝑧
 

 

Due to the torsional deformation, the AP element is positioned in such a way as to determine 

the P'AP plane (figure 2.1).  

(2.1) 
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Figure 2.1 - Beam with an open thin section 

The σds forces applied in A and P' are no longer in equilibrium and for this reason they give 

rise to a moment σδdsθ’r that is equivalent to that of two σδdsθ’r forces. The σδdsθ’r force 

acting on the straight section of positive normal provides, for σ> 0 and θ’> 0, a negative 

moment with respect to the centre C:  

𝑀𝑡𝑛 = −
𝑁

𝐴
 𝜃′ ∫𝛿 𝑑𝑠 𝑟2

𝐴

= −
𝑁

𝐴
𝜃′𝐼𝑐 

where A represents the area of the straight section, and Ic its polar moment with respect to C.  

As already mentioned, the shear are aligned so that the torsion equation is  

𝐶2𝜃𝐼𝑉 + 𝐶′2𝜃′′′ − 𝐶1𝜃′′ − 𝐶′
1𝜃′ = 𝑚𝑡 = −

𝑑𝑀𝑡

𝑑𝑧
 

where: 

 - 𝐶1 = 𝐺
∫ 𝛿3𝑑𝑠

3
  is the (primary or St. Venant) torsion rigidity; 

 - 𝐶2 = 𝐸 ∫ (2𝐴𝑆)2𝛿 𝑑𝑠
𝑠

 is the warping rigidity (secondary, or Vlasov, torsion rigidity), 

    As is the sectorial area; 

 - 𝑚𝑡 is the distributed moment applied on the lateral surface. 

 

Normal stress modifies (2.3) as follows 

𝐶2𝜃𝐼𝑉 + 𝐶′2𝜃′′′ − 𝐶1𝜃′′ − 𝐶′
1𝜃′ = −

𝑑𝑀𝑡

𝑑𝑧
−

𝑑𝑀𝑡𝑛

𝑑𝑧
= −

𝑑𝑀𝑡𝑛

𝑑𝑧
+ 𝑚𝑡 

and replacing  

(2.2) 

 

(2.3) 

 

(2.4) 
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𝐶2𝜃𝐼𝑉 + 𝐶′2𝜃′′′ − (𝐶1 +
𝑁𝐼𝑐

𝐴
)𝜃′′ − (𝐶1 +

𝑁𝐼𝑐

𝐴
)′ 𝜃′ = 𝑚𝑡 

Setting M = 0, (2.5) becomes the equation of varied equilibrium. 

When the section is constant and the beam is loaded only at the ends by an axial force N = -

F, the equation of varied equilibrium is written 

 

𝐶2𝜃𝐼𝑉 − (𝐶1 + 𝐹
𝐼𝑐

𝐴
)𝜃′′ = 0 

 

To write the equation (2.6) in a more compact way, we place 

 

𝑘2 = −
𝐶1 − 𝐹

𝐼𝑐

𝐴

𝐶2
 

So (2.6) becomes  

 

𝜃𝐼𝑉 + 𝑘2𝜃′′ = 0 

 

the solution of which is 

 

𝜃 = 𝐴 𝑠𝑒𝑛 𝑘𝑧 + 𝐵 cos 𝑘𝑧 + 𝐶 𝑧 + 𝐷 

 

If the ends have constraints that prevent the rotation around the z axis θ = 0, but not the 

warping 𝑤 ≠ 0, conditions at the limits are  

 

𝑧 = 0                    𝜃 = 𝜃′′ = 0 

𝑧 = 𝑙                     𝜃 = 𝜃′′ = 0 

 

that for (2.9) are written 

0 =                                  B                   + D 

0 =                          – k2 B 

0 =         A sen kl +     B cos kl + Cl + D 

0 = – k2 A sen kl – k2 B cos kl 

 

The compatibility condition is 

(2.5) 

 

(2.6) 

 

(2.7) 

 

(2.8) 

 

(2.9) 

 

(2.10) 
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        0                 1                     0       1 

        0              – k2                        0       0            

        sen kl             cos kl         l       1 

         – k2 sen kl     – k2 cos kl        0       0 

 

which offers the solution 
𝑘𝑙 = 𝑛𝜋 

which corresponds to A undetermined and finite, B = C = D = 0. 

For the (2.7)  

𝐹𝑎 =
𝐴

𝐼𝑐
(𝐶1 +

𝑛2𝜋2

𝑙2
𝐶2) 

 

at (2.12) corresponds the solution 

 

𝜃 = 𝐴 𝑠𝑒𝑛 
𝑛𝜋𝑧

𝑙
 

 

in this case 

 

𝐹𝑐 =
𝐴

𝐼𝑐
(𝐶1 +

𝜋2

𝑙2
𝐶2) 

 

If the ends have constraints that prevent both the rotation around the z axis and the warping, 

the conditions at the limits are 

 

𝑧 = 0                    𝜃 = 𝜃′ = 0 

𝑧 = 𝑙                     𝜃 = 𝜃′ = 0 

 

that are written 

0 =                              B                       + D 

0 =   k A                                      + C 

0 =      A sen kl +     B cos kl + Cl + D 

0 = k2 A cos kl – k2 B sen kl + C 

 

= 0 

(2.11) 

 

(2.12) 

 

(2.13) 

 

(2.14) 

 

(2.15) 
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The compatibility condition is 

   

  0                         1                    0       1 

  k                         0                         0      0            

  sen kl             cos kl                l       1 

                k cos kl      – k sen kl            0       0 

 

whose solutions are  

𝑠𝑒𝑛 
𝑘𝑙

2
= 0 

and 

𝑡𝑔 
𝑘𝑙

2
=

𝑘𝑙

2
 

(2.16) offers  
𝑘𝑙

2
= 𝑛𝜋 

from which  

𝐹𝑎 =
𝐴

𝐼𝑐
(𝐶1 +

4 𝑛2𝜋2

𝑙2
𝐶2) 

 

in this case 

𝐹𝑐 =
𝐴

𝐼𝑐
(𝐶1 +

4 𝜋2

𝑙2
𝐶2) 

 

This is true if the line z of the shear centres is constrained. In the absence of a constraint 

along z, when the centre of shear C coincides with the centre of gravity G, the previous 

formulas are valid. On the other hand, if C≠G, in absence of a long constraint z, we must 

consider a flexion-torsional configuration. 

 

 

 

 

 

= 0 

(2.16) 

 

(2.17) 

 

(2.18) 

 

(2.19) 

 

(2.20) 
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2.2 Flexural-torsional buckling of compressed beams 
If the centre of shear and the centre of gravity do not coincide, the equations of the deformed 

configuration can be obtained by effect of distributed applied torques mt by first imposing the 

constraint along the straight line of the shear centres and then removing it. 

 

The hypotheses that govern the treatment are: 

 - Constant section; 

 - Forces F applied to the ends. 

 

In the presence of the constraint the θ rotation are provided by the (2.6). The normal stress 

N(z) gives rise to the reactions r(z) parallel to the xy plane, whose axes are parallel to the 

main axes of inertia ξ and η. 

The r(z) reactions generate shears in each section                       

 

𝑇𝑟𝑥 = − 𝜎 𝜃′ ∫𝑦 𝑑𝐴
𝐴

= − 𝜎 𝜃′ 𝑆𝑥 

 

𝑇𝑟𝑦 = − 𝜎 𝜃′ ∫𝑥 𝑑𝐴
𝐴

= − 𝜎 𝜃′ 𝑆𝑦 

 

By removing the constraint we need to apply the –r(z) reactions which generate the shears 

𝑇𝑥 = 𝜎 𝜃′ 𝑆𝑥 = 𝜎 𝜃′ 𝐴 𝑦𝐺 

 

𝑇𝑦 = 𝜎 𝜃′ 𝑆𝑦 = − 𝜎 𝜃′ 𝐴 𝑥𝐺  

 

that is, the displacements u and v governed by the equations 

𝐸𝐼𝜂 𝑢′′ = −𝐹 𝑢 − 𝜎 𝜃 𝐴 𝑦𝐺 = −𝐹 (𝑢 − 𝜃 𝑦𝐺) 

 

𝐸𝐼𝜉  𝑣′′ = −𝐹 𝑣 + 𝜎 𝜃 𝐴 𝑥𝐺 = −𝐹 (𝑣 + 𝜃 𝑥𝐺) 

(2.22) 

 

(2.21) 

 

(2.23) 
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Figure 2.2 - Beam with open thin section and nomenclature 

 

The inflection of components u(z) and v(z) causes the inclinations u'(z) and v'(z) of the 

normal to the straight section with respect to the z axis; the normal projections of the F on the 

straight section of positive normal thus inclined are provided by Fu' and Fv'. In this way the 

extra torque rises 

𝑀𝑡𝑠 = −𝐹 𝑢′𝑦𝐺 + 𝐹 𝑣′𝑥𝐺 

 

in the presence of mt applied, (2.6) changes  

 

𝐶2𝜃𝐼𝑉 − (𝐶1 + 𝐹
𝐼𝑐

𝐴
)𝜃′′ = 𝑚𝑡 −

𝑑𝑀𝑡𝑠

𝑑𝑧
= 𝑚𝑡 +  𝐹 𝑢′′ 𝑦𝐺 −  𝐹 𝑣′′ 𝑥𝐺 

 

Therefore the equations of the deformed configuration are 

𝐸𝐼𝜂 𝑢′′ = −𝐹 (𝑢 − 𝜃 𝑦𝐺) 

 

𝐸𝐼𝜉  𝑣′′ = −𝐹 (𝑣 + 𝜃 𝑥𝐺) 

 

𝐶2𝜃𝐼𝑉 − (𝐶1 + 𝐹
𝐼𝑐

𝐴
)𝜃′′ −  𝐹 𝑢′′ 𝑦𝐺 +  𝐹 𝑣′′ 𝑥𝐺 = 𝑚𝑡 

 

The equation of varied equilibrium are obtained by setting mt = 0 

 

(2.24) 

 

(2.25) 

 

(2.26) 
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𝐸𝐼𝜂 𝑢′′ + 𝐹 (𝑢 − 𝜃 𝑦𝐺) = 0 

 

