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Summary

Beam structures are extensively used in aerospace, civil, naval and mechanical ap-
plication because of their high versatility. The beam structural element allows the
modeling of structural element such as aircraft wing spars, helicopter rotor and tur-
bomachinery blades, robot harms as well as concrete metal/composite construction
in civil and naval engineering, respectively.

During last decades Functionally Graded Materials (FGMs) have raised a lot
of interest. In several applications they are more attractive than classic fiber-
reinforced composites because of their outstanding properties. In addition, FGMs
have turned out to be more advantageous, since problems such as delamination,
fiber failure, adverse hygroscopic effects etc, are effectively eliminated or non-
existent. Functionally Graded structures are largely studied not only for the prac-
tical applications of concept in a wide variety of thermal shielding problems but
also in other field, these materials have almost unlimited potential in many other
technological applications such as, for example, the production of biocompatible
prosthesis.

The aim of the present thesis is to investigate the free vibration behavior of
three-dimensional rotating, metallic and functionally graded beams accounting the
Coriolis effect. The geometry of the analyzed beams change according to the vari-
ation of some parameters of interest such as length-to-thickness ratio (slenderness
ratio), tip chord-root chord ratio (taper ratio), the pre-twist angle.

The investigation is carried out by using the method of power series expansion of
displacement components. This approach allows obtaining refined structural the-
ories that account for variable kinematic description. Indeed, each displacement
variable, in the displacement field, can be expanded at any desired order indepen-
dently from the others and regarding to the result accuracy and computational
cost. The weak-form of the governing equations is derived via the Principle of sta-
tionary action of Hamilton (or from the PVD), while the Ritz method is used as
solution technique. Algebraic Ritz functions are employed in the analysis. Using
the Gram-Schmidt process these functions have been orthogonalized in order to
enhance significantly the computational stability of the code. The equations are
written in terms of fundamental nuclei, which do not vary with the theory order.

Convergence and accuracy of the proposed formulation have been examined. The
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effect of significant parameters such as slenderness ratio, taper ratio, pre-twist angle
and the angular velocity, on the natural frequencies, is discussed and compared with
both, results available in literature and those obtained by using an Finite Element
Analysis commercial software.
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Summary

Le travi sono ampiamente utilizzate in applicazioni aerospaziali, civili, navali e
meccaniche grazie alla loro versatilità. Gli elementi strutturali trave consentono
di modellizzare strutture come i longheroni alari, le pale di rotori di elicotteri e
turbomacchine, bracci robotici e strutture metalliche od in composito per appli-
cazioni civili o navali. Negli ultimi decenni i Functionally Graded Materials (FGM)
hanno richiamato l’attenzione poiché, grazie alle loro eccezionali proprietà, in di-
verse applicazioni, questi risultano preferibili ai classici compositi rinforzati con
fibre. Gli FGMs presentano dei vantaggi rispetto ai compositi classici poiché per
questi, problemi come la delaminazione, il cedimento di fibre, effetti igroscopici
etc, possono essere eliminati o sono inesistenti. Le strutture in FGM sono ampia-
mente studiate non solo per possibili applicazioni in problemi di thermal shielding
ma anche in altri campi. Questi materiali hanno delle potenzialità pressoché il-
limitate in diverse altre applicazioni, come ad esempio la realizzazione di protesi
bio−compatibili. La presente tesi è stata svolta con lo scopo di studiare le vi-
brazioni libere di travi tridimensionali rotanti, metalliche e in FGM tenendo in
considerazione l’effetto Coriolis. Le travi analizzate presentano differenti geome-
trie in accordo con la variazione di alcuni parametri d’interesse come il rapporto
lunghezza su spessore (slenderness ratio), il rapporto tra le corda di estremità e di
radice (taper ratio), l’angolo di svergolamento. Lo studio è stato svolto sfruttando il
metodo dell’espansione in power series delle componenti dello spostamento. Questo
approccio consente di ottenere delle teorie strutturali rifinite che consentono una
descrizione della cinematica variabile. Difatti ciascuna variabile dello spostamento,
nel campo degli spostamenti, può essere espansa a un qualsiasi ordine indipen-
dentemente dalle altre, in dipendenza dall’accuratezza richiesta per la soluzione e
la capacità di gestire carichi computazionali più o meno elevati. Le equazioni in
forma debole sono derivate a partire dal Principio di Hamilton (equivalentemente
dal PLV), il metodo di Ritz viene utilizzato come tecnica di soluzione. Nell’analisi
sono utilizzate le funzioni algebriche di Ritz. Queste sono state ortogonalizzate
sfruttando il metodo di Gram−Schmidt per incrementare in maniera significativa
la stabilità del codice. Le equazioni sono scritte in termini di "nuclei fondamen-
tali", questi non variano con l’ordine della teoria. La convergenza e l’accuratezza
della formulazione proposta sono esaminate. Si analizza infine l’effetto di parametri
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caratteristici della geometria della trave e del problema, come rapporto di snellezza,
taper ratio, angolo di svergolamento, e velocità angolare sulle frequenze naturali del
sistema, confrontando i risultati con quelli presenti in letteratura e quelli ottenuti
tramite l’utilizzo di software commerciali per la FEA.
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Chapter 1

Introduction

1.1 Composite structure with a focus on FGM
Materials play an important role in the advancement of human life. The rapid
growth in the development and use of composite materials is due to the advantages
that they offer, such as specific strength and stiffness properties, lightweight and
corrosion resistance.

Composites comprise two or more phases where normally the constituent mate-
rials are processed separately and then bonded. The properties of the composites
are different from the constituent materials acting alone. One of the constituents
is reinforcing phase in the forms of fibers, particles, or sheets and are embedded in
another constituent called matrix.

Furthermore, there are a number of applications in which the use of a single
material is not convenient. Such cases may involve the use of one of the solutions
listed below.

• Sandwich structures :
sandwich beams, plates and shells are composite structures that consist of at
least three different layers. Two or more high-strength stiff layers (faces) are
bonded to one or more low-density flexible layer (core). The core, which is
usually the cheapest material, mainly has the task of keeping away the two
faces from the neutral axes, thus improving bending resistance. Sandwich
structures can be defined as composite structures, since they are composed of
at least two different materials at a microscopic level. There are many type of
sandwich structures in aerospace construction that have not been dealt with
detail here.

