
1

POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria
Aerospaziale

Tesi di Laurea Magistrale

SubGrid Scale Models

 for Variational Germano Method

Luca Marre’ Brunenghi

2

3

POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Aerospaziale

Tesi di Laurea Magistrale

SubGrid Scale Models

 for Variational Germano Method

Relatore:
Prof. Domenic. D’Ambrosio

Supervisor:
Prof. Steven .J. Hulshoff

Candidato:
Luca Marre’ Brunenghi

Dicembre 2018

4

INDEX
1. Introduction 6

2. Literary review 7

3. Analisy’s feature 11

3.1 Equation 11

3.2 Finite-element method (FEM) 13

3.3 Variational Multiscale Method (VMM) 16

3.4 Variational Germano Method (VGM) 21

3.5 Orthogonal SubScales (OSS) and Algebraic SubGrid Scales (ASGS) 24

3.6 Algorithm for the solution of the Algebraic Systems 25

3.6.1 Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS) 25

3.6.2 Generalized Minimal RESidual method (GMRES) 25

4. Code structure 27

4.1 Object Oriented Programming (OOP) 27

4.2 MFEM 29

4.3 Mex 30

4.4 Application Structure 34

5. Analysis Cases 37

5.1 Forcing term 37

5.1.1 Gabriel Force Term 37

5.1.2 Stochastic Force Term 37

5.2 Subgrid Models 39

6. Analysis 43

6.1 Introduction 43

6.2 Gabriel Force Terms 44

6.2.1 OSS compared with ASGS 44

6.2.2 Shakib compared with Linear Tau 47

6.2.3 Shakib compared with OSS Shakib 51

6.2.4 OSS compared with OSS Shakib 53

6.2.5 Linear compared with SVT and with SVT2 56

6.2.6 Shakib compared with Shakib SVT and with Shakib SVT2 61

6.2.7 General Comparison 65

6.3 Stochastic Force Term 69

6.3.1 OSS compared with ASGS 69

6.3.2 Shakib compared with Linear Tau 73

5

6.3.3 Linear compared with SVT and with SVT2 76

6.3.4 General Comparison 79

7. Conclusions 81

8. Bibliography 82

6

CHAPTER 1

1. INTRODUCTION

There are three types of simulation to deal with the numerical computation of a turbulent

flow: DNS (direct numerical simulation), LES (Large eddy simulation) and RANS (Reynolds

averaged Navier Stokes).

In general, the first one numerically resolve the three dimensional Navier Stokes Equation

without involving approximation, except for those due to discretization; the second, after

decomposing the flow into large scales contribution and small scales contribution, explicitly

calculate the large scale contribution whereas the small scale contribution is described as a

model; the third one after decomposing the physical quantities in a mean part and a

fluctuating part resolve the NS equation with the help of a closure model to describe

Reynolds stress (k ε model is one of most used).

We focus on the LES calculating the solution using the Variational Multiscale Method

(VMM). In fact, a turbulent flow contains a large range of scales (the range is proportional to

the physical Reynolds number) so the calculator needs too many operations to obtain a DNS.

Instead using the VMM the solution is decomposed into

𝑢 = 𝑢ℎ + 𝑢′ (1)

Where 𝑢ℎ represents the numerically resolved scales and 𝑢′ the unresolved scales whose

effect on the resolved scales are not calculated but estimated, thanks to a model term that

will be inserted in the initial equation. This is useful because it reduces the CPU time needed

to obtain the solution. So the main target is to choose a model that brings a solution as close

as possible to the numerical exact one .The method used to adapt the model term to the

analyzed problem is the Variational Germano Method that can be used to obtain

dynamically the parameters on which it depends the model term. This method doesn’t need

external input but only the numerically resolved scales solution (called coarse solution) so it

is more general and more fitted to the specific problem analyzed.

7

CHAPTER 2

2. LITERARY REVIEW

The variational multiscale method is a procedure for deriving models and numerical

methods capable to dealing with multiscale phenomena.

Let the strong formulation of a PDE problem

𝐿𝑢 = 𝑓 on a domain Ω (2)

u= g on the boundary Γ

Where L is a general differential operator, 𝑔: Γ → ℝ and 𝑓: Ω → ℝ given functions

Let 𝑆 ⊂ 𝐻1(Ω) and Let 𝑉 ⊂ 𝐻1(Ω) the trial solution space and the weighting function space

where

 u = g on Γ for every 𝑢 ∈ 𝑆

 w = 0 on Γ for every 𝑤 ∈ 𝑉

So the weak variational form of the PDE become

B(w,u)=(w,f) (3)

Where (,) is the L2 inner product and B(,) is a bilinear form that satisfy

B(w,u)= (w,Lu) (4)

The purpose of VMM consists in decomposing the solution into

𝑢 = 𝑢ℎ + 𝑢′

8

Figure 1 Coarse and fine scales separation

And numerically solving uh finding an analytically expression for u’.

It is possible to decompose u

1) thanks to a filter operation, like it has been developed in [1]

2) thanks to a Projection operator [2]

In the first case it’s possible to use a lot of different filters (for example a Fourier cut-off)

characterized by their filter-width. In this way a spatial average of the PDE is employed and

the so called “filtered equation” takes the place of the original PDE. To compute the

numerical solution of the filtered equations is necessary solve a closure problem (in the case

of NS equation it consist in computing 𝑢 ⊗ 𝑢 ̅̅ ̅̅ ̅̅ ̅̅ ̅) that entails some form of approximation; one

possible solution is introducing the so called “sub grid scale stress” that can be estimated for

example by the Smagorinsky eddy viscosity model (1963) as explained in [1]. The

introduction of the sub grid stress in necessary to take into account of the unresolved scales

u’.

2) can be considered the evolution of 1) because, avoiding filters, it will eliminate a lot of

numerical and analytical difficulties dealing with inhomogeneous or non-commutative filters,

necessary for complex problems. Selecting the projector ℙ (a lot of choices are possible for

example L2 projector H1 projector, projector nodal interpolant and so on) means

decomposing V in a finite dimensional coarse scale subsystem �̅� and an infinite dimensional

fine scale subsystem V’. (𝑉 = �̅� + 𝑉′) so

�̅� = ℙ ̅𝑢 (5)

𝑢′ = 𝑢 − ℙ ̅𝑢 (6)

Similarly can be done for w.

9

Then it’s possible to decompose the original variational equation into a coarse scale

equation and a fine scale one. The first will be numerical solved inserting in it the

approximate value of u’ estimated thanks to the second equation [2]. In fact, it is possible to

demonstrate that u’ can be approximated by

𝑢′ = �̃�′(�̅�, 𝑅𝑒𝑠 (�̅�)) (7)

Where 𝑅𝑒𝑠 (�̅�) is the residual of the first equation and 𝐹 ̃’is the approximation of the exact

differential functional F ’which would make the equation exact.

It is clear that both decomposing solution need a closure model to calculate the solution. As

written before, the first solution was the Smagorinsky Eddy Viscosity model; however it

results always too diffusive and the coefficients on which it depends are difficult to find a

priori.

 So it has been developed the so called “Germano identity” and its variational counterpart

([3] [4]-[5]) and its filtered one [6] to dynamically evaluate the coefficients without any a

priori information about the PDE.

In [4] a generalization of the variational Germano Identity (VGI) has been presented and has

been exploited to evaluate the correction model coefficients using a last square method and

dissipation one .The 1d linear advection equation and the decay of homogenous isotropic

turbulence has been analyzed to underline how this solution results more accurate than the

traditional static Smagorinsky approach.

In[7] different kinds of projectors are analyzed because, in order to obtain a solution as

close as possible in a user defined optimal metric, different projectors are needed. So the

numerical solution depends on the metric chosen.

In [6]it is proved that VMS formulation provides a recipe for constructing sub grid models

that will produce the desired numerical solution while VGI provides a method by which it is

possible to determine the value of the VMS parameters to obtain a solution to the wished

one.

In [8] the equation

𝑢′ = �̃�′(�̅�, 𝑅𝑒𝑠 (�̅�))

Is approximated by the first term of Taylor series expansion; so u’ is proportional to 𝑅𝑒𝑠 (�̅�).

This formulation called RBVM (residual based variational multiscale) is simple and seems

yielding good results. However the author’s formulation can’t take into account the

Reynolds stress term so he combines RBVM with a Smagorinsky model to take into account

that part too.

10

In [9] a general Germano identity is delivered; it is similar to VGI but it can’t be just for

variational numerical methods . An algorithm to solve the system of equation deriving from

the new Germano identity is proposed. Several approaches to compute the course

stabilization parameter are presented pointing out possible solutions to introduce non

homogenous boundary conditions and to develop a last squares method basis independent.

At the end it has been studied the relaxation algorithm to compute the fine scale

stabilization parameter.

In [5] a variational Germano identity was compared to a filtered form one both using a last

square method and a dissipation method to compute the coefficients of the corrective

model. The differences and the analogies are analyzed through the numerical study of the

decay of homogenous turbulence.

In this thesis different subgrid scales model are analyzed in order to find the one which can

best approximate the solution of the Burger equation forced so that it can be possible to

simulate a sort of 1D turbulence. The structure of the thesis is the following: in the section

(3) are analyzed all the numerical models and methods used to find the solution; in the

section (4) are described all the software feature of the application and the detail of the

application structure; in (5) are described the analysis cases, so the different force terms and

the different subgrid models used; in (6) the numerical analysis is performed and in (7) are

presented the conclusion of this work.

11

CHAPTER 3

3. ANALYSIS FEATURE

3.1 Equation

In this thesis we will consider the viscid Burgers equation.

 So we try to solve numerically the nonlinear 1D parabolic PDE (Partial Differential Equation)

𝑢𝑡 + 𝑢𝑢𝑥 − 𝜈𝑢𝑥𝑥 = 𝑓 (8)

Where

 𝜈 > 0 is the constant viscosity

 f is the forcing term

 (∙)𝑥 =
𝑑(∙)

𝑑𝑥

 (∙)𝑡 =
𝑑(∙)

𝑑𝑡

Burgers equations can be considered a simplification of a more complex model. So it is

usually thought as a toy model, namely, a tool that is used to understand some of the inside

behavior of the general problem. For example the Navier Stokes equation has the same

structure of (1).

As the matter of fact for the momentum incompressible Navier Stokes Equation is

𝜌𝑢𝑡 + 𝜌𝑢𝑢𝑥 + 𝜌𝑣𝑢𝑦 + 𝜌𝑤𝑢𝑧 + 𝑝𝑥 − 𝜇(𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧) = 𝑓 (9)

If we consider its 1D version and we neglect the pressure gradient it becomes

𝜌𝑢𝑡 + 𝜌𝑢𝑢𝑥 − 𝜇𝑢𝑥𝑥 = 𝑓 (10)

Which is the above viscid Burger equation.

We will focus on this equation because of the nonlinear term which is the main obstacle to

solve both analytically both numerically the Navier Stokes equation [10]. So we try to find a

stable and consistent numerical method which can solve the Burger equation in order to

apply it to the fluid dynamic equations.

There are a lot of mathematical and numerical method to solve the Burger equation PDE.

Among the mathematical ones, for the inviscid case, we can mention the characteristic

method which try to reduce a PDE in a ODE (Ordinary Differential Equation) along the so

called “characteristic curves” .So first we have to find the curves then solve the ODE at the

end transform the solution to adapt it to the original PDE. On the contrary two of the most

used numerical method are

12

 The upwind method, which try to discretize the hyperbolic partial equation in the

direction of the propagation of the signal in the flow field (two example are the Lax

Wendroff and the Lax Friedrichs schemes)

 The Godunov methods whose feature is to solve the Riemann problems at the

interfaces of the finite volume elements. It is the base to high order methods.

However we decide to use a VMM to reduce the computational effort required to take into

account a lot of different scales that is the main feature of a turbulent flow.

13

3.2 Finite-element Method (FEM)

As suggested in [11] finite-difference methods are easy to apply using structured meshes, for

which gently-curved domains can be effectively treated using generalized transformations.

However, it can be difficult to generate high-quality structured meshes in very complex

domains. In these cases the use of unstructured meshes (including e.g.

triangles/tetrahedrons and other shapes) is often favored. Finite-difference methods can be

derived for such meshes, but they are complex to deal with. This is not a problem for the

finite-element method, however, which instead considers an integral form of the problem

which allows for elements with arbitrary shapes and orientations. Finite-element methods

approximate the solution with combination of known functions.

