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CHAPTER 1 

1. INTRODUCTION 

There are three types of simulation to deal with the numerical computation of a turbulent 

flow: DNS (direct numerical simulation), LES (Large eddy simulation)  and RANS (Reynolds 

averaged Navier Stokes).  

In general, the first one numerically resolve the three dimensional Navier Stokes Equation 

without involving approximation, except for those due to discretization; the second, after 

decomposing the flow into large scales contribution and small scales contribution,  explicitly 

calculate the large scale contribution whereas the small scale contribution is described as a 

model; the third one after decomposing the physical quantities in a mean part and a 

fluctuating part resolve the NS equation with the help of a closure model to describe 

Reynolds stress (k ε model is one of most used). 

We focus on the LES calculating the solution using the Variational Multiscale Method  

(VMM). In fact, a turbulent flow contains a large range of scales (the range is proportional to 

the physical Reynolds number) so the calculator needs too many operations to obtain a DNS. 

Instead using the VMM the solution is decomposed into  

𝑢 = 𝑢ℎ + 𝑢′  (1) 

Where 𝑢ℎ represents the numerically resolved scales and 𝑢′ the unresolved scales whose 

effect on the resolved scales are not calculated but estimated, thanks to a model term that 

will be inserted in the initial equation. This is useful because it reduces the CPU time needed 

to obtain the solution. So the main target is to choose a model that brings a solution as close 

as possible to the numerical exact one .The method used to adapt the model term to the 

analyzed problem is the Variational Germano Method that can be used to obtain 

dynamically the parameters on which it depends the model term. This method doesn’t need 

external input but only the numerically resolved scales solution (called coarse solution) so it 

is more general and more fitted to the specific problem analyzed. 
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CHAPTER 2 

2. LITERARY REVIEW 

The variational multiscale method is a procedure for deriving models and numerical 

methods capable to dealing with multiscale phenomena.  

Let the strong formulation of a PDE problem 

𝐿𝑢 = 𝑓  on a domain Ω          (2) 

u= g on the boundary Γ  

Where L is a general differential operator, 𝑔: Γ → ℝ and 𝑓: Ω → ℝ given functions 

 

Let 𝑆 ⊂ 𝐻1(Ω) and Let 𝑉 ⊂ 𝐻1(Ω) the trial solution space and the weighting function space 

where 

 u = g on Γ for every 𝑢 ∈ 𝑆 

 w = 0 on Γ for every 𝑤 ∈ 𝑉 

 

So the weak variational form of the PDE become 

B(w,u)=(w,f)            (3) 

Where ( , ) is the L2 inner product and B( , ) is a bilinear form that satisfy 

B(w,u)= (w,Lu)         (4) 

 

The purpose of VMM consists in decomposing the solution into  

𝑢 = 𝑢ℎ + 𝑢′   
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Figure 1 Coarse and fine scales separation 

And numerically solving uh finding an analytically expression for u’. 

It is possible to decompose u 

1) thanks to a filter operation, like it has been developed in [1] 

2) thanks to a Projection operator [2] 

In the first case it’s possible to use a lot of different filters ( for example a Fourier cut-off) 

characterized by their filter-width. In this way a spatial average of the PDE  is employed and 

the so called “filtered equation” takes  the place of the original PDE. To compute the 

numerical solution of the filtered equations is necessary solve a closure problem (in the case 

of NS equation it consist in computing 𝑢 ⊗ 𝑢 ̅̅ ̅̅ ̅̅ ̅̅ ̅) that entails some form of approximation; one 

possible solution is introducing the so called “sub grid scale stress” that can be estimated for 

example by the Smagorinsky eddy viscosity model (1963) as explained in [1]. The 

introduction of the sub grid stress in necessary to take into account of the unresolved scales 

u’. 

2) can be considered the evolution of 1) because, avoiding filters, it will eliminate a lot of 

numerical and analytical difficulties dealing with inhomogeneous or non-commutative filters, 

necessary for complex problems. Selecting the projector ℙ (a lot of choices are possible for 

example L2 projector H1 projector, projector nodal interpolant and so on) means 

decomposing V in a finite dimensional coarse scale subsystem �̅� and an infinite dimensional 

fine scale subsystem V’. (𝑉 = �̅� + 𝑉′) so 

�̅� = ℙ ̅𝑢    (5) 

𝑢′ = 𝑢 − ℙ ̅𝑢     (6) 

Similarly can be done for w. 



9 
 

Then it’s possible to decompose the original variational equation into a coarse scale 

equation and a fine scale one.  The first will be numerical solved inserting in it the 

approximate value of u’ estimated thanks to the second equation [2]. In fact, it is possible to 

demonstrate that u’ can be approximated by  

𝑢′ = �̃�′(�̅�, 𝑅𝑒𝑠 (�̅�))    (7) 

Where 𝑅𝑒𝑠 (�̅�) is the residual of the first equation and 𝐹 ̃’is the approximation of the exact 

differential functional F ’which would make the equation exact. 

It is clear that both decomposing solution need a closure model to calculate the solution. As 

written before, the first solution was the Smagorinsky Eddy Viscosity model; however it 

results always too diffusive and the coefficients on which it depends are difficult to find a 

priori. 

 So it has been developed the so called “Germano identity” and its variational counterpart 

([3] [4]-[5]) and its filtered one [6] to dynamically evaluate the coefficients without any a 

priori information about the PDE. 

In [4] a generalization of the variational Germano Identity (VGI) has been presented and has 

been exploited to evaluate the correction model coefficients using a last square method and 

dissipation one .The 1d linear advection equation and the decay of homogenous isotropic 

turbulence has been analyzed to underline how this solution results more accurate than the 

traditional static Smagorinsky approach. 

In[7] different  kinds of projectors are analyzed because, in order to obtain a solution as 

close as possible in a user defined optimal metric, different projectors are needed.  So the 

numerical solution depends on the metric chosen.  

In [6]it is proved that VMS formulation provides a recipe for constructing sub grid models 

that will produce the desired numerical solution while VGI provides a method by which it is 

possible to determine the value of the VMS parameters to obtain a solution to the wished 

one. 

In [8] the equation  

𝑢′ = �̃�′(�̅�, 𝑅𝑒𝑠 (�̅�))   

Is approximated by the first term of Taylor series expansion; so u’ is proportional to 𝑅𝑒𝑠 (�̅�). 

This formulation called RBVM (residual based variational multiscale) is simple and seems 

yielding good results. However the author’s  formulation can’t take into account the 

Reynolds stress term so he combines RBVM with a Smagorinsky model to take into account 

that part too. 
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In [9] a general Germano identity is delivered; it is similar to VGI but it can’t be just for 

variational numerical methods . An algorithm to solve the system of equation deriving from 

the new Germano identity  is proposed. Several approaches to compute the course 

stabilization parameter are presented pointing out possible solutions to introduce non 

homogenous boundary conditions and to develop a last squares method basis independent. 

At the end  it has been studied the relaxation algorithm to compute the fine scale 

stabilization parameter. 

In [5] a variational Germano identity was compared to a filtered form one both using a last 

square method and a dissipation method to compute the coefficients of the corrective 

model. The differences and the analogies are analyzed through the numerical study of the 

decay of homogenous turbulence. 

In this thesis different subgrid scales model are analyzed in order to find the one which can 

best approximate the solution of the Burger equation forced so that it can be possible to 

simulate a sort of 1D turbulence. The structure of the thesis is the following: in the section 

(3) are analyzed all the numerical models and methods used to find the solution; in the 

section (4) are described all the software feature of the application and the detail of the 

application structure; in (5) are described the analysis cases, so the different force terms and 

the different subgrid models used; in (6) the numerical analysis is performed and in (7) are 

presented the conclusion of this work. 
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CHAPTER 3 

3. ANALYSIS FEATURE 

3.1 Equation 

In this thesis we will consider the viscid Burgers equation. 

 So we try to solve numerically the nonlinear 1D parabolic PDE (Partial Differential Equation)  

𝑢𝑡 + 𝑢𝑢𝑥 − 𝜈𝑢𝑥𝑥 = 𝑓        (8) 

Where  

 𝜈 > 0 is the constant viscosity 

 f is the forcing term 

 (∙)𝑥 =
𝑑(∙)

𝑑𝑥
 

 (∙)𝑡 =
𝑑(∙)

𝑑𝑡
 

Burgers equations can be considered a simplification of a more complex model. So it is 

usually thought as a toy model, namely, a tool that is used to understand some of the inside 

behavior of the general problem. For example the Navier Stokes equation has the same 

structure of (1). 

As the matter of fact for the momentum incompressible Navier Stokes Equation is 

𝜌𝑢𝑡 + 𝜌𝑢𝑢𝑥 + 𝜌𝑣𝑢𝑦 + 𝜌𝑤𝑢𝑧 + 𝑝𝑥 − 𝜇(𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧) = 𝑓      (9) 

If we consider its 1D version and we neglect the pressure gradient it becomes 

𝜌𝑢𝑡 + 𝜌𝑢𝑢𝑥 − 𝜇𝑢𝑥𝑥 = 𝑓        (10) 

Which is the above viscid Burger equation. 

We will focus on this equation because of the nonlinear term which is the main obstacle to 

solve both analytically both numerically the Navier Stokes equation [10]. So we try to find a 

stable and consistent numerical method which can solve the Burger equation in order to 

apply it to the fluid dynamic equations. 

There are a lot of mathematical  and numerical method  to solve the Burger equation PDE. 

Among the mathematical ones, for the inviscid case, we can mention the characteristic 

method which try to reduce a PDE in a ODE (Ordinary Differential Equation) along the so 

called “characteristic curves” .So first we have to find the curves then solve the ODE at the 

end transform the solution to adapt it to the original PDE. On the contrary two of the most 

used numerical method are  
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 The upwind method, which try to discretize the hyperbolic partial equation in the 

direction of the propagation of the signal in the flow field (two example are the Lax 

Wendroff and the Lax Friedrichs schemes) 

 The Godunov methods whose feature is to solve the Riemann problems at the 

interfaces of the finite volume elements. It is the base to high order methods. 

 

However we decide to use a VMM to reduce the computational effort required to take into 

account a lot of different scales that is the main feature of a turbulent flow. 
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3.2 Finite-element Method (FEM) 

As suggested in [11] finite-difference methods are easy to apply using structured meshes, for 

which gently-curved domains can be effectively treated using generalized transformations. 

However, it can be difficult to generate high-quality structured meshes in very complex 

domains. In these cases the use of unstructured meshes (including e.g. 

triangles/tetrahedrons and other shapes) is often favored. Finite-difference methods can be 

derived for such meshes, but they are complex to deal with.  This is not a problem for the 

finite-element method, however, which instead considers an integral form of the problem 

which allows for elements with arbitrary shapes and orientations. Finite-element methods 

approximate the solution with combination of known functions. 

 

The main feature of a finite element method for the solution of a differential problem are 

 The weak formulation of the problem 

 The approximate solution of the variational equation through the FEM functions 

 

The first step to define a FEM is to approximate the solution as linear combination of known 

function called basis. We  can write as example for a 1D problem 

�̂� = ∑ 𝑎𝑖

𝑁

𝑖=1

Φ𝑖(𝑥)        (11) 

Where  

 �̂�  is the approximate solution of the problem 

 Φ𝑖(𝑥) basis functions. The basis function has to be linear independent. One of the 

most used basis function are the Lagrange linear basis which are 0 in all domain 

except for one point. 

 𝑎𝑖 are unknown coefficients. In the case of the linear Lagrange basis 𝑎𝑖 represent the 

value of u in a certain point of the domain. In other cases these coefficients has only 

a mathematical value. 

 N is the dimension of the space of Φ𝑖 

 

So the problem becomes how to evaluate the 𝑎𝑖 coefficients. It can be done in different 

ways. In the structural mechanics, it is used the Rayleigh-Ritz approach which is based on the 

minimization of the stationary potential energy of the system. So the procedure is to obtain 

𝑎𝑖 as the solution of an algebraic system obtained minimizing a functional associated to the 

global potential energy of the system. 