• Layer structures for thermal protection purposes:
engine components, reentry vehicles and supersonic aircraft often require an
adequate thermal protection. In many cases, it is not possible to obtain a
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1 – Introduction

Figure 1.1. Layered plate made of unidirectional laminae.

Figure 1.2. Honeycomb core Sandwich.

material that can stand both mechanical and thermal loads at the same time.
The solution, in this case, is to build a composite multilayer structure: the
mechanical structure is protected by an additional layer that leads to high
resistance with respect to thermal loadings.

• Piezo-layered materials for smart structures:
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1.1 – Composite structure with a focus on FGM

Figure 1.3. Layered plate made of isotropic layers for thermal protection.

the phenomenon of piezoelectricity is a particular feature of certain classes
of crystalline materials. The piezoelectric effect consist of a linear energy
conversion between the mechanical and electric fields in both direction that
define a direct or converse piezoelectric effect. The direct piezoelectric effect
generate an electric polarization by applying mechanical stresses. The converse
piezoelectric effect instead induces mechanical stress or strain by applying an
electric field. Multilayered structures are also obtained when piezo-layers are
bonded as sensor or actuators to a given structure.

• Laminates:

the laminate structure is the most common case of composite materials. Com-
posite are multilayered structures (made mostly of flat and curved panels)
constituted by several layers or laminate that are bonded perfectly together.
Each lamina is composed of fibers embedded in a matrix. These fibers are
produced according to a specific technological process that confers high me-
chanical properties in the longitudinal direction (L) of the fibers. The matrix
has the role of holding the fibers together. Carbon, boron and glass fibers are
used above, all along with organic products. The matrices are mostly of an
epoxy type. There are several possible ways of putting the fibers and matrix
together. Uni-directional laminate or laminates made of differently oriented
laminae are used in most applications related to the construction of aerospace,
automotive or sea vehicles. The laminae are placed one over the other, ac-
cording to a given lay-out. Such a possibility, which is known as "tailoring",
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1 – Introduction

Figure 1.4. Exemple of smart structure: sensor-actuator network for a plate.

permits one to optimize the use of the material for a given set of design re-
quirements.

• Functionally graded materials:
FGMs are advanced composite materials, within which the composition of each
constituent varies gradually with respect to spatial coordinates. Therefore the
macroscopic material properties in FGMs vary continuously, thus distinguish-
ing them from laminated composites materials in which the abrupt change of
the material properties across the layer interfaces leads to large inter-laminar
stresses which can lead to damage development. As in the case of laminated
composite materials, FGMs combine the desirable properties of the constituent
phases to obtain a superior performance. To this aim, functionally graded ma-
terials layers can be embedded in multilayered structures.

• Multiwalled carbon-nanotubes : carbon nanotubes (CNT) have exceptional me-
chanical properties (Young’s modulus, tensile strength, toughness, etc.), which
are due to their molecular structure, which consist of single or multiple sheets
of graphite wrapped into seamless hollow cylinders. Owning to the great stiff-
ness, strength and high aspect rateo of CNT’s, it is expected that, by dis-
persing them evenly throughout a polymer matrix, it is possible to produce
composites with considerably improved overall effective mechanic properties.
Furthermore, CNT’s have a relatively low density of about 1.75 g/cm3 and
nanotube reinforced polymers (NRPs), therefore, excel due to their extremely
high specific stiffness, strength and toughness [16].
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1.1 – Composite structure with a focus on FGM

Figure 1.5. Multilayered plate embedding a FGM layer.

Figure 1.6. Exemple of single-walled carbon nanotube.

In order to meet the demands of new technologies, particularly in microelec-
tronics, aerospace and high temperature applications, the materials science and
engineering community is continuously engaged in research to develop new materi-
als with improved properties. The great bulk of the work in this area has been in
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1 – Introduction

processing a variety of composites, ceramics, alloys and coatings. The main objec-
tive of these efforts generally has been to produce materials which are homogeneous
in bulk having controlled microstructure and, hence, controlled thermo-mechanical
properties. In the recent past considerable success seems to have been attained
in processing materials with desirable properties such as certain nano-composites,
metal matrix composites and intermetallics which are macroscopically homogeneous
and isotropic, and fiber or filament reinforced composites and unidirectionally so-
lidified eutectics which are highly oriented with regard to their mechanical and
strength properties.

At least in one important technological area, namely in high temperature appli-
cations, it is becoming more and more difficult to meet the highly stringent design
requirements by using materials that are "homogeneous" in their bulk properties.
At high temperatures metals and metal alloys appear to be very susceptible to
oxidation, creep, and generally to loss of structural integrity. The disadvantage
of ceramics has always been low strength and low toughness. Thus, a variety of
metal/ceramic composites and ceramic thermal barrier coatings have been devel-
oped in an effort to take advantage of the respective favorable properties of these
two major groups of materials. However, in composites, to varying degrees, oxida-
tion and low toughness are still a problem, whereas the shortcomings of ceramic
coatings seem to be poor interfacial bonding, high residual and thermal stresses,
low toughness, and consequent tendency toward cracking and spallation [31].

As regards the FGM concept, it is worth highlighting the fact that it was orig-
inated in Japan in 1984 during the space plane project, in the form of a proposed
thermal barrier material capable of withstanding a surface temperature of 2000 K
and a temperature gradient of 1000 K across a cross section of less than 10 mm
[38]. In the light of this concept, the main challenge is to combine irreconcilable
properties in the same component, such as high hardness at high temperatures and
structural toughness at low temperatures. A possible concept to meet this demand
is that of functionally graded materials.