𝐸𝐼𝜉  𝑣′′ + 𝐹 (𝑣 + 𝜃 𝑥𝐺) = 0 

 

𝐶2𝜃𝐼𝑉 − (𝐶1 + 𝐹
𝐼𝑐

𝐴
)𝜃′′ −  𝐹 𝑢′′ 𝑦𝐺 +  𝐹 𝑣′′ 𝑥𝐺 = 0 

 

If the ends are bound with common and torsional supports, the limit conditions are 

 

𝑧 = 0   and  𝑧 = 𝑙             𝑢 = 𝑣 = 𝜃 = 0 

𝑧 = 0   and  𝑧 = 𝑙             𝑢′′ = 𝑣′′ = 𝜃′′ = 0 

 

If 𝑥𝐺 = 𝑦𝐺 = 0 the critical solutions of (2.27) are                                                                  

 

𝐹𝑥 = 𝑛2 𝜋2  
𝐸𝐼𝜉

𝑙2
 

 

𝐹𝑦 = 𝑛2 𝜋2  
𝐸𝐼𝜂

𝑙2
 

 

𝐹𝜃 =  
𝐴

𝐼𝑐
(𝐶1 +

𝑛2 𝜋2

𝑙2
 𝐶2) 

 

In the case of 𝐶 ≠ 𝐺 a set of functions 𝑢 𝑣 𝑤 that satisfy the conditions at the limits (2.28) is                 

𝑢 = 𝐴𝑥 𝑠𝑒𝑛 
𝑛 𝜋 𝑧

𝑙
 

 

𝑣 = 𝐴𝑦 𝑠𝑒𝑛 
𝑛 𝜋 𝑧

𝑙
 

 

𝜃 = 𝐴𝜃 𝑠𝑒𝑛 
𝑛 𝜋 𝑧

𝑙
 

 

as the section is constant, it also satisfies the (2.27) if it occurs 

 

(2.27) 

 

(2.28) 

 

(2.29) 

 

(2.30) 
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 (𝐹 − 𝐸𝐼𝜂

𝑛2 𝜋2

𝑙2
) 𝐴𝑥                                                                               − 𝐹𝑦𝐺𝐴𝜃 = 0 

                            (𝐹 − 𝐸𝐼𝜉

𝑛2𝜋2

𝑙2
) 𝐴𝑦                                      + 𝐹𝑥𝐺 𝐴𝜃 = 0 

−𝐹𝑦𝐺𝐴𝑥                                 + 𝐹𝑥𝐺𝐴𝑦 − (𝐶2

𝑛2𝜋2

𝑙2
+ 𝐶1 − 𝐹

𝐼𝑐

𝐴
) 𝐴𝜃 = 0 

 

and still, with the positions (2.29), if it is 

 

    F – Fy          0                 – F yG        

     0                 F – Fx
                 F xG                   

 – F yG                   F xG           
𝐼𝑐

𝐴
(𝐹 − 𝐹𝜃)         

               

The cubic equation of the previous formulation can also be written 

 
𝐼𝑐

𝐴
(𝐹 − 𝐹𝑥)(𝐹 − 𝐹𝑦)(𝐹 − 𝐹𝜃) − 𝐹2𝑦𝐺

2 (𝐹 − 𝐹𝑥) −  𝐹2𝑥𝐺
2 (𝐹 − 𝐹𝑦) = 0 

 

and calling IG the centroidal polar moment,  

 

𝑓(𝐹) =
𝐼𝐺

𝐼𝐶
𝐹3 + [

𝐴

𝐼𝐶
(𝐹𝑥 𝑦𝐺

2 + 𝐹𝑦 𝑥𝐺
2) − (𝐹𝑥 + 𝐹𝑦 + 𝐹𝜃)] 𝐹2 +                                     (𝐹𝑥𝐹𝑦 +

𝐹𝑥𝐹𝜃 + 𝐹𝑦𝐹𝜃)𝐹 − 𝐹𝑥𝐹𝑦𝐹𝜃 = 0         

 

The (2.31) provides three roots for F, an infinite number of these terns exist, ordered by 

increasing n. For n = 1 the smallest of the three roots provides the critical value of F. 

 

= 0 

(2.31) 
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Figure 2.3 - Graph of the function f (F) 

Intersections with the F axis provide the Fa values. 

For F = 0, f (F) is negative; for very high F, f (F) takes the sign of the cubic term, which is 

positive. 

If Fx < Fy : 

𝑓(𝐹𝑥) = −
𝐴

𝐼𝑐
𝐹𝑥

2 𝑥𝐺 
2 (𝐹𝑥 − 𝐹𝑦) > 0 

𝑓(𝐹𝑦) = −
𝐴

𝐼𝑐
𝐹𝑦

2 𝑦𝐺 
2 (𝐹𝑦 − 𝐹𝑥) < 0 

So the (2.31) has three real roots F1 F2 F3 and disagreements are valid 

𝐹1 < 𝐹𝑥 < 𝐹2 < 𝐹𝑦 < 𝐹3 

If Fθ is smaller than Fx and Fy, f (Fθ) is positive; in fact it is 

𝑓(𝐹𝜃) =
𝐴

𝐼𝑐
𝐹𝜃

2 [𝑥𝐺
2  (𝐹𝑦 − 𝐹𝜃) + 𝑦𝐺

2 (𝐹𝑥 − 𝐹𝜃)] > 0 

So also, if Fθ is greater than Fx and Fy, f (Fθ) is negative. However, this means 

𝐹1 < 𝐹𝜃 

𝐹3 > 𝐹𝜃 

It is therefore concluded that of the three roots F1 F2 F3 the smallest, F1, it is less than Fx, Fy, 
Fθ and the biggest, F3, is bigger than Fx, Fy, Fθ; the second F2 is intermediate between Fx and 
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Fy. The in-game call of torsional deformations lower the value of the Eulerian critical load. For 

beams of modest length and rigid section the instability is torsional. If instead the beam is 

long and with a rigid section, the Euler formula gives exact values. 

If the ends are bound with common and torsional fixed joints, the limit conditions are 

𝑧 = 0   and  𝑧 = 𝑙             𝑢 = 𝑣 = 𝜃 = 0 

𝑧 = 0   and  𝑧 = 𝑙             𝑢′ = 𝑣′ = 𝜃′ = 0 

 

The first two (2.27) are modified as follows 

𝐸𝐼𝜂 𝑢′′ + 𝐹 (𝑢 + 𝜃 𝑦𝐺)  −  𝐸𝐼𝜂(𝑢′′)0 = 0 

 

𝐸𝐼𝜉  𝑣′′ + 𝐹 (𝑣 + 𝜃 𝑥𝐺)  −  𝐸𝐼𝜉(𝑣′′)0 = 0 

 

𝐶2𝜃𝐼𝑉 − (𝐶1 + 𝐹
𝐼𝑐

𝐴
)𝜃′′ +  𝐹 𝑢′′ 𝑦𝐺 −  𝐹 𝑣′′ 𝑥𝐺 = 0 

 

A solution that satisfies them is                                                                                            

𝑢 =  𝐴𝑥 (1 − cos 2 
𝑛 𝜋 𝑧

𝑙
) 

 

𝑣 =  𝐴𝑦 (1 − cos 2 
𝑛 𝜋 𝑧

𝑙
) 

 

𝜃 =  𝐴𝜃 (1 − cos 2 
𝑛 𝜋 𝑧

𝑙
) 

 

to be satisfied (2.33) with the null solution, it must be 

𝐹 − 𝐸𝐼𝜂4
𝑛2𝜋2

𝑙2                 0                                              𝐹𝑦𝐺 

0                                    𝐹 − 𝐸𝐼𝜉4
𝑛2𝜋2

𝑙2                         −𝐹𝑥𝐺 

                   𝐹𝑦𝐺                             −𝐹𝑥𝐺                            𝐼𝑐

𝐴
[𝐹 −

𝐴

𝐼𝑐
(𝐶1 + 4

𝑛2𝜋2

𝑙2 𝐶2) 

 

The equation that holds F is still the (2.31) and the solution process is the same.

= 0 

(2.32) 

 

(2.33) 

 

(2.34) 
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Chapter 3 
 

Experimental campaign 
 
In this chapter we will present the instruments used in the experimental campaign, the type 

of test performed and finally the results obtained.  

Static monotonic compression tests have been performed to determine the buckling load and 

the tested structure was a cruciform cross-section beam with end flanges and stiffeners 

placed in different positions in order to find the best configuration to make the beam more 

resistant. 

To have the correct measurement of the quantity to be analyzed, it is necessary to define a 

set-up, in our case this is composed of: 

- Structure to analyse; 

- Sensor able to register the signal; 

- Conversion system (acquisition device) that converts the signal from analogical to 

digital; 

- Control system that saves processes and makes the digital signal analysable. 

 

3.1 Instrumentation used in the experimental campaign 
3.1.1 Laser 
The sensor used in the experimental campaign was a laser which detected transverse 

displacements at a point. 

The laser sensor is the opto NCDT 1302-20, a triangulating displacement transducer 

produced by Micro-Epsilon. It is a highly performing instrument that detects displacement in a 

precise and accurate manner. The advantage of this sensor is that it is noncontact one and 

therefore does not alter the behaviour of the object tested.  
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Figure 3.1 – Photo of laser opto NCDT 1302-20 

The working principle is the classic one of triangulation. A laser diode projects a beam on the 

surface of the object and the reflected beam is captured by the sensor. The distance is 

calculated through a simple geometric algorithm. 

 
Figure 3.2 - Scheme of adopted laser triangulating displacement sensor (a) and corresponding characteristic curve (b) 

with indication of Start of Measuring Range (SMR) and End of Measuring Range (EMR). 

 

Table 3.1. shows the main characteristics of the laser sensor: 

Measuring 
Range 
(MR) 

Start of 
Measuring 

Range 
(SMR) 

Midrange 
(MR) 

End of 
Measuring 

Range 
(EMR) 

Resolution 
(Dynamic 750 

Hz) 

20 mm 30 mm 40 mm 50 mm 10 μm 

Table 3.1 - Main characteristics of the laser sensor. 