Another important method which lead to FEM is the Galerkin method or the weighted 

residual method. It is based on the use of the weak formulation of the differential problem 

If 𝐿𝑢 = 𝑓 is the equation of the strong formulation of the problem his weak counterpart will 

be 



14 
 

∫ 𝑤(𝐿𝑢 − 𝑓)𝑑Ω = 0     

Ω

  (12) 

For all the suitable w. In the Bobunov Galerkin method w is equal to the weighting functions. 

In the discrete case the weak formulation results in a system of N equations whose unoknow 

are the 𝑎𝑖 coefficients. In the Galerkin method is important choosing Φ𝑖 so that they are 

square-integrable. 

 

The finite element method is similar both to Galerkin both Rayleigh-Ritz ones. The main 

difference is that the basis function are define only on a finite element of the mesh. The 5 

steps, that a FEM procedure requires, are [12] 

 Divide the domain into elements. Is is note necessary if we have got a complete mesh 

 Define basis functions which span a small number of elements. Define the basis 

function means state the typology of the element. Different kind of finite element 

has different basis functions. 

 Compute per-element contributions to the weak form following a procedure that is 

similar to the Galerkin method 

 Assemble the element contributions into a global matrix. In the steady case the 

global matrix are called stiffness matrix. Since each element of the matrix is 

associated to a node of the mesh, the value that will been computed, will be the sum 

of the contribute of each elements  to which the node belongs. 

 
Figure 2 Stiffness matrix assembling 

 Apply the boundary conditions and solve the resulting system. Applying the boundary 

condition means adding or removing equation in basing on the type of the boundary  

condition chosen. 
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Fem can be used in complex geometry analysis because, once the mesh is defined, all other 

step are easily implemented since they are not influenced by the form of the domain. 

There are2 approach to deal with an unsteady discrete finite element problem. The first one 

is the semi discrete approach where the time derivative is initially left as continuous variable 

of the formulation. his results in a system of ordinary differential equations which can be 

integrated using conventional time-marching techniques. In this case a matrix, called mass 

matrix, is associated to the time dependent term of the equation. So the procedure has to 

assemble not only the stiffness matrix but also another one. The other one is the fully 

discrete approach consist in considering the time as one of the dimension of the domain. So 

it is necessary to define finite elements with one more discretization. For example in 1D 

problem we need to use 2D finite elements. They are very useful in case of changing 

domains since, usually, because the time step are evaluate in a 2D problem one by one. So 

also in this case the previous time step can be used as initial condition for the following one. 

The big trouble is that it is very difficult cope with the stability of the computation. 

 

The code used for this thesis works thank to a semi discrete approach: in the following 

chapters the complete structure of the app will be described. 

  



16 
 

3.3 Variational Multiscale Method (VMM) 

As far as computation fluid dynamic is concerned there are several different kind of 

simulation that can be done to solve a PDE so to decide the structure of the numerical 

method, as it was already written in the introduction: DNS, LES and RANS. 

The big difference between a DNS and a LES of a multiscale flow is that the DNS has to take 

into account all of them (from the biggest to the Kolmogorov ones); a LES splits the scales in 

two parts: the resolved scales �̅� and the unresolved scales, which need a model to be 

described. So the goal of a LES is to find �̅� and not u finding the best approximation for u’ in 

order to obtain a �̅� as close as possible to u.  

The first attempt to define a model which can close the problem of the subgrid scale was 

done by Smagorinsky [13].  

He considered the filtered Navier Stokes equations 

𝑢𝑡̅̅̅ + ∇ ∙ (𝑢⨂𝑢̅̅ ̅̅ ̅̅ ) + ∇�̅� = 𝜈∆�̅� + 𝑓 ̅       (13) 

because of the fact that 𝑢⨂𝑢̅̅ ̅̅ ̅̅   involves non filtered velocity he defined the subgrid stress 

𝑇 = �̅�⨂�̅� − 𝑢⨂𝑢̅̅ ̅̅ ̅̅         (14) 

He state that the dilational part of T can be subsumed by �̅� while the deviatoric part can be 

model as 

𝑇𝑠 = 2𝜈𝑡∇𝑠�̅�          (15) 

This equation is the most important part of the Smagorinsky eddy viscosity model. We will 

describe better the terms contained in the previous formulation 

 𝜈𝑡 = (𝐶𝑠∆)2|∇𝑠�̅�| is the eddy viscosity 

 ∇𝑠�̅� =
1

2
(∇�̅� + (∇𝑠�̅�)𝑇) 

 |∇𝑠�̅�| = (2∇𝑠�̅� ∙ ∇𝑠�̅�)1 2⁄  

 𝐶𝑠is the so called “ Smagorinsky constant” 

This model presents a lot of problems for example 

 𝑇𝑠 is not asymptotic close to the wall; in particular 𝑇𝑠 doesn’t vanish at walls 

 The value of 𝐶𝑠 , chosen for the study of the homogeneous isotropic turbulence, 

tends to be too big if used in other simulation (like the turbulent channel) 

 The Smagorinsky model produces excessive numerical dumpingof the resolved 

structure in transition, resulting in incorrect growth rate of perturbations 

As a consequence has been developed the Germano method (explained in the following 

chapter) and the VMM that we are going to describe. 
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First of all we will define mathematically the problem  

Let Ω an open bounded domain and Γ his boundary. We want to find 𝑢: Ω → ℝ such that  

𝐿𝑢 = 𝑓  in Ω 

u= g  on Γ  

Where (as explained in the previous chapter) 

 L is a general differential operator 

  𝑔: Γ → ℝ and  f: Ω → ℝ given functions 

Moreover f is the so called forcing function and it will be one of the main parameter of the 

analysis.  

We define again 

Let 𝑆 ⊂ 𝐻1(Ω) and Let 𝑉 ⊂ 𝐻1(Ω) the trial solution space and the weighting function space 

where 

 u = g on Γ for every 𝑢 ∈ 𝑆 

 w = 0 on Γ for every 𝑤 ∈ 𝑉 

In fact we try to solve the problem in the so  called weak formulation  or the weighted 

residual method. The variational form of the problem will be the following  

∫ 𝑤(𝐿𝑢 − 𝑓)𝑑Ω = 0          (16)

Ω

 

Which can be written in the compact notation find 𝑢 ∈ 𝑉 so that 

𝐵(𝑤, 𝑢) = (𝑤, 𝐿𝑢)Ω = (𝑤, 𝑓)  

Where (∙,∙) is the standard L2 inner product and  𝐵(𝑎, 𝑏) = (𝑎, 𝐿𝑏) 

The VMM proposed split u in 2 parts the resolved scales �̅� and the unresolved scales u’. 

Similarly we split the weighting function into �̅� and w’. So we try to find �̅� in the finite 

dimensional subspace 𝑆̅ (�̅� is finite dimensional too) where S’ and V’ are infinite 

dimensional. We have to define projectors or filters to define adequately �̅� and �̅� but we 

discuss this aspect later.  

Since  

𝑢 = �̅� + 𝑢′   

And 



18 
 

𝑤 = �̅� + 𝑤′      (17) 

The problem becomes 

𝐵(�̅� + 𝑤′, �̅� + 𝑢′) = (�̅� + 𝑤′, 𝑓)         (18) 

Since �̅� and w’ are independent we can split the problem in 2 parts 

𝐵(�̅�, �̅�) + 𝐵(�̅�, 𝑢′) = (�̅�, 𝑓)            (19) 

𝐵(𝑤′, �̅�) + 𝐵(𝑤′, 𝑢′) = (𝑤′, 𝑓)         (20) 

The first one is the resolved equation (coarse scale equation)whose solution is the exact one 

if u’=0 (DNS case). However in LES u’ is not 0 but it has to be estimated solving 

approximately the second equation (fine scale equation). If we know u’ we can substitute it 

in the first one and find the solution of the problem.  

As can be seen in [1],thanks to the definition of a Green function g’, we can rewrite the finer 

scale equation to obtain a definition of u’(this is true only because we have linearized the 

second equation: the biggest part of the energy is contained in the coarse scales) 

𝑢′ = ∫ −g′(𝐿�̅� − 𝑓)dΩ = M′

Ω

(𝐿�̅� − 𝑓)         (21) 

Where M’ is an integral operator. 

We have to underline that 𝐿�̅� − 𝑓 is the coarse scale residual sol u’ derives from the coarse 

scale solution and the g’ is the Green function associated to the problem. If we knew the 

exact formulation of g’ we would exactly solve the problem ( the discretization error is the 

unresolved scales modeling error). 

Generally if we use, like it happens in this thesis, a mesh based method (FEM) �̅� are called 

resolved scales and u’ are the subgrid scales. So the coarse scale equation need a subgrid 

scale model because we don’t know the exact formulation of g’. We have to remark also that 

the previous formulation has  to be lightly modified to take into account the differences in 

slope in case of linear finite element mesh. 

If we want to best describe the problem we have to reduce the subgrid scale influence since 

we can only estimate them, so we want that the biggest part of the turbulent energy is 

contained in the coarse scale. However we use LES to reduce the computational effort not 

solving all the scale of the problem. So we have to find a compromise.  

If now we focus on our problem so on the burger equation  

𝑢𝑡 + 𝑢𝑢𝑥 − 𝜈𝑢𝑥𝑥 = 𝑓   

We can write 
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𝐿𝑢 = 𝑢𝑡 + 𝑢𝑢𝑥 − 𝜈𝑢𝑥𝑥        (22) 

So the weak formulation of the problem is 

(𝑤, 𝑢𝑡) + (𝑤, 𝑢𝑢𝑥) − (𝑤, 𝜈𝑢𝑥𝑥) = (𝑤, 𝑓)              (23) 

We can split u and w into coarse and fine scales 

(�̅� + 𝑤′, �̅� + 𝑢′𝑡) + (�̅� + 𝑤′, (𝑢̅̅ ̅ + 𝑢′)(�̅� + 𝑢𝑥
′ )𝑥) − (�̅� + 𝑤′, 𝜈(�̅� + 𝑢′)𝑥𝑥)

= (�̅� + 𝑤′, 𝑓)              (24) 

Then we can split the equations 

The coarse scale one 

(�̅�, �̅� + 𝑢′𝑡) + (�̅�, (�̅� + 𝑢′)(�̅� + 𝑢′)𝑥) − (�̅�, 𝜈(�̅� + 𝑢′)𝑥𝑥) = (�̅�, 𝑓)             (25) 

The subgrid scale one 

(𝑤′, �̅� + 𝑢′𝑡) + (𝑤′, (�̅� + 𝑢′)(�̅� + 𝑢𝑥
′ )𝑥) − (𝑤′, 𝜈(�̅� + 𝑢′)𝑥𝑥) = (𝑤′, 𝑓)           (26) 

Now we will modify the first equation in this way 

 We assume that  (�̅�, 𝑢′𝑡) = 0 because we assume that the unresolved scales 

respond almost immediately to perturbation 

 Integrating by part     (�̅�, 𝜈(�̅� + 𝑢′)𝑥𝑥) = −(�̅�𝑥, 𝜈(�̅� + 𝑢′)𝑥) (w is 0 on Γ) 

 We can consider negligible (�̅�𝑥, 𝜈𝑢′𝑥) because the scale at where the viscous effect 

are important are far from �̅� 

 The advective nonlinear terms can be modify to best fit the problem to a numerical 

method integrating by part term by term  

(�̅�, (�̅� + 𝑢′)(�̅� + 𝑢𝑥
′ )𝑥) =  −(�̅�𝑥, (�̅� + 𝑢′)(𝑢̅̅ ̅ + 𝑢′))

=  −(�̅�𝑥, (�̅�)2) − 2(�̅�𝑥, 𝑢′𝑢)     (27) 

We have to remark that we have considered a problem characterize by homogenous 

boundary condition and we have neglected the term with the term u’2. 