FGMs are essentially two-phase particulate composites synthesized in such a
way that the volume fractions of the constituents vary in the thickness direction to
give a predetermined composition profile (Hirano and Yamada, 1988; Hirano et al.,
1988; Kawasaki and Watanabe, 1990). The composition profile, varying e.g. from
0% ceramic at the interface to 100% near the surface, in turn, is selected in such
a way that the resulting non-homogeneous material exhibits the desired thermo-
mechanical properties. According to the material combinations, FGM is divided
into metal/ceramic, ceramic/ceramic, ceramic/plastic and many other combina-
tions. In accordance with their changing compositions, the overall FGM is divided
into functionally graded type (composed of form one side to another gradient side
of the structure of gradient materials), functionally graded coating type (the matrix
material to form a coating composition gradient), functional gradient Connection
type (connecting two interface layer between the substrate gradient changes).
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1.2 – Thin-walled structures background

Even though the initial research on FGMs was largely motivated by the prac-
tical applications of the concept in a wide variety of thermal shielding problems,
materials with graded physical properties have almost unlimited potential in many
other technological applications.

1.2 Thin-walled structures background

For about a century many branches of the industry have sought stronger and at
the same time lighter structural solutions which optimize the effectiveness and the
cost of the structures. This has led to an increasing use of thin-walled structures.

Thin-walled structures made of aluminium and composite materials are widely
used in most applications related to the construction of aerospace, automotive or
sea vehicles.

Thin-walled beams are characterized by the relative magnitudes of their dimen-
sions. The wall thickness is small relative to the dimensions of the cross-section, and
the dimensions of the cross-section are small compared with the length of the beam.
It is useful to mention that for a thin-walled beam subjected to bending, torsion or
combined loading, the value of direct stress at a point on the cross-section depends
on the position of the point, the geometrical properties of the cross-section, and
the applied loading. This may be true whether the cross-section of the thin-walled
beam is closed or open.

There are many reasons why thin-walled structures must be given special con-
siderations in their analysis and design. Some of them are listed below:

• Out-of-plane distortion. The shear stresses and strains are relatively larger
than those in a solid rectangular beam. By twisting a thin-walled structure it
is easily shown that there is an out-of-plane distortion of the cross section in
the longitudinal beam direction (warping).

• Shear flow. In the closed cross section the torsional moment is reduced by the
action of a shear flow around the cell. Consequently the torsional stiffness is
increased considerably as compared to a similar open cross section.

• Shear lag. Shear lag occurs when the forces cannot be transmitted directly into
the entire cross section. This means that the area that is effective in resisting
the force is smaller than the total area.

• Susceptible to local buckling. It is well known that thin-walled structures are
susceptible to local buckling when subjected to load.

• Stress distribution. It is well known that warping and torsion have a great
influence on the stress distribution.
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1 – Introduction

• In-plane distortion. Due to the thin walls, thin-walled beams are much suscep-
tible to deformation of the cross section, leading to effects of local and general
instability that do not exist for a classic not-hollowed beam [2].

Because of the increased slenderness of these structures and the non-linearity
of many of the effects linked to the hollowed section, these structures require the
development of more comprehensive and accurate mathematical approaches than
the application of the thin-walled beams theory developed by Vlasov.

1.3 Literature review
This section is intended to provide a comprehensive review of the investigations
to date on vibration analysis FGM pre-twisted, single or double-tapered, rotating
beams.

The first two subsection reviews the main research on the behavior of isotropic
pre-twisted, single and double-tapered and rotating beams. To complete the overview
the last two subsections reviews the main research on the behavior of FGMs pre-
twisted, single and double-tapered rotating beams.

1.3.1 Pre-twisted, tapered isotropic beams

Non-prismatic beams i.e. beams with cross-section varying continuously or discon-
tinuously along their length are widely used as constitutive elements in complex
structures such as aircrafts and space vehicles due to their ability in optimization
of weight and strength; consequently the significance of vibration analysis of such
elements considerably arises since these structures are regularly exposed to variety
of time dependent loads introduced by blast, sonic booms and fuel explosion.

The governing differential equation for transverse vibration of non-prismatic
beams is a fourth order non-homogeneous differential equation with variable coef-
ficients. Except for some particular cases [4, 20, 29, 53], there is no exact solution
available. Thus, a wide variety of numerical techniques such as Frobenius method
[14, 13, 98], Chebyshev series [78] and Rayleigh-Ritz method [5] has been devel-
oped through the years. Finite element method is one of the most popular methods
among approximate techniques which have been enormously used in analysis of ta-
pered beams. Analyzing a non-prismatic beam using conventional finite element
method (CFEM) involves modeling of the original non-uniform beam with uniform
elements. It is obvious that by increasing the number of elements the accuracy
of the solution improves and dimensions of structural matrices grow larger; hence
more time is consumed for computations.

Many researchers have devoted their work to either formulating new exact el-
ements or improving the existing approximate elements. Gallagher and Lee [40]
derived approximate structural matrices for dynamic and instability analyses of
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1.3 – Literature review

non-uniform beams. Karabalis and Beskos [51] evaluated approximate consistent
mass and geometric stiffness matrices for beam elements with constant width and
linearly tapering depth. Banerjee and Williams [14] derived exact dynamic stiffness
matrix in terms of Bessel functions for non-prismatic beams whose cross-sectional
area and moment of inertia vary along beam as integer powers n and n + 2, re-
spectively. Eisenberger [30] derived the exact stiffness matrix for beams with gen-
eral variation of width and depth via a series solution of the governing differen-
tial equation. Mou et al. [65] derived exact dynamic stiffness matrix for general
non-prismatic beam elements in term of hyper-geometric functions. Using Bessel,
triangular and hyperbolic functions, Li [60] proposed an exact method for determi-
nation of natural frequencies of multistep non-prismatic beams with different mass
and spring attachments.

Caruntu [21] used hyper-geometric functions to study free vibration of cantilever
beams with parabolic thickness variation. Zhou [112] was the first one to introduce
differential transform method (DTM). He employed DTM in solution of initial
boundary value problems in electric circuit analysis. Later, Chen and Liu [26] ap-
plied DTM in solution of two-point boundary-value problems. The concept of DTM
has broadened to problems involving partial differential equations and systems of
differential equations [6, 7, 50]. Some researchers [9, 22, 48, 69, 70, 105, 104, 111]
have applied DTM for analysis of uniform and non-uniform beams. Ozdemir and
Kaya [69] calculated natural frequencies for non-prismatic beams whose cross-
sectional area and moment of inertia vary in accordance to two arbitrary powers n
and n+ 2, respectively.