 

3.1.2 Acquisition device 
The aim of the acquisition device is to convert the signal that arrives from the sensor from 

analogical to digital. The NI 9215 device was used in the tests performed. This is produced 

by National Instruments and it is shown in figure 3.2: 
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Figure 3.3 - Acquisition device NI 9215 

 

3.1.3 Control system 
The control system used is an application software implemented in a programming 

environment LabVIEW (Laboratory Virtual Instrument Engineering Workbench). The aim of 

the control system is to read and register the digital signal from the acquisition device and 

then to make it analysable. 

LabVIEW is a powerful data acquisition and analysis programming language for PCs, 

produced by National Instruments. This is able to interface with NI 9215 acquisition device. 

LabVIEW is a graphical programming language in fact the interface does not consist of text 

strings, but rather of icons and links. 

The interface has two work plans: 

- Front panel; 

- Block diagram. 

The first allows to define and introduce all the input and output quantities, while the second is 

the actual executable program. 

Two LabVIEW programs have been used: 

- Long-Time Acquisition;  

- Reading and Writing to a file. 

Long-Time Acquisition was used to register the acquired signal from the acquisition device, 

to report it on a graph and to make it analysable. 
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Figure 3.4 - Front panel of long-time acquisition program. 

The input data were: 

- Number of samples; 

- Rate. 

The bottom “write to a file” allows the signal to be saved or not. 

The output data were: 

- Laser (transversal displacement); 

- Load; 

- Axial displacement. 

This three data output were reported on a time(s) - amplitude(V) graph. 

Reading and Writing to a file reads the saved values by the acquisition program and creates 

a .txt file containing two column vectors whose elements are the acquisition time and signal 

voltage values. 

 
Figure 3.5 - Front panel of Reading and Writing to a file program. 
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3.2 Stability test 
The experimental campaign was conducted using servo-hydraulic MTS testing machine, with 

a closed-loop electronic control and a maximum loading capacity of 100 kN. With this 

machine, stability tests for compression were carried out up to the post-critical branch and 

subsequent unloading.  

Figure 3.5 shows the machine used. 

 
Figure 3.6 - Servo-hydraulic MTS testing machine 

The specimens were put in vertical position, constrained to the machine by connections 

which prevented displacements, rotations and twist of the end sections. 

The results of this experimental campaign show the effect of intermediate warping stiffeners 

on the behaviour of thin-walled open profiles with cruciform (double I) cross-section. 
Local stiffener connect the external flanges of the cross-section in such a way as to provide a 

four-cell box section. 

 
(a)                                                        (a)                                                                         (b) 

Figure 3.7 - (a) Actual and (b) stiffened cross-sections (dimensions in mm); red parts highlight the stiffening frame. 
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The shape of a double I implies high bending stiffness, modest torsion stiffness and non-

negligible warping stiffness. Thus, such profiles are prone to buckling more in torsion than in 

bending. 

 

3.2.1 Geometric and mechanical characteristic of the specimens 
The beam is made of 6060-T5 aluminium alloy. The table 3.1 and the figure 3.7 describe the 

main geometrical and mechanical characteristics. 

 
(a)                                                         (b) 

Figure 3.8 – (a) cruciform section; (b) photo of the section. 

 

 

            

         (a)                                                     (b) 
Figure 3.9 – (a) stiffened cross-sections; (b) photo of stiffener. 

 

Table 3.1 - Geometric and mechanical characteristics 

Section 
width 

Section thickness Length Volumetric 
mass 

Elastic 
module 

Poisson 
coefficient 

b (mm) t1 (mm) t2 (mm) (mm) ρ (kg/m
3) E (N/mm2) (-) 

50 1.2 1.4 950 2600 69000 0.3 
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Cross-
section 

A A2=A3 A23=A32 J Ic I2=I3 xc2=xc3 If2=If3 Γ 

 (mm2) (mm2) (mm2) (mm4) (mm4) (mm4) (mm) (mm5) (mm6) 
Current 251.84 110.38 0 148.36 111’028 55’514 0 0 4’305’656 

Stiffened 384.00 200.02 0 163’945 235’498 117’749 0 0 0 
Diff., % 52 81 - 110’405 112 112 - - -100% 

 

A, Aj, Aij are the area, direct, and mixed sherar shape modified areas, respectively; J is Saint-

Venant’s torsion factor; Ic is the polar moment of inertia with respect to the shear centre; Ij are 

the central principal moments of inertia; xcj are the coordinates of the shear centre; Ifj are the 

flexural-torsion constant; and Γ is the warping constant. Aij = xcj = Ifj = 0. 

The specimens were identified with the nomenclature shown in the table 3.2. The position of 

the stiffeners is measured from the base (right end in the figures of table 3.2). 

Name specimen Type of constraint Stiffener position interval 
   S1 Free warping 380-475 mm 

   S2 Free warping 95-190 mm 

   S3 Free warping 427.5-522.5 mm 

   S4 Free warping 95-190 mm from each end 

   S5 Free warping 0-95 mm 

   S6 Free warping 0-95 from each end 

   S7 Semi-restrained warping 427.5-522.5 mm 

   S8 Semi-restrained warping 380-475 mm 

   S9 Semi-restrained warping 95-190 mm 

  S10 Semi-restrained warping 95-190 mm from each end 

  S11 Semi-restrained warping 0-95 mm 

  S12 Semi-restrained warping 0-95 from each end 
Table 3.2 - Specimen nomenclature 

 

3.2.2 Description of the stability test 
The performed test was a direct compression conducted in axial displacement control. This 

static monotonic compression test was used to detect the buckling load. 

The loading ramp was defined by imposing a hydraulic jack advancement speed equal to 

0,01 mm/sec. Once the loading ramp was completed, the unloading ramp was started with a 

higher speed than the loading one. 

The result of the test are curves: 

- Axial load-Axial displacement; 

- Axial load-Transverse displacement; 

The buckling load is determined through these curves. 
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3.2.3 Constraint system 
We used two constraint systems:  

- semi-restrained warping; 

- free warping. 

The specimens were vertical, constrained to the machine by connections controlling 

displacement, rotations and twist of the section. Four brass elements were used as end 

connections. 

 

Semi-restrained warping 
For the semi-restrained warping, brass elements were used inside which the two ends of the 

beam were housed. In this condition, the whole section is inserted into the brass joint and 

both the web and the flanges are constrained. 

In fact the warping is semi-restrained because the constraint does not react to traction, 

except for the small friction between the constraint and the specimen. 
 

 
Figure 3.10 - Picture and rendering of lower end constraints 

 
Figure 3.11 - Picture and rendering of upper end constraints 

Free warping 
Also for the free warping, brass elements were used in which the ends of the beam were 

housed. 

These elements have a smaller diameter than the previous ones, so they leave the flanges 

outside. In fact just the web is constrained, while the flanges are left free to warp. 
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Figure 3.12 - Picture and rendering of lower end constraints 

 
Figure 3.13 - Picture and rendering of upper end constraints 

 

3.3 Results of the experimental campaign 
Instability occurred by pure torsion of the specimen which twisted around its axis. This type 

of instability occurred in all the specimens. Moreover, the load curve shows that after the 

buckling load, it decreases and the torsional deformation enters its own plastic phase.  

The axial load-axial displacement curves showed an initial setting, then a linear phase, and 

in the end a non-linear branch, reflecting the progressive degradation of the apparent beam 

stiffness. The load providing the end of the linear range can be assumed as a critical. 

For some specimens it was possible to repeat the test because we had other virgin 

specimens. 

 

Specimen S1 
Specimen S1 and specimen S1 BIS have the stiffener positioned in the interval 380-475 mm, 

measured from the base and they are tested in the free warping constraint condition.  

The graphs necessary to identify the buckling load are shown below: 
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- Axial load-Axial displacement 

 
Graph 3.1 – Axial load-Axial displacement curve 

Table 3.3 – Buckling load and associated displacement 
 Buckling load Displacement 

Test 1 21 kN 1.84 mm 
Test 1 BIS 21 kN 1.93 mm 

 

- Axial load-Transverse displacement 

 
Graph 3.2 – Axial load-Transverse displacement curve 

The last two graphs confirm the value of the buckling load and the associated displacement 

identified through the axial load-axial displacement graph.  

The curves show a post-critical behaviour of the unstable specimen. 

Below there are some photos of the beam. 
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Figure 3.14 – Left: S1 specimen at the end of the test; Right: zoom on torsion instability 

 

Specimen S2  
Specimen S2 has the stiffener positioned in the interval 95-190 mm, measured from the base 

and it is tested in the free warping constraint condition.  

The graphs necessary to identify the buckling load are shown below: 

- Axial load-Axial displacement 

 
Graph 3.3 - Axial load-axial displacement curve 

Table 3.4 – Buckling load and associated displacement 
Buckling load Displacement 

23 kN 1.74 mm 
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- Axial load-Transverse displacement 

 
Graph 3.4 – Axial load-Transverse displacement curve 

The last two graphs confirm the value of the buckling load and the associated displacement 

identified through the axial load-axial displacement graph.  

The curves show a post-critical behaviour of the unstable specimen. 

Below are some photos of the beam. 

 
Figure 3.15 - S2 specimen at the end of the test. 

 

Specimen S3 
Specimen S3 has the stiffener positioned in the interval 427,5-522,5 mm, measured from the 

base and it is tested in the free warping constraint condition.  

The graphs necessary to identify the buckling load are shown below: 
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- Axial load-Axial displacement 

 
Graph 3.5 - Axial load-axial displacement curve 

Table 3.5 – Buckling load and associated displacement 
Buckling load Displacement 

20 kN 1.77 mm 

 

- Axial load-Transverse displacement 

 
Graph 3.6 – Axial load-Transverse displacement curve 

The last two graphs confirm the value of the buckling load and the associated displacement 

identified through the axial load-axial displacement graph.  

The curves show a post-critical behaviour of the unstable specimen. 

Below are some photos of the beam. 
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Figure 3.16 - Left: S1 specimen at the end of the test; Right: Zoom of torsional instability. 

 
Figure 3.17 – Top view of torsion instability. 

 

Specimen S4  
Specimen S4 has the two stiffeners positioned in the interval 95-190 mm from each end. This 

specimen is tested in the free warping constraint condition.  