The result is  

(�̅�, 𝑢𝑡)  − (�̅�𝑥, (�̅�)2) − 2(�̅�𝑥, 𝑢′�̅�) + (�̅�𝑥, 𝜈�̅�𝑥) =  (�̅�, 𝑓)  (28) 

As far as the second equation is concerned we model the fine scale in this way 

𝑢′ =  𝜏𝑅(�̅�)  (29) 

Where 𝑅(�̅�) = 𝐿�̅� − 𝑓 so the coarse scale residual. 

So τ is a functional which has to best approximate the exact integral operator M. Since the 

equation is 1 D τ will be a real number. The value of τ depends on a vector of parameter c  

which has to be evaluate to obtain the best value of u’.  τ is known in very few simple cases: 
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for example for the advection diffusion equation [14]. These cases are useful because thanks 

to the it is possible to test  new numerical methods which try to best represent τ.  

So introducing the u’ formulation in the first equation we are adding numerical diffusivity to 

the coarse scale problem in order to taking into account the subgrid scales too. 

Finally the variational problem results 

Find �̅� ∈  �̅� so that 

 𝐵(�̅�, �̅�) + 𝑀(�̅�, �̅�, 𝑐, 𝑓, ℎ) = (�̅�, 𝑓)            (30)       

 �̅�(0, 𝑡) = �̅�(𝐿, 𝑡) = 0  (L is the end of the domain t is time) 

 �̅�(𝑥, 0) = 0 

 𝐵(�̅�, �̅�) = (�̅�, 𝑢𝑡)  − (�̅�𝑥, (�̅�)2) + (�̅�𝑥, 𝜈�̅�𝑥)             (31) 

 𝑀(�̅�, �̅�, 𝑐, 𝑓, ℎ) = −2(�̅�𝑥, 𝑢′�̅�) = −2(�̅�𝑥, 𝜏𝑅�̅�)          (32) 

 ℎ is a characteristic dimension of the mesh used 

 𝑅 = (�̅�, 𝑢𝑡)  − (�̅�𝑥, (�̅�)2) − (�̅�, 𝑓)               (33)    

The second derivatives vanish since we are considering linear FEM 
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3.4 Variational Germano Method (VGM) 

The purpose of this chapter is to explain the methods to evaluate the c coefficients of the 

𝑀(�̅�, �̅�, 𝑐, 𝑓, ℎ) term. If we knew the values of the c’s components we would evaluate M and 

solve the coarse scale equation. To do that we will exploit the so called Germano Identity or 

more precisely his variational form: the Variational Germano Identity (VGI). It was first 

developed his filtered counterpart in [15] for the Navier Stokes equation; however in this 

thesis has been used the VGI.  

As suggested in [4] first of all we require that the solution of the numerical method 𝑢ℎ is 

equal to 𝑣ℎ = ℙℎ𝑢 which is the optimal representation of the solution 𝑢 in 𝑉ℎ. We have to 

specify that  

 𝑉ℎ ⊂ 𝑉 is a finite dimensional subspace  

 ℙℎ: 𝑉 → 𝑉ℎ is an appropriate operator. We can define ℙℎ as nodal interpolant of the 

exact solution on 𝑉ℎ or an 𝐿2 or 𝐻1 projector 

For example if we are considering a 𝐻1 projector we will use the 𝐻1 semi-norm: ℙℎ𝑣 is 

defined as the argmin𝑣ℎ∈𝑉ℎ|𝑣 − 𝑣ℎ|1
2 where |∙|1 is the 𝐻1 semi norm. We can define a 

similar formulation for the 𝐿2 or the 𝐻0 (or others)projectors. 

We have to remind that 𝐻1 is the Sobolev space of functions that are square-integrable and 

whose derivatives are also square-integrable while 𝐿2 is the space of scalar function which 

are only square-integrable. 

So, since 𝑣ℎ = 𝑢ℎ, we can write  

             𝑀(𝑤ℎ, 𝑢ℎ, 𝑐, 𝑓, ℎ) = −𝐵(𝑤ℎ, 𝑢ℎ) + (𝑤ℎ, 𝑓)∀ 𝑤ℎ ∈ 𝑉ℎ  (34)  

If N is  the number of the coefficients of the vector c we will write 𝐽 ≥ 𝑁 more equations  

𝑀(𝑤ℎ𝑗 , 𝑢ℎ𝑗 , 𝑐, 𝑓, ℎ𝑗) = −𝐵(𝑤ℎ𝑗 , 𝑢ℎ𝑗) + (𝑤ℎ𝑗 , 𝑓)    ∀ 𝑤ℎ𝑗 ∈ 𝑉ℎ𝑗       𝑗 = 1, … . , 𝐽  (35) 

Where 

 𝑉ℎ𝑗 ⊂ 𝑉ℎ𝑗−1 ⊂. . . ⊂ 𝑉ℎ2 ⊂ 𝑉ℎ1 ⊂ 𝑉 are finite dimensional function subspaces 

 ℙℎ𝑗: 𝑉 → 𝑉ℎ𝑗 is an appropriate map which define a the optimal representation of 𝑢  

in 𝑉ℎ𝑗 

 

We will choose the weight function in 𝑉ℎ𝑗 ∩ 𝑉ℎ = 𝑉ℎ𝑗. So we can obtain the Variational 

Germano Identity subtracting the two previous equation: 

𝑀(𝑤ℎ𝑗 , 𝑢ℎ𝑗 , 𝑐, 𝑓, ℎ𝑗) − 𝑀(𝑤ℎ𝑗 , 𝑢ℎ, 𝑐, 𝑓, ℎ) = − (𝐵(𝑤ℎ𝑗 , 𝑢ℎ𝑗) − 𝐵(𝑤ℎ𝑗 , 𝑢ℎ))     ∀ 𝑤ℎ𝑗

∈ 𝑉ℎ𝑗       𝑗 = 1, … . , 𝐽  (36) 
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The Variational Germano Method (VGM) allows us to find the coefficients of c without the 

solution of the initial PDE or any external input constant. In order to reduce the variables we 

will express 𝑢ℎ𝑗  in terms of 𝑢ℎ. It is possible if 𝑢ℎ𝑗 = ℙℎ𝑗𝑢ℎ  so it is required that ℙℎ𝑗ℙℎ =

ℙℎ𝑗 . For example it is true if 

 ℙℎ𝑗  and ℙℎare interpolation operators 

 ℙℎ𝑗  and ℙℎ are L2 projectors (like in this thesis) 

 𝑉ℎ ⊂ 𝐻𝑚 and ℙℎ𝑗  and ℙℎ are 𝐻𝑛 projectors with 𝑛 ≤ 𝑚 

So the VGI will become 

𝑀(𝑤ℎ𝑗 , ℙℎ𝑗𝑢ℎ, 𝑐, 𝑓, ℎ𝑗) − 𝑀(𝑤ℎ𝑗 , 𝑢ℎ, 𝑐, 𝑓, ℎ) = − (𝐵(𝑤ℎ𝑗 , ℙℎ𝑗𝑢ℎ) − 𝐵(𝑤ℎ𝑗 , 𝑢ℎ))     ∀ 𝑤ℎ𝑗

∈ 𝑉ℎ𝑗   (37)          

 𝑗 = 1, … . , 𝐽   

So we have got J equations to evaluate  the N coefficients of c. It is possible to write J 

equations to evaluate the coefficients of c only in the are considering J different refined 

meshes in order to compute the Germano Identity equation for each level. As a 

consequence we need J+1 meshes to solve the problem: 1 coarse mesh and J finer than the 

first one. This is the reason why the term ℎ𝑗  appear in the first term of the VGI. 

First of all we must define the weight functions w. There are a lot of methods thanks to 

which we can do it and solve the problem :  

 Dissipation method:  if 𝑁 = 𝐽 we choose 𝑤ℎ𝑗 = ℙℎ𝑗𝑢ℎ  so the system consist in J 

scalar equations 

𝑀(ℙℎ𝑗𝑢ℎ , ℙℎ𝑗𝑢ℎ, 𝑐, 𝑓, ℎ𝑗) − 𝑀(ℙℎ𝑗𝑢ℎ , 𝑢ℎ, 𝑐, 𝑓, ℎ)

= − (𝐵(ℙℎ𝑗𝑢ℎ , ℙℎ𝑗𝑢ℎ) − 𝐵(ℙℎ𝑗𝑢ℎ , 𝑢ℎ))  (38)   

 ∀ 𝑤ℎ𝑗 ∈ 𝑉ℎ𝑗            𝑗 = 1, … . , 𝐽 

  We have only to compute the solution of the scalar algebraic system. 

 Least- square method [16]: we choose 𝑤ℎ𝑗 = 𝜙𝐴

ℎ𝑗(𝑥) where 𝜙𝐴

ℎ𝑗(𝑥) 𝐴 = 1, … , 𝑁ℎ𝑗 

are functions which span 𝑉ℎ𝑗.  

Than we define the residual  

𝑟𝐴
𝑗

= 𝑀 (𝜙𝐴

ℎ𝑗 , ℙℎ𝑗𝑢ℎ, 𝑐, 𝑓, ℎ𝑗) + 𝐵 (𝜙𝐴

ℎ𝑗 , ℙℎ𝑗𝑢ℎ) − (𝜙𝐴

ℎ𝑗 , 𝑓) (39) 

And we will choose as the coefficients of c those which minimize the residual. We can 

exploit different algorithms to do that. 

So, when c has been evaluated thank to VGM, the model term of the coarse scales equation 

𝑀(𝑤ℎ, 𝑢ℎ, 𝑐, 𝑓, ℎ) can be computed and we can get the coarse scale solution. We need to 
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define the structure of the model term in order to best represent the approximation of the 

Green operator. 

However about VGM we  have to remark that  

 We can solve the Germano system because we know all the values of the formulation 

(obviously except from c ) 

 If c is not constant in the domain c has to be evaluate in each subdomain where it can 

be consider constant 

 C depends on the definition of the optimal solution (and then of the choice of ℙℎ). In 

[7] is proved that the definition of the norm thank to which evaluating the best 

approximation influence the global solution. It is important to remark that the 

following coarse scale solution won’t be optimally close to the exact value (for 

example obtained through DNS), so it is important the choice of ℙℎ. In this thesis we 

will consider a L2 projector so we will minimize the L2 norm 

 In [4] has been proved that this procedure works better than the Smagorinsky model 

because it is too diffusive  

In this work the least square method has been used. 

The VGM is very useful because it can be used easily with unstructured grids. The only 

problem is defining the function 𝑤.Moreover it can be used to determine parameters for a 

generic numerical method. 

On the contrary the filtered version of the Germano identity explained in [5] [14] presents a 

lot of difficulties to be used.  First of all because it is necessary to assume that the filtering 

and the derivatives operation are commutative. Moreover we need a filtering operation 𝔽𝐻  

so that 𝔽𝐻 = 𝔽𝐻𝔽ℎ (where 𝔽𝐻 𝔽ℎare two special filter where 𝐻 > ℎ). For non homogenous 

flows, like the channel turbulent flow, it is impossible to aware this problems which will 

become the cause of important numerical errors. 

If we avoid this difficulties, for example analyzing a homogenous isotropic turbulence 

problem, the VGM and its filtered counterpart presents other differences 

 In the filtered case the model term is a tensor in the VGM a vector 

 In the VGM  the model term contains every term of the semi linear form while in the 

filtered only the non linear term contributes 

 The constraint on the model term of VGM is weaker than the filtered method: the 

effect of the  model on weighting functions outside of 𝑉ℎ is negligible. 