Recently, R. Attarnejad, A. Shahba and M. Eslaminia studied free transverse vi-
bration of non-prismatic beams from a mechanical point of view, introducing new
functions, namely Basic Displacement Functions (BDFs) [4]. Syed Muhammad
Ibrahim, Saleh H Alsayed, Husain Abbas, Erasmo Carrera, Yousef A Al-Salloum
and Tarek H Almusalla, presented an accurate frequency solutions of tapered vi-
brating beams and plates using a simple and efficient displacement based unified
beam theory [85].

1.3.2 Rotating isotropic beams

A thorough understanding of the dynamic features of rotating blades serves as a
starting point for the study of fatigue effects, forced-response and flutter instability,
which occur in airplane engines, helicopters and turbomachinery. Rotating struc-
tures where a geometrical dimension is predominant over the others are usually
modeled as beams. Many researchers have addressed the problem of the rotating
beam by simplifying both the equations of motion and the displacement formula-
tions. For instance, Banerjee [14, 13], Ozge and Kaya [71], Mei [64] and Hodges
and Rutkowski [47] limited their studies to the flexural vibrations of both uniform
and tapered Euler-Bernoulli rotating beams by using, respectively, the Dynamic
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Stiffness Method, the Differential Transform Method and a variable-order finite el-
ement. The assumption that the beam deforms only in bending is restrictive, since
the coupling between the axial deformation and the lagwise motion can be signif-
icant. In order to take into account this coupling the introduction of the Coriolis
force becomes mandatory. For this reason, Hsiao et al. solved the complete motion
equations of Euler beams by using the power series solution [59] and the Finite
Element Method [49]. Further improvements have been introduced by introduc-
ing enhanced displacement fields over the blade cross-section. Indeed, in the open
literature, there are many papers devoted to the development of theories for the
rotating structures based on the Timoshenko model, in which the Coriolis term has
[86] or has not been considered [54, 45]. In all papers mentioned, the generic rotat-
ing blade is assumed to be a compact structure constituted by isotropic material
or by orthotropic laminae.

1.3.3 Pre-twisted, tapered FGM beams

The enhancement in the development of the structural beam models went hand-
in-hand with the improvement in the mechanical as well as thermal performances
of new advanced materials. Amongst the latter, the functionally graded materials
(FGMs) have raised a lot of interest in the research community in the last decade.
They showed some outstanding properties, which, in several applications, make
them more attractive than classical fibre-reinforced composites. They have turned
out to be more advantageous, indeed problems such as delamination, fibre failure,
adverse hygroscopic effects etc, are effectively eliminated or non-existent. Thus, due
to their potential application in several fields, there is the need to fully understand
their mechanical and thermal behavior. In this respect, many scientific articles have
been recently published on the static and dynamic analysis of FG beams. In partic-
ular, Vo et al. [96] coped with the static and vibration analysis of FG beams using
refined shear deformation theories. Thai and Vo [95] dealt with bending and free
vibration analysis of FG beams considering various boundary conditions and shear
deformation beam theories. Fundamental frequencies of FG beams using different
high-order beam theories have been provided by Sismek [82]. The same author
[81] studied the free and forced vibration behaviour of bi-directional functionally
graded materials (BDFGMs) of Timoshenko beams with various boundary condi-
tions. Chunhua and Wang [28] provided and accurate free vibration analysis of
Euler-type FG beams by using the weak-form quadrature element method. Wang
et al. [97] analysed the free vibration behaviour of two-directional FG beams. Lu et
al. [61] proposed semi-analytical elasticity solutions for bi-directional functionally
graded beams. Alshorbagy et al. [1] studied the free vibration characteristics of
a functionally graded beam by using FEM formulation. Maganti and Nullari [63]
investigated the free vibration analysis of pre-twisted rotating FG beams by using
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Rayleigh-Ritz method. The same authors [62] studied the flapwise bending vibra-
tion analysis of functionally graded rotating double-tapered beams. Free vibration
of FG Timoshenko beams with through-width delamination have been investigated
by Li and Fan [57]. Ke et al. [52] coped with the non-linear vibration of edged
cracked FG beams using differential quadrature method and Timoshenko beam
model. Vibration characteristics of stepped beams made of FGM using differential
transformation method were analysed by Wattanasakulpong and Charoensuk [101].
The same authors [100] proposed the study of flexural vibration of imperfect FG
beams based on Timoshenko beam theory and Chebyshev collocation method. She-
gokar and Lal [79] coped with a stochastic finite element non-linear free vibration
analysis of piezoelectric FG beams subjected to thermo-piezoelectric loadings with
material uncertainties. Nonlinear forced vibration analysis of clamped function-
ally graded beams have been analysed by Shooshtari and Rafiee [80]. A combined
Fourier series Galerkin method for the analysis of FG beams have been proposed by
Zhu and Sankar [113]. Azadi [8] dealt with the free and forced vibration analysis of
FG beam considering temperature dependency of material properties. Pradhan and
Chackraverty [72] investigated the effects of different shear deformation theories on
the free vibration of functionally graded beams. Librescu et al. [56] investigated the
free vibration and stability behaviour of thin walled beams made of FGMs and op-
erating in high temperature environment. Giunta et al. [43] proposed hierarchical
beam theories for an accurate free vibration analysis of functionally graded beams.
The same authors [42] coped with a thermo-mechanical analysis of FG beams via
hierarchical modelling. Su and Benerjee [11] proposed a development of dynamic
stiffness method for the free vibration analysis of FG Timoshenko beams. Ziane
et al. [110] coped with the free vibration analysis of thin and thick-walled FGM
box beams by using an exact dynamic stiffness matrix on the basis of first-order
shear deformation theory. Xu et al.[102] investigated the stochastic dynamic char-
acteristics of FGM beams with random material properties. Eroglu [32] proposed
a study on in-plane free vibrations of circular beams made of FGM in thermal
environment. Roque and Martins [77] used the RBF numerical method combined
with the differential evolution for optimization of FG beams. Free vibrations of
FG spatial curved beams have been analysed by Yousefi and Rastgoo [106]. FGM
structures have been widely analysed for free vibration problems by Tornabene et
al. [90, 93, 91, 33, 92]. In the latter the attention has been primarily focused on
FGM doubly-curved shells with variable radii of curvature. An extensive contribu-
tion in the thermo-mechanical analysis of FG beams has been provided by Batra
et al. [55, 89]. Fiorenzo A. Fazzolari [37] studied the free vibration of metallic
and FGM beams with general boundary conditions by using advanced and refined
variable-kinematics quasi-3D beam models developed by using the method of power
series expansion of displacement components.