The graphs necessary to identify the buckling load are shown below: 
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- Axial load-Axial displacement 

 
Graph 3.7 – Axial load-axial displacement curve 

Table 3.6 – Buckling load and associated displacement 
Buckling load Displacement 

24 kN 2.09 mm 
 
- Axial load-Transverse displacement 

 
Graph 3.8 – Axial load-Transverse displacement curve 

The last two graphs confirm the value of the buckling load and the associated displacement 

identified through the axial load-axial displacement graph.  

The curves show a post-critical behaviour of the unstable specimen. 

From the axial load-transverse displacement curve it is noted how the stiffeners position 

stiffens a lot the beam. 

Below are some photos of the beam. 
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Figure 3.18 - S4 specimen at the end of the test. 

 

Specimen S5 
Specimen S5 has the stiffener positioned in the interval 0-95 mm, measured from the base 

and it is tested in the free warping constraint condition.  

The graphs necessary to identify the buckling load are shown below: 

- Axial load-Axial displacement 

 
Graph 3.9 – Axial load-axial displacement curve 

Table 3.7 – Buckling load and associated displacement 
Buckling load Displacement 

21 kN 2.08 mm 
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- Axial load-Transverse displacement 

 
Graph 3.10 – Axial load-Transverse displacement curve 

The last two graphs confirm the value of the buckling load and the associated displacement 

identified through the axial load-axial displacement graph.  

The curves show a post-critical behaviour of the unstable specimen. 

Below are some photos of the beam. 

                           
Figure 3.19 – Left: S5 specimen at the end of the test; Right: Zoom of torsion instability. 

 

Specimen S6 
Specimen S6 and specimen S6 BIS have the two stiffeners positioned in the interval 0-95 

mm from each end. This specimens are tested in the free warping constraint condition.  

The graphs necessary to identify the buckling load are shown below: 
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- Axial load-Axial displacement 

 
Graph 3.11 – Axial load-axial displacement curve 

Table 3.8 – Buckling load and associated displacement 
 Buckling load Displacement 

Test 6 16 kN 1.74 mm 
Test 6 BIS 26 kN 1.89 mm 

 

- Axial load-Transverse displacement 

 
Graph 3.12 – Axial load-Transverse displacement curve 

Note that the black curve and the orange curve have different trends and therefore provide 

different results.  

Considering the S6 specimen, this has been tested without taking into account that the 

welding placed in contact with the constraints could alter the results. Subsequently, a virgin 

S6 specimen was tested, which was carefully filed in correspondence of the weld in such a 

way as to allow perfect contact between stiffeners and constraints.  

The last two graphs confirm the value of the buckling load and the associated displacement 

identified through the axial load-axial displacement graph.  

The curves show a post-critical behaviour of the unstable specimen. 
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Below is a photo of the beam. 

 
Figure 3.20 – S6 specimen at the end of the test. 

 

Specimen S7 
Specimen S7 and specimen S7 BIS have the stiffener positioned in the interval 427,5-522,5 

mm, measured from the base and they are tested in the semi-restrained warping constraint 

condition. 

The graphs necessary to identify the buckling load are shown below: 

- Axial load-Axial displacement 

 
Graph 3.13 – Axial load-axial displacement curve 

Table 3.9 – Buckling load and associated displacement 
 Buckling load Displacement 

Test 7 27 kN 2.61 mm 
Test 7 BIS 25 kN 2.27 mm 
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- Axial load-Transverse displacement 

 
Graph 3.14 – Axial load-Transverse displacement curve 

The last two graphs confirm the value of the buckling load and the associated displacement 

identified through the axial load-axial displacement graph.  

The curves show a post-critical behaviour of the unstable specimen. 

Below are some photos of the beam. 

                      
Figure 3.21 – Left: S7 specimen at the end of the test; Right: Zoom of torsional instability. 

 

Specimen S8 
Specimen S8 and specimen S8 BIS have the stiffener positioned in the interval 380-475 mm, 

measured from the base and they are tested in the semi-restrained warping constraint 

condition. 

The graphs necessary to identify the buckling load are shown below: 
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- Axial load-Axial displacement 

 
Graph 3.15 – Axial load-axial displacement curve 

Table 3.10 – Buckling load and associated displacement 
 Buckling load Displacement 

Test 8 27 kN 2.63 mm 
Test 8 BIS 24 kN 2 mm 

 

- Axial load-Transverse displacement 

 
Graph 3.16 – Axial load-Transverse displacement curve 

The last two graphs confirm the value of the buckling load and the associated displacement 

identified through the axial load-axial displacement graph.  

The curves show a post-critical behaviour of the unstable specimen. 

Below are some photos of the beam. 
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Figure 3.22 – Left: S8 specimen at the end of the test; Right: Top view of torsional instability. 

                                                
Figure 3.23 – Zoom of torsion instability. 

 

Specimen S9 
Specimen S9 has the stiffener positioned in the interval 95-190 mm, measured from the base 

and it is tested in the semi-restrained warping constraint condition.  

The graphs necessary to identify the buckling load are shown below: 
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- Axial load-Axial displacement 

 
Graph 3.17 – Axial load-axial displacement curve 

Table 3.11 – Buckling load and associated displacement 
Buckling load Displacement 

27 kN 2.45 mm 
 

- Axial load-Transverse displacement 

 
Graph 3.18 – Axial load-Transverse displacement curve 

The last two graphs confirm the value of the buckling load and the associated displacement 

identified through the axial load-axial displacement graph.  

The curves show a post-critical behaviour of the unstable specimen. 

Below are some photos of the beam. 
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Figure 3.24 – S9 specimen at the end of the test. 

                            

Figure 3.25 – Zoom of torsion instability. 

 

Specimen S10 
Specimen S10 has the two stiffeners positioned in the interval 95-190 mm from each end. 

This specimen is tested in in the semi-restrained warping constraint condition.  

The graphs necessary to identify the buckling load are shown below: 
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- Axial load-Axial displacement 

 
Graph 3.19 – Axial load-axial displacement curve 

Table 3.12 – Buckling load and associated displacement 
Buckling load Displacement 

25 kN 2.21 mm 
 

- Axial load-Transverse displacement 

 
Graph 3.20 – Axial load-Transverse displacement curve 

The last two graphs confirm the value of the buckling load and the associated displacement 

identified through the axial load-axial displacement graph.  

The curves show a post-critical behaviour of the unstable specimen. 

Below are some photos of the beam. 
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Figure 3.26 – S10 specimen at the end of the test. 

 

Specimen S11 
Specimen S11 has the stiffener positioned in the interval 0-95 mm, measured from the base 

and it is tested in the semi-restrained warping constraint condition.  

The graphs necessary to identify the buckling load are shown below: 

- Axial load-Axial displacement 

 
Graph 3.21 – Axial load-axial displacement curve 

Table 3.12 – Buckling load and associated displacement 
Buckling load Displacement 

15 kN 2.77 mm 
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- Axial load-Transverse displacement 

 
Graph 3.22 – Axial load-Transverse displacement curve 

The last two graphs confirm the value of the buckling load and the associated displacement 

identified through the axial load-axial displacement graph.  

The curves show a post-critical behaviour of the unstable specimen. 

The result of specimens S11 is not correct because the welding of the stiffener in contact 

with the constraint has distorted the test. 

Below are some photos of the beam. 

 
Figure 3.27 – S11 specimen at the end of the test. 

 

Specimen S12 
Specimen S12 has the two stiffeners positioned in the interval 0-95 mm from each end. This 

specimen is tested in in the semi-restrained warping constraint condition.  
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The graphs necessary to identify the buckling load are shown below: 

- Axial load-Axial displacement 

 
Graph 3.23 – Axial load-axial displacement curve 

Table 3.13 – Buckling load and associated displacement 
Buckling load Displacement 

20 kN 5.44 mm 
 

- Axial load-Transverse displacement 

 
Graph 3.24 – Transverse displacement-axial displacement curve 

The last two graphs confirm the value of the buckling load and the associated displacement 

identified through the axial load-axial displacement graph.  

The curves show a post-critical behaviour of the unstable specimen. 

The result of specimens S12 is not correct because the welding of the stiffeners in contact 

with the constraints has distorted the test. 

Below are some photos of the beam. 
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Figure 3.28 – Left : S12 specimen at the end of the test; Right: Zoom of torsion instability. 
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3.4 Comparison of experimental results 
In the experimental campaign carried out, it was decided to use the laser to be able to 

extrapolate an extra curve in addition to the axial load-axial displacement in order to confirm 

the buckling load identified in the classic way. 

All the specimens buckled by pure torsion as it is noted from the stability test. 

Table 3.14 shows the comparisons between buckling loads in the various conditions 

investigated.  

Table 3.14 – Comparison buckling loads 

   

From table 3.14 we can observe as the buckling load is conditioned by the type of constraint 

but above all by the position of the stiffener or the stiffeners.

 Name 
specimen 

Type of constraint Stiffener position Buckling 
load 

 

 
S1 

 

Free warping 

 

380-475 mm 

 

21 kN 

 
S8 

 

Semi-restrained warping 

 

380-475 mm 

 

24 kN 

 

 
S2 

 

Free warping 

 

95-190 mm 

 

23 kN 

 
S9 

 

Semi-restrained warping 

 

95-190 mm 

 

27 kN 

 

 
S3 

 

Free warping 

 

427.5-522.5 mm 

 

20 kN 

 
S7 

 

Semi-restrained warping 

 

427.5-522.5 mm 

 

25 kN 

 

 
S4 

 

Free warping 

 

95-190 mm from each end 

 

24 kN 

 
S10 

 

Semi-restrained warping 

 

95-190 mm from each end 

 

25 kN 

 

 
S5 

 

Free warping 

 

0-95 mm 

 

21 kN 

 
S11 

 

Semi-restrained warping 

 

0-95 mm 

 

15 kN 

 

 
S6 

 

Free warping 

 

0-95 from each end 

 

26 kN 

 
S12 

 

Semi-restrained warping 

 

0-95 from each end 

 

20 kN 
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Chapter 4 
 

Numerical simulations and comparisons 
 
The numerical simulations were developed using the LUSAS finite element calculation code. 

Numerical models were constructed which were able to reproduce the results obtained 

experimentally. 

In the LUSAS environment the beam was modelled through thin shell elements. Figure 4.1 

shows an example of a constructed numerical model. 