The main feature of a finite element method for the solution of a differential problem are

 The weak formulation of the problem

 The approximate solution of the variational equation through the FEM functions

The first step to define a FEM is to approximate the solution as linear combination of known

function called basis. We can write as example for a 1D problem

�̂� = ∑ 𝑎𝑖

𝑁

𝑖=1

Φ𝑖(𝑥) (11)

Where

 �̂� is the approximate solution of the problem

 Φ𝑖(𝑥) basis functions. The basis function has to be linear independent. One of the

most used basis function are the Lagrange linear basis which are 0 in all domain

except for one point.

 𝑎𝑖 are unknown coefficients. In the case of the linear Lagrange basis 𝑎𝑖 represent the

value of u in a certain point of the domain. In other cases these coefficients has only

a mathematical value.

 N is the dimension of the space of Φ𝑖

So the problem becomes how to evaluate the 𝑎𝑖 coefficients. It can be done in different

ways. In the structural mechanics, it is used the Rayleigh-Ritz approach which is based on the

minimization of the stationary potential energy of the system. So the procedure is to obtain

𝑎𝑖 as the solution of an algebraic system obtained minimizing a functional associated to the

global potential energy of the system.

Another important method which lead to FEM is the Galerkin method or the weighted

residual method. It is based on the use of the weak formulation of the differential problem

If 𝐿𝑢 = 𝑓 is the equation of the strong formulation of the problem his weak counterpart will

be

14

∫ 𝑤(𝐿𝑢 − 𝑓)𝑑Ω = 0

Ω

 (12)

For all the suitable w. In the Bobunov Galerkin method w is equal to the weighting functions.

In the discrete case the weak formulation results in a system of N equations whose unoknow

are the 𝑎𝑖 coefficients. In the Galerkin method is important choosing Φ𝑖 so that they are

square-integrable.

The finite element method is similar both to Galerkin both Rayleigh-Ritz ones. The main

difference is that the basis function are define only on a finite element of the mesh. The 5

steps, that a FEM procedure requires, are [12]

 Divide the domain into elements. Is is note necessary if we have got a complete mesh

 Define basis functions which span a small number of elements. Define the basis

function means state the typology of the element. Different kind of finite element

has different basis functions.

 Compute per-element contributions to the weak form following a procedure that is

similar to the Galerkin method

 Assemble the element contributions into a global matrix. In the steady case the

global matrix are called stiffness matrix. Since each element of the matrix is

associated to a node of the mesh, the value that will been computed, will be the sum

of the contribute of each elements to which the node belongs.

Figure 2 Stiffness matrix assembling

 Apply the boundary conditions and solve the resulting system. Applying the boundary

condition means adding or removing equation in basing on the type of the boundary

condition chosen.

15

Fem can be used in complex geometry analysis because, once the mesh is defined, all other

step are easily implemented since they are not influenced by the form of the domain.

There are2 approach to deal with an unsteady discrete finite element problem. The first one

is the semi discrete approach where the time derivative is initially left as continuous variable

of the formulation. his results in a system of ordinary differential equations which can be

integrated using conventional time-marching techniques. In this case a matrix, called mass

matrix, is associated to the time dependent term of the equation. So the procedure has to

assemble not only the stiffness matrix but also another one. The other one is the fully

discrete approach consist in considering the time as one of the dimension of the domain. So

it is necessary to define finite elements with one more discretization. For example in 1D

problem we need to use 2D finite elements. They are very useful in case of changing

domains since, usually, because the time step are evaluate in a 2D problem one by one. So

also in this case the previous time step can be used as initial condition for the following one.

The big trouble is that it is very difficult cope with the stability of the computation.

The code used for this thesis works thank to a semi discrete approach: in the following

chapters the complete structure of the app will be described.

16

3.3 Variational Multiscale Method (VMM)

As far as computation fluid dynamic is concerned there are several different kind of

simulation that can be done to solve a PDE so to decide the structure of the numerical

method, as it was already written in the introduction: DNS, LES and RANS.

The big difference between a DNS and a LES of a multiscale flow is that the DNS has to take

into account all of them (from the biggest to the Kolmogorov ones); a LES splits the scales in

two parts: the resolved scales �̅� and the unresolved scales, which need a model to be

described. So the goal of a LES is to find �̅� and not u finding the best approximation for u’ in

order to obtain a �̅� as close as possible to u.

The first attempt to define a model which can close the problem of the subgrid scale was

done by Smagorinsky [13].

He considered the filtered Navier Stokes equations

𝑢𝑡̅̅̅ + ∇ ∙ (𝑢⨂𝑢̅̅ ̅̅ ̅̅) + ∇�̅� = 𝜈∆�̅� + 𝑓 ̅ (13)

because of the fact that 𝑢⨂𝑢̅̅ ̅̅ ̅̅ involves non filtered velocity he defined the subgrid stress

𝑇 = �̅�⨂�̅� − 𝑢⨂𝑢̅̅ ̅̅ ̅̅ (14)

He state that the dilational part of T can be subsumed by �̅� while the deviatoric part can be

model as

𝑇𝑠 = 2𝜈𝑡∇𝑠�̅� (15)

This equation is the most important part of the Smagorinsky eddy viscosity model. We will

describe better the terms contained in the previous formulation

 𝜈𝑡 = (𝐶𝑠∆)2|∇𝑠�̅�| is the eddy viscosity

 ∇𝑠�̅� =
1

2
(∇�̅� + (∇𝑠�̅�)𝑇)

 |∇𝑠�̅�| = (2∇𝑠�̅� ∙ ∇𝑠�̅�)1 2⁄

 𝐶𝑠is the so called “ Smagorinsky constant”

This model presents a lot of problems for example

 𝑇𝑠 is not asymptotic close to the wall; in particular 𝑇𝑠 doesn’t vanish at walls

 The value of 𝐶𝑠 , chosen for the study of the homogeneous isotropic turbulence,

tends to be too big if used in other simulation (like the turbulent channel)

 The Smagorinsky model produces excessive numerical dumpingof the resolved

structure in transition, resulting in incorrect growth rate of perturbations

As a consequence has been developed the Germano method (explained in the following

chapter) and the VMM that we are going to describe.

17

First of all we will define mathematically the problem

Let Ω an open bounded domain and Γ his boundary. We want to find 𝑢: Ω → ℝ such that

𝐿𝑢 = 𝑓 in Ω

u= g on Γ

Where (as explained in the previous chapter)

 L is a general differential operator

 𝑔: Γ → ℝ and f: Ω → ℝ given functions

Moreover f is the so called forcing function and it will be one of the main parameter of the

analysis.

We define again

Let 𝑆 ⊂ 𝐻1(Ω) and Let 𝑉 ⊂ 𝐻1(Ω) the trial solution space and the weighting function space

where

 u = g on Γ for every 𝑢 ∈ 𝑆

 w = 0 on Γ for every 𝑤 ∈ 𝑉

In fact we try to solve the problem in the so called weak formulation or the weighted

residual method. The variational form of the problem will be the following

∫ 𝑤(𝐿𝑢 − 𝑓)𝑑Ω = 0 (16)

Ω

Which can be written in the compact notation find 𝑢 ∈ 𝑉 so that

𝐵(𝑤, 𝑢) = (𝑤, 𝐿𝑢)Ω = (𝑤, 𝑓)

Where (∙,∙) is the standard L2 inner product and 𝐵(𝑎, 𝑏) = (𝑎, 𝐿𝑏)

The VMM proposed split u in 2 parts the resolved scales �̅� and the unresolved scales u’.

Similarly we split the weighting function into �̅� and w’. So we try to find �̅� in the finite

dimensional subspace 𝑆̅ (�̅� is finite dimensional too) where S’ and V’ are infinite

dimensional. We have to define projectors or filters to define adequately �̅� and �̅� but we

discuss this aspect later.

Since

𝑢 = �̅� + 𝑢′

And

18

𝑤 = �̅� + 𝑤′ (17)

The problem becomes

𝐵(�̅� + 𝑤′, �̅� + 𝑢′) = (�̅� + 𝑤′, 𝑓) (18)

Since �̅� and w’ are independent we can split the problem in 2 parts

𝐵(�̅�, �̅�) + 𝐵(�̅�, 𝑢′) = (�̅�, 𝑓) (19)

𝐵(𝑤′, �̅�) + 𝐵(𝑤′, 𝑢′) = (𝑤′, 𝑓) (20)

The first one is the resolved equation (coarse scale equation)whose solution is the exact one

if u’=0 (DNS case). However in LES u’ is not 0 but it has to be estimated solving

approximately the second equation (fine scale equation). If we know u’ we can substitute it

in the first one and find the solution of the problem.

As can be seen in [1],thanks to the definition of a Green function g’, we can rewrite the finer

scale equation to obtain a definition of u’(this is true only because we have linearized the

second equation: the biggest part of the energy is contained in the coarse scales)

𝑢′ = ∫ −g′(𝐿�̅� − 𝑓)dΩ = M′

Ω

(𝐿�̅� − 𝑓) (21)

Where M’ is an integral operator.

We have to underline that 𝐿�̅� − 𝑓 is the coarse scale residual sol u’ derives from the coarse

scale solution and the g’ is the Green function associated to the problem. If we knew the

exact formulation of g’ we would exactly solve the problem (the discretization error is the

unresolved scales modeling error).

Generally if we use, like it happens in this thesis, a mesh based method (FEM) �̅� are called

resolved scales and u’ are the subgrid scales. So the coarse scale equation need a subgrid

scale model because we don’t know the exact formulation of g’. We have to remark also that

the previous formulation has to be lightly modified to take into account the differences in

slope in case of linear finite element mesh.

If we want to best describe the problem we have to reduce the subgrid scale influence since

we can only estimate them, so we want that the biggest part of the turbulent energy is

contained in the coarse scale. However we use LES to reduce the computational effort not

solving all the scale of the problem. So we have to find a compromise.

If now we focus on our problem so on the burger equation

𝑢𝑡 + 𝑢𝑢𝑥 − 𝜈𝑢𝑥𝑥 = 𝑓

We can write

19

𝐿𝑢 = 𝑢𝑡 + 𝑢𝑢𝑥 − 𝜈𝑢𝑥𝑥 (22)

So the weak formulation of the problem is

(𝑤, 𝑢𝑡) + (𝑤, 𝑢𝑢𝑥) − (𝑤, 𝜈𝑢𝑥𝑥) = (𝑤, 𝑓) (23)

We can split u and w into coarse and fine scales

(�̅� + 𝑤′, �̅� + 𝑢′𝑡) + (�̅� + 𝑤′, (𝑢̅̅ ̅ + 𝑢′)(�̅� + 𝑢𝑥
′)𝑥) − (�̅� + 𝑤′, 𝜈(�̅� + 𝑢′)𝑥𝑥)

= (�̅� + 𝑤′, 𝑓) (24)

Then we can split the equations

The coarse scale one

(�̅�, �̅� + 𝑢′𝑡) + (�̅�, (�̅� + 𝑢′)(�̅� + 𝑢′)𝑥) − (�̅�, 𝜈(�̅� + 𝑢′)𝑥𝑥) = (�̅�, 𝑓) (25)

The subgrid scale one

(𝑤′, �̅� + 𝑢′𝑡) + (𝑤′, (�̅� + 𝑢′)(�̅� + 𝑢𝑥
′)𝑥) − (𝑤′, 𝜈(�̅� + 𝑢′)𝑥𝑥) = (𝑤′, 𝑓) (26)

Now we will modify the first equation in this way

 We assume that (�̅�, 𝑢′𝑡) = 0 because we assume that the unresolved scales

respond almost immediately to perturbation

 Integrating by part (�̅�, 𝜈(�̅� + 𝑢′)𝑥𝑥) = −(�̅�𝑥, 𝜈(�̅� + 𝑢′)𝑥) (w is 0 on Γ)

 We can consider negligible (�̅�𝑥, 𝜈𝑢′𝑥) because the scale at where the viscous effect

are important are far from �̅�

 The advective nonlinear terms can be modify to best fit the problem to a numerical

method integrating by part term by term

(�̅�, (�̅� + 𝑢′)(�̅� + 𝑢𝑥
′)𝑥) = −(�̅�𝑥, (�̅� + 𝑢′)(𝑢̅̅ ̅ + 𝑢′))

= −(�̅�𝑥, (�̅�)2) − 2(�̅�𝑥, 𝑢′𝑢) (27)

We have to remark that we have considered a problem characterize by homogenous

boundary condition and we have neglected the term with the term u’2.