Consequently the VGM results a more robust method so it is likely to be used even if both 

them present the big advantage of not needing external input to evaluate the model term 

coefficients.  
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3.5 Orthogonal Subscales (OSS) and Algebraic Subgrid Scales (ASGS) 

In the previous chapter, one of the VMMs has been obtained and explained. However it is 

possible to define different VMMs depending on the subgrid scale approximation that is 

considered. In this paragraph the differences between the ASGS (Algebraic SubGrid Scales) 

model and the OSS (Orthogonal SubScales) model are briefly pointed out.  

The ASGS model is the VMM already described. It defines  

𝑢′ = ∫ −g′(𝐿�̅� − 𝑓)dΩ =

Ω

 𝜏𝑅(�̅�)   

It is important to remember that 𝑢 ∈ 𝑉, while �̅� ∈ �̅� which is a finite subspace of 𝑉. As a 

consequence 𝑢′ ∈ 𝑉′ and 𝑉 = �̅� ∪ 𝑉′. However since  𝑢′ =  𝜏𝑅(�̅�) and so 𝑢′ is proportional 

to 𝑅(�̅�) they belong to the same space.  

It is possible to define the selection of the space for the approximation of the subscales as 

determined by a projection 𝒫 [17]. In this case obviously  𝒫 = 𝐼. 

It is possible to obtain different VMM models changing the projection 𝒫. 

In fact, the OSS model, it’s obtained following the projection definition 

𝒫 = Πℎ
⊥ = 𝐼 − Πℎ      (40) 

Where Πℎ is the projection onto the FE space.  

This projection consists in selecting the space of subscales orthogonal to the FE space. (so 

orthogonal to �̅�). As suggested in [17] the main motivation of the method is that a stability 

estimate for the projection onto the FE space of the convective term can already be 

obtained in the standard Galerkin method and so the only “missing” part is the orthogonal 

one. 

In [18] it proved that OSS method introduces less dissipation in the coarse scale equation 

than ASGS, which permit to obtain good results since the approximate solution can capture 

the peaks very well.  
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3.6 Algorithm for the Solution of the Algebraic Systems 

In this part we will briefly describe the algorithms used to solve the Variational Germano 

Method’s system and the coarse scale equation one. It is use respectively the BFGS 

(Broyden-Fletcher-Goldfarb-Shanno algorithm) and the GMRES (Generalized Minimal 

RESidual method) 

3.6.1 Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS) 

The BFGS has the goal of finding the coefficients of the coarse scale equation closure model 

thanks to the Variational Germano Identity. In particular, as it has already been written 

before, it is necessary to minimize the residual 𝑅 of the least-square formulation. Like it is 

suggested in [3] 𝑅 is minimized when ∇𝑅 = 0. BFGS is a very efficient scheme which can 

solve ∇𝑅 = 0. 

First of all we consider a first order Taylor expansion of   ∇𝑅 

∇𝑅(𝑐) = ∇𝑅(𝑐0) + 𝐵(𝑐0)(𝑐 − 𝑐0) = 0           (41) 

Where 𝐵 is the Hessian of 𝑅 with respect of 𝑐. We set 𝑐0 = 𝑐𝑛 and 𝑐 = 𝑐𝑛+1 and we obtain 

𝑐𝑛+1 = 𝑐𝑛 − 𝛼𝑛𝐵𝑛
−1∇𝑅(𝑐𝑛)          (42) 

Then the main parameters of the algorithm are presented 

 𝛼𝑛 is a parameter that controls the step length. It has been evaluate as suggested in 

[19] thanks to the inexact line-search algorithm.  

 𝐵𝑛 is an approximation to the Hessian at step  𝑛. We have to  remark that 𝐵𝑛 = 𝐼 

 𝐵𝑛+1 = 𝐵𝑛 +
𝑦𝑛𝑦𝑛

𝑇

𝑦𝑛
𝑇𝑠𝑛

−
𝐵𝑛𝑠𝑛𝑠𝑛

𝑇𝐵𝑛

𝑠𝑛
𝑇𝐵𝑛𝑠𝑛

            (43)  

 𝑠𝑛 =  𝛼𝑛(𝑐𝑛+1 − 𝑐𝑛)                              (44) 

 𝑦𝑛 = ∇𝑅(𝑐𝑛+1) − ∇𝑅(𝑐𝑛)                    (45) 

The procedure will be stopped when the L2 norm of ∇𝑅 is minor than a tolerance value or 

when the L2 norm of the search direction 𝐵𝑛
−1∇𝑅(𝑐𝑛) is small enough [20].  

 

3.6.2 Generalized Minimal RESidual Method (GMRES) 

GMRES is a sort of generalization of the least square method which works very well solving 

not too big algebraic linear system.  It is used to evaluate �̅�(𝑥) in the domain solving the 

coarse scale equation. 

If the system is written in the form 



26 
 

𝐴𝑥 = 𝑏         (46) 

 A matrix of the system 

 b vector known 

 x unknown vector 

It is possible to find the approximate solution �̃� using an iterative procedure so that the 

norm of the  residual ‖𝐴�̃� − 𝑏‖2 is minimum. An iterative procedure is usually preferred in 

case of big or sparse matrix. GMRES is an orthogonal method  because, starting with a trial 

solution 𝑥0, it looks for �̃� in the space 𝑥0 + 𝐾 so that (𝐴�̃� − 𝑏) ⊥ 𝐿  

Where 𝐾 is the space where we are looking for the solution and 𝐿 is the space of the 

weighting function. 

So if 𝑟0 = 𝑏 − 𝐴𝑥0 we can write that the problem become find �̃� so that 

�̃� = 𝑥0 + 𝛿   𝛿 ∈ 𝐾         (47) 

( 𝑟0 − 𝐴𝛿, 𝑤)  𝑤 ∈ 𝐿        (48) 

We then define 𝑉 = [𝑣1, … . , 𝑣𝑚] and 𝑊 = [𝑤1, … , 𝑤𝑚]  matrix whose columns are the basis 

of 𝐾 and 𝐿. So we can write  

�̃� = 𝑥0 + 𝑉𝑦        (49) 

(𝑊𝑇𝐴𝑉)𝑦 = 𝑊𝑇𝑟0       (50) 

And so  

�̃� = 𝑥0 + 𝑉(𝑊𝑇𝐴𝑉)−1𝑊𝑇𝑟0        (51) 

In [21] was explained that GMRES is an algorithm which follow the above procedure where 

𝐾 belongs to the Krylov subspace. The Krylov subspace 𝐾𝑚 is made by orthonormal vectors 

whose form is 𝑝(𝐴)𝑟0  where 𝑝 is a polynomic of A. If 𝑥 ∈ 𝐾𝑚  𝑥 = {𝑟0, 𝐴𝑟0, 𝐴2𝑟0, … , 𝐴𝑚𝑟0}. 

However to avoid linear dependent vectors it is commonly used the Arnoldi procedure [22]. 

Resuming the GMRES step are 

 First, thanks to Arnoldi procedure, it creates an orthonormal base 𝑉𝑚 

 Then, since  �̃� = 𝑥0 + 𝑉𝑚𝑦𝑚, GMRES try to find 𝑦𝑚 so that the norm residual of 

𝑏 − 𝐴�̃� is minimized 
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CHAPTER 4 

4. CODE STRUCTURE 

4.1 Object Oriented Programming (OOP) 

In this paragraph it is briefly described the OOP, which is the procedure used to write the 

code use for the thesis. 

The Object Oriented Programming (OOP) was created by Nygaard in 1969 in order to create 

a software which deal with abstract objects characterized by their own function instead of 

traditional programming method.  

An object is something typified by the data and the operation which can operate with it. It is 

possible to work with an object having no idea of its structure thanks to the operation it 

allows to do [23]. 

A class is a set of the objects that has the same structure and functions. More precisely, the 

classes are Abstract Data Type, and they state what kind of data they can represent. Thank 

to that feature it is possible to use a class (or better it is possible to use the interface 

functions that characterize the class) without knowing the details of its implementation. The 

collocation of data and functions in a single entity, the class, is the central idea of the OOP. 

To define a class are necessary 2 operations 

 Declaration: it states the data and the member function (called methods) of interface 

 Definition of the methods: it states the implementation of the methods. To do that, it 

is important to define the type of the output of the function, its name, the list of the 

any input and the code of the function itself. 

All the data and the methods of a class are private, except for the so defined public data. 

Instead, the protected data are those which a derivative class can deal with. This distinction 

of the data contained in a class is called information hiding and it helps to prevent sharing 

data from a class to another. 

As a consequence, an object is an instance of a class. An object belongs to a class like a 

variable to his type. To access to the public data of an object or to use a function of its class 

it is necessary to use the point (∙) so the structure will be objectname.Namefunction(input) 

(or namedata). 

Two of the main methods of a class are the constructor and the destructor. If they are not 

implemented C++ will create a default version of them. The constructor consists in a class 

function which can initialize an object when it is created without using any other member 
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function. A constructor can receive some data or function as input to define its internal 

feature. Instead, a destructor is a function which delete the object to save memory and it 

can receive value as input 

A derivative class is a subclass of a pre-existence class. It inherits data and methods because 

an object of the derivative class belongs to pre-existence one. From a practical point of 

view, this fact allows to transmit a set of common characteristics from a base class to a 

derivative without this leading to a duplication of the code, while offering the opportunity to 

adapt or extend the behavior to cases of specific use.  A subclass can be private protected or 

public. If it is: 

 Public: it can access to public or protected elements of the original class (the public 

data will remain public and the protected one will remain protected)  

 Protected: it can access to the public and protected elements of the original class but 

they become protected 

 Private: it can’t access to any element of the original class 

It is important to remark that a class can inherit methods and data from different classes: it 

is the so called “multiple inheritance”. 

Another important feature of OOP is the polymorphism, i.e. the property thanks to that 

different objects of the same pre-existent class (but belonging to different subclasses) can be 

characterized by functions with the same name but different implementation. So we can use 

the same interface dealing with different class objects .In order to use the polymorphism we 

have to define a “virtual” function in the original class and then in each subclass implement 

it in different ways. It is important to remark that we need a pointer to use the “virtual” 

function (so instead of ∙ it is required ->). 

The OPP is very useful because, using a class, the programmer doesn’t need to define every 

time all the properties of an object. In particular, in order to work with fluid dynamic 

equations, it is very useful define very general classes related to the elements of the 

equations that you always deal with. For example, it is very useful define a class related to a 

general numerical model , or a class which contains all the information to define a basis 

function or one for the value source term (the force term of a differential equation) or for a 

mesh. Then it is possible to define several subclasses whose code implement specific 

feature. If we are considering the “model” class, one of its subclass can be a Finite Element 

model.  

As a consequence it is possible to build a lot of classes a priori, without needing information 

of the specific problem you are going to solve. There are several useful libraries like MEX and 

MFEM which store a lot of pre-implemented class and subclass that are very useful because 

they already contains the biggest part of the functions and the data that are requested for a 
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general (but not only general) analysis. But they are useful also because, if you have solved a 

specific problem, you can add to the library the classes and the functions you have 

eventually written, in order to help the next user to deal with the same problem, or use the 

same method to another one. However it is very important, before adding new class to the 

library, checking that there are not a pre-existent class  to perform that task. 

So thanks to these libraries you have to write only the parts of the code that are specific for 

your application and that can help you to focus on the main characteristic of your analysis. 

Moreover, having classes which deal with specific part of the problem you can perform a lot 

of operations internal to the object and share only the data that are required by other object 

or functions. 

In this work the above mentioned libraries MEX and MFEM have been used to create the 

code. In the following lines we will briefly describe them and the main classes that has been 

exploited.  