 

Figure 4.1 - Example of a constructed numerical model 

The thin shell element used was the QSL8  

  

Figure 4.2 Finite element QSL8 (real), finite element QSL8 (parent) 
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Each numerical model has stiffener or stiffeners in different positions, so different meshes 

were created. 

The beams tested are in aluminium alloy 6060 T5, so the material is isotropic and elastic-

linear with the following properties: 

- Elastic module E = 69000 N/mm2; 

- Poisson coefficient ν = 0.3. 

The length of the beam is 950 mm while the stiffeners are 95 mm long. Moreover the 

geometry of the section has been created considering the average line. 

 

Figure 4.3 – Beam section 

LUSAS was used to obtain the buckling loads, in particular for the analysis of critical loads of 

the first 3 mode (eigenvalue problem). The Buckling Analysis was carried out to do this. 

The analyses were conducted for the following cases: 

- Warping free at both ends (free warping condition); 

- Warping restrained at both ends (restrained warping condition); 

- Warping free at one end and restrained at the other (mixed warping condition). 
 

4.1 Free warping 
You can see the models with the constraint condition of free warping below. This condition 

was simulated by setting structural supports.  

For the upper constraint in figure 4.2, the screenshot of the settings introduced in the 

calculation program is shown, so that the constraint condition is free warping. It is necessary 

to prevent the translation in x and y while in z the translation is free, and also to fix the 

rotations about x, y and z. 
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Figure 4.4 – Screenshot upper constraint 

For the lower constraint in figure 4.3, the screenshot of the settings introduced in the 

calculation program is shown, so that the constraint condition is free warping. It is necessary 

to block translation and rotation in x, y and z. 

 

Figure 4.5 – Screenshot lower constraint 

Figure 4.4 shows the image of the two constraints and the concentrated load of 1 kN. 
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  (a)                                     (b) 

Figure 4.6 – (a) Upper constraint; (b) Lower constraints. 

Model M1 
Model M1 has the stiffener positioned in the interval 380-475 mm, measured from the base 

and it is analysed in the free warping condition.  

Table 4.1 shows the results obtained from the buckling analysis of the structure for the first 3 

modes. 

Mode Ncr Error 

1 18.79 kN 0.35E-06 

2 73.56 kN 0.72E-06 

3 79.78 kN 0.84E-05 
Table 4.1 – Buckling loads of the first 3 mode. 

The undeformed and deformed models of the first mode are shown below: 

 
Figure 4.7 - From the left: undeformed, deformed, upper extremity, lower extremity and top view of the deformed. 

It is possible to notice that the instability of mode 1 is of the torsional type, as already 

observed in the experimental campaign. Even that of mode 2 is of the torsional type while the 

instability of mode 3 is of the flexural type. 

Focusing on the ends of the beam, the effect of the type of constraint is visible. As this is a 

case of free warping, the ends are deformed. 
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The longitudinal displacement values (DZ) shown in figure 4.8 are defined but for an arbitrary 

constant (eigenvalue problem). Their contour plot show as stiffeners prevent warping. 

 
Figure 4.8 – Displacement DZ. 

 

 
 

Figure 4.9 – Warping in the end sections. 

Model M2 
Model M2 has the stiffener positioned in the interval 95-190 mm, measured from the base 

and it is analysed in the free warping condition.  

Table 4.2 shows the results obtained from the buckling analysis of the structure for the first 3 

modes. 

Mode Ncr Error 

1 33.90 kN 0.46E-07 

2 77.33 kN 0.33E-07 

3 78.50 kN 0.11E-06 
Table 4.2 – Buckling loads of the first 3 mode. 

The undeformed and deformed models of the first mode are shown below: 
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Figure 4.10 - From the left: undeformed, deformed, upper extremity, lower extremity and top view of the deformed. 

It is possible to notice that the instability of mode 1 is of the torsional type, as already 

observed in the experimental campaign. Even that of mode 2 is of the torsional type while the 

instability of mode 3 is of the flexural type. 

Focusing on the ends of the beam, the effect of the type of constraint is visible. In this case, 

the top end section warps, while warping is prevented near and below the stiffened zone 

(figure 4.11). Note that warping vanishes also between the stiffeners and the top end.  

 
Figure 4.11 – Displacement DZ. 

Model M3 
Model M3 has the stiffener positioned in the interval 427,5-522,5 mm, measured from the 

base and it is analysed in the free warping condition.  

Table 4.3 shows the results obtained from the buckling analysis of the structure for the first 3 

modes. 
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Mode Ncr Error 

1 18.34 kN 0.34E-07 

2 81.07 kN 0.41E-07 

3 81.07 kN 0.13E-07 
Table 4.3 – Buckling loads of the first 3 mode. 

The undeformed and deformed models of the first mode are shown below: 

 
Figure 4.12 - From the left: undeformed, deformed, upper extremity, lower extremity and top view of the deformed. 

It is possible to notice that the instability of mode 1 is of the torsional type, as already 

observed in the experimental campaign, while the ones of mode 2 and of mode 3 is of a 

flexural type. 

Focusing on the ends of the beam, the effect of the type of constraint is visible. As this is a 

case of free warping, the ends are deformed. Warping tends to vanish moving from the ends 

toward the stiffened zone, where it is null (figure 4.13).  

 
Figure 4.13 – Displacement DZ. 

 
 



Chapter 4 – Numerical simulations and comparisons 
 

57 
 

 
Model M4  
Model M4 has the two stiffeners positioned in the interval 95-190 mm from each end. This 

model is analysed in the free warping condition.  

Table 4.4 shows the results obtained from the buckling analysis of the structure for the first 3 

modes. 

Mode Ncr Error 

1 81.15 kN 0.16E-09 

2 81.15 kN 0.17E-09 

3 84.26 kN 0.53E-09 
Table 4.4 – Buckling loads of the first 3 mode. 

The undeformed and deformed models of the first mode are shown below: 

 
Figure 4.14 - From the left: undeformed, deformed, upper extremity, lower extremity and top view of the deformed. 

It is possible to notice that the instability of mode 1 is of the bending type, as already 

observed in the experimental campaign; also that of mode 2 is of the bending type while the 

instability of mode 3 is of the torsional type. 

The values of DZ and their contour plot in figure 4.15 show that all sections do not warp, i.e. 

remain plane (bending). 
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Figure 4.15 – Displacement DZ. 

Model M5 
Model M5 has the stiffener positioned in the interval 0-95 mm, measured from the base and it 

is analysed in the free warping condition.  

Table 4.5 shows the results obtained from the buckling analysis of the structure for the first 3 

modes. 

Mode Ncr Error 

1 28.67 kN 0.36E-07 

2 63.64 kN 0.71E-07 

3 79.75 kN 0.26E-05 
Table 4.5 – Buckling loads of the first 3 mode. 

The undeformed and deformed models of the first mode are shown below: 

 
Figure 4.16 - From the left: undeformed, deformed, upper extremity, lower extremity and top view of the deformed. 

It is possible to notice that the instability of mode 1 is of the torsional type, as already 

observed in the experimental campaign. Even that of mode 2 is of the torsional type while the 

instability of mode 3 is of the flexural type. 

Figure 4.17 shows that the behaviour is similar to that of  Model M2.  
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Figure 4.17 – Displacement DZ. 

Model M6 
Model M6 has the two stiffeners positioned in the interval 0-95 mm from each end. This 

model is analysed in the free warping condition.  

Table 4.6 shows the results obtained from the buckling analysis of the structure for the first 3 

modes. 

Mode Ncr Error 

1 52.35 kN 0.21E-06 

2 80.63 kN 0.14E-05 

3 80.63 kN 0.52E-07 
Table 4.6 – Buckling loads of the first 3 mode. 

The undeformed and deformed models of the first mode are shown below: 

 
Figure 4.18 - From the left: undeformed, deformed, upper extremity, lower extremity and top view of the deformed. 

It is possible to notice that the instability of mode 1 is of the torsional type, as already 

observed in the experimental campaign, while the ones of mode 2 and of mode 3 is of a 

flexural type. 
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Figure 4.19 shows how warping vanishes at the ends, because of the stiffeners, and at mid-

length, because of the symmetry. 

 
Figure 4.19 – Displacement DZ. 

4.2 Fully-restrained warping 
Now you can see the models analysed in condition of fully-restrained warping. This was 

simulated by setting structural supports.  
The fully-restrained warping condition was simulated by introducing a 1 mm layer of high 

stiffness material (E = 1015 Pa) on the upper end while on the lower end, some structural 

supports were simply placed. Then this layer of high-stiffness material was constrained and 

loaded in the same way as in the free warping condition. 

Figure 4.20 shows the image of the two constraints and the concentrated load of 1 kN. 

  
 (a)                                        (b) 

Figure 4.20 – (a) Upper constraint; (b) Lower constraints. 

Model M7 
Model M7 has the stiffener positioned in the interval 427,5-522,5 mm, measured from the 

base and it is analysed in fully-restrained warping condition.  

Table 4.7 shows the results obtained from the buckling analysis of the structure for the first 3 

modes. 

Mode Ncr Error 
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1 43.34 kN 0.28E-04 

2 120.72 kN 0.14E-06 

3 120.72 kN 0.37E-07 
Table 4.7 – Buckling loads of the first 3 mode. 

The undeformed and deformed models of the first mode are shown below: 

 
Figure 4.21 - From the left: undeformed, deformed, upper extremity, lower extremity and top view of the deformed. 

It is possible to notice that the instability of mode 1 is of the torsional type, as already 

observed in the experimental campaign, while the ones of mode 2 and of mode 3 is of a 

flexural type. 

Focusing on the ends of the beam, the effect of the type of constraint is visible. As this is a 

case of restrained warping, the ends are not deformed. 

Contour plot and values in figure 4.22 show that warping is null at the ends and around the 

stiffened zone. A detail near the end sections is shown in figure 4.23.  

 
Figure 4.22 – Displacement DZ. 
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Figure 4.23 – Displacements DZ near the end sections (warping is null). 

Model M8 
Model M8 has the stiffener positioned in the interval 380-475 mm, measured from the base 

and it is analysed in the fully-restrained warping condition.  

Table 4.8 shows the results obtained from the buckling analysis of the structure for the first 3 

modes. 