The result is

(�̅�, 𝑢𝑡) − (�̅�𝑥, (�̅�)2) − 2(�̅�𝑥, 𝑢′�̅�) + (�̅�𝑥, 𝜈�̅�𝑥) = (�̅�, 𝑓) (28)

As far as the second equation is concerned we model the fine scale in this way

𝑢′ = 𝜏𝑅(�̅�) (29)

Where 𝑅(�̅�) = 𝐿�̅� − 𝑓 so the coarse scale residual.

So τ is a functional which has to best approximate the exact integral operator M. Since the

equation is 1 D τ will be a real number. The value of τ depends on a vector of parameter c

which has to be evaluate to obtain the best value of u’. τ is known in very few simple cases:

20

for example for the advection diffusion equation [14]. These cases are useful because thanks

to the it is possible to test new numerical methods which try to best represent τ.

So introducing the u’ formulation in the first equation we are adding numerical diffusivity to

the coarse scale problem in order to taking into account the subgrid scales too.

Finally the variational problem results

Find �̅� ∈ �̅� so that

 𝐵(�̅�, �̅�) + 𝑀(�̅�, �̅�, 𝑐, 𝑓, ℎ) = (�̅�, 𝑓) (30)

 �̅�(0, 𝑡) = �̅�(𝐿, 𝑡) = 0 (L is the end of the domain t is time)

 �̅�(𝑥, 0) = 0

 𝐵(�̅�, �̅�) = (�̅�, 𝑢𝑡) − (�̅�𝑥, (�̅�)2) + (�̅�𝑥, 𝜈�̅�𝑥) (31)

 𝑀(�̅�, �̅�, 𝑐, 𝑓, ℎ) = −2(�̅�𝑥, 𝑢′�̅�) = −2(�̅�𝑥, 𝜏𝑅�̅�) (32)

 ℎ is a characteristic dimension of the mesh used

 𝑅 = (�̅�, 𝑢𝑡) − (�̅�𝑥, (�̅�)2) − (�̅�, 𝑓) (33)

The second derivatives vanish since we are considering linear FEM

21

3.4 Variational Germano Method (VGM)

The purpose of this chapter is to explain the methods to evaluate the c coefficients of the

𝑀(�̅�, �̅�, 𝑐, 𝑓, ℎ) term. If we knew the values of the c’s components we would evaluate M and

solve the coarse scale equation. To do that we will exploit the so called Germano Identity or

more precisely his variational form: the Variational Germano Identity (VGI). It was first

developed his filtered counterpart in [15] for the Navier Stokes equation; however in this

thesis has been used the VGI.

As suggested in [4] first of all we require that the solution of the numerical method 𝑢ℎ is

equal to 𝑣ℎ = ℙℎ𝑢 which is the optimal representation of the solution 𝑢 in 𝑉ℎ. We have to

specify that

 𝑉ℎ ⊂ 𝑉 is a finite dimensional subspace

 ℙℎ: 𝑉 → 𝑉ℎ is an appropriate operator. We can define ℙℎ as nodal interpolant of the

exact solution on 𝑉ℎ or an 𝐿2 or 𝐻1 projector

For example if we are considering a 𝐻1 projector we will use the 𝐻1 semi-norm: ℙℎ𝑣 is

defined as the argmin𝑣ℎ∈𝑉ℎ|𝑣 − 𝑣ℎ|1
2 where |∙|1 is the 𝐻1 semi norm. We can define a

similar formulation for the 𝐿2 or the 𝐻0 (or others)projectors.

We have to remind that 𝐻1 is the Sobolev space of functions that are square-integrable and

whose derivatives are also square-integrable while 𝐿2 is the space of scalar function which

are only square-integrable.

So, since 𝑣ℎ = 𝑢ℎ, we can write

 𝑀(𝑤ℎ, 𝑢ℎ, 𝑐, 𝑓, ℎ) = −𝐵(𝑤ℎ, 𝑢ℎ) + (𝑤ℎ, 𝑓)∀ 𝑤ℎ ∈ 𝑉ℎ (34)

If N is the number of the coefficients of the vector c we will write 𝐽 ≥ 𝑁 more equations

𝑀(𝑤ℎ𝑗 , 𝑢ℎ𝑗 , 𝑐, 𝑓, ℎ𝑗) = −𝐵(𝑤ℎ𝑗 , 𝑢ℎ𝑗) + (𝑤ℎ𝑗 , 𝑓) ∀ 𝑤ℎ𝑗 ∈ 𝑉ℎ𝑗 𝑗 = 1, … . , 𝐽 (35)

Where

 𝑉ℎ𝑗 ⊂ 𝑉ℎ𝑗−1 ⊂. . . ⊂ 𝑉ℎ2 ⊂ 𝑉ℎ1 ⊂ 𝑉 are finite dimensional function subspaces

 ℙℎ𝑗: 𝑉 → 𝑉ℎ𝑗 is an appropriate map which define a the optimal representation of 𝑢

in 𝑉ℎ𝑗

We will choose the weight function in 𝑉ℎ𝑗 ∩ 𝑉ℎ = 𝑉ℎ𝑗. So we can obtain the Variational

Germano Identity subtracting the two previous equation:

𝑀(𝑤ℎ𝑗 , 𝑢ℎ𝑗 , 𝑐, 𝑓, ℎ𝑗) − 𝑀(𝑤ℎ𝑗 , 𝑢ℎ, 𝑐, 𝑓, ℎ) = − (𝐵(𝑤ℎ𝑗 , 𝑢ℎ𝑗) − 𝐵(𝑤ℎ𝑗 , 𝑢ℎ)) ∀ 𝑤ℎ𝑗

∈ 𝑉ℎ𝑗 𝑗 = 1, … . , 𝐽 (36)

22

The Variational Germano Method (VGM) allows us to find the coefficients of c without the

solution of the initial PDE or any external input constant. In order to reduce the variables we

will express 𝑢ℎ𝑗 in terms of 𝑢ℎ. It is possible if 𝑢ℎ𝑗 = ℙℎ𝑗𝑢ℎ so it is required that ℙℎ𝑗ℙℎ =

ℙℎ𝑗 . For example it is true if

 ℙℎ𝑗 and ℙℎare interpolation operators

 ℙℎ𝑗 and ℙℎ are L2 projectors (like in this thesis)

 𝑉ℎ ⊂ 𝐻𝑚 and ℙℎ𝑗 and ℙℎ are 𝐻𝑛 projectors with 𝑛 ≤ 𝑚

So the VGI will become

𝑀(𝑤ℎ𝑗 , ℙℎ𝑗𝑢ℎ, 𝑐, 𝑓, ℎ𝑗) − 𝑀(𝑤ℎ𝑗 , 𝑢ℎ, 𝑐, 𝑓, ℎ) = − (𝐵(𝑤ℎ𝑗 , ℙℎ𝑗𝑢ℎ) − 𝐵(𝑤ℎ𝑗 , 𝑢ℎ)) ∀ 𝑤ℎ𝑗

∈ 𝑉ℎ𝑗 (37)

 𝑗 = 1, … . , 𝐽

So we have got J equations to evaluate the N coefficients of c. It is possible to write J

equations to evaluate the coefficients of c only in the are considering J different refined

meshes in order to compute the Germano Identity equation for each level. As a

consequence we need J+1 meshes to solve the problem: 1 coarse mesh and J finer than the

first one. This is the reason why the term ℎ𝑗 appear in the first term of the VGI.

First of all we must define the weight functions w. There are a lot of methods thanks to

which we can do it and solve the problem :

 Dissipation method: if 𝑁 = 𝐽 we choose 𝑤ℎ𝑗 = ℙℎ𝑗𝑢ℎ so the system consist in J

scalar equations

𝑀(ℙℎ𝑗𝑢ℎ , ℙℎ𝑗𝑢ℎ, 𝑐, 𝑓, ℎ𝑗) − 𝑀(ℙℎ𝑗𝑢ℎ , 𝑢ℎ, 𝑐, 𝑓, ℎ)

= − (𝐵(ℙℎ𝑗𝑢ℎ , ℙℎ𝑗𝑢ℎ) − 𝐵(ℙℎ𝑗𝑢ℎ , 𝑢ℎ)) (38)

 ∀ 𝑤ℎ𝑗 ∈ 𝑉ℎ𝑗 𝑗 = 1, … . , 𝐽

 We have only to compute the solution of the scalar algebraic system.

 Least- square method [16]: we choose 𝑤ℎ𝑗 = 𝜙𝐴

ℎ𝑗(𝑥) where 𝜙𝐴

ℎ𝑗(𝑥) 𝐴 = 1, … , 𝑁ℎ𝑗

are functions which span 𝑉ℎ𝑗.

Than we define the residual

𝑟𝐴
𝑗

= 𝑀 (𝜙𝐴

ℎ𝑗 , ℙℎ𝑗𝑢ℎ, 𝑐, 𝑓, ℎ𝑗) + 𝐵 (𝜙𝐴

ℎ𝑗 , ℙℎ𝑗𝑢ℎ) − (𝜙𝐴

ℎ𝑗 , 𝑓) (39)

And we will choose as the coefficients of c those which minimize the residual. We can

exploit different algorithms to do that.

So, when c has been evaluated thank to VGM, the model term of the coarse scales equation

𝑀(𝑤ℎ, 𝑢ℎ, 𝑐, 𝑓, ℎ) can be computed and we can get the coarse scale solution. We need to

23

define the structure of the model term in order to best represent the approximation of the

Green operator.

However about VGM we have to remark that

 We can solve the Germano system because we know all the values of the formulation

(obviously except from c)

 If c is not constant in the domain c has to be evaluate in each subdomain where it can

be consider constant

 C depends on the definition of the optimal solution (and then of the choice of ℙℎ). In

[7] is proved that the definition of the norm thank to which evaluating the best

approximation influence the global solution. It is important to remark that the

following coarse scale solution won’t be optimally close to the exact value (for

example obtained through DNS), so it is important the choice of ℙℎ. In this thesis we

will consider a L2 projector so we will minimize the L2 norm

 In [4] has been proved that this procedure works better than the Smagorinsky model

because it is too diffusive

In this work the least square method has been used.

The VGM is very useful because it can be used easily with unstructured grids. The only

problem is defining the function 𝑤.Moreover it can be used to determine parameters for a

generic numerical method.

On the contrary the filtered version of the Germano identity explained in [5] [14] presents a

lot of difficulties to be used. First of all because it is necessary to assume that the filtering

and the derivatives operation are commutative. Moreover we need a filtering operation 𝔽𝐻

so that 𝔽𝐻 = 𝔽𝐻𝔽ℎ (where 𝔽𝐻 𝔽ℎare two special filter where 𝐻 > ℎ). For non homogenous

flows, like the channel turbulent flow, it is impossible to aware this problems which will

become the cause of important numerical errors.

If we avoid this difficulties, for example analyzing a homogenous isotropic turbulence

problem, the VGM and its filtered counterpart presents other differences

 In the filtered case the model term is a tensor in the VGM a vector

 In the VGM the model term contains every term of the semi linear form while in the

filtered only the non linear term contributes

 The constraint on the model term of VGM is weaker than the filtered method: the

effect of the model on weighting functions outside of 𝑉ℎ is negligible.

Consequently the VGM results a more robust method so it is likely to be used even if both

them present the big advantage of not needing external input to evaluate the model term

coefficients.

24

3.5 Orthogonal Subscales (OSS) and Algebraic Subgrid Scales (ASGS)

In the previous chapter, one of the VMMs has been obtained and explained. However it is

possible to define different VMMs depending on the subgrid scale approximation that is

considered. In this paragraph the differences between the ASGS (Algebraic SubGrid Scales)

model and the OSS (Orthogonal SubScales) model are briefly pointed out.