4.2 MFEM 

MFEM is the so called Finite Element Discretization Library. It contains all the classes that 
you need in order to perform a finite element analysis. The class are divided into 4 big 
groups 

 Main mesh classes: this group contains 4 high level classes that are 
 Mesh: a class of abstract meshes 
 NCMesh: A class for non-conforming AMR on higher-order hexahedral, quadrilateral 

or triangular meshes. It is a Mesh’s subclass 
 Element: class of abstract element. Some of its subclasses are for example triangle, 

exagon and so on 
 Element transformation 

 Main finite element classes: this group contains several high level classes that are 
 FiniteElement: which is an abstract class for Finite Elements. Its subclasses are scalar 

finite element and vector finite element whose subclasses are respectively  
a) nodal finite element, positive finite element, NURBS finite element 
b) quadrilateral finite element, segment finite element, hexaedron finite element 
 

 FiniteElementCollection which is the collection of finite elements from the same 
family in multiple dimensions. This class is used to match the degrees of freedom of a 
FiniteElementSpace between elements, and to provide the finite element restriction 
from an element to its boundary. 

 FiniteElementSpace: responsible for providing FEM view of the mesh, mainly 
managing the set of degrees of freedom. 

 GridFunction: class for grid function or vector with associated FE space 
 BilinearFormIntegrator and LinearFormIntegrator: abstract base classes for linear and 

bilinear integrator 
 LinearForm, BilinearForm and MixedBilinearForm: classes for linear form or vector 

with associated finite element space and linear form integrators. In the bilinear case 
it deals with Matrices and not vectors. 
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 Main linear algebra classes and sources: this group contains several high level classes 
that are 
 Operator: a class of abstract operators 
 Vector: a class of abstract vectors 
 DenseMatrix and SparseMatrix : a class of data type dense and sparse matrix. 
 parse smoothers and linear solvers 

 Main parallel classes: this group contains several high level classes that are 
 ParMesh: class for parallel meshes 

 ParNCMesh A parallel extension of the NCMesh class. The basic idea is that all 

processors share the coarsest layer ("root elements"). This has the advantage that 

refinements can easily be exchanged between processors when rebalancing since 

individual elements can be uniquely identified by the index of the root element and a 

path in the refinement tree.  

 ParFiniteElementSpace: a class of abstract parallel finite element space. 

 ParGridFunction: class for parallel grid function. 

 ParBilinearForm and ParLinearForm: class for parallel bilinear and form. 

 HypreParMatrix and HypreParVector: wrapper for hypre's ParCSR matrix class. Hypre 

stand for high performance preconditioner. 

 HypreSolver and other hypre classes: abstract class for hypre's solvers and 

preconditioners. 

As already said, each high level classes is connected to a lot of different subclasses; 

moreover they can inherit functions and data by more than one high level class. So 

MFEM contains a lot of different classes which can used to perform very different tasks. 

However it can happen that the user has to create a new subclass for a specific problem; 

in that case it will be helped by higher level classes in the code of which all the basic 

feature needed are implemented. 

4.3 Mex 

The MEX Library is a group of classes to tailor the MFEM class . It consists on an easy to use 

build and test system, and several functions which are commonly used in computational 

fluid dynamics applications. MEX differs from MFEM also because it contains a lot of very 

useful classes such more than one writer class, a database class, a class for storing 

integration points data and so on. We will briefly describe the main MEX classes that have 

been used for this work. The description of the classes has been taken by the MEX wiki. 

 Constrainer: When solving a problem, one normally constructs a system of 

ordinary or algebraic equations. Constrainers are objects that are added to such 

systems to fix a certain set of degrees of freedom. In finite-element methods, 

this is done by removing the row corresponding to a non-zero test of the degree 

of freedom (or called dof) and replacing it with an equation like 𝑑𝑜𝑓 =  𝑣𝑎𝑙𝑢𝑒 (a 

Dirichlet constraint).On the other hand, the ConCnstr (continuity constrainer) can 
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be used to apply periodic boundary conditions to be constraining one degree of 

freedom to be equal to another  𝑑𝑜𝑓1 − 𝑑𝑜𝑓2  =  0.At the moment the 

constrainers available in MEX are limited to Dirichlet and continuity constrainers. 

 FEModel: Often we form models using the Galerkin method, which is based on 

the variational form of the (system of) PDE to be solved. In MEX, such a system is 

assembled and solved by a finite-element model, or FEModel. A FEModel of 

course contains the resulting system of equations, but these are constructed 

using some other important objects. The most basic of these, is the finite-

element discretization or FED. The FED defines the final unknowns of the system, 

based on a MFEM finite-element space ( FESpace ) and information concerning 

periodic boundary conditions. A FED also handles global interpolation in a 

parallel environment. The actual assembly of the system of equations is 

performed using MexIntegrator objects, which evaluate the contribution of each 

domain or boundary element to the integrals appearing in the weak form. Finally 

FEModel will also likely contain a number of Constrainer objects which replace 

certain equations in the system with explicit relations, typically to define known 

values of the solution on domain boundaries. 

 MexIntegrator: MexIntegrators are used to evaluate contributions to integrals 

related to assembling the system, or to post processing. They are derived from 

MFEM integrators, but contain additional data and functions to facilitate the 

writing of efficient but high-level code. MexIntegrators are broadly divided in 

two types. DomainIntegrators, which evaluate contributions to integrals defined 

in the interior volume of the domain, and MexBdrFaceIntegrators, which 

evaluate the contributions of boundary surfaces. 

Assembling systems: In their standard mode, MexIntegrators are passed to a 

System, which then performs a loop over elements to determine the 

contribution of all elements to a global weak form. In this mode, a MexIntegrator 

will return a single element matrix or vector each time it is called 

Evaluating domain or boundary quantities: MexIntegrators can also be used to 

compute integral quantities based on solution vectors. In this case a loop over 

elements is implemented within the integrator itself. In the current version of 

Mex, there are two versions of the MexIntegrator (the second called 

MexIntegrator2). Generally MexIntegrator2 should be used, as it has several 

advanced capabilities, particularly with respect to integration with arbitrary 

functions, and the saving of integration point data. The Original MexIntegrator is 

retained for backwards compatibility, but will eventually be dropped. 

 MexObject: Many objects in Mex are derived from the MexObject base class. 

From this they inherit standard logging methods (controlled by the logLevel, 

screenLog and fileLog commands) and procedures for measuring memory use 

and CPU time. They also can be asked for their name and the number of the 

process they reside on. Most MexObjects have constructors which contain the 
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arguments: (ParamDB &prm_, string name_=""). "prm_" is the parameter 

database used to initialise the object. A pointer to this database with the name 

"prm" will be saved for use within the object. The name is an optional argument. 

If left blank, the object name will be its derived type. 

 Model: In many applications, one wishes to use an existing discretization at a 

higher level to perform a task. Examples include the training of a neural net using 

a fluid discretization, or the combination of a fluid and solid discretization to 

perform FSI. For these types of problems there exists a standard "model" class 

that allows one to compute processes described by either a system of either 

linear of nonlinear equations generically. A model contains a link to either a 

system of (linear or nonlinear) algebraic equations or a system of (linear or 

nonlinear) ordinary differential equations. For the former, it also contains a 

"solve" function and the latter an "advance" function.  

Models may also contain other models with their own solve or advance 

functions. For example, a fluid model may contain another set of equations that 

are solved in a segregated way to define coefficients for a turbulence model. 

Then the solve function for this second model would be contained within the 

fluid model's advance call. 

 ParamDB: Some of the objects used in Mex have a large number of configuration 

parameters. Furthermore, this number tends not to be constant as new features 

are frequently added. Rather than maintaining constantly-changing interfaces, 

one can use a single parameter interface to pass large amounts of configuration 

data to an object. The normal approach to this is to read a single database at the 

start of a run (based on a command-line argument) and then pass the database 

around so that each object can extract configuration data from it. When multiple 

instances of the same object are used, one can pass a "name" to the database to 

differentiate the parameters for one instance from those of another. 

 Solver: Solvers are used to find the solution vector of Algebraic systems. If the 

system is linear, a member of the Mex "LinearSolver" class is used. If it is non-

linear, a member of the "NonLinearSolver" is used. NonLinear solvers, however, 

often require a "LinearSolver" as an input object. The choice of linear solver 

depends on the problem considered. Direct linear solvers are robust, but scales 

are not so efficient (typically with N^3, where N is the number of unknowns). 

Iterative linear solvers have much better scaling, but their convergence is 

sensitive to the conditioning of the system matrix. When condition numbers are 

high, iterative solvers usually require a preconditioner (an object which creates 

an approximate inverse, allowing the definition of well-conditioned problem). 

For small linear systems (N<100), one can use the Mex "SerialDirect" solver. Since 

it is serial, it solves the same problem on each processor, without 

communication. As it is insensitive to conditioning, however, the SerialDirect 

solver is often useful for prototyping implementations, when only a single 
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processor is required. For large systems to be solved in parallel, we typically use 

Hypre . At the moment, the only available non linear solver is the NewtonNLS. It 

implements a simple Newton method and is quite effective for most problems. It 

has several configuration parameters. An important one as far as speed is 

concerned is the matrix update interval. Often matrix and preconditioner 

updates are expensive, while their the effect of updating the Jacobian on 

convergence can be small (particularly if a good initial guess of the solution is 

available, as occurs when marching in space-time). In such cases increasing the 

matrix update interval can dramatically reduce cost. 

 SubModel: A subModel is an independent object which is used to provide 

information used in the construction of a model's algebraic system, yet can be 

controlled or configured by other objects or software packages. It has a very 

generic interface which allows it to be used for many purposes, but in a typical 

FEM application, it is used to evaluate a double or vector at an integration point. 

An example would be the evaluation of a subgrid scale model quantity that has 

been calibrated externally by a Germano procedure or Neural Network. The 

functions in the SubModel can also be linked to functions evaluated by other 

software. 

 System: For most discretization techniques, the aim is to replace the continuous 

problem by one which requires the solution of a system of equations with a finite 

number of unknowns. For steady problems, discretization then leads to a large 

algebraic system which may be linear or nonlinear. This is also true for unsteady 

problems when space-time discretizations are used. When treating unsteady 

problems, however, it is more common to use a semi-discrete approach, in which 

initially only the spatial terms of the equations are discretized. This leads to a 

system of linear or nonlinear ordinary differential equations. Time marching 

methods are then used to complete the method. The semi-discrete approach is 

often preferred because it makes it easy to switch between well-known time 

integration methods, including to families of explicit methods which allow for 

low-memory decoupled solution procedures. Systems of equations are 

represented in Mex by "System" classes. These can be broadly divided in two 

types, AlgSys: Algbraic systems (which arise from complete discretization), or 

ODESys: Systems of ordinary differential equations (which arise when one 

dimension e.g. time is not yet discretized). Both may be either linear or 

nonlinear. Small Systems can be loaded manually. For finite-element problems, 

we normally use finite-element systems (FEAlgSys or FEODESys), which obtain 

equations by integrating over the elements in a domain. 

 TMarch: Time marches are used to advance systems of ordinary differential 

equations in time. These may be either explicit (the solution update does not 

depend on the next time level) or implicit. Implicit time marches typically require 

a LinearSolver as input. Time marches may also be linear or non-linear. Time 
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marches for non-linear systems of ODEs typically employ multiple stages (e.g. 

predictor-corrector, Runge-Kutta) or corrector passes (e.g. generalised alpha). As 

for algebraic systems, avoiding frequent matrix/preconditioner updates can 

significantly reduce the cost of time marching non-linear problems. It is often 

possible to use the same matrix/preconditioner combination for several time 

steps. 

 ValSrc: Value sources are generic interfaces to objects which can provide data 

associated with a set of coordinates. They have many uses, including supplying 

the value of source terms or solutions from other fields at integration points, 

obtaining statistics, or plotting solutions. You can access value sources in two 

ways, one where the element containing the requested coordinate is known, and 

one where it is unknown. For the latter a search is involved, so it is best to pass 

all of the required coordinates to the ValSrc object at the start of the run, and 

then just ask for the values without giving coordinates. Then the value source will 

use the previous coordinates so that the corresponding elements are only found 

once. 

 

4.4 Application Structure 

In this chapter the code structure and the process of the numerical simulation have been 

explained in order to understand the succession of operations that are required to exploit 

the variational numerical methods, explained in the previous chapters, to evaluate the 

solution of the Burger equation. 