Mode Ncr Error 

1 45.41 kN 0.22E-06 

2 118.42 kN 0.37E-06 

3 118.44 kN 0.28E-07 
Table 4.8 – Buckling loads of the first 3 mode. 

The undeformed and deformed models of the first mode are shown below: 

 
Figure 4.24 - From the left: undeformed, deformed, upper extremity, lower extremity and top view of the deformed. 

It is possible to notice that the instability of mode 1 is of the torsional type, as already 

observed in the experimental campaign. Even that of mode 2 is of the torsional type while the 

instability of mode 3 is of the flexural type. 

Figure 4.25 shows that the behaviour is similar to that of Model M8, exception made for the 
symmetry. 
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Figure 4.25 – Displacement DZ. 

Model M9 
Model M9 has the stiffener positioned in the interval 95-190 mm, measured from the base 

and it is analysed in the fully-restrained warping condition.  

Table 4.9 shows the results obtained from the buckling analysis of the structure for the first 3 

modes. 

Mode Ncr Error 

1 53.21 kN 0.95E-04 

2 98 kN 0.59E-04 

3 114.84 kN 0.32E-07 
Table 4.9 – Buckling loads of the first 3 mode. 

The undeformed and deformed models of the first mode are shown below: 

 
Figure 4.26 - From the left: undeformed, deformed, upper extremity, lower extremity and top view of the deformed. 

It is possible to notice that the instability of mode 1 is of the torsional type, as already 

observed in the experimental campaign. Even that of mode 2 is of the torsional type while the 

instability of mode 3 is of the flexural type. 
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Figure 4.27 shows that warping vanishes at the ends, near the stiffened portion, and 
between the top and the stiffeners. The behaviour is, thus, similar to that of Model M2, but 
here with no warping at the top, and therefore with a stiffer response. 

 
Figure 4.27 – Displacement DZ. 

Model M10 
Model M10 has the two stiffeners positioned in the interval 95-190 mm from each end. This 

model is analysed in the fully-restrained warping condition.  

Table 4.10 shows the results obtained from the buckling analysis of the structure for the first 

3 modes. 

Mode Ncr Error 

1 84.26 kN 0.54E-04 

2 116.40 kN 0.30E-07 

3 116.40 kN 0.65E-06 
Table 4.10 – Buckling loads of the first 3 mode. 

The undeformed and deformed models of the first mode are shown below: 

 
Figure 4.28 - From the left: undeformed, deformed, upper extremity, lower extremity and top view of the deformed. 
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It is possible to notice that the instability of mode 1 is of the torsional type, as already 

observed in the experimental campaign, while the ones of mode 2 and of mode 3 is of a 

flexural type. 

Figure 4.29 shows that warping occurs only in the part comprised between the two stiffened 

zoned, and vanishes at the mid-section because of the symmetry. 

 
Figure 4.29 – Displacement DZ. 

Model M11 
Model M11 has the stiffener positioned in the interval 0-95 mm, measured from the base and 

it is analysed in the fully-restrained warping condition.  

Table 4.11 shows the results obtained from the buckling analysis of the structure for the first 

3 modes. 

Mode Ncr Error 

1 44.10 kN 0.11E-03 

2 80.08 kN 0.32E-04 

3 119.50 kN 0.32E-07 
Table 4.11 – Buckling loads of the first 3 mode. 

The undeformed and deformed models of the first mode are shown below: 
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Figure 4.30 - From the left: undeformed, deformed, upper extremity, lower extremity and top view of the deformed. 

It is possible to notice that the instability of mode 1 is of the torsional type, as already 

observed in the experimental campaign. Even that of mode 2 is of the torsional type while the 

instability of mode 3 is of the flexural type. 

Figure 4.31 shows that warping vanishes at the top, around the stiffened zone, and in an 
intermediate region. 

 
Figure 4.31 – Displacement DZ. 

Model M12 
Model M12 has the two stiffeners positioned in the interval 0-95 mm from each end. This 

model is analysed in the fully-restrained warping condition.  

Table 4.12 shows the results obtained from the buckling analysis of the structure for the first 

3 modes. 

Mode Ncr Error 

1 52.35 kN 0.15E-04 

2 96.49 kN 0.59E-05 

3 123.26 kN 0.26E-08 
Table 4.12 – Buckling loads of the first 3 mode. 

The undeformed and deformed models of the first mode are shown below: 
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Figure 4.32 - From the left: undeformed, deformed, upper extremity, lower extremity and top view of the deformed. 

It is possible to notice that the instability of mode 1 is of the torsional type, as already 

observed in the experimental campaign. Even that of mode 2 is of the torsional type while the 

instability of mode 3 is of the flexurall type. 

Figure 4.33 shows that warping vanishes around the stiffened zones and at mid-length, 
because of the symmetry. 

 
Figure 4.33 – Displacement DZ. 

4.3 Mixed conditions 
Once the free warping and restrained warping models were completed, the mixed conditions 

not analysed in the experimental campaign were studied. 

The mixed condition was simulated by combining the free warping and the fully-restrained 

warping condition. So, the structural supports were: 
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(a)                                      (b) 

Figure 4.34 – (a) Upper constraint: warping free; (b) Lower constraints: warping restrained. 
 

 
  (a)                                      (b) 

Figure 4.35 – (a) Upper constraint: warping restrained; (b) Lower constraints: warping free. 

 
Model M13 and Model M14 
Models M13 and M14 have the stiffener positioned in the interval 427,5-522,5 mm, measured 

from the base and these are analysed in the mixed condition. 

Model M13 is constrained so that on the top, warping is prevented and on the bottom it is 

free, while vice versa is in model M14. 

Table 4.13 shows the results obtained from the buckling analysis of the structure for the first 

3 modes. 

Mode Ncr Error  Mode Ncr Error 

1 29.49 kN 0.83E-05  1 31.64 kN 0.12E-07 

2 85.41 kN 0.19E-05  2 84.65 kN 0.21E-08 

3 108.52 kN 0.14E-06  3 84.65 kN 0.12E-08 
Table 4.13 – Buckling loads of the first 3 mode. Left: M13; Right: M14. 

The undeformed and deformed models M13 and M14 of the first mode are shown below: 
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Figure 4.36 – From the left: undeformed, deformed and top view of the deformed. Left: M13; Right: M14. 

For the model M13 it is possible to notice that the instability of mode 1 is of the torsional type, 

as already observed in the experimental campaign, as well as that of mode 2, while the 

instability of mode 3 is of the flexural type. For model M14 the instability of mode 1 is of the 

torsional type, as already observed in the experimental campaign, while that of mode 2 and 

of mode 3 is of the flexural type. 

Focusing on the ends of the beam, the effect of the type of constraint is visible. As this is a 

case of mixed condition one end is deformed and the other is not. 

The response in terms of longitudinal displacements field of the first buckling mode is shown 

in figure 4.37. 

 
Figure 4.37 – Displacement DZ. Left: M13; Right: M14. 

Model M15 and Model M16 
Models M15 and M16 have the stiffener positioned in the interval 380-475 mm, measured 

from the base and these are analysed in the mixed condition. 

Model M15 is constrained so that on the top, warping is prevented and on the bottom it is 

free, while vice versa is in model M16. 

Table 4.14 shows the results obtained from the buckling analysis of the structure for the first 

3 modes. 
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Mode Ncr Error  Mode Ncr Error 

1 27 kN 0.90E-06  1 36.93 kN 0.12E-07 

2 104.92 kN 0.34E-06  2 74.48 kN 0.71E-07 

3 106.61 kN 0.41E-07  3 83.25 kN 0.23E-05 
Table 4.14 – Buckling loads of the first 3 mode. Left: M15; Right: M16. 

 
The undeformed and deformed models M15 and M16 of the first mode are shown below: 

                            
Figure 4.38 – From the left: undeformed, deformed and top view of the deformed. Left: M15; Right: M16. 

Both for model M15 and model M16 it is possible to notice that the instability of mode 1 is of 

the torsional type, as already observed in the experimental campaign, as well as that of 

mode 2, while the instability of mode 3 is of the flexural type. 

The response in terms of longitudinal displacements field of the first buckling mode is shown 

in figure 4.39. 

 
Figure 4.39 – Displacement DZ. Left: M15; Right: M16. 

 
 

Model M17 and Model M18 
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Models M17 and M18 have the stiffeners positioned in the interval 95-190 mm, measured 

from the base and these are analysed in the mixed condition. 

Model M17 is constrained so that on the top, warping is prevented and on the bottom it is 

free, while vice versa is in model M18. 

Table 4.15 shows the results obtained from the buckling analysis of the structure for the first 

3 modes. 

Mode Ncr Error  Mode Ncr Error 

1 53.21 kN 0.27E-03  1 33.92 kN 0.58E-07 

2 96.78 kN 0.23E-05  2 77.56 kN 0.19E-07 

3 108.55 kN 0.37E-07  3 82.87 kN 0.42E-07 
Table 4.15 – Buckling loads of the first 3 mode. Left: M17; Right: M18. 

The undeformed and deformed models M17 and M18 of the first mode are shown below: 

                     
Figure 4.40 – From the left: undeformed, deformed and top view of the deformed. Left: M17; Right: M18. 

Both for model M17 and model M18 it is possible to notice that the instability of mode 1 is of 

the torsional type, as already observed in the experimental campaign, as well as that of 

mode 2, while the instability of mode 3 is of the flexural type. 

The response in terms of longitudinal displacements field of the first buckling mode is shown 
in figure 4.41. 

 
Figure 4.41 – Displacement DZ. Left: M17; Right: M18. 
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Model M19 and Model M20 
Models M19 and M20 have the two stiffeners positioned in the interval 95-190 mm from each 

end. This models are analysed in the mixed condition.  

Model M19 is constrained so that on the top, warping is prevented and on the bottom it is 

free, while vice is versa in model M20. 

Table 4.16 shows the results obtained from the buckling analysis of the structure for the first 
3 modes. 

Mode Ncr Error  Mode Ncr Error 

1 84.26 kN 0.43E-05  1 84.56 kN 0.70E-09 

2 104.31 kN 0.48E-06  2 85.96 kN 0.15E-07 

3 104.31 kN 0.63E-08  3 85.96 kN 0.23E-07 
Table 4.16 – Buckling loads of the first 3 mode. Left: M19; Right: M20. 