The ASGS model is the VMM already described. It defines

𝑢′ = ∫ −g′(𝐿�̅� − 𝑓)dΩ =

Ω

 𝜏𝑅(�̅�)

It is important to remember that 𝑢 ∈ 𝑉, while �̅� ∈ �̅� which is a finite subspace of 𝑉. As a

consequence 𝑢′ ∈ 𝑉′ and 𝑉 = �̅� ∪ 𝑉′. However since 𝑢′ = 𝜏𝑅(�̅�) and so 𝑢′ is proportional

to 𝑅(�̅�) they belong to the same space.

It is possible to define the selection of the space for the approximation of the subscales as

determined by a projection 𝒫 [17]. In this case obviously 𝒫 = 𝐼.

It is possible to obtain different VMM models changing the projection 𝒫.

In fact, the OSS model, it’s obtained following the projection definition

𝒫 = Πℎ
⊥ = 𝐼 − Πℎ (40)

Where Πℎ is the projection onto the FE space.

This projection consists in selecting the space of subscales orthogonal to the FE space. (so

orthogonal to �̅�). As suggested in [17] the main motivation of the method is that a stability

estimate for the projection onto the FE space of the convective term can already be

obtained in the standard Galerkin method and so the only “missing” part is the orthogonal

one.

In [18] it proved that OSS method introduces less dissipation in the coarse scale equation

than ASGS, which permit to obtain good results since the approximate solution can capture

the peaks very well.

25

3.6 Algorithm for the Solution of the Algebraic Systems

In this part we will briefly describe the algorithms used to solve the Variational Germano

Method’s system and the coarse scale equation one. It is use respectively the BFGS

(Broyden-Fletcher-Goldfarb-Shanno algorithm) and the GMRES (Generalized Minimal

RESidual method)

3.6.1 Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS)

The BFGS has the goal of finding the coefficients of the coarse scale equation closure model

thanks to the Variational Germano Identity. In particular, as it has already been written

before, it is necessary to minimize the residual 𝑅 of the least-square formulation. Like it is

suggested in [3] 𝑅 is minimized when ∇𝑅 = 0. BFGS is a very efficient scheme which can

solve ∇𝑅 = 0.

First of all we consider a first order Taylor expansion of ∇𝑅

∇𝑅(𝑐) = ∇𝑅(𝑐0) + 𝐵(𝑐0)(𝑐 − 𝑐0) = 0 (41)

Where 𝐵 is the Hessian of 𝑅 with respect of 𝑐. We set 𝑐0 = 𝑐𝑛 and 𝑐 = 𝑐𝑛+1 and we obtain

𝑐𝑛+1 = 𝑐𝑛 − 𝛼𝑛𝐵𝑛
−1∇𝑅(𝑐𝑛) (42)

Then the main parameters of the algorithm are presented

 𝛼𝑛 is a parameter that controls the step length. It has been evaluate as suggested in

[19] thanks to the inexact line-search algorithm.

 𝐵𝑛 is an approximation to the Hessian at step 𝑛. We have to remark that 𝐵𝑛 = 𝐼

 𝐵𝑛+1 = 𝐵𝑛 +
𝑦𝑛𝑦𝑛

𝑇

𝑦𝑛
𝑇𝑠𝑛

−
𝐵𝑛𝑠𝑛𝑠𝑛

𝑇𝐵𝑛

𝑠𝑛
𝑇𝐵𝑛𝑠𝑛

 (43)

 𝑠𝑛 = 𝛼𝑛(𝑐𝑛+1 − 𝑐𝑛) (44)

 𝑦𝑛 = ∇𝑅(𝑐𝑛+1) − ∇𝑅(𝑐𝑛) (45)

The procedure will be stopped when the L2 norm of ∇𝑅 is minor than a tolerance value or

when the L2 norm of the search direction 𝐵𝑛
−1∇𝑅(𝑐𝑛) is small enough [20].

3.6.2 Generalized Minimal RESidual Method (GMRES)

GMRES is a sort of generalization of the least square method which works very well solving

not too big algebraic linear system. It is used to evaluate �̅�(𝑥) in the domain solving the

coarse scale equation.

If the system is written in the form

26

𝐴𝑥 = 𝑏 (46)

 A matrix of the system

 b vector known

 x unknown vector

It is possible to find the approximate solution �̃� using an iterative procedure so that the

norm of the residual ‖𝐴�̃� − 𝑏‖2 is minimum. An iterative procedure is usually preferred in

case of big or sparse matrix. GMRES is an orthogonal method because, starting with a trial

solution 𝑥0, it looks for �̃� in the space 𝑥0 + 𝐾 so that (𝐴�̃� − 𝑏) ⊥ 𝐿

Where 𝐾 is the space where we are looking for the solution and 𝐿 is the space of the

weighting function.

So if 𝑟0 = 𝑏 − 𝐴𝑥0 we can write that the problem become find �̃� so that

�̃� = 𝑥0 + 𝛿 𝛿 ∈ 𝐾 (47)

(𝑟0 − 𝐴𝛿, 𝑤) 𝑤 ∈ 𝐿 (48)

We then define 𝑉 = [𝑣1, … . , 𝑣𝑚] and 𝑊 = [𝑤1, … , 𝑤𝑚] matrix whose columns are the basis

of 𝐾 and 𝐿. So we can write

�̃� = 𝑥0 + 𝑉𝑦 (49)

(𝑊𝑇𝐴𝑉)𝑦 = 𝑊𝑇𝑟0 (50)

And so

�̃� = 𝑥0 + 𝑉(𝑊𝑇𝐴𝑉)−1𝑊𝑇𝑟0 (51)

In [21] was explained that GMRES is an algorithm which follow the above procedure where

𝐾 belongs to the Krylov subspace. The Krylov subspace 𝐾𝑚 is made by orthonormal vectors

whose form is 𝑝(𝐴)𝑟0 where 𝑝 is a polynomic of A. If 𝑥 ∈ 𝐾𝑚 𝑥 = {𝑟0, 𝐴𝑟0, 𝐴2𝑟0, … , 𝐴𝑚𝑟0}.

However to avoid linear dependent vectors it is commonly used the Arnoldi procedure [22].

Resuming the GMRES step are

 First, thanks to Arnoldi procedure, it creates an orthonormal base 𝑉𝑚

 Then, since �̃� = 𝑥0 + 𝑉𝑚𝑦𝑚, GMRES try to find 𝑦𝑚 so that the norm residual of

𝑏 − 𝐴�̃� is minimized

27

CHAPTER 4

4. CODE STRUCTURE

4.1 Object Oriented Programming (OOP)

In this paragraph it is briefly described the OOP, which is the procedure used to write the

code use for the thesis.

The Object Oriented Programming (OOP) was created by Nygaard in 1969 in order to create

a software which deal with abstract objects characterized by their own function instead of

traditional programming method.

An object is something typified by the data and the operation which can operate with it. It is

possible to work with an object having no idea of its structure thanks to the operation it

allows to do [23].

A class is a set of the objects that has the same structure and functions. More precisely, the

classes are Abstract Data Type, and they state what kind of data they can represent. Thank

to that feature it is possible to use a class (or better it is possible to use the interface

functions that characterize the class) without knowing the details of its implementation. The

collocation of data and functions in a single entity, the class, is the central idea of the OOP.

To define a class are necessary 2 operations

 Declaration: it states the data and the member function (called methods) of interface

 Definition of the methods: it states the implementation of the methods. To do that, it

is important to define the type of the output of the function, its name, the list of the

any input and the code of the function itself.

All the data and the methods of a class are private, except for the so defined public data.

Instead, the protected data are those which a derivative class can deal with. This distinction

of the data contained in a class is called information hiding and it helps to prevent sharing

data from a class to another.

As a consequence, an object is an instance of a class. An object belongs to a class like a

variable to his type. To access to the public data of an object or to use a function of its class

it is necessary to use the point (∙) so the structure will be objectname.Namefunction(input)

(or namedata).

Two of the main methods of a class are the constructor and the destructor. If they are not

implemented C++ will create a default version of them. The constructor consists in a class

function which can initialize an object when it is created without using any other member

28

function. A constructor can receive some data or function as input to define its internal

feature. Instead, a destructor is a function which delete the object to save memory and it

can receive value as input

A derivative class is a subclass of a pre-existence class. It inherits data and methods because

an object of the derivative class belongs to pre-existence one. From a practical point of

view, this fact allows to transmit a set of common characteristics from a base class to a

derivative without this leading to a duplication of the code, while offering the opportunity to

adapt or extend the behavior to cases of specific use. A subclass can be private protected or

public. If it is:

 Public: it can access to public or protected elements of the original class (the public

data will remain public and the protected one will remain protected)

 Protected: it can access to the public and protected elements of the original class but

they become protected

 Private: it can’t access to any element of the original class

It is important to remark that a class can inherit methods and data from different classes: it

is the so called “multiple inheritance”.

Another important feature of OOP is the polymorphism, i.e. the property thanks to that

different objects of the same pre-existent class (but belonging to different subclasses) can be

characterized by functions with the same name but different implementation. So we can use

the same interface dealing with different class objects .In order to use the polymorphism we

have to define a “virtual” function in the original class and then in each subclass implement

it in different ways. It is important to remark that we need a pointer to use the “virtual”

function (so instead of ∙ it is required ->).

The OPP is very useful because, using a class, the programmer doesn’t need to define every

time all the properties of an object. In particular, in order to work with fluid dynamic

equations, it is very useful define very general classes related to the elements of the

equations that you always deal with. For example, it is very useful define a class related to a

general numerical model , or a class which contains all the information to define a basis

function or one for the value source term (the force term of a differential equation) or for a

mesh. Then it is possible to define several subclasses whose code implement specific

feature. If we are considering the “model” class, one of its subclass can be a Finite Element

model.

As a consequence it is possible to build a lot of classes a priori, without needing information

of the specific problem you are going to solve. There are several useful libraries like MEX and

MFEM which store a lot of pre-implemented class and subclass that are very useful because

they already contains the biggest part of the functions and the data that are requested for a

29

general (but not only general) analysis. But they are useful also because, if you have solved a

specific problem, you can add to the library the classes and the functions you have

eventually written, in order to help the next user to deal with the same problem, or use the

same method to another one. However it is very important, before adding new class to the

library, checking that there are not a pre-existent class to perform that task.

So thanks to these libraries you have to write only the parts of the code that are specific for

your application and that can help you to focus on the main characteristic of your analysis.

Moreover, having classes which deal with specific part of the problem you can perform a lot

of operations internal to the object and share only the data that are required by other object

or functions.

In this work the above mentioned libraries MEX and MFEM have been used to create the

code. In the following lines we will briefly describe them and the main classes that has been

exploited.

4.2 MFEM

MFEM is the so called Finite Element Discretization Library. It contains all the classes that
you need in order to perform a finite element analysis. The class are divided into 4 big
groups

 Main mesh classes: this group contains 4 high level classes that are
 Mesh: a class of abstract meshes
 NCMesh: A class for non-conforming AMR on higher-order hexahedral, quadrilateral

or triangular meshes. It is a Mesh’s subclass
 Element: class of abstract element. Some of its subclasses are for example triangle,

exagon and so on
 Element transformation

 Main finite element classes: this group contains several high level classes that are
 FiniteElement: which is an abstract class for Finite Elements. Its subclasses are scalar

finite element and vector finite element whose subclasses are respectively
a) nodal finite element, positive finite element, NURBS finite element
b) quadrilateral finite element, segment finite element, hexaedron finite element

 FiniteElementCollection which is the collection of finite elements from the same
family in multiple dimensions. This class is used to match the degrees of freedom of a
FiniteElementSpace between elements, and to provide the finite element restriction
from an element to its boundary.

 FiniteElementSpace: responsible for providing FEM view of the mesh, mainly
managing the set of degrees of freedom.

 GridFunction: class for grid function or vector with associated FE space
 BilinearFormIntegrator and LinearFormIntegrator: abstract base classes for linear and

bilinear integrator
 LinearForm, BilinearForm and MixedBilinearForm: classes for linear form or vector

with associated finite element space and linear form integrators. In the bilinear case
it deals with Matrices and not vectors.