Recently some interesting beam formulations have been provided by Yu, Hodges
and co-authors [108, 107, 109]. They proposed the variational asymptotic method
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which led to the computer program variational asymptotic beam sectional analysis
(VABS), which has been successfully used for several structural problems. The
radial basis function (RBF)-pseudospectral method has been employed by Fer-
reira and Fasshauer [39] for the computation of natural frequencies of shear de-
formable beams and plates. The development of other hierarchical models is given
in Ref. [19]. Exact beam formulations based on the dynamic stiffness method
(DSM) have been proposed by Banerjee and co-authors [10, 11, 87]. Amin Ghor-
bani Shenas, Parviz Malekzadeh and Sima Ziaee studied the thermal buckling of
pre-twisted FGM beams deriving the governing stability equations based on the
third-order shear deformation theory (TSDT) in conjunction with the adjacent
equilibrium state criterion under the Von Karman’s non-linear assumptions using
the Cherbyshev-Ritz method [41].

1.3.4 Rotating composite beams

The design of advanced rotor blades has been strongly affected by the advent of
composite materials which combine a high specific strength and stiffness with the
capability to be easily modeled. These properties produce light and efficient blades,
whose dynamic characteristics usually involve phenomena that cannot be detected
by the use of the classical models. For this reason, a considerable number of re-
fined theories have been introduced with the purpose of describing the rotating
composite blade behavior. For instance, Song and Librescu presented in [84] a
structural model encompassing transverse shear, secondary warping deriving from
the assumption of the non-uniform torsion along the longitudinal axis and the ef-
fect of the heterogeneity of the materials. They observed that by discarding the
Coriolis term, the equations described separately the flap-lag deformation and the
extension-twist motion, and within this context, they examined the ply orientation
effects. Contrary to this ad hoc formulation, Chandiramani et al. provided a ge-
ometrically nonlinear theory for analyzing the rotating composite thin-walled box
beam [24], in which the non-classical effects were captured in a general way. The
linearized equations of motion were solved with the Modified Galerkin Method and
the Coriolis term was disregarded. Furthermore, the authors modified their formu-
lation for extension to pre-twisted composite blades [25]. See [66, 83], for interesting
studies on controlling thin-walled composite blades via piezoelectric patches. Jung
et al. [68] developed a one-dimensional finite element based on a mixed variational
approach in which both displacement and force formulations were used. The walls
of the considered structures were modeled as shell and the global deformation was
described by the Timoshenko beam model. This model is suitable for composite
structures with open and closed contour. The dynamic of the rotating composite
blades clearly represents a complex and interesting topic (see [46, 67]), but it seems
that a reliable and general method for its complete analysis is not yet available.
In order to overcome the limitation of ad-hoc assumptions about the displacement
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fields, Carrera et al. presented the Carrera Unified Formulation (CUF) applied to
the Finite Element Method [17].

25



26



Chapter 2

Structural Models

During the 16th century the strength doctrine was founded by Galileo Galilei. After
his death Robert Hooke, first, and later Coulomb, continued developing the Theory
of Elasticity. The Da Vinci-Eulero-Bernoulli Beam Theory was first enunciated in
1750 ca [94]. The classic beam theory is based on the assumption that plane cross
sections remain plane. Furthermore, the physical assumption of Hooke on linear
elasticity is made, which means that the strain distribution will vary linearly over
the cross section.

In the early 20th century Stephen Timoshenko developed the Timoshenko Beam
Theory. This model takes into account shear deformation and rotational bending
effects. As a result thus allows to describe the behavior of thick beams, sand-
wich composite beams or beams subjected to a high-frequency excitation when the
wavelength approaches the thickness of the beam.

These theory have represented the vanguard until the advent of modern com-
puters in the end of the 20th century. Their computational power allows the use
of high-order theories based on both, the axiomatic hypothesis method and the
asymptotic expansion method. This methods permit a 3D problem to be reduced
to a 1D problem [18].

The following sections focus on the different beam models and their fields of
validity.

2.1 Da Vinci-Eulero-Bernoulli Beam Model

A fundamental assumption of the Da Vinci-Eulero-Bernoulli theory is that the
cross-section of the beam is infinitely rigid in its own plane, i.e., no deformation
occur in the plane of the cross-section. Consequently, the in-plane displacement
field can be represented by two rigid body translations and one rigid body rotation.
This fundamental assumption deals only with in-plane displacements of the cross
section. In addition, during deformation, the cross section is assumed to remain
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plane and normal to the deformed axe of the beam.
Consider a triad with coordinates x1, x2, and x3, I = (i1, i2, i3). This set of axis

is attached at a point of the beam cross-section. i1, is along the axis of the beam,
i2 and i3 define the plane of the cross section. The displacements in the directions
i1, i2 and i3 are u1(x1, x2, x3), u2(x1, x2, x3), u3(x1, x2, x3), respectively.

The first assumption states that the cross-section is undeformable in its own
plane. Hence, the displacement field in the plane cross section consist of two rigid
body translation, u2(x1) and u3(x1):

u2(x1, x2, x3) = u2(x1) u3(x1, x2, x3) = u3(x1) (2.1)

Figure 2.1. Schematic representation of the displacement field.