The undeformed and deformed models M19 and M20 of the first mode are shown below: 

                          
Figure 4.42 – From the left: undeformed, deformed and top view of the deformed. Left: M19; Right: M20. 

Both for model M19 and model M20 it is possible to notice that the instability of mode 1 is of 

the torsional type, as already observed in the experimental campaign, while that of mode 2 

and of mode 3 is of a flexural type. 

The response in terms of longitudinal displacements field of the first buckling mode is shown 
in figure 4.43. 

 
Figure 4.43 – Displacement DZ. Left: M19; Right: M20. 
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Model M21 and Model M22 
Models M21 and M22 have the stiffeners positioned in the interval 0-95 mm, measured from 

the base and these are analysed in the mixed condition. 

Model M21 is constrained so that on the top, warping is prevented and on the bottom it is 

free, while vice versa is in model M22. 

Table 4.17 shows the results obtained from the buckling analysis of the structure for the first 
3 modes. 

Mode Ncr Error  Mode Ncr Error 

1 44.10 kN 0.52E-03  1 28.67 kN 0.75E-07 

2 80.07 kN 0.49E-04  2 63.64 kN 0.45E-07 

3 110.34 kN 0.13E-04  3 86.39 kN 0.13E-05 
Table 4.17 – Buckling loads of the first 3 mode. Left: M21; Right: M22. 

The undeformed and deformed models M21 and M22 of the first mode are shown below: 

                             
Figure 4.44 – From the left: undeformed, deformed and top view of the deformed. Left: M21; Right: M22. 

Both for model M21 and model M22 it is possible to notice that the instability of mode 1 is of 

the torsional type, as already observed in the experimental campaign, as well as that of 

mode 2, while the instability of mode 3 is of the flexural type. 

The response in terms of longitudinal displacements field of the first buckling mode is shown 
in figure 4.45. 

 
Figure 4.45 – Displacement DZ. Left: M21; Right: M22. 
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Model M23 and Model M24 
Models M23 and M24 have the two stiffeners positioned in the interval 0-95 mm from each 

end. These models are analysed in the mixed condition.  

Model M23 is constrained so that on the top, warping is prevented and on the bottom it is 

free, while vice versa is in model M24. 

Table 4.18 shows the results obtained from the buckling analysis of the structure for the first 

3 modes. 

Mode Ncr Error  Mode Ncr Error 

1 52.35 kN 0.93E-04  1 52.35 kN 0.19E-05 

2 96.49 kN 0.66E-05  2 87.52 kN 0.15E-06 

3 113.73 kN 0.17E-06  3 87.52 kN 0.22E-06 
Table 4.18 – Buckling loads of the first 3 mode. Left: M23; Right: M24. 

The undeformed and deformed models M23 and M24 of the first mode are shown below: 

                          
Figure 4.46 – From the left: undeformed, deformed and top view of the deformed. Left: M23; Right: M24. 

For the model M23 it is possible to notice that the instability of mode 1 is of the torsional type, 

as already observed in the experimental campaign, as well as that of mode 2, while the 

instability of mode 3 is of the flexural type. For model M24 the instability of mode 1 is of the 

torsional type, as already observed in the experimental campaign, while that of mode 2 and 

of mode 3 is of the flexural type. 

The response in terms of longitudinal displacements field of the first buckling mode is shown 

in figure 4.47. 
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Figure 4.47 – Displacement DZ. Left: M23; Right: M24. 

 

4.4 Further models 
To complete the study and to understand what is the best position of the stiffener, six further 

models have been studied in both free warping and fully-restrained warping conditions. 

 

Model M25 and Model M26 
Models M25 and M26 have the stiffener positioned in the interval 190-285 mm, measured 

from the base. 

Model M25 is analysed in the free warping condition while model M26 in the fully-restrained 

warping condition. 

Table 4.19 shows the results obtained from the buckling analysis of the structure for the first 

3 modes. 

Mode Ncr Error  Mode Ncr Error 

1 39.01 kN 0.25E-07  1 59.96 kN 0.69E-07 

2 46.57 kN 0.21E-07  2 59.96 kN 0.46E-07 

3 52.9 kN 0.71E-04  3 62.53 kN 0.70E-09 
Table 4.19 – Buckling loads of the first 3 mode. Left: M25; Right: M26. 

The undeformed and deformed models M25 and M26 of the first mode are shown below: 
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Figure 4.48 – From the left: undeformed, deformed and top view of the deformed. Left: M25; Right: M26. 

For the model M25 it is possible to notice that the instability of mode 1 is of the torsional type 

as well as that of mode 2, while the instability of mode 3 is of the flexural type. For model 

M26 the instability of the first three modes is of the flexural type with local buckling 

phenomena. 

The response in terms of longitudinal displacements field of the first buckling mode is shown 

in figure 4.49. 

 
Figure 4.49 – Displacement DZ. Left: M25; Right: M26. 

 
Model M27 and Model M28 
Models M27 and M28 have the two stiffeners positioned in the interval 190-285 mm from 

each end. 

Model M27 is analysed in the free warping condition while model M28 in the fully-restrained 

warping condition. 

Table 4.20 shows the results obtained from the buckling analysis of the structure for the first 

3 modes. 
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Mode Ncr Error  Mode Ncr Error 

1 51.40 kN 0.99E-10  1 60.21 kN 0.36E-06 

2 53.76 kN 0.15E-09  2 60.21 kN 0.93E-06 

3 53.76 kN 0.19E-09  3 62.53 kN 0.19E-07 
Table 4.20 – Buckling loads of the first 3 mode. Left: M27; Right: M28. 

The undeformed and deformed models M27 and M28 of the first mode are shown below: 

                    
Figure 4.50 – From the left: undeformed, deformed and top view of the deformed. Left: M27; Right: M28. 

For the model M27 it is possible to notice that the instability of mode 1 is of the torsional type, 

while that of mode 2 and of mode 3 is of the flexural type. For model M28 the instability of the 

first three modes is of the flexural type with local buckling phenomena. 

The response in terms of longitudinal displacements field of the first buckling mode is shown 

in figure 4.51. 

 
Figure 4.51 – Displacement DZ. Left: M27; Right: M28. 

Model M29 and Model M30 
Models M29 and M30 have the two stiffeners positioned in the interval 285-380 mm from 

each end.  

Model M29 is analysed in the free warping condition while model M30 in the fully-restrained 

warping condition. 
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Table 4.21 shows the results obtained from the buckling analysis of the structure for the first 

3 modes. 

Mode Ncr Error  Mode Ncr Error 

1 30.06 kN 0.14E-07  1 83.94 kN 0.18E-04 

2 84.45 kN 0.24E-05  2 125.06 kN 0.26E-06 

3 84.45 kN 0.75E-07  3 125.17 kN 0.27E-06 
Table 4.21 – Buckling loads of the first 3 mode. Left: M29; Right: M30. 

The undeformed and deformed models M29 and M30 of the first mode are shown below:    

                 
Figure 4.52 – From the left: undeformed, deformed and top view of the deformed. Left: M29; Right: M30. 

Both for model M29 and model M30 it is possible to notice that the instability of mode 1 is of 

the torsional type, while that of mode 2 and of mode 3 is of the flexural type. 

The response in terms of longitudinal displacements field of the first buckling mode is shown 

in figure 4.53. 

 
Figure 4.53 – Displacement DZ. Left: M29; Right: M30. 
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4.5 Comparisons between numerical simulations and 
experimental campaign 
Table 4.22 shows the critical stresses that will be compared with yield stress to understand if 

the specimen before reaching the buckling load has become yielded. 

𝜎𝑐𝑟,𝑒 =
𝑁𝑐𝑟,𝑒

𝐴
 

Where: 
- A = 251,84 mm2 ; 

 Model Ncr,e σcr,e Elastic 
Buckling  
(σcr,e < σy)   

 M1 18,79 74,61 Yes 
 M2 33,9 134,61 Yes 
 M3 18,34 72,82 Yes 
 M4 81,15 322,23 No 
 M5 28,67 113,84 Yes 
 M6 52,35 207,87 No 
 M7 43,34 172,09 No 
 M8 45,41 180,31 No 
 M9 53,21 211,28 No 
 M10 84,26 334,58 No 
 M11 44,1 175,11 No 
 M12 52,35 207,87 No 
 M13 29,45 116,94 Yes 
 M14 31,6 125,48 Yes 
 M15 27 107,21 Yes 
 M16 36,93 146,64 No 
 M17 53,21 211,28 No 
 M18 33,9 134,61 Yes 
 M19 84,26 334,58 No 
 M20 84,26 334,58 No 
 M21 44,1 175,11 No 
 M22 28,67 113,84 Yes 
 M23 52,35 207,87 No 
 M24 52,35 207,87 No 
 M25 39 154,86 No 
 M26 59,95 238,05 No 
 M27 51,4 204,10 No 
 M28 60,21 239,08 No 
 M29 30,07 119,40 Yes 
 M30 83,94 333,31 No 

                 Table 4.22 - Results of numerical simulations, elastic critical stress and yield test. 
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The yield stress range of 6060-T5 aluminum alloy is between 120 MPa and 165 MPa. To 

evaluate if the model was subject to elastic buckling, the average value of yield stress range 

was considered. 

When the beam is not yielded, σcr must be less than the yield stress σy = 142,5 MPa. So, 

through the comparison among this two stresses it was understood if the model collapse for 

instability or it was yielded. Table 4.22 shows for what models the buckling load is really had. 

To understand which numerical and experimental values can be compared, it was necessary 

to evaluate the critical stress it in the elasto-plastic range. This was obtained by referring to 

Johnson’s parabola as for the flexural buckling. There may be two cases: 

-    𝜎𝑐𝑟,𝑒 < 𝜎𝑒 → 𝑁𝑐𝑟 = 𝑁𝑐𝑟,𝑒 , there is elastic instability; 

 

-    𝜎𝑐𝑟,𝑒 > 𝜎𝑒 →  𝜎𝑐𝑟,𝑒𝑝 = 𝜎𝑠 −
𝜎𝑠

2

4 𝜎𝑐𝑟,𝑒
  → 𝑁𝑐𝑟 = 𝜎𝑐𝑟,𝑒𝑝 𝐴 , there is elasto-plastic instability. 