30

 Main linear algebra classes and sources: this group contains several high level classes
that are
 Operator: a class of abstract operators
 Vector: a class of abstract vectors
 DenseMatrix and SparseMatrix : a class of data type dense and sparse matrix.
 parse smoothers and linear solvers

 Main parallel classes: this group contains several high level classes that are
 ParMesh: class for parallel meshes

 ParNCMesh A parallel extension of the NCMesh class. The basic idea is that all

processors share the coarsest layer ("root elements"). This has the advantage that

refinements can easily be exchanged between processors when rebalancing since

individual elements can be uniquely identified by the index of the root element and a

path in the refinement tree.

 ParFiniteElementSpace: a class of abstract parallel finite element space.

 ParGridFunction: class for parallel grid function.

 ParBilinearForm and ParLinearForm: class for parallel bilinear and form.

 HypreParMatrix and HypreParVector: wrapper for hypre's ParCSR matrix class. Hypre

stand for high performance preconditioner.

 HypreSolver and other hypre classes: abstract class for hypre's solvers and

preconditioners.

As already said, each high level classes is connected to a lot of different subclasses;

moreover they can inherit functions and data by more than one high level class. So

MFEM contains a lot of different classes which can used to perform very different tasks.

However it can happen that the user has to create a new subclass for a specific problem;

in that case it will be helped by higher level classes in the code of which all the basic

feature needed are implemented.

4.3 Mex

The MEX Library is a group of classes to tailor the MFEM class . It consists on an easy to use

build and test system, and several functions which are commonly used in computational

fluid dynamics applications. MEX differs from MFEM also because it contains a lot of very

useful classes such more than one writer class, a database class, a class for storing

integration points data and so on. We will briefly describe the main MEX classes that have

been used for this work. The description of the classes has been taken by the MEX wiki.

 Constrainer: When solving a problem, one normally constructs a system of

ordinary or algebraic equations. Constrainers are objects that are added to such

systems to fix a certain set of degrees of freedom. In finite-element methods,

this is done by removing the row corresponding to a non-zero test of the degree

of freedom (or called dof) and replacing it with an equation like 𝑑𝑜𝑓 = 𝑣𝑎𝑙𝑢𝑒 (a

Dirichlet constraint).On the other hand, the ConCnstr (continuity constrainer) can

31

be used to apply periodic boundary conditions to be constraining one degree of

freedom to be equal to another 𝑑𝑜𝑓1 − 𝑑𝑜𝑓2 = 0.At the moment the

constrainers available in MEX are limited to Dirichlet and continuity constrainers.

 FEModel: Often we form models using the Galerkin method, which is based on

the variational form of the (system of) PDE to be solved. In MEX, such a system is

assembled and solved by a finite-element model, or FEModel. A FEModel of

course contains the resulting system of equations, but these are constructed

using some other important objects. The most basic of these, is the finite-

element discretization or FED. The FED defines the final unknowns of the system,

based on a MFEM finite-element space (FESpace) and information concerning

periodic boundary conditions. A FED also handles global interpolation in a

parallel environment. The actual assembly of the system of equations is

performed using MexIntegrator objects, which evaluate the contribution of each

domain or boundary element to the integrals appearing in the weak form. Finally

FEModel will also likely contain a number of Constrainer objects which replace

certain equations in the system with explicit relations, typically to define known

values of the solution on domain boundaries.

 MexIntegrator: MexIntegrators are used to evaluate contributions to integrals

related to assembling the system, or to post processing. They are derived from

MFEM integrators, but contain additional data and functions to facilitate the

writing of efficient but high-level code. MexIntegrators are broadly divided in

two types. DomainIntegrators, which evaluate contributions to integrals defined

in the interior volume of the domain, and MexBdrFaceIntegrators, which

evaluate the contributions of boundary surfaces.

Assembling systems: In their standard mode, MexIntegrators are passed to a

System, which then performs a loop over elements to determine the

contribution of all elements to a global weak form. In this mode, a MexIntegrator

will return a single element matrix or vector each time it is called

Evaluating domain or boundary quantities: MexIntegrators can also be used to

compute integral quantities based on solution vectors. In this case a loop over

elements is implemented within the integrator itself. In the current version of

Mex, there are two versions of the MexIntegrator (the second called

MexIntegrator2). Generally MexIntegrator2 should be used, as it has several

advanced capabilities, particularly with respect to integration with arbitrary

functions, and the saving of integration point data. The Original MexIntegrator is

retained for backwards compatibility, but will eventually be dropped.

 MexObject: Many objects in Mex are derived from the MexObject base class.

From this they inherit standard logging methods (controlled by the logLevel,

screenLog and fileLog commands) and procedures for measuring memory use

and CPU time. They also can be asked for their name and the number of the

process they reside on. Most MexObjects have constructors which contain the

32

arguments: (ParamDB &prm_, string name_=""). "prm_" is the parameter

database used to initialise the object. A pointer to this database with the name

"prm" will be saved for use within the object. The name is an optional argument.

If left blank, the object name will be its derived type.

 Model: In many applications, one wishes to use an existing discretization at a

higher level to perform a task. Examples include the training of a neural net using

a fluid discretization, or the combination of a fluid and solid discretization to

perform FSI. For these types of problems there exists a standard "model" class

that allows one to compute processes described by either a system of either

linear of nonlinear equations generically. A model contains a link to either a

system of (linear or nonlinear) algebraic equations or a system of (linear or

nonlinear) ordinary differential equations. For the former, it also contains a

"solve" function and the latter an "advance" function.

Models may also contain other models with their own solve or advance

functions. For example, a fluid model may contain another set of equations that

are solved in a segregated way to define coefficients for a turbulence model.

Then the solve function for this second model would be contained within the

fluid model's advance call.

 ParamDB: Some of the objects used in Mex have a large number of configuration

parameters. Furthermore, this number tends not to be constant as new features

are frequently added. Rather than maintaining constantly-changing interfaces,

one can use a single parameter interface to pass large amounts of configuration

data to an object. The normal approach to this is to read a single database at the

start of a run (based on a command-line argument) and then pass the database

around so that each object can extract configuration data from it. When multiple

instances of the same object are used, one can pass a "name" to the database to

differentiate the parameters for one instance from those of another.

 Solver: Solvers are used to find the solution vector of Algebraic systems. If the

system is linear, a member of the Mex "LinearSolver" class is used. If it is non-

linear, a member of the "NonLinearSolver" is used. NonLinear solvers, however,

often require a "LinearSolver" as an input object. The choice of linear solver

depends on the problem considered. Direct linear solvers are robust, but scales

are not so efficient (typically with N^3, where N is the number of unknowns).

Iterative linear solvers have much better scaling, but their convergence is

sensitive to the conditioning of the system matrix. When condition numbers are

high, iterative solvers usually require a preconditioner (an object which creates

an approximate inverse, allowing the definition of well-conditioned problem).

For small linear systems (N<100), one can use the Mex "SerialDirect" solver. Since

it is serial, it solves the same problem on each processor, without

communication. As it is insensitive to conditioning, however, the SerialDirect

solver is often useful for prototyping implementations, when only a single

33

processor is required. For large systems to be solved in parallel, we typically use

Hypre . At the moment, the only available non linear solver is the NewtonNLS. It

implements a simple Newton method and is quite effective for most problems. It

has several configuration parameters. An important one as far as speed is

concerned is the matrix update interval. Often matrix and preconditioner

updates are expensive, while their the effect of updating the Jacobian on

convergence can be small (particularly if a good initial guess of the solution is

available, as occurs when marching in space-time). In such cases increasing the

matrix update interval can dramatically reduce cost.

 SubModel: A subModel is an independent object which is used to provide

information used in the construction of a model's algebraic system, yet can be

controlled or configured by other objects or software packages. It has a very

generic interface which allows it to be used for many purposes, but in a typical

FEM application, it is used to evaluate a double or vector at an integration point.

An example would be the evaluation of a subgrid scale model quantity that has

been calibrated externally by a Germano procedure or Neural Network. The

functions in the SubModel can also be linked to functions evaluated by other

software.

 System: For most discretization techniques, the aim is to replace the continuous

problem by one which requires the solution of a system of equations with a finite

number of unknowns. For steady problems, discretization then leads to a large

algebraic system which may be linear or nonlinear. This is also true for unsteady

problems when space-time discretizations are used. When treating unsteady

problems, however, it is more common to use a semi-discrete approach, in which

initially only the spatial terms of the equations are discretized. This leads to a

system of linear or nonlinear ordinary differential equations. Time marching

methods are then used to complete the method. The semi-discrete approach is

often preferred because it makes it easy to switch between well-known time

integration methods, including to families of explicit methods which allow for

low-memory decoupled solution procedures. Systems of equations are

represented in Mex by "System" classes. These can be broadly divided in two

types, AlgSys: Algbraic systems (which arise from complete discretization), or

ODESys: Systems of ordinary differential equations (which arise when one

dimension e.g. time is not yet discretized). Both may be either linear or

nonlinear. Small Systems can be loaded manually. For finite-element problems,

we normally use finite-element systems (FEAlgSys or FEODESys), which obtain

equations by integrating over the elements in a domain.

 TMarch: Time marches are used to advance systems of ordinary differential

equations in time. These may be either explicit (the solution update does not

depend on the next time level) or implicit. Implicit time marches typically require

a LinearSolver as input. Time marches may also be linear or non-linear. Time

34

marches for non-linear systems of ODEs typically employ multiple stages (e.g.

predictor-corrector, Runge-Kutta) or corrector passes (e.g. generalised alpha). As

for algebraic systems, avoiding frequent matrix/preconditioner updates can

significantly reduce the cost of time marching non-linear problems. It is often

possible to use the same matrix/preconditioner combination for several time

steps.

 ValSrc: Value sources are generic interfaces to objects which can provide data

associated with a set of coordinates. They have many uses, including supplying

the value of source terms or solutions from other fields at integration points,

obtaining statistics, or plotting solutions. You can access value sources in two

ways, one where the element containing the requested coordinate is known, and

one where it is unknown. For the latter a search is involved, so it is best to pass

all of the required coordinates to the ValSrc object at the start of the run, and

then just ask for the values without giving coordinates. Then the value source will

use the previous coordinates so that the corresponding elements are only found

once.

4.4 Application Structure

In this chapter the code structure and the process of the numerical simulation have been

explained in order to understand the succession of operations that are required to exploit

the variational numerical methods, explained in the previous chapters, to evaluate the

solution of the Burger equation.

1. The input of the main program are defined. They are

 The name of the input file, connected to the specific version of the

problem to solve. In this way to change some of the feature of the

problem(for example boundary condition, number of elements, tau-

model and so on) without changing the code and compiling it every times.

 The space refine number nspace which represents how much the mesh

will be refined. If the mesh is too much coarse and the simulation doesn’t

converge, we can refine it, so that the number of elements will be 2𝑛𝑠𝑝𝑎𝑐𝑒

times the previous ones.

 The time refine number ntime which represent how much the difference

in time ∆𝑡between a step and the next one in the time integration will be

refined. If the ∆𝑡 is too much big and the simulation doesn’t converge, we

can refine it so that the ∆𝑡 will be 2𝑛𝑡𝑖𝑚𝑒 times smaller than the previous

ones.

2. The code get the parametric file and it store all them in a Paramdb object in order

to easily access to them.

35

3. A lot of parameters, useful for the next step, are get from the database (and the

general inputs) and set.

4. Setting of the effective integration time step and the writing solution time step.

We have to remark that only if the 2 time step are the same the application will

output all the time steps solution.

5. A Burger model object has been associated to each mesh level as suggested by

VGM. As explained previously, it let us to write a Germano Identity equation for

each level and so to evaluate the coefficient of the closure sub model. A tau sub

model has been added to each of them.

6. The solution vector is defined.

7. A solution vector and a finite element space for post processing on the finest

mesh are defined

8. Definition of the problem. In this phase the force term and the boundary

condition are imposed to the problem. Moreover it is possible to add the exact

solution of a problem in order to evaluate the differences between the exact and

the approximate solution. The exact solution can be added analytically or as a

result of a DNS. It is necessary to note that in this work

 the boundary condition are set to 0 (at each level obviously).

 The exact solution of the analyzed cases have been evaluated by a DNS.

 The definition of the force term is explained in the next chapter.