The second assumption states that the cross-section remain plane after deforma-
tion. This implies an axial displacement field consisting of a rigid body translation
u1(x1), and two rigid body rotations Φ2(x1) and Φ3(x1). The axial displacement is
than:

u1(x1, x2, x3) = u1(x1) + x3Φ2(x1)− x2Φ3(x1) (2.2)

Note the sign convention: the rigid body translations of the cross-section u1(x1),
u2(x1), u3(x1), are positive in the direction of the axes i1, i2 and i3 respectively; the
rigid rotations of the cross-section, Φ2(x1) and Φ2(x1), are positive abut the axes
i2 and i3, respectively. The Fig. 2.2 depicts these various sign conventions.

The third assumption states that the cross-section remains normal to the de-
formed axis of the beam. As depicted in Fig. 2.3 this implies the equality of the
slope of the beam and of the rotation of the section:
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Figure 2.2. Sign convention for displacements and rotations of a beam.

Φ3(x1) =
du2(x1)

dx1
Φ2(x1) = −du3(x1)

dx1
(2.3)

The minus in the second equation is a consequence of the sign convention for
the sectional displacements and rotations.

The equation (2.3) can be used to eliminate the sectional rotation from the
axial displacement field. The complete displacement field for the Da Vinci-Eulero-
Bernoulli beam model is:

8
>>>>>>><

>>>>>>>:

u1(x1, x2, x3) = u1(x1)− x3
du3(x1)

dx1
− x2

du2(x1)

dx1

u2(x1, x2, x3) = u2(x1)

u3(x1, x2, x3) = u3(x1)

(2.4)

The complete three-dimensional displacement field of the beam can therefore
be expressed in terms of three sectional displacements, u1(x1), u2(x1), u3(x1) and
their derivative with respect to x1. This important simplification result from the
assumptions made and allows the development of a one-dimensional beam theory,
i.e., a theory in which the unknown displacements are functions only of the span-
wise coordinate, x1.
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Figure 2.3. Beam slope and cross-sectional rotation for a Eulero-Bernoulli beam.

2.2 Timoshenko Beam Model

As for the Da Vinci-Eulero-Bernoulli’s beam model, fundamental assumptions of
the Timoshenko’s theory are that the cross-section of the beam is infinitely rigid in
its own plane, i.e., no deformation occur in the plane of the cross-section, and that
the cross-section of the beam remains plane after deformation. Consequently, the
in-plane displacement field can be represented by two rigid body translations and
one rigid body rotation. This fundamental assumption deals only with in-plane
displacements of the cross section.

In contrast with the Eulero-Bernoulli’s theory, in the Timoshenko’s theory the
plane of the cross-section can rotate with respect to the axe of the deformed beam.
This rotation is due to a shear deformation, which is not included in the Eulero-
Bernoulli’s theory. Therefore the Eulero-Bernoulli’s beam is stiffer.

As in the previous section, consider a triad with coordinates x1, x2, and x3, I =
(i1, i2, i3). This set of axis is attached at a point of the beam cross-section. i1,
is along the axis of the beam, i2 and i3 define the plane of the cross section.
The displacements in the directions i1, i2 and i3 are u1(x1, x2, x3), u2(x1, x2, x3),
u3(x1, x2, x3), respectively.

The first assumption states that the cross-section is undeformable in its own
plane. Hence, the displacement field in the plane cross section consist of two rigid
body translation, u2(x1) and u3(x1):
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2.3 – Reddy’s Third-Order Beam Model

u2(x1, x2, x3) = u2(x1) u3(x1, x2, x3) = u3(x1) (2.5)

The second assumption implies an axial displacement field consisting of a rigid
body translation u1(x1), and two rigid body rotations Φ2(x1) and Φ3(x1). The axial
displacement is than:

u1(x1, x2, x3) = u1(x1) + x3Φ2(x1)− x2Φ3(x1) (2.6)

The sign conventions and the decomposition of the axial displacement field are
depicted, respectively, in Figure 2.1 and Figure 2.2.

In the Timoshenko’s theory, the cross-section can rotate with respect to the axe
of the deformed beam. Therefore the complete displacement field for the Timo-
shenko beam model is:

8
>>>>>><

>>>>>>:

u1(x1, x2, x3) = u1(x1) + x3Φ2(x1)− x2Φ3(x1)

u2(x1, x2, x3) = u2(x1)

u3(x1, x2, x3) = u3(x1)

(2.7)

As a result of the last assumption, in this model the number of variables becomes
five. In addition to the variables of the Eulero-Bernoulli’s theory, u1(x1), u2(x1)
and u3(x1), the model present two more variables, Φ2(x1) and Φ3(x1).

The Figure 2.4 depicts the beam slope and the cross-sectional rotation for a
Timoshenko beam.

2.3 Reddy’s Third-Order Beam Model

The third-order beam theory to be developed is based on the same assumptions
as the classical and first-order beam theories, except that we relax the assumption
on the straightness and normality of a transverse normal after deformation by
expanding the displacements as cubic functions of the thickness coordinate.

In the Reddy’s model the displacement field accommodates quadratic variations
of the transverse shear strains (and hence stresses) and vanishing of traverse shear
stresses on the top and bottom of a general laminate composed of monoclinic
layers. Thus there is no need to use correction factors in a third-order theory.
The number of dependent unknowns is reduced imposing traction-free boundary
conditions on the top and bottom faces of the laminate (σx1x3(x, y,±h/2, t) =
0, σx2x3(x, y,±h/2, t) = 0). The third-order theories provide a slight increase in ac-
curacy relative to the FSDT-First order Shear Deformation Theory (Timoshenko’s
Theory) solution, at the expense of an increase of computational effort [75].
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Figure 2.4. Beam slope and cross-sectional rotation for a Timoshenko beam.

The Third-Order Beam Theory of Reddy with transverse inextensibility is based
on the following displacement field:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

u1(x1, x2, x3) = u1(x1) + x3Φ2(x1)− x3
3

4

3h2

✓
φ2(x1) +

@u3(x1)

@x1

◆

−x2Φ3(x1)− x3
2

4

3h2

✓
φ3(x1) +

@u2(x1)

@x1

◆

u2(x1, x2, x3) = u2(x1)

u3(x1, x2, x3) = u3(x1)

(2.8)

As a result of the assumed displacement field, the cross-section can warp and
rotate with respect to the axe of the deformed beam. Fig. 2.6 depicts the beam
slope and cross-sectional rotation for a Reddy’s beam.