1. The input of the main program are defined. They are 

 The name of the input file, connected to the specific version of the 

problem to solve. In this way to change some of the feature of the 

problem(for example boundary condition, number of elements, tau-

model and so on) without changing the code and compiling it every times. 

 The space refine number nspace which represents how much the mesh 

will be refined. If the mesh is too much coarse and the simulation doesn’t 

converge, we can refine it, so that the number of elements will be 2𝑛𝑠𝑝𝑎𝑐𝑒  

times the previous ones. 

 The time refine number ntime which represent how much the difference 

in time ∆𝑡between a step and the next one in the time integration will be 

refined. If the ∆𝑡 is too much big and the simulation doesn’t converge, we 

can refine it so that the ∆𝑡 will be 2𝑛𝑡𝑖𝑚𝑒  times smaller than the previous 

ones. 

2. The code get the parametric file and it store all them in a Paramdb object in order 

to easily access to them. 
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3. A lot of parameters, useful for the next step, are get from the database (and the 

general inputs) and set. 

4. Setting of the effective integration time step and the writing solution time step. 

We have to remark that only if the 2 time step are the same the application will 

output all the time steps solution. 

5. A Burger model object has been associated to each mesh level as suggested by 

VGM. As explained previously, it let us to write a Germano Identity equation for 

each level and so to evaluate the coefficient of the closure sub model. A tau sub 

model has been added to each of them. 

6. The solution vector is defined. 

7. A solution vector and a finite element space for post processing on the finest 

mesh are defined 

8. Definition of the problem. In this phase the force term and the boundary 

condition are imposed  to the problem. Moreover it is possible to add the exact 

solution of a problem in order to evaluate the differences between the exact and 

the approximate solution. The exact solution can be added analytically or as a 

result of a DNS. It is necessary to note that in this work  

 the boundary condition are set to 0 (at each level obviously). 

 The exact solution of the analyzed cases have been evaluated by a DNS. 

 The definition of the force term is explained in the next chapter. 

9. Preparation of the solution output files and definition of the writer objects 

10. Preparation of the statistical integrator  

11. Set up of the Germano assembler and solver objects. The Germano assembler is 

first initialized then added to each level Burger’s model. In this way the Germano 

procedure has been computationally implemented in the application. Moreover 

the BFSG algorithm has been set to be used to solve the Germano linear system. 

12. Preparation of the output files for the model coefficients and the projection 

error. 

13. Definition of the projection model for the exact solution object.  

14. Preparation of the time march 

15. Time march. It is the most important phase. It can be splitted in several parts 

which are repeated for each time step.  

 Writing of the closure model coefficients of the previous time step. They 

will be used for evaluating the current step solution. The first coefficients 

are set by the user in the input file.  

 Evaluation of the solution. This step is divided into 

o Evaluation and assembling of the stiffness matrix and the right 

hand side vector as required by Galerkin discretization of the 

Burger equation. We have to remark that in this discretization the 

closure model has been taken into account. It is important to 

remark that in this phase the OSS case differ from the ASGS case. 
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In fact, the different formulation of 𝑢′ requires a projection of the 

residual before multiplying it for 𝜏. 

o Evaluation and assembling of the mass matrix. It can be done only 

considering (𝑤, �̅�𝑡) or considering also the terms (𝑤𝑥, �̅�𝑡𝑢′) and 

(𝑤𝑥, 𝑢′𝑢′). 

o Advance in time evaluation of the current time step solution in the 

finest level. 

 Germano procedure. This step is divided into 

o Setting of t and ∆𝑡 

o Interpolation of the solution from the finest to the coarse scale 

o Assembling of the Germano Identity system 

o Solving of the Germano Identity System thanks to the BFSG 

algorithm. In this step the new closure model coefficients have 

been evaluated. They will be used in the next time step. 

 Evaluation of the 𝐿2 errors. First it has been computed between the 

solution and the exact solution, then between the solution and the 

projection of the exact solution on the coarse mesh 

Then the time march is ended. 

16. 𝐿2 error evaluation. It is defined as ‖𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢ℎ‖2 so the 𝐿2 norm of the 

difference of the exact and the numerical solution 

17. Writing of the results. It consists in the screen output of the computational time 

and the 𝐿2 global error and the writing of the Gnuplot output files. 

18. The end.  Stop of the application and memory delectation 
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CHAPTER 5 

5. ANALYSIS CASES 

5.1 Forcing Term 

The forcing term of a differential equation is the right hand side term which makes the same 

equation (with the same boundary condition) having very different solutions. In this work 

two different forcing terms are considered. The so called Gab force term and a stochastic 

force term. 

5.1.1 Gabriel Force Term 

This formulation of the force term takes its name from Gabriel Maher who  used it in [3]. It is 

defined in order to vary both on time and in space: 

𝑓 = 10 sin(𝑡) sin(2𝜋𝑥) + 11         (52) 

This formulation ensures a sharp layer near the right boundary of the domain. 

5.1.2 Stochastic Force Term 

The main task of LES is to numerically evaluate the velocity and the pressure field of a 

turbulent flow. A turbulent flow is characterized by structures of very different scales. This is 

due to the inertial cascade which transfers energy from the biggest, whose size is connected 

to the Reynolds number, to the smallest, whose size is proportional to the Kolmogorov scale. 

This is the reason why the velocity field change every time so that the turbulence can be 

considered a random phenomenon which can be studied statistically. 

The use of the stochastic force term is an attempt to simulate a turbulent flow in order to 

evaluate if the application can predict the flow . In fact, this force term is also called 

Burgerlance in analogy of a turbulent flow in a 1D domain where the Burger equation stands 

for Navier Stokes ones and the force term can be thought as a randomly varying pressure 

gradient. The first study of a stochastic force term applied to the Burger equation was 

described in [24]; however the model of the force term that has been used in this thesis was 

the Chamber one [25].  

The random force term 𝑓 varies in space and time so that its average in time is constant and 

the solution approaches a statistically asymptotically steady state .It is important remarking 

that choosing a high value of the constant can cause the leak of stability of the solution 

method. 

Considering the adimensional form of the Burger equation 
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𝑢𝑡 + 𝑢𝑢𝑥 −
1

𝑅𝑒
𝑢𝑥𝑥 = 𝜓0𝜓(𝑥, 𝑡)𝜓(𝑥, 𝑡)          (53) 

Where 

 𝑅𝑒 is the Reynolds number 𝑅𝑒 =
𝐿𝑢

𝜈
 

 𝐿 is the length of the domain (In this work 𝐿 = 1) 

 �̌� is the dimensional and 𝑢 the adimensional speed 

 𝜓0 is the average constant value 

 𝜓(𝑥, 𝑡) is the random component of the force term 

As suggested in [25] we define  

𝜓(𝑥, 𝑡) = ℜ ( ∑ 𝑠𝑛𝑎𝑛(𝑡)𝑒𝑖2𝜋𝑛𝑥

𝑁2

𝑛=𝑁1

)         (54) 

Where 

 The formulation is a complex Fourier series 

 ℜ is real part operator 

 𝑠𝑛 are real coefficients 

 𝑛 is the wave number 

 𝑁1 and 𝑁2 are the lowest and the highest wave number forced 

 𝑎𝑛 are the random complex coefficients 

The random coefficients are chosen so that 

𝑎𝑛(𝑡𝑘+1) = 𝑒
−Δ𝑡

𝑇𝑛
⁄ [𝑎𝑛(𝑡𝑘) + 𝑐𝑛(𝑘)]         (55) 

Where  

 𝑐𝑛(𝑘) is a complex number obtained from two consecutive numbers in a random 

sequence thanks to random number generator  

 𝑇𝑛 =
1

16𝜈𝜋2 is the time constant which depends on 𝜈. It was chosen to match the 

viscous timescales of each mode of the solution in order to maximize the cross 
correlation between 𝑢 and 𝜓 

 Δ𝑡 is the time step of the numerical simulation 
 

In this way, they are uniformly distributed between -1 and 1 and they were mutually 

uncorrelated and stationary over long time. 

The minimum number of forced modes tested was a single mode which is proportional to 

the GAB force term, while the maximum were 40 modes (from n = 1 to n = 40). If it is 

decided to force all the 40 modes available, 80 random numbers are required from the 
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generator for each time step. The resultant forcing term corresponded to a simple band 

limited white noise-process with 40 modes. 

The spectrum of the forcing term is determined by the real coefficient 𝑠𝑛. In order to obtain 

the average of 𝜓equal to 1and the desired spectrum 𝑠𝑛 = (
3

40𝑇𝑛
)

1
2⁄

. 

Moreover they satisfy the condition 

1

3
∑ 𝑠𝑛

2𝑇𝑛 = 1

𝑁2

𝑛=𝑁1

           (56) 

Where each individual term of the sum is one of the value of the special spectrum of 𝜓 

5.2 Subgrid Models 

We are trying to solve the problem 

Find �̅� ∈  �̅� so that 

 𝐵(�̅�, �̅�) + 𝑀(�̅�, �̅�, 𝑐, 𝑓, ℎ) = (�̅�, 𝑓) 

 �̅�(0, 𝑡) = �̅�(𝐿, 𝑡) = 0  (L is the end of the domain t is time) 

 �̅�(𝑥, 0) = 0 

 𝐵(�̅�, �̅�) = (�̅�, 𝑢𝑡)  − (�̅�𝑥, (�̅�)2) + (�̅�𝑥, 𝜈�̅�𝑥) 

 𝑀(�̅�, �̅�, 𝑐, 𝑓, ℎ) = −2(�̅�𝑥, 𝜏𝑅�̅�) 

All the procedures that occur to solve the problem have been already described, except from 

the definition of τ as a function of the vector of coefficients c. it will be done in this 

paragraph.  

Since we have modeled 

𝑢′ =  𝜏𝑅(�̅�)  

If the residual is small enough it is that 

𝑢′ = ∫ −g′(𝐿�̅� − 𝑓)dΩ = M′

Ω

(𝐿�̅� − 𝑓) = 𝐺 𝑅(�̅�)   

So our model would be exact if we choose 𝜏 such that it is equal to the Green operator 

𝜏 = 𝐺           (57) 

However 𝐺 has not been evaluated except from the advection-diffusion equation so we 

need to approximate it. In [26] Shakib describes a general procedure for 𝜏 for the weighted 

residual formulation of the Navier Stokes equation where 𝜏 is a symmetric semidefinite 
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positive matrix obtained solving several eigenvalue problems. Then he compared with the 

definition of 𝜏 presented by Huges and Mallet in [27] where they evaluated 𝜏 for a pure 

advection problem and then adjusted the model for the presence of diffusion. Shakib 

continued his work analyzing a 1D steady advection diffusion problem. In this case, like in 

this thesis, 𝜏 is a scalar because only one equation is analyzed.  

He wrote that if piecewise linear finite elements are used, 𝜏 can be evaluated such that the 

𝐻1 seminorm of the solution error 𝑢 − 𝑢ℎ is minimized. This condition is equivalent to 

having a nodal exact solution. So he defined 𝜏 so that 

𝜏 =
ℎ

2|𝛼|
𝜉(𝛼)           (58) 

Where 

 𝛼 =
ℎ|𝑎|

2𝜈
 the Peclet number 

 𝑎 is the advective speed 

 𝜐 is the viscosity 

 ℎ is the element mesh size 

 𝜉(𝛼)is the so called diffusion corrector factor which is exact if 𝜉(𝛼) = cot(𝛼) −
1

𝛼
 

Since we are looking for a numerically formulation of 𝜏, 𝜉(𝛼) formulation has to be 

modified. Shakib found a fourth order accuracy formulation, thanks to a truncation error 

analysis so that 

𝜉(𝛼) = √
𝛼2

9 + 𝛼2
           (59) 

Which is equivalent to 

𝜏 = ((
2𝑎

ℎ
)

2

+ 9 (
4𝜐

ℎ2
)

2

)

−1
2⁄

       (60) 

His analogue unsteady counterpart will be 

𝜏 = ((
2

Δ𝑡
)

2

+ (
2𝑎

ℎ
)

2

+ 9 (
4𝜐

ℎ2
)

2

)

−1
2⁄

       (61) 

So this one can be considered as the best 𝜏 approximation, if we don’t need a fifth order 

accuracy formulation.  