9. Preparation of the solution output files and definition of the writer objects

10. Preparation of the statistical integrator

11. Set up of the Germano assembler and solver objects. The Germano assembler is

first initialized then added to each level Burger’s model. In this way the Germano

procedure has been computationally implemented in the application. Moreover

the BFSG algorithm has been set to be used to solve the Germano linear system.

12. Preparation of the output files for the model coefficients and the projection

error.

13. Definition of the projection model for the exact solution object.

14. Preparation of the time march

15. Time march. It is the most important phase. It can be splitted in several parts

which are repeated for each time step.

 Writing of the closure model coefficients of the previous time step. They

will be used for evaluating the current step solution. The first coefficients

are set by the user in the input file.

 Evaluation of the solution. This step is divided into

o Evaluation and assembling of the stiffness matrix and the right

hand side vector as required by Galerkin discretization of the

Burger equation. We have to remark that in this discretization the

closure model has been taken into account. It is important to

remark that in this phase the OSS case differ from the ASGS case.

36

In fact, the different formulation of 𝑢′ requires a projection of the

residual before multiplying it for 𝜏.

o Evaluation and assembling of the mass matrix. It can be done only

considering (𝑤, �̅�𝑡) or considering also the terms (𝑤𝑥, �̅�𝑡𝑢′) and

(𝑤𝑥, 𝑢′𝑢′).

o Advance in time evaluation of the current time step solution in the

finest level.

 Germano procedure. This step is divided into

o Setting of t and ∆𝑡

o Interpolation of the solution from the finest to the coarse scale

o Assembling of the Germano Identity system

o Solving of the Germano Identity System thanks to the BFSG

algorithm. In this step the new closure model coefficients have

been evaluated. They will be used in the next time step.

 Evaluation of the 𝐿2 errors. First it has been computed between the

solution and the exact solution, then between the solution and the

projection of the exact solution on the coarse mesh

Then the time march is ended.

16. 𝐿2 error evaluation. It is defined as ‖𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢ℎ‖2 so the 𝐿2 norm of the

difference of the exact and the numerical solution

17. Writing of the results. It consists in the screen output of the computational time

and the 𝐿2 global error and the writing of the Gnuplot output files.

18. The end. Stop of the application and memory delectation

37

CHAPTER 5

5. ANALYSIS CASES

5.1 Forcing Term

The forcing term of a differential equation is the right hand side term which makes the same

equation (with the same boundary condition) having very different solutions. In this work

two different forcing terms are considered. The so called Gab force term and a stochastic

force term.

5.1.1 Gabriel Force Term

This formulation of the force term takes its name from Gabriel Maher who used it in [3]. It is

defined in order to vary both on time and in space:

𝑓 = 10 sin(𝑡) sin(2𝜋𝑥) + 11 (52)

This formulation ensures a sharp layer near the right boundary of the domain.

5.1.2 Stochastic Force Term

The main task of LES is to numerically evaluate the velocity and the pressure field of a

turbulent flow. A turbulent flow is characterized by structures of very different scales. This is

due to the inertial cascade which transfers energy from the biggest, whose size is connected

to the Reynolds number, to the smallest, whose size is proportional to the Kolmogorov scale.

This is the reason why the velocity field change every time so that the turbulence can be

considered a random phenomenon which can be studied statistically.

The use of the stochastic force term is an attempt to simulate a turbulent flow in order to

evaluate if the application can predict the flow . In fact, this force term is also called

Burgerlance in analogy of a turbulent flow in a 1D domain where the Burger equation stands

for Navier Stokes ones and the force term can be thought as a randomly varying pressure

gradient. The first study of a stochastic force term applied to the Burger equation was

described in [24]; however the model of the force term that has been used in this thesis was

the Chamber one [25].

The random force term 𝑓 varies in space and time so that its average in time is constant and

the solution approaches a statistically asymptotically steady state .It is important remarking

that choosing a high value of the constant can cause the leak of stability of the solution

method.

Considering the adimensional form of the Burger equation

38

𝑢𝑡 + 𝑢𝑢𝑥 −
1

𝑅𝑒
𝑢𝑥𝑥 = 𝜓0𝜓(𝑥, 𝑡)𝜓(𝑥, 𝑡) (53)

Where

 𝑅𝑒 is the Reynolds number 𝑅𝑒 =
𝐿𝑢

𝜈

 𝐿 is the length of the domain (In this work 𝐿 = 1)

 �̌� is the dimensional and 𝑢 the adimensional speed

 𝜓0 is the average constant value

 𝜓(𝑥, 𝑡) is the random component of the force term

As suggested in [25] we define

𝜓(𝑥, 𝑡) = ℜ (∑ 𝑠𝑛𝑎𝑛(𝑡)𝑒𝑖2𝜋𝑛𝑥

𝑁2

𝑛=𝑁1

) (54)

Where

 The formulation is a complex Fourier series

 ℜ is real part operator

 𝑠𝑛 are real coefficients

 𝑛 is the wave number

 𝑁1 and 𝑁2 are the lowest and the highest wave number forced

 𝑎𝑛 are the random complex coefficients

The random coefficients are chosen so that

𝑎𝑛(𝑡𝑘+1) = 𝑒
−Δ𝑡

𝑇𝑛
⁄ [𝑎𝑛(𝑡𝑘) + 𝑐𝑛(𝑘)] (55)

Where

 𝑐𝑛(𝑘) is a complex number obtained from two consecutive numbers in a random

sequence thanks to random number generator

 𝑇𝑛 =
1

16𝜈𝜋2 is the time constant which depends on 𝜈. It was chosen to match the

viscous timescales of each mode of the solution in order to maximize the cross
correlation between 𝑢 and 𝜓

 Δ𝑡 is the time step of the numerical simulation

In this way, they are uniformly distributed between -1 and 1 and they were mutually

uncorrelated and stationary over long time.

The minimum number of forced modes tested was a single mode which is proportional to

the GAB force term, while the maximum were 40 modes (from n = 1 to n = 40). If it is

decided to force all the 40 modes available, 80 random numbers are required from the

39

generator for each time step. The resultant forcing term corresponded to a simple band

limited white noise-process with 40 modes.

The spectrum of the forcing term is determined by the real coefficient 𝑠𝑛. In order to obtain

the average of 𝜓equal to 1and the desired spectrum 𝑠𝑛 = (
3

40𝑇𝑛
)

1
2⁄

.

Moreover they satisfy the condition

1

3
∑ 𝑠𝑛

2𝑇𝑛 = 1

𝑁2

𝑛=𝑁1

 (56)

Where each individual term of the sum is one of the value of the special spectrum of 𝜓

5.2 Subgrid Models

We are trying to solve the problem

Find �̅� ∈ �̅� so that

 𝐵(�̅�, �̅�) + 𝑀(�̅�, �̅�, 𝑐, 𝑓, ℎ) = (�̅�, 𝑓)

 �̅�(0, 𝑡) = �̅�(𝐿, 𝑡) = 0 (L is the end of the domain t is time)

 �̅�(𝑥, 0) = 0

 𝐵(�̅�, �̅�) = (�̅�, 𝑢𝑡) − (�̅�𝑥, (�̅�)2) + (�̅�𝑥, 𝜈�̅�𝑥)

 𝑀(�̅�, �̅�, 𝑐, 𝑓, ℎ) = −2(�̅�𝑥, 𝜏𝑅�̅�)

All the procedures that occur to solve the problem have been already described, except from

the definition of τ as a function of the vector of coefficients c. it will be done in this

paragraph.

Since we have modeled

𝑢′ = 𝜏𝑅(�̅�)

If the residual is small enough it is that

𝑢′ = ∫ −g′(𝐿�̅� − 𝑓)dΩ = M′

Ω

(𝐿�̅� − 𝑓) = 𝐺 𝑅(�̅�)

So our model would be exact if we choose 𝜏 such that it is equal to the Green operator

𝜏 = 𝐺 (57)

However 𝐺 has not been evaluated except from the advection-diffusion equation so we

need to approximate it. In [26] Shakib describes a general procedure for 𝜏 for the weighted

residual formulation of the Navier Stokes equation where 𝜏 is a symmetric semidefinite

40

positive matrix obtained solving several eigenvalue problems. Then he compared with the

definition of 𝜏 presented by Huges and Mallet in [27] where they evaluated 𝜏 for a pure

advection problem and then adjusted the model for the presence of diffusion. Shakib

continued his work analyzing a 1D steady advection diffusion problem. In this case, like in

this thesis, 𝜏 is a scalar because only one equation is analyzed.

He wrote that if piecewise linear finite elements are used, 𝜏 can be evaluated such that the

𝐻1 seminorm of the solution error 𝑢 − 𝑢ℎ is minimized. This condition is equivalent to

having a nodal exact solution. So he defined 𝜏 so that

𝜏 =
ℎ

2|𝛼|
𝜉(𝛼) (58)

Where

 𝛼 =
ℎ|𝑎|

2𝜈
 the Peclet number

 𝑎 is the advective speed

 𝜐 is the viscosity

 ℎ is the element mesh size

 𝜉(𝛼)is the so called diffusion corrector factor which is exact if 𝜉(𝛼) = cot(𝛼) −
1

𝛼

Since we are looking for a numerically formulation of 𝜏, 𝜉(𝛼) formulation has to be

modified. Shakib found a fourth order accuracy formulation, thanks to a truncation error

analysis so that

𝜉(𝛼) = √
𝛼2

9 + 𝛼2
 (59)

Which is equivalent to

𝜏 = ((
2𝑎

ℎ
)

2

+ 9 (
4𝜐

ℎ2
)

2

)

−1
2⁄

 (60)

His analogue unsteady counterpart will be

𝜏 = ((
2

Δ𝑡
)

2

+ (
2𝑎

ℎ
)

2

+ 9 (
4𝜐

ℎ2
)

2

)

−1
2⁄

 (61)

So this one can be considered as the best 𝜏 approximation, if we don’t need a fifth order

accuracy formulation.

In this thesis the structure of the Shakib formulation of 𝜏 is used; it has been modified only

to adapt it to the Germano procedure and to the BFSG algorithm. The 𝜏𝑠ℎ𝑎𝑘𝑖𝑏 formulation

will be

41

𝜏𝑠ℎ𝑎𝑘𝑖𝑏 = ((
2

Δ𝑡
)

2

+ 𝑐0
2 (

𝑢

ℎ
)

2

+ 100𝑐1
2 (

𝜐

ℎ2
)

2

)

−1
2⁄

 (62)

In fact

 𝑐0 and 𝑐1 are the unknown coefficients that are calculated thanks to the Germano

Method. We have to remark that the previous formulation is the best one for the

advection diffusion equation. So the evaluation of the coefficients, that won’t be the

same, will improve the solution [3].

 The factor 100 is added in order to keep the BFSG algorithm stable

In this work the Shakib formulation will be compared with a linear definition of 𝑐0 and 𝜏

𝜏𝑙𝑖𝑛 = 𝑐0ℎ (63)

The comparison will be done for the ASGS and the OSS case.

Moreover the target of this thesis is to find a formulation of 𝜏 which will improve the Shakib

one. So we have defined a space variant formulation which can find the best coefficients for

every element of the domain. So 𝜏 won’t be constant but it will be function of 𝑥.

The first formulations that will be tested

𝜏 = ℎ |𝑐0 + 𝑐1 cos
𝜋𝑥

𝐿
+ 𝑐2 sin

𝜋𝑥

𝐿
 | (64)

called Space Variant Tau –SVT

The second one can be seen as the consecutive of the CSVT (in a Fourier sense).

𝜏 = ℎ |𝑐0 + 𝑐1 cos
𝜋𝑥

𝐿
+ 𝑐2 sin

𝜋𝑥

𝐿
+𝑐3 cos

2𝜋𝑥

𝐿
+ 𝑐4 sin

2𝜋𝑥

𝐿
 | (65)

Space Variant 2 Tau SVT2

These formulation has been chosen so that both the space dependent functions are linear

independent and it is possible to obtain a linear combination whose result is a global

constant

We have checked that some of these formulation will be better than the linear one; then we

tried to verify if, defining a Shakib space variant formulation, it can be better than the

original Shakib one.