32



2.4 – High Order Beam Model

Figure 2.5. Cross-sectional warping for a Reddy beam.

2.4 High Order Beam Model

The higher order beam theories allows a more accurate description of the beam
kinematics, which is needed above all in unconventional structural mechanics ap-
plications such as static and dynamic analysis of beams subjected to multi-field
loadings. By the use of the CUF-Carrera Unified Formulation, it is possible to
develop a 1D structural model that requires in an axiomatic framework a 2D ex-
pansion of the generic function F⌧ above the cross-section domain. In a compact
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Figure 2.6. Beam slope and cross-sectional rotation for a Reddy beam.

notation the displacement field can be written as:

u(x, y, z, t) = F⌧ (x, y) u⌧ (z, t) ⌧ = 1, ...,M (2.9)

where F⌧ is the expansion function, u⌧ is the vector of the unknown displace-
ments and M is the number of the expansion terms[16]. The following aspects are
of fundamental importance:

• F⌧ can be of any-type. This means that one can assume polynomial expan-
sions, Lagrange/Legendre polynomials, harmonics, exponentials, combinations
of different expansions types, etc.

• M can be arbitrary. This means that the number of terms can be increased
to any extent. According to [99], as M ! 1, the 1D model solution coincides
with the exact 3D solution independently of the problem characteristics.

For instance, a second-order model based on Taylor-like expansions (N = 2,
M = 6) produce the following displacement fields:

34



2.4 – High Order Beam Model

ux(x, y, z, t) = ux1 + xux2 + yux3 + x2ux4 + xyux5 + y2ux6

uy(x, y, z, t) = uy1 + xuy2 + yuy3 + x2uy4 + xyuy5 + y2uy6

uz(x, y, z, t) = uz1 + xuz2 + yuz3 + x2uz4 + xyuz5 + y2uz6

(2.10)

Refined Formulation

The proposed advanced computational technique is able to generate a class of beams
theories in a systematic way. In particular each displacement variable in the dis-
placement field is expanded at any desired order independently from the others
and regarding on the results and computational cost. Thereby, the most general
displacement field can be written as follows:

ux(x, y, z, t) = F⌧
u

x

(x, y) ux⌧
u

x

(z, t) ⌧u
x

= 1, ..., Nu
x

uy(x, y, z, t) = F⌧
u

y

(x, y) uy⌧
u

y

(z, t) ⌧u
y

= 1, ..., Nu
y

uz(x, y, z, t) = F⌧
u

z

(x, y) uz⌧
u

z

(z, t) ⌧u
z

= 1, ..., Nu
z

(2.11)

The compact form of this expression is the Eq.2.9 where:

u⌧ (z, t) =

8
>>>><

>>>>:

ux⌧
u

x

(z, t)

uy⌧
u

y

(z, t)

uz⌧
u

z

(z, t)

9
>>>>=

>>>>;

F⌧ (x, y) =

2

66664

F⌧
u

x

(x, y) 0 0

0 F⌧
u

y

(x, y) 0

0 0 F⌧
u

z

(x, y)

3

77775

(2.12)
F⌧

u

x

(x, y), F⌧
u

y

(x, y), F⌧
u

z

(x, y) are the cross section function; ux⌧
u

x

(z, t), uy⌧
u

y

(z, t),
uz⌧

u

z

(z, t) are the displacement vector components and and Nu
x

, Nu
y

, Nu
z

are the
order of the expansions along the axes x, y, z, respectively. According to Einstein’s
notation, the repeated subscripts ⌧u

x

, ⌧u
y

, ⌧u
z

indicate summation. In addition,
choosing the cross-section functions to be Taylor’s series expansion the Eq.2.11 can
be rewritten as:
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ux(x, y, z, t) =
N

u

xP
n
u

x

=0

"
n
u

xP
n⇤
u

x

=0
x(n

u

x

−n⇤
u

x

)yn
⇤
u

xux
N

u

x

(z, t)

#

uy(x, y, z, t) =
N

u

yP
n
u

y

=0

"
n
u

yP
n⇤
u

y

=0
x(n

u

y

−n⇤
u

y

)yn
⇤
u

yuy
N

u

y

(z, t)

#

uz(x, y, z, t) =
N

u

zP
n
u

z

=0

"
n
u

zP
n⇤
u

z

=0
x(n

u

z

−n⇤
u

z

)yn
⇤
u

zuz
N

u

z

(z, t)

#

(2.13)

where Nu = n
u

(n
u

+1)+2(n⇤
u

+1)
2 .The total number of degree of freedoms (DOFs)

involved in a generic analysis when using the present model is:
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(2.14)

An example of a possible displacement field with a second-order model based on
Taylor-like expansions (Nu

x

= 2, Nu
y

= 2 and Nu
z

= 1) follows:

ux(x, y, z, t) = ux1 + xux2 + yux3 + x2ux4 + xyux5 + y2ux6

uy(x, y, z, t) = uy1 + xuy2 + yuy3 + x2uy4 + xyuy5 + y2uy6

uz(x, y, z, t) = uz1 + xuz2 + yuz3

(2.15)

In this case, the 1D model has 18 unknown displacement variables.