Where 

-   𝜎𝑒 =
𝜎𝑦

2
. 

 

So, instability has existed for all models, or in the elastic range or in the elasto-plastic range, 

in how much all have been subject to a torsion produced by a compression of the same 

model. 

 
   σy,min σy,max 

Model Ncr,e σcr,e σcr,ep Ncr,ep σcr,ep Ncr,ep 
 (kN) (MPa) (MPa) (kN) (MPa) (kN) 

M1 18,79 74,61 71,75 18,07 - 18,79 
M2 33,9 134,61 93,26 23,49 114,44 28,82 
M3 18,34 72,82 70,57 17,77 - 18,34 
M4 81,15 322,23 108,83 27,41 143,88 36,23 
M5 28,67 113,84 88,38 22,26 105,21 26,50 
M6 52,35 207,87 102,68 25,86 132,26 33,31 
M7 43,34 172,09 99,08 24,95 125,45 31,59 
M8 45,41 180,31 100,03 25,19 127,25 32,05 
M9 53,21 211,28 102,96 25,93 132,79 33,44 
M10 84,26 334,58 109,24 27,51 144,66 36,43 
M11 44,1 175,11 99,44 25,04 126,13 31,77 
M12 52,35 207,87 102,68 25,86 132,26 33,31 
M13 29,45 116,94 89,21 22,47 106,80 26,90 
M14 31,6 125,48 91,31 23,00 110,76 27,89 
M15 27 107,21 86,42 21,76 101,52 25,57 
M16 36,93 146,64 95,45 24,04 118,59 29,86 
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M17 53,21 211,28 102,96 25,93 132,79 33,44 
M18 33,9 134,61 93,26 23,49 114,44 28,82 
M19 84,26 334,58 109,24 27,51 144,66 36,43 
M20 84,26 334,58 109,24 27,51 144,66 36,43 
M21 44,1 175,11 99,44 25,04 126,13 31,77 
M22 28,67 113,84 88,38 22,26 105,21 26,50 
M23 52,35 207,87 102,68 25,86 132,26 33,31 
M24 52,35 207,87 102,68 25,86 132,26 33,31 
M25 39 154,86 96,75 24,37 121,05 30,48 
M26 59,95 238,05 104,88 26,41 136,41 34,35 
M27 51,4 204,10 102,36 25,78 131,65 33,16 
M28 60,21 239,08 104,94 26,43 136,53 34,38 
M29 30,07 119,40 89,85 22,63 108,00 27,20 
M30 83,94 333,31 109,20 27,50 144,58 36,41 

Table 4.23 – Critical load in elasto-plastic range 

From the analysed models it is evident as the type of constraint influences the behaviour of 

the beam. 

To make comparisons between numerical and experimental results, the minimum yield 

stress was considered because it provided buckling load results more similar to the 

experimental ones. 

Comparisons between the results are shown in table 4.24.  
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Table 4.24 - Comparison between numerical and experimental results. 

Graph 4.1 shows the percentage differences between numerical and experimental results. 

 

Graph 4.1 – Percentage difference between numerical and experimental results  

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10

Pe
rc

en
ta

ge
 d

iff
er

en
ce

 (%
) 

n° test 

 Name  Type of constraint Numerical 
buckling 

load  
(Nc,num) 

Experimental 
buckling  

load 
(Nc,exp) 

Percentage 
different 

(Nc,num- Nc,exp)/ Nc,exp 
x 100 

 

M1-S1 Free warping 18.07 kN 21 kN -14 % 
M8-S8 Restrained warping 25.19 kN 24 kN 5% 
M15 Mixed condition 21.76 kN - - 
M16 Mixed condition 24.04 kN - - 

 

M2-S2 Free warping 23.49 kN 23 kN 2.1 % 
M9-S9 Restrained warping 25.93 kN 27 kN -4 % 
M17 Mixed condition 25.93 kN - - 
M18 Mixed condition 23.49 kN - - 

 

M3-S3 Free warping 17.77 kN 20 kN -11.2 % 
M7-S7 Restrained warping 24.95 kN 25 kN -0.2 % 
M13 Mixed condition 22.47 kN - - 
M14 Mixed condition 23 kN - - 

 

M4-S4 Free warping 27.41 kN 24 kN 14.2 % 
M10-S10 Restrained warping 27.51 kN 25 kN 10 % 

M19 Mixed condition 27.51 kN - - 
M20 Mixed condition 27.51 kN - - 

 

M5-S5 Free warping 22.26 kN 21 kN 6 % 
M11-S11 Restrained warping 25.04 kN unreliable - 

M21 Mixed condition 25.04 kN - - 
M22 Mixed condition 22.26 kN - - 

 

M6-S6 Free warping 25.86 kN 26 kN -0.5 % 
M12-S12 Restrained warping 25.86 kN unreliable - 

M23 Mixed condition 25.86 kN - - 
M24 Mixed condition 25.86 kN - - 



Chapter 4 – Numerical simulations and comparisons 
 

83 
 

As already mentioned in chapter 3, the experimental results of specimens S11 and S12 are 

not correct because the welding of the stiffeners in contact with the constraints has distorted 

the test. The results of these cases are thus unreliable. 

 

 

4.6 Comparisons between stiffened, uniform and weakened 
beam 
 It was interesting to compare the FEM results obtained from the stiffened beam with those of 

the beam without stiffeners (uniform beam) and of the beam with a local reduction of the 

warping stiffness represented by the absence of the flanges for a beam portion 1 cm long 

placed at one fourth of the beam length (see Piana et al., 2017c). 

 Uniform beam Stiffened beam Weakened beam 
 Ncr FEM (kN) Ncr FEM (kN) Ncr FEM (kN) 

Free warping 16.5 39 9.8 

Fully-restrained 
warping 

38.4 59.95 29.6 

Table 4.24 - Comparisons of FEM buckling loads of the stiffened, uniform and weakned beam 

In this thesis, beams were analysed with stiffener in different positions. In the table 4.24 the 

beam was considered with the stiffener placed at y = 237.5 mm. In this way it is possible to 

compare with the weakened beam with damage placed at y = 240 mm. It must be observed, 

however, that the stiffening and the weakening have different lengths.   

 

 

4.7 Comparisons between beams with different stiffener 
The article by Svensson and Plum, entitled "Stiffener Effects on Torsional Buckling of 

Columns" cited in chapter 1, presents an analytical evaluation of the effect of locally placed 

stiffeners.  

Figure 1.7 shows an analogy between the section studied in that article and the one of this 

thesis. The stiffened section, in one case is octagonal while in the other it is squared. For this 

reason, to make a comparison between the two studies, through the use of LUSAS it was 

possible to obtain the buckling load. Two models were compared in two different warping 

restraint conditions, free warping and fully restrained warping. The length of the beams is 

950 mm while the stiffener length is 95 mm.  
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  (a)                                                                              (b) 

Figure 3.54 – (a) Models of this thesis; (b) Models of the article 

In first model the stiffening is placed at y = 475 mm while in second model at y = 427.5 mm. 

By setting an eigenvalue problem it was possible to obtain the buckling loads of the different 

models. Table 4.25 shows buckling loads. 

 Free warping Fully restrained warping 

 Thesis Article Thesis Article 

M1 18.79 kN 18.52 kN 45.41 kN 44.36 kN 

M2 18.34 kN 18.09 kN 43.34 kN 41.56 kN 
Table 4.25 - Comparison between buckling loads 

The buckling load values between thesis and scientific paper are only slightly different. The 

instability of all the analysed models is torsional. 

Both types of stiffener represent constraints to cross-sectional warping. The one studied in 

this thesis stiffens more but is more difficult to realise in practice, while that of the article 

stiffens less but is easier to realise.
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Chapter 5 
 

Conclusion and future developments 
 
The aim of this thesis was to analyze the structural instability of open thin-walled beams. 

Specifically, numerical and experimental investigation were conducted to analyze the static 

behaviour (torsional instability due to compression) of beams with cruciform section with 

flanges, stiffened by longitudinal plates located in different positions. 

Different end constraint conditions were analyzed: warping free at both ends, warping 

restrained at both ends, and the mixed conditions. So, the buckling load was identified both 

numerically and, for the previous two constraint conditions, experimentally, for a subsequent 

comparison. 

In addition to the finite element program (Lusas), the LabVIEW programming software was 

essential to achieve the result. 

In the experimental campaign a laser displacement transducer was used to register the 

transverse displacement at a point (see Chapter 3). This was done to identify buckling 

occurrence from axial load vs. transverse displacement curves, in addition to the axial load-

axial displacement curves given by the MTS.  

Through this study, it was clear that all the beams were subject to instability. For some the 

instability occurred in the elastic range while for others in the elasto-plastic range.  

The beams analyzed had one or two stiffeners. The search of buckling load made it possible 

to identify the optimal position of the stiffener(s). Therefore, from the results we deduce that 

the stiffeners must be placed where the warping is maximum in the unstiffened beam. 

Considering the beam with only one stiffener in the conditions of both free and restrained 

warping, the ideal position of the stiffener is around L/4 from an end. 

On the other hand, considering the beam with two stiffeners in the condition of both free and 

restrained warping, the ideal stiffeners position is approximately L/8 from the ends for both 

upper and lower stiffener. 
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In the first case, in the free warping condition the buckling load value is 39 kN while, in the 

restrained warping condition of 59.95 kN. In the second case, in the free warping condition 

the buckling load value is 81.15 kN while, in the restrained warping condition of 84.26 kN. 

The previous values were obtained from finite element models.  

Below are shown the models with optimal position of stiffeners. 

          
                                                           (a)                    (b) 

Figure 5.1 – Optimal model: (a) with only one stiffener; (b) with two stiffeners. 

The work of this thesis was very interesting because there are no closed solutions of these 

beams with this particular section. For this reason, it was necessary to conduct an 

experimental campaign with an parallel numerical analysis, fundamental to validate the 

experimental results. 

Possible developments of the present study may concern the analysis of the flexural-

torsional instability in section beams with a single axis of symmetry or without symmetry 

axes. A further step forward in the study could instead have as its object the stability of thin-

wall beams subject to transverse loading.
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