In this thesis the structure of the Shakib formulation of 𝜏 is used; it has been modified only 

to adapt it to the Germano procedure and to the BFSG algorithm. The 𝜏𝑠ℎ𝑎𝑘𝑖𝑏 formulation 

will be 
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𝜏𝑠ℎ𝑎𝑘𝑖𝑏 = ((
2

Δ𝑡
)

2

+ 𝑐0
2 (

𝑢

ℎ
)

2

+ 100𝑐1
2 (

𝜐

ℎ2
)

2

)

−1
2⁄

       (62) 

In fact 

 𝑐0 and 𝑐1 are the unknown coefficients that are calculated thanks to the Germano 

Method. We have to remark that the previous formulation is the best one for the 

advection diffusion equation. So the evaluation of the coefficients, that won’t be the 

same, will improve the solution [3]. 

 The factor 100 is added in order to keep the BFSG algorithm stable 

In this work the Shakib formulation will be compared with a linear definition of 𝑐0 and 𝜏 

𝜏𝑙𝑖𝑛 = 𝑐0ℎ           (63) 

The comparison will be done for the ASGS and the OSS case.  

Moreover the target of this thesis is to find a formulation of 𝜏 which will improve the Shakib 

one. So we have defined a space variant formulation which can find the best coefficients for 

every element of the domain. So 𝜏 won’t be constant but it will be function of 𝑥.  

The first formulations that will be tested 

𝜏 = ℎ |𝑐0 + 𝑐1 cos
𝜋𝑥

𝐿
+ 𝑐2 sin

𝜋𝑥

𝐿
 |              (64)   

called Space Variant Tau –SVT  

The second one can be seen as the consecutive of the CSVT (in a Fourier sense). 

𝜏 = ℎ |𝑐0 + 𝑐1 cos
𝜋𝑥

𝐿
+ 𝑐2 sin

𝜋𝑥

𝐿
+𝑐3 cos

2𝜋𝑥

𝐿
+ 𝑐4 sin

2𝜋𝑥

𝐿
 |            (65) 

Space Variant 2 Tau SVT2 

These formulation has been chosen so that both the space dependent functions are linear 

independent and it is possible to obtain a linear combination whose result is a global 

constant  

We have checked that some of these formulation will be better than the linear one; then we 

tried to verify if, defining a Shakib space variant formulation, it can be better than the 

original Shakib one. 

The Shakib space variant will be  
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𝜏𝑠ℎ𝑎𝑘𝑖𝑏𝑠𝑣𝑡 = ((
2

Δ𝑡
)

2

+ (ℎ |𝑐1 cos
𝜋𝑥

𝐿
+ 𝑐2 sin

𝜋𝑥

𝐿
 |)

2

(
𝑢

ℎ
)

2

+ 100 (ℎ |𝑐3 cos
𝜋𝑥

𝐿
+ 𝑐4 sin

𝜋𝑥

𝐿
 |)

2

(
𝜐

ℎ2
)

2

)

−1
2⁄

  (66) 

𝜏𝑠ℎ𝑎𝑘𝑖𝑏𝑠𝑣𝑡2 = ((
2

Δ𝑡
)

2

+ (ℎ |𝑐0 + 𝑐1 cos
𝜋𝑥

𝐿
+ 𝑐2 sin

𝜋𝑥

𝐿
+𝑐3 cos

2𝜋𝑥

𝐿
+ 𝑐4 sin

2𝜋𝑥

𝐿
 |)

2

(
𝑢

ℎ
)

2

+ 100 (ℎ |𝑐0 + 𝑐1 cos
𝜋𝑥

𝐿
+ 𝑐2 sin

𝜋𝑥

𝐿
+𝑐3 cos

2𝜋𝑥

𝐿

+ 𝑐4 sin
2𝜋𝑥

𝐿
 |)

2

(
𝜐

ℎ2
)

2

)

−1
2⁄

  (67) 
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CHAPTER 6 

6. ANALYSIS 

6.1 Introduction 

In this chapter 2 different numerical cases are studied. The task is to solve numerically the 

unsteady Burger equation varying the Variational Multiscale Methods and the definitions of 

𝜏. The complete problem is to find 𝑢 ∈ 𝑉 so that 

𝑢𝑡 + 𝑢𝑢𝑥 − 𝜈𝑢𝑥𝑥 = 𝑓 on Ω 

𝑢 = 0 on 𝛿Ω 

𝑢(𝑥, 0) = 0 

Where 

 Ω = [0, 1] is the spatial domain  

 𝑇 = [0,5] is the temporary domain 

 𝜈 = 0,001953 is the viscosity so the Reynolds number is 512. 

 𝑓 is the force term. In the first paragraph the Gabriel forcing term has been used, in 

the second the Random formulation of Chamber.  

However, the problem solved in this thesis is the discrete formulation of the previous one 

which consist in finding 𝑢ℎ ∈ 𝑉ℎ so that 

 𝐵(𝑤ℎ, 𝑢ℎ) + 𝑀(𝑤ℎ, 𝑢ℎ, 𝑐, 𝑓, ℎ) = (𝑤ℎ, 𝑓) 

 𝑢ℎ(0, 𝑡) = 𝑢ℎ(1, 𝑡) = 0   

 𝑢ℎ(𝑥, 0) = 0 

 𝐵(𝑤ℎ, 𝑢ℎ) = (𝑤ℎ, 𝑢ℎ
𝑡)  − (𝑤ℎ

𝑥, (𝑢ℎ)2) + (𝑤ℎ
𝑥, 𝜈𝑢ℎ

𝑥) 

 𝑀(𝑤ℎ, 𝑢ℎ, 𝑐, 𝑓, ℎ) = −2(𝑤ℎ
𝑥, 𝑢′𝑢ℎ) = −2(𝑤ℎ

𝑥, 𝜏𝑅𝑢ℎ) 

 𝑅 = (𝑤ℎ, 𝑢ℎ
𝑡)  − (𝑤ℎ

𝑥, (𝑢ℎ)2) − (𝑤ℎ, 𝑓) 

In the discrete case, the domain is splitted into 64 equal elements and the time step is 

Δ𝑡 = 0,05. Linear finite elements are used. The results obtained by LES are compared with 

those computed by DNS. In the DNS a 1024 element mesh. In fact if we evaluate the 

dimension of the Kolmogorov scale it is 9 ∙ 10−3. The DNS element dimension is 1∙ 10−3 and 

then it is acceptable. Δ𝑡 = 0,005 is the DNS time step in order to resolve even the smallest 

structures. The Germano initial coefficients are all equal to 2,0.  

The DNS was computed using a code which solve the burger equation using a finite element 

discretization without splitting 𝑢 into the coarse scales and the fine scales. 
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In the following chapters, first the differences between a solution and another one are 

underlined, then all of the solutions are compared in order to find the best one. For every 

case, two pictures are presented: a first one related to the global solution and the second 

which is zoomed in the part of the plot where is  bigger the difference between the 

solutions. Plots are taken at the last time step. 

 

6.2 Gabriel Force Term 

6.2.1 OSS compared with ASGS 

 

Figure 3 Comparison between OSS and ASGS solution 
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Figure 4 Comparison between OSS and ASGS solution detail 

The first comparison is between the ASGS and the OSS solutions. Both cases have been 

obtained using the linear formulation of 𝜏. 

It is possible to observe that  

 The OSS solution results more fluctuating than the ASGS one. Fluctuations can be 

observed not only close to the step but they propagates in the previous 5 integration 

points. This fact is due to the property of OSS (described in[26]) of introducing less 

dissipation. It can be useful because the OSS method can help to follow better the 

peaks however this can lead, like in this case, to oscillatory behaviors. 

 The OSS is locally closer to the exact one, except from the area before the step; for 

example it is possible to notice that (
𝜕𝑢

𝜕𝑥
)

𝑥=1
 of the OSS case is closer to the DNS then 

the ASGS one 

 The OSS results much more precise if the exact solution is smooth. . In fact, as the 

following picture can prove, for every time step the linear case 𝐿2 error is bigger than 

the OSS one. 
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Figure 5 L2 error comparison between OSS and ASGS solution 

We can conclude that in this case the ASGS model results better, even if the OSS is more 

precise because it doesn’t present oscillation that are not present in the exact solution. 
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6.2.2 Shakib compared with Linear tau 

 

Figure 6 Comparison between Shakib and Linear Tau solution 
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Figure 7 Comparison between Shakib and Linear Tau solution detail 

The second comparison is made using the plot of the linear 𝜏 solution and the Shakib one. 

This comparison has already been described in [1]. In any case we can underline that 

 The Shakib solution over dimension the step presented by the DNS solution. 

 The linear solution is more numerically dumped because it introduces more 

dissipation. In fact, the contribute of 𝑢′ of the linear case is generally bigger than the 

Shakib one. It can be seen in the following plot: 
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Figure 8 u' comparison between Shakib and Linear Tau solution 

 The Shakib solution is both globally and locally more accurate. To prove it, it can be 

useful the plot of the L2 error as function of time. The Shakib curve is always lower 

than the linear one 
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Figure 9 L2 error comparison between Shakib and Linear Tau solution 

The Shakib solution is better than the linear one; the only defect is that it over 

dimension the value of 𝑢 near to the step. 
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6.2.3 Shakib compared with OSS Shakib 

 

Figure 10 Comparison between Shakib and OSS Shakib solution 

 

Figure 11 Comparison between Shakib and OSS Shakib solution deatil 

In this case we are evaluating the Shakib solution and the Shakib solution obtained using the 

OSS model. Main differences between the solutions are that 
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 The OSS model induces oscillations to the Shakib solution as it happened for the 

linear case. Moreover it also over dimensions the value peak of Shakib solution near 

to step of the DNS one. So mixing the Shakib formulation of 𝜏 and the OSS model the 

defects of both them are emphasized. 

 The Shakib OSS solution is only closer to the DNS near to the boundaries. Far from 

them, the Shakib solution is more precise. 

 The ASGS Shakib solution is generally lightly more accurate as it can be seen in t the 

𝐿2 error plot 

 

Figure 12 L2 error comparison between Shakib and OSS Shakib solution 

The OSS model formulation creates too many oscillation, solving this problem, because it 

is less dissipative then the ASGS one. This fact was proved in the literature by Codina [26] 

and is showed by both the linear and the Shakib case. As a consequence, in the space 

variant analysis we will focus on the ASGS analysis since the OSS solutions can’t be the 

best one. 
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6.2.4 OSS compared with OSS Shakib 

 

Figure 13 Comparison between OSS and OSS Shakib solution 
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Figure 14 Comparison between OSS and OSS Shakib solution detail 

In this paragraph it is demonstrated that the Shakib formulation “behaves” better than the 

linear one using the OSS model too. In fact it is possible to observe that 

 Except for the value of 𝑢 immediately before the step of the DNS, the Shakib case 

presents smaller oscillations 

 The 𝐿2 error of the Shakib OSS solution is lower  than the linear OSS case for every 

time step 
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Figure 15 L2 error comparison between OSS and OSS Shakib solution 
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6.2.5 Linear compared with Space Variant and with Space Variant 2 

In this paragraph the linear and the space variant formulation solutions are compared. The 

big difference between them is that, for the space variant ones, the code evaluate 𝜏 for 

every integration point, solving the Germano system for all of them. This can improve the 

resolution of the fine scales since in this way it is possible to introduce dissipation where it is 

needed. In fact with a higher order Fourier 𝜏 is possible to approximate better big gradients. 