An other example of possible functions that could be used to approximate the
beam cross-section kinematics are the exponential functions. According to this
functions choice, the expansion takes the following form:
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ux(x, y, z, t) = ux0(z, t) +
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(2.16)

Using the present model the total number of DOFs involved is:

DOFsTE =
⇥
(2Nu

x

+ 1) +
3
2Nu

y

+ 1
4
+ (2Nu

z

+ 1)
⇤

(2.17)

For instance, a possible displacement field according to the present approach
and by using expansion orders Nu

x

= 2, Nu
y

= 2 and Nu
z

= 1 is given in Eq.2.18:

ux(x, y, z, t) = ux0(z, t) + e(
x

h

)ux1(z, t) + e(
y

b
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x

h
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y

b
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(2.18)

Then when the cross-section functions are chosen to be trigonometric functions,
the displacement field can be expanded accordingly as follows:
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u

yP
m=1

[sin
3
mx
h

4
ux4m−2(z, t) + sin

3
my
b

4
uy4m−1(z, t)+

+cos
3
mx
h

4
uy4m(z, t) + cos

3
my
b

4
uy4m+1(z, t)]

uz(x, y, z, t) = uz0(z, t) +
N

u

zP
m=1

[sin
3
mx
h

4
uz4m−2(z, t) + sin

3
my
b

4
uz4m−1(z, t)+

+cos
3
mx
h

4
uz4m(z, t) + cos

3
my
b

4
uz4m+1(z, t)]

(2.19)
The total number of DOFs involved in the expansion is:

DOFsTE =
⇥
(4Nu

x

+ 1) +
3
4Nu

y

+ 1
4
+ (4Nu

z

+ 1)
⇤

(2.20)
As for the previous case, according to the here developed beam model and by

selecting the expansion orders as Nu
x

= 2, Nu
y

= 2 and Nu
z

= 1 the displacement
field takes the following form:

ux(x, y, z, t) = ux0(z, t) + sin
3
x
h

4
ux1(z, t) + sin

3
y
b

4
ux2(z, t) + cos

3
x
h

4
ux3(z, t)+

+cos
3
y
b

4
ux4(z, t) + sin

3
2x
h

4
ux5(z, t) + sin

3
2y
b

4
ux6(z, t)+

+cos
3
2x
h

4
ux7(z, t) + +cos

3
2y
b

4
ux8(z, t)

uy(x, y, z, t) = uy0(z, t) + sin
3
x
h

4
uy1(z, t) + sin

3
y
b

4
uy2(z, t) + cos

3
x
h

4
uy3(z, t)+

+cos
3
y
b

4
uy4(z, t) + sin

3
2x
h

4
uy5(z, t) + sin

3
2y
b

4
uy6(z, t)+

+cos
3
2x
h

4
uy7(z, t) + +cos

3
2y
b

4
uy8(z, t)

uz(x, y, z, t) = uz0(z, t) + sin
3
x
h

4
uz1(z, t) + sin

3
y
b

4
uz2(z, t) + cos

3
x
h

4
uz3(z, t)+

+cos
3
y
b

4
uz4(z, t)

(2.21)
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2.4 – High Order Beam Model

Among all the functions presented in this section, the Taylor-like expansions own
a good computational stability, allowing generally to reach a high level of accuracy
in various structural applications featured by 3D effects [36]. Thus these have been
adopted in the Refined Method.
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Chapter 3

Governing Equations-weak

form, Ritz Method and

admissible functions

In order obtain the weak form of the governing equations, the Principle of Vir-
tual Displacements (PVD) is employed to derive the Hierarchical Ritz Formulation
(HRF).

The PVD variational statement, in its classical form, can be written as follow:

δLint = δLext − δLine (3.1)

where δLint, δLext, δLine, are the virtual internal work, the virtual external work
and the virtual inertial work, respectively.

When dealing with dynamics problems, Hamilton’s principle can be alternatively
used. The latter can be expressed as:

Z t2

t1

δL dt = 0 (3.2)

where t1 and t2 are the initial and the generic instant of time; L is the Lagrangian
which assumes the following form:

L = T − ⇧, with ⇧ = U + V (3.3)

T is the kinetic energy and ⇧ is the total potential energy of the system; U and
V are the potential strain energy and the potential energy due to the eternal forces,
respectively.

The PVD can be easily derived by Hamilton’s principle [34], indeed the following
relations hold:
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3 – Governing Equations-weak form, Ritz Method and admissible functions

Figure 3.1. Schematic representation of the rotating reference frame.

δLint = δU δLext = −δV δLine = −δT (3.4)

The variation of the kinetic energy, T , is:

δT = δ

Z

V

1

2
⇢(vTv)dV = δ

Z

V

1

2
⇢[u̇+ ⌦̃(u+ r)]T [u̇+ ⌦̃(u+ r)]dV (3.5)

where v = u̇+ ⌦̃(u+r) is the absolute velocity of the generic point P , ⌦̃ is the
angolar velocity and r is the distance from the rotation axe:

⌦̃ =

2

66664

0 0 0

0 0 ⌦̃

0 −⌦̃ 0

3

77775
r =

8
>>>><

>>>>:

0

yp + rhub

zp + rhub

9
>>>>=

>>>>;

(3.6)

rhub is the radius of the hub (see Fig.3.1).
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3 – Governing Equations-weak form, Ritz Method and admissible functions

Figure 3.2. Centrifugal force on a beam element.

The body can be loaded by static stresses, such as the the centrifugal stress σ0.
In order to take into account this effect, according with the linearized theory, the
potential energy can be written in the following form:

U =

Z

V

1

2
("Tσ)dV +

Z

V

1

2
("T

nl

σ0)dV (3.7)

The centrifugal force to which an infinitesimal element of a beam is subjected is
given by:

dFc = m⌦̃2(z + rhub)dz = ⇢A⌦̃2(z + rhub)dz (3.8)

where dz is the length of the element, (z + rhub) is the distance of the element
from the axe of rotation, ⌦̃ is the angular velocity and m is the mass for unit of
length. Dividing the elementary centrifugal force for the cross-section area of the
element, it is possible to obtain the elementary centrifugal stress:

dσ0 =
dFc

A
= ⇢⌦̃2(z + rhub)dz (3.9)

Integrating along the axe of the beam between a generic position z and the
length of the beam l, the centrifugal stress on a generic section of the rotating
beam:
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3 – Governing Equations-weak form, Ritz Method and admissible functions

σ0 =

Z

σ

dσ0 =

Z

l

⇢⌦̃2(z + rhub)dz = ⇢⌦̃2


l2

2
− z2

2
+ rhub(l − z)

;
(3.10)

Figure 3.3. Tapered beam structure and coordinate system.

As a consequence the Eq.3.1 can be expressed, in case of a variable cross-section
beam, ⌦, along the beam spam (see Fig.3.3):

R
l

R
⌦ δ"

Tσ d⌦ dl +
R
l

R
⌦