The Shakib space variant will be

42

𝜏𝑠ℎ𝑎𝑘𝑖𝑏𝑠𝑣𝑡 = ((
2

Δ𝑡
)

2

+ (ℎ |𝑐1 cos
𝜋𝑥

𝐿
+ 𝑐2 sin

𝜋𝑥

𝐿
 |)

2

(
𝑢

ℎ
)

2

+ 100 (ℎ |𝑐3 cos
𝜋𝑥

𝐿
+ 𝑐4 sin

𝜋𝑥

𝐿
 |)

2

(
𝜐

ℎ2
)

2

)

−1
2⁄

 (66)

𝜏𝑠ℎ𝑎𝑘𝑖𝑏𝑠𝑣𝑡2 = ((
2

Δ𝑡
)

2

+ (ℎ |𝑐0 + 𝑐1 cos
𝜋𝑥

𝐿
+ 𝑐2 sin

𝜋𝑥

𝐿
+𝑐3 cos

2𝜋𝑥

𝐿
+ 𝑐4 sin

2𝜋𝑥

𝐿
 |)

2

(
𝑢

ℎ
)

2

+ 100 (ℎ |𝑐0 + 𝑐1 cos
𝜋𝑥

𝐿
+ 𝑐2 sin

𝜋𝑥

𝐿
+𝑐3 cos

2𝜋𝑥

𝐿

+ 𝑐4 sin
2𝜋𝑥

𝐿
 |)

2

(
𝜐

ℎ2
)

2

)

−1
2⁄

 (67)

43

CHAPTER 6

6. ANALYSIS

6.1 Introduction

In this chapter 2 different numerical cases are studied. The task is to solve numerically the

unsteady Burger equation varying the Variational Multiscale Methods and the definitions of

𝜏. The complete problem is to find 𝑢 ∈ 𝑉 so that

𝑢𝑡 + 𝑢𝑢𝑥 − 𝜈𝑢𝑥𝑥 = 𝑓 on Ω

𝑢 = 0 on 𝛿Ω

𝑢(𝑥, 0) = 0

Where

 Ω = [0, 1] is the spatial domain

 𝑇 = [0,5] is the temporary domain

 𝜈 = 0,001953 is the viscosity so the Reynolds number is 512.

 𝑓 is the force term. In the first paragraph the Gabriel forcing term has been used, in

the second the Random formulation of Chamber.

However, the problem solved in this thesis is the discrete formulation of the previous one

which consist in finding 𝑢ℎ ∈ 𝑉ℎ so that

 𝐵(𝑤ℎ, 𝑢ℎ) + 𝑀(𝑤ℎ, 𝑢ℎ, 𝑐, 𝑓, ℎ) = (𝑤ℎ, 𝑓)

 𝑢ℎ(0, 𝑡) = 𝑢ℎ(1, 𝑡) = 0

 𝑢ℎ(𝑥, 0) = 0

 𝐵(𝑤ℎ, 𝑢ℎ) = (𝑤ℎ, 𝑢ℎ
𝑡) − (𝑤ℎ

𝑥, (𝑢ℎ)2) + (𝑤ℎ
𝑥, 𝜈𝑢ℎ

𝑥)

 𝑀(𝑤ℎ, 𝑢ℎ, 𝑐, 𝑓, ℎ) = −2(𝑤ℎ
𝑥, 𝑢′𝑢ℎ) = −2(𝑤ℎ

𝑥, 𝜏𝑅𝑢ℎ)

 𝑅 = (𝑤ℎ, 𝑢ℎ
𝑡) − (𝑤ℎ

𝑥, (𝑢ℎ)2) − (𝑤ℎ, 𝑓)

In the discrete case, the domain is splitted into 64 equal elements and the time step is

Δ𝑡 = 0,05. Linear finite elements are used. The results obtained by LES are compared with

those computed by DNS. In the DNS a 1024 element mesh. In fact if we evaluate the

dimension of the Kolmogorov scale it is 9 ∙ 10−3. The DNS element dimension is 1∙ 10−3 and

then it is acceptable. Δ𝑡 = 0,005 is the DNS time step in order to resolve even the smallest

structures. The Germano initial coefficients are all equal to 2,0.

The DNS was computed using a code which solve the burger equation using a finite element

discretization without splitting 𝑢 into the coarse scales and the fine scales.

44

In the following chapters, first the differences between a solution and another one are

underlined, then all of the solutions are compared in order to find the best one. For every

case, two pictures are presented: a first one related to the global solution and the second

which is zoomed in the part of the plot where is bigger the difference between the

solutions. Plots are taken at the last time step.

6.2 Gabriel Force Term

6.2.1 OSS compared with ASGS

Figure 3 Comparison between OSS and ASGS solution

45

Figure 4 Comparison between OSS and ASGS solution detail

The first comparison is between the ASGS and the OSS solutions. Both cases have been

obtained using the linear formulation of 𝜏.

It is possible to observe that

 The OSS solution results more fluctuating than the ASGS one. Fluctuations can be

observed not only close to the step but they propagates in the previous 5 integration

points. This fact is due to the property of OSS (described in[26]) of introducing less

dissipation. It can be useful because the OSS method can help to follow better the

peaks however this can lead, like in this case, to oscillatory behaviors.

 The OSS is locally closer to the exact one, except from the area before the step; for

example it is possible to notice that (
𝜕𝑢

𝜕𝑥
)

𝑥=1
 of the OSS case is closer to the DNS then

the ASGS one

 The OSS results much more precise if the exact solution is smooth. . In fact, as the

following picture can prove, for every time step the linear case 𝐿2 error is bigger than

the OSS one.

46

Figure 5 L2 error comparison between OSS and ASGS solution

We can conclude that in this case the ASGS model results better, even if the OSS is more

precise because it doesn’t present oscillation that are not present in the exact solution.

47

6.2.2 Shakib compared with Linear tau

Figure 6 Comparison between Shakib and Linear Tau solution

48

Figure 7 Comparison between Shakib and Linear Tau solution detail

The second comparison is made using the plot of the linear 𝜏 solution and the Shakib one.

This comparison has already been described in [1]. In any case we can underline that

 The Shakib solution over dimension the step presented by the DNS solution.

 The linear solution is more numerically dumped because it introduces more

dissipation. In fact, the contribute of 𝑢′ of the linear case is generally bigger than the

Shakib one. It can be seen in the following plot:

49

Figure 8 u' comparison between Shakib and Linear Tau solution

 The Shakib solution is both globally and locally more accurate. To prove it, it can be

useful the plot of the L2 error as function of time. The Shakib curve is always lower

than the linear one

50

Figure 9 L2 error comparison between Shakib and Linear Tau solution

The Shakib solution is better than the linear one; the only defect is that it over

dimension the value of 𝑢 near to the step.

51

6.2.3 Shakib compared with OSS Shakib

Figure 10 Comparison between Shakib and OSS Shakib solution

Figure 11 Comparison between Shakib and OSS Shakib solution deatil

In this case we are evaluating the Shakib solution and the Shakib solution obtained using the

OSS model. Main differences between the solutions are that

52

 The OSS model induces oscillations to the Shakib solution as it happened for the

linear case. Moreover it also over dimensions the value peak of Shakib solution near

to step of the DNS one. So mixing the Shakib formulation of 𝜏 and the OSS model the

defects of both them are emphasized.

 The Shakib OSS solution is only closer to the DNS near to the boundaries. Far from

them, the Shakib solution is more precise.

 The ASGS Shakib solution is generally lightly more accurate as it can be seen in t the

𝐿2 error plot

Figure 12 L2 error comparison between Shakib and OSS Shakib solution

The OSS model formulation creates too many oscillation, solving this problem, because it

is less dissipative then the ASGS one. This fact was proved in the literature by Codina [26]

and is showed by both the linear and the Shakib case. As a consequence, in the space

variant analysis we will focus on the ASGS analysis since the OSS solutions can’t be the

best one.

53

6.2.4 OSS compared with OSS Shakib

Figure 13 Comparison between OSS and OSS Shakib solution

54

Figure 14 Comparison between OSS and OSS Shakib solution detail

In this paragraph it is demonstrated that the Shakib formulation “behaves” better than the

linear one using the OSS model too. In fact it is possible to observe that

 Except for the value of 𝑢 immediately before the step of the DNS, the Shakib case

presents smaller oscillations

 The 𝐿2 error of the Shakib OSS solution is lower than the linear OSS case for every

time step

55

Figure 15 L2 error comparison between OSS and OSS Shakib solution

56

6.2.5 Linear compared with Space Variant and with Space Variant 2

In this paragraph the linear and the space variant formulation solutions are compared. The

big difference between them is that, for the space variant ones, the code evaluate 𝜏 for

every integration point, solving the Germano system for all of them. This can improve the

resolution of the fine scales since in this way it is possible to introduce dissipation where it is

needed. In fact with a higher order Fourier 𝜏 is possible to approximate better big gradients.

We will check it in the following lines.

It is important to remark that we have not considered the OSS case because of the undesired

oscillations and because both the OSS space variant solutions need 256 integration point to

converge. This is the reason why, even if they may be more precise, they need a

computational effort that is at least 4 time bigger then the ASGS ones.

Figure 16 Comparison between Linear, Space Variant and Space Variant 2 solution

57

Figure 17 Comparison between Linear, Space Variant and Space Variant 2 solution detail

We can make a comparison between the 2 space variant solutions, the linear and the DNS.

So

 The space variant solution is less dissipative than the linear one and it approximates

better the DNS.

 The space variant 2 improves the space variant solution because it can follow the

step of the DNS better as supposed by the theory.

 The space variant and the space variant 2 are locally very similar. The value of

(
𝜕𝑢

𝜕𝑥
)

𝑥=1
 of both the solutions are really almost the same.

 Increasing the terms of the Fourier expansion of the expression of 𝜏, the solution

becomes more precise: in the following plot, the Space Variant 2 solution

characterized by the lowest 𝐿2 error for all the time step of the simulation.

58

Figure 18 L2 error comparison between Linear, Space Variant and Space Variant 2 solution

 It is interesting to plot the trend of u’ as function of x. We can notice that it is almost

0 for every point of the domain because the residual of the coarse scales is close to 0.

But it differs from that value near to the step

59

Figure 19 u' comparison between Linear, Space Variant and Space Variant 2 solution

60

 Finally it is plotted the tau as function of the integration point. We can

recognize the constant, the first and the second levels of the Fourier series.

Figure 20 Tau comparison between Linear, Space Variant and Space Variant 2 solution

Thanks to the space formulation of 𝜏 we can improve the VGM solution of the burger

equation. However, adding new terms, seems it does not improve so much the solution as

the first space variant do compared by the linear one. Further research may prove it.

61

6.2.6 Shakib compared with Shakib Space Variant and with Shakib Space

Variant 2

In this chapter we try to improve the Shakib formulation using a space variant 𝜏. As it is

proved previously, it is possible to improve a constant formulation using a space variant one;

so, we try to do the same using a formulation with the same structure of the Shakib one. To

do that, we will substitute the coefficients 𝑐0 and 𝑐 1 with the spatial variant formulations of

𝜏. Respectively the Shakib space variant and the Shakib space variant 2 formulations are the

Shakib extension of the space variant and the space variant 2

.

Figure 21 Comparison between Shakib, Shakib Space Variant and Shakib Space Variant 2 solution

62

Figure 22 Comparison between Shakib, Shakib Space Variant and Shakib Space Variant 2 solution detail

It is clear that the trend of the Space variant Shakib solutions is completely unexpected. Let’s

point out main observations that are possible to make looking at these plots

 Both the space variant solutions are so much diffusive that they look very inaccurate. As

a prove of that we can show the 𝐿2 error trend as function of time. For every t the error

of the traditional Shakib solution is smaller. The Shakib space variant formulation, for the

biggest part of the time steps, presents an error which is 50% bigger than the constant is

space Shakib formulation.

63

Figure 23 L2 error comparison between Shakib, Shakib Space Variant and Shakib Space Variant 2 solution

64

 The second unexpected result is that the Shakib space variant and the Shakib space

variant solution look the same solution. In fact they present a very similar 𝜏: the

difference is about 10−4. It is also difficult to recognize the sin(𝑥) and the sin(2𝑥)

form of the 𝜏 because the plot is very stretched.

Figure 24 Tau comparison between Shakib, Shakib Space Variant and Shakib Space Variant 2 solution

 The high numerical dissipation introduced by these space variant formulation is

proved by the high mean value of 𝜏 which is very much bigger than linear of the

previous chapter.