We will check it in the following lines. 

It is important to remark that we have not considered the OSS case because of the undesired 

oscillations and because both the OSS space variant solutions need 256 integration point to 

converge. This is the reason why, even if they may be more precise, they need a 

computational effort that is at least 4 time bigger then the ASGS ones. 

 

Figure 16 Comparison between Linear, Space Variant and Space Variant 2 solution 
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Figure 17 Comparison between Linear, Space Variant and Space Variant 2 solution detail 

We can make a comparison between the 2 space variant solutions, the linear and the DNS. 

So 

 The space variant solution is less dissipative than the linear one and it approximates 

better the DNS.  

 The space variant 2 improves the space variant solution because it can follow the 

step of the DNS better as supposed by the theory. 

 The space variant and the space variant 2 are locally very similar. The value of 

(
𝜕𝑢

𝜕𝑥
)

𝑥=1
 of both the solutions are really almost the same. 

 Increasing the terms of the Fourier expansion of the expression of 𝜏, the solution 

becomes more precise: in the following plot, the Space Variant 2 solution 

characterized by the lowest 𝐿2 error for all the time step of the simulation. 
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Figure 18 L2 error comparison between Linear, Space Variant and Space Variant 2 solution 

 It is interesting to plot the trend of u’ as function of x. We can notice that it is almost 

0 for every point of the domain because the residual of the coarse scales is close to 0. 

But it differs from that value near to the step 
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Figure 19 u' comparison between Linear, Space Variant and Space Variant 2 solution 
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 Finally it is plotted the tau as function of the integration point. We can 

recognize the constant, the first and the second levels of the Fourier series.

 

Figure 20 Tau comparison between Linear, Space Variant and Space Variant 2 solution 

Thanks to the space formulation of 𝜏 we can improve the VGM solution of the burger 

equation. However, adding new terms, seems it does not improve so much the solution as 

the first space variant do compared by the linear one.  Further research may prove it. 
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6.2.6 Shakib compared with Shakib Space Variant and with Shakib Space 

Variant 2 

In this chapter we try to improve the Shakib formulation using a space variant 𝜏. As it is 

proved previously, it is possible to improve a constant formulation using a space variant one; 

so, we try to do the same using a formulation with the same structure of the Shakib one. To 

do that, we will substitute the coefficients 𝑐0 and 𝑐 1 with the spatial variant formulations of 

𝜏. Respectively the Shakib space variant and the Shakib space variant 2 formulations are the 

Shakib extension  of the space variant and the space variant 2 

 

.  

Figure 21 Comparison between Shakib, Shakib Space Variant and Shakib Space Variant 2 solution 
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Figure 22 Comparison between Shakib, Shakib Space Variant and Shakib Space Variant 2 solution detail 

It is clear that the trend of the Space variant Shakib solutions is completely unexpected. Let’s 

point out main observations that are possible to make looking at these plots 

 Both the space variant solutions are so much diffusive that they look very inaccurate.  As 

a prove of that we can show the 𝐿2 error trend as function of time. For every t the error 

of the traditional Shakib solution is smaller. The Shakib space variant formulation, for the 

biggest part of the time steps, presents an error which is 50% bigger than the constant is 

space Shakib formulation.  
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Figure 23 L2 error comparison between Shakib, Shakib Space Variant and Shakib Space Variant 2 solution 
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 The second unexpected result is that the Shakib space variant and the Shakib space 

variant solution look the same solution. In fact they present a very similar 𝜏: the 

difference is about 10−4. It is also difficult to recognize the sin(𝑥) and the sin(2𝑥) 

form of the 𝜏 because the plot is very stretched. 

 

Figure 24 Tau comparison between Shakib, Shakib Space Variant and Shakib Space Variant 2 solution 

 The high numerical dissipation introduced by these space variant formulation is 

proved by the high mean value of 𝜏 which is very much bigger than linear of the 

previous chapter. 

We can conclude that the space variant Shakib formulations are not good to achieve the 

best general solution of the problem. Moreover, the space variant 2 increases a lot the 

computational effort obtaining a solution which is almost the same of the formulation 

with 4 less coefficients. It may be possible to improve these results changing the space 

variant formulation in order to adapt it better to the problem (and maybe in order to 

reduce the number of the coefficients). A possible explanation of this results can be the 

fact that, since the biggest part of the coefficients remains for all the time step close to 

the initial value of 2, the BFSG model doesn’t find a big improvement of the solution 

changing them. So, they introduce almost the same dissipation for all the time steps. 
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6.2.7 General Comparison 

Finally we want to choose the best solution among the ones that we have analyzed. It would 

neither present undesired fluctuations nor be too much dissipative. 

 

Figure 25 General comparison between all the formulations 
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Figure 26 General comparison between all the formulations detail 

We can notice that 

 The best solution overall is the Shakib Space variant OSS solution which is the most 

precise both locally and generally. The problem is that it is not comparable with the 

other solutions because it has been obtained with a 256 elements mesh and so it 

requires more computational effort. It is also important to underline that it differs 

from the other OSS solutions because it doesn’t present oscillations  

 There are 2 more couple of solution which presents almost the same plot.The Space 

variant OSS is very similar to the Space variant OSS 2 and the Shakib space variant 2 is 

very similar to the linear OSS.  

 The best solution (considering only the solutions obtained using a mesh of 64 

elements) is the space variant. It represents an optimal compromise between high 

accuracy and computational effort. 

 Using the most complicate models, is not a garancy of obtaining the best results. A 

reason to explain this fact can be that the more operations are done by the calculator 

the more numerical error propagates. 

 Even if the space variant Shakib formulations are not so good, we have improved the 

traditional Shakib solution using the Space variant 2 (as we can see in the following 

plot ) that is the main task of this thesis. 
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Figure 27 Comparison between Shakib and Space Variant 2 solution detail 
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6.3 Stochastic force term 

The study of the Chamber random force term had been developed using the same 

formulations  and procedure used in the study of the Gabriel force term. It is chosen a 

number of 5 modes of the random force term. However the number of elements of the 

mesh have been changed in order to make the solution converge and consequently the 

number of the time step have been increased. 

So it has been necessary  to use a 256 element mesh and a ∆𝑡 = 3,3 ∙ 10−3. However, using 

so fine mesh, the element length is smaller than the Kolmogorov scale (the dimension of the 

elements is 4 ∙ 10−3) so the resolution can be considered undue to a LES. Another difference 

is the simulation time which has been set to 1s. 

 

6.3.1 OSS compared with ASGS 

 

 

 

Figure 28 Comparison between ASGS and OSS solution 
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Figure 29 Comparison between ASGS and OSS solutions detail 

The first comparison is between the linear ASGS and the OSS solutions. It is possible to 

observe that 

 As we have seen in the previous analysis the OSS is less dumped so it can follow 

better the fluctuations  of the solution. 

 The approximate solution are slower than the DNS to react to big gradients imposed 

by the stochastic force term. Moreover they can’t represent all the modes because 

the smallest are of the same dimension of the elements of the mesh. However both 

the ASGS and the OSS solution has the same trend 
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Figure 30 L2 error comparison between ASGS and OSS solution 

 The 𝐿2 error of the two solution is very similar even if the OSS is more precise. This is 

caused by the fact that it introduces less dissipation in the coarse scale equation. It 

can be seen also in the following picture where 𝑢′ trend of the 2 solutions is plotted 
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Figure 31 u' comparison between ASGS and OSS solution 

 Finally it is presented an example of the plot of the coefficient 𝑐0 as function of time 

to show the random behavior of the problem analyzed.

 

Figure 32 tau coefficient trend of linear OSS solution 
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6.3.2 Shakib compared with Linear tau 

 

Figure 33 Comparison between Shakib  and linear solution 

 

Figure 34 Comparison between Shakib  and linear solution detail 
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The second comparison is made using the plot of the linear 𝜏 solution and the Shakib one. It 

is important to underline that 

 The Shakib and the linear solutions are very similar each other in fact it is difficult to 

distinguish them also in the zoomed image. However the values of 𝑢′ and 𝜏 are very 

different each other as it can be seen in the following pictures. The cause is that the 

influence of the sub model on the coarse scale equation is very small compared with 

the force term 

 

 

Figure 35 tau comparison between Shakib  and linear solutions 
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Figure 36 u' comparison between Shakib  and linear solution 

 A undesired phenomenon take place in the Shakib solution: the coefficients don’t 

present a random trend as seen in the linear cases. (see the following picture). They 

tend to remain constant in time. It happens also for the Shakib space variant 

formulations: in these cases the coefficients remain equal to the initial values. As a 

consequence, since the results obtained don’t represent an adequate solution of the 

problem, they have been omitted. 

 

Figure 37 tau coefficients trend of Shakib solution 
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6.3.3Linear compared with SVT and SVT2 

 

Figure 38  Comparison between linear, space variant and space variant2 solutions 

 

Figure 39Comparison between linear, space variant and space variant2 solutions detail 
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In this section the differences between the linear and the space variant solutions are 

pointed out. 

 First of all we have to remark that the differences are very small; they can be 

observed only where the approximate solution present peaks. In all other points the 

solution are very close each other. 

 The space variant 2 solution can best follow the oscillations of the DNS even if, as 

already written, the smallest mode can’t be represent by the LES solutions. On the 

other hand the space variant one seems to be less precise then the linear. 

 As we can see in the following picture the space variant 2 is the formulation which 

introduce less dissipation in the coarse scale solution. This is the reason why its 

solution is less dumped 

 

Figure 40 u' comparison between linear, space variant and space variant2 solutions 
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 In fact the resulting 𝜏 of the space variant 2 is the smallest 

 

Figure 41 tau comparison between linear, space variant and space variant2 solutions 
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6.3.4 General comparison 

 

Figure 42 General comparison between all the solutions 

 

Figure 43 General comparison between all the solutions detail 
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We can conclude the analysis of the random force term remarking that 

 The best solution is the Linear OSS one because it can best follow the fluctuations 

of the DNS; generally the OSS solutions look better than the ASGS ones  

 The effects of the not resolved modes and the delay of the approximate solution 

are relevant. In fact it is bigger the difference between the DNS and all the 

approximate solutions than the one between the approximated solutions 

themselves. 

 The Shakib Space variant solution have been excluded by the analysis because of 

their unrealistic trend 
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CHAPTER 7 

7. CONCLUSIONS 

In this thesis the Variational Germano Method has been used to solve numerically the 1D 

Burger equation, which has the same structure of the Navier Stokes equation. Two force 

term have been used to test different Subgrid Scale models in order to find the best one. The 

best solution is that is more similar to the DNS so it doesn’t present undesired oscillations, is 

characterized by the minimum 𝐿2 error and it doesn’t request a big computational effort. 

Analyzing the Gabriel force term we have managed to improve the Shakib formulation of 𝜏, 

which is considered the best approximation of the Green operator, using a space variant one 

(SVT2).However we haven’t been able to define a good space variant formulation with the 

same structure of the Shakib one. Finally we have verified that the OSS method introduces 

too little numerical diffusion and so in this case it doesn’t result very useful. 

Then we have tried to test the same formulations with Chamber random force term which 

can better represent a turbulent flow. We have obtained very bad results because the 

approximate solutions can’t follow all the modes of the force term; the difference between 

each solution is less significant compared by the deviation from the DNS  . Moreover the 

Shakib space variant formulations can’t obtain numerical reasonable solutions. However the 

main feature of the subgrid scale models observed in the first analysis are confirmed. 

Further improvements of this work can be a new Shakib space variant formulation which can 

allow to be better than SVT2, and the use of a different solver to avoid numerical difficulties 

encountered testing the Chamber force term. Another improvement can be to obtain a 

relationship between the Reynolds number the formulations and the integration points they 

need to converge. Moreover this method can be used in the future to solve the Navier 

Stokes multi-dimensional equations. 
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