We can conclude that the space variant Shakib formulations are not good to achieve the

best general solution of the problem. Moreover, the space variant 2 increases a lot the

computational effort obtaining a solution which is almost the same of the formulation

with 4 less coefficients. It may be possible to improve these results changing the space

variant formulation in order to adapt it better to the problem (and maybe in order to

reduce the number of the coefficients). A possible explanation of this results can be the

fact that, since the biggest part of the coefficients remains for all the time step close to

the initial value of 2, the BFSG model doesn’t find a big improvement of the solution

changing them. So, they introduce almost the same dissipation for all the time steps.

65

6.2.7 General Comparison

Finally we want to choose the best solution among the ones that we have analyzed. It would

neither present undesired fluctuations nor be too much dissipative.

Figure 25 General comparison between all the formulations

66

Figure 26 General comparison between all the formulations detail

We can notice that

 The best solution overall is the Shakib Space variant OSS solution which is the most

precise both locally and generally. The problem is that it is not comparable with the

other solutions because it has been obtained with a 256 elements mesh and so it

requires more computational effort. It is also important to underline that it differs

from the other OSS solutions because it doesn’t present oscillations

 There are 2 more couple of solution which presents almost the same plot.The Space

variant OSS is very similar to the Space variant OSS 2 and the Shakib space variant 2 is

very similar to the linear OSS.

 The best solution (considering only the solutions obtained using a mesh of 64

elements) is the space variant. It represents an optimal compromise between high

accuracy and computational effort.

 Using the most complicate models, is not a garancy of obtaining the best results. A

reason to explain this fact can be that the more operations are done by the calculator

the more numerical error propagates.

 Even if the space variant Shakib formulations are not so good, we have improved the

traditional Shakib solution using the Space variant 2 (as we can see in the following

plot) that is the main task of this thesis.

67

Figure 27 Comparison between Shakib and Space Variant 2 solution detail

68

6.3 Stochastic force term

The study of the Chamber random force term had been developed using the same

formulations and procedure used in the study of the Gabriel force term. It is chosen a

number of 5 modes of the random force term. However the number of elements of the

mesh have been changed in order to make the solution converge and consequently the

number of the time step have been increased.

So it has been necessary to use a 256 element mesh and a ∆𝑡 = 3,3 ∙ 10−3. However, using

so fine mesh, the element length is smaller than the Kolmogorov scale (the dimension of the

elements is 4 ∙ 10−3) so the resolution can be considered undue to a LES. Another difference

is the simulation time which has been set to 1s.

6.3.1 OSS compared with ASGS

Figure 28 Comparison between ASGS and OSS solution

69

Figure 29 Comparison between ASGS and OSS solutions detail

The first comparison is between the linear ASGS and the OSS solutions. It is possible to

observe that

 As we have seen in the previous analysis the OSS is less dumped so it can follow

better the fluctuations of the solution.

 The approximate solution are slower than the DNS to react to big gradients imposed

by the stochastic force term. Moreover they can’t represent all the modes because

the smallest are of the same dimension of the elements of the mesh. However both

the ASGS and the OSS solution has the same trend

70

Figure 30 L2 error comparison between ASGS and OSS solution

 The 𝐿2 error of the two solution is very similar even if the OSS is more precise. This is

caused by the fact that it introduces less dissipation in the coarse scale equation. It

can be seen also in the following picture where 𝑢′ trend of the 2 solutions is plotted

71

Figure 31 u' comparison between ASGS and OSS solution

 Finally it is presented an example of the plot of the coefficient 𝑐0 as function of time

to show the random behavior of the problem analyzed.

Figure 32 tau coefficient trend of linear OSS solution

72

6.3.2 Shakib compared with Linear tau

Figure 33 Comparison between Shakib and linear solution

Figure 34 Comparison between Shakib and linear solution detail

73

The second comparison is made using the plot of the linear 𝜏 solution and the Shakib one. It

is important to underline that

 The Shakib and the linear solutions are very similar each other in fact it is difficult to

distinguish them also in the zoomed image. However the values of 𝑢′ and 𝜏 are very

different each other as it can be seen in the following pictures. The cause is that the

influence of the sub model on the coarse scale equation is very small compared with

the force term

Figure 35 tau comparison between Shakib and linear solutions

74

Figure 36 u' comparison between Shakib and linear solution

 A undesired phenomenon take place in the Shakib solution: the coefficients don’t

present a random trend as seen in the linear cases. (see the following picture). They

tend to remain constant in time. It happens also for the Shakib space variant

formulations: in these cases the coefficients remain equal to the initial values. As a

consequence, since the results obtained don’t represent an adequate solution of the

problem, they have been omitted.

Figure 37 tau coefficients trend of Shakib solution

75

6.3.3Linear compared with SVT and SVT2

Figure 38 Comparison between linear, space variant and space variant2 solutions

Figure 39Comparison between linear, space variant and space variant2 solutions detail

76

In this section the differences between the linear and the space variant solutions are

pointed out.

 First of all we have to remark that the differences are very small; they can be

observed only where the approximate solution present peaks. In all other points the

solution are very close each other.

 The space variant 2 solution can best follow the oscillations of the DNS even if, as

already written, the smallest mode can’t be represent by the LES solutions. On the

other hand the space variant one seems to be less precise then the linear.

 As we can see in the following picture the space variant 2 is the formulation which

introduce less dissipation in the coarse scale solution. This is the reason why its

solution is less dumped

Figure 40 u' comparison between linear, space variant and space variant2 solutions

77

 In fact the resulting 𝜏 of the space variant 2 is the smallest

Figure 41 tau comparison between linear, space variant and space variant2 solutions

78

6.3.4 General comparison

Figure 42 General comparison between all the solutions

Figure 43 General comparison between all the solutions detail

79

We can conclude the analysis of the random force term remarking that

 The best solution is the Linear OSS one because it can best follow the fluctuations

of the DNS; generally the OSS solutions look better than the ASGS ones

 The effects of the not resolved modes and the delay of the approximate solution

are relevant. In fact it is bigger the difference between the DNS and all the

approximate solutions than the one between the approximated solutions

themselves.

 The Shakib Space variant solution have been excluded by the analysis because of

their unrealistic trend

80

CHAPTER 7

7. CONCLUSIONS

In this thesis the Variational Germano Method has been used to solve numerically the 1D

Burger equation, which has the same structure of the Navier Stokes equation. Two force

term have been used to test different Subgrid Scale models in order to find the best one. The

best solution is that is more similar to the DNS so it doesn’t present undesired oscillations, is

characterized by the minimum 𝐿2 error and it doesn’t request a big computational effort.

Analyzing the Gabriel force term we have managed to improve the Shakib formulation of 𝜏,

which is considered the best approximation of the Green operator, using a space variant one

(SVT2).However we haven’t been able to define a good space variant formulation with the

same structure of the Shakib one. Finally we have verified that the OSS method introduces

too little numerical diffusion and so in this case it doesn’t result very useful.

Then we have tried to test the same formulations with Chamber random force term which

can better represent a turbulent flow. We have obtained very bad results because the

approximate solutions can’t follow all the modes of the force term; the difference between

each solution is less significant compared by the deviation from the DNS . Moreover the

Shakib space variant formulations can’t obtain numerical reasonable solutions. However the

main feature of the subgrid scale models observed in the first analysis are confirmed.

Further improvements of this work can be a new Shakib space variant formulation which can

allow to be better than SVT2, and the use of a different solver to avoid numerical difficulties

encountered testing the Chamber force term. Another improvement can be to obtain a

relationship between the Reynolds number the formulations and the integration points they

need to converge. Moreover this method can be used in the future to solve the Navier

Stokes multi-dimensional equations.

81

BIBLIOGRAPHY

[1] T.J.R. Huges ,G. Scovazzi,L.P. Franca “Multiscale and Stabilized Methods” Encyclopedia of

Computational Mechanics vol 3 cap.2,2004

[2] Y. Bazilevs, V.M. Calo,J.A. Cottrel,T.J.R. Huges, A. Reali, G.Scovazzi “Variational Multiscale

residual based turbulence modeling for large eddy simulation of incompressible flow”

Computer methods in applied mechanics and engineering vol 197 pp. 173-201,2007

[3] G.Maher “Variational Germano Optimization of Arbitrary Unresolved Scale Models”

Master of Science Thesis ,TU Delft,2014

[4]A.A. Oberai, J Wanderer “A dynamic approach for evaluating parameters in a numerical

method” International journal for numerical methods in engineering vol 62 pp. 50-71,2004

[5] A.A. Oberai, J. Wanderer “Variational formulation of the Germano identity for the Navier-

Stokes equation” Journal of Turbolence , 6,N7,2011

[6] A.A. Oberai, D. Sondak “Application of the variational Germano identity to the variational

multiscale formulation” International journal for numerical methods in biomedical

engineering vol 27 pp. 335-344,2009

[7] A.A. Oberai, Z. Wang “ Optimal numerical solution of PDEs using the variational Germano

identity” Computer methods in applied mechanics and engineering vol 197 pp. 2948-

2962,2008

[8] Z. Wang, A.A. Oberai “A mixed large eddy simulation model based on the residual based

variational multiscale formulation” Physics of Fluids vol 22, 2010

[9] I. Akkerman, K.G. van der Zee, S.J.Hulshoff “A variational Germano approach for

stabilized finite element methods” Computer methods in applied mechanics and

engineering vol 199 pp. 502-513,2010

[10] M. Landajuela BCAM Internship 2011

[11] S.J. Hulshoff “CFD 3: Large eddy simulation documents for the course” 2017 version

[12] S.J. Hulshoff “Computational modelling documents for the course” 2017 version

[13] J. Smagorinsky “General circulation experiments with primitive equations. I. The basic

experiment.” Monthly Weather Rev. 91:99-164,1963

[14] T.J.R. Huges, G. Sangalli “Variational multiscale analysis: the fine scale Green’s function,

projection, optimization, localization and stabilized methods” SIAM Journal of numerical

analysis, vol 45pp. 539-557,2007

82

[15] M. Germano , U:Piomelli, P. Moin,WH. Cabot “A dynamic sugrid-scale eddy viscosity

model” Physics of fluids 3(7): 1760-1765, 1991

[16] Lilly DK. A proposed modification of the Germano subgrid-scale closure method. Physics

of Fluids A; 4(3):633–635, 1992

[17] O. Colomes, S. Badia, R. Codina, J. Principe “Assessment of variational multiscale models

for the large eddy simulation of turbolent incompressible flows” Comput. Methods Appl.

Mech.Eng, 285 pp 32-63,2015

[18] R. Codina “Stabilized finite element approximation of transient incompressible flows

using orthogonal subscales” Comput. Methods Appl. Mech.Eng, 191 pp 4295-4231,2002

[19] Y. Yuan, “ A modified BFGS algorithm for unconstrained optimization," IMA journal of

Numerical Analysis, vol. 11, pp. 325-332, 1991.

[20] P. Wolfe “Convergence conditions for ascent methods," SIAM review, vol. 11, pp. 226-

235, 1969

[21] Y. Saad, M. Schultz “GMRES a generalize minimal residual algorithm for solving non

symmetric linear systems” SIAM Sci. Stat.Comput. vol 7 pp 856-869,1986

[22] W. E. Arnoldi.”The principle of minimized iteration in the solution of the matrix

eigenvalue problem” Quart. Appl. Math., 9 , pp. 17-29,1951

[23] L.J. Aguilar “Fondamenti di programmazione in c++. Algoritmi, strutture dati ed oggetti.”

McGraw-Hill

[24] D.T. Jeng “Forced Model Equation for Turbulence.” Physics of Fluids, 12 pp2010-2006

1969

[25] David H. Chambers “ Statistical Representations of Cohrernt Structures in Turbulent

Flow Fields.” Phd Thesis submitted to Univeristy of Illinois at Urbana Champaign, 1987

[26] F. Shakib “Finite element analysis of the compressible Euler and Navier-Stokes

equations.” PhD thesis, Stanford University, 1988

[27] T.J.R. Huges, M.Mallet “A new finite element formulation for computational fluid

dynamics: III. The generalized streamline operator for multidimensional advective diffusive

systems”,Comput. Methods Appl. Mech.Eng, 58 pp 305-328,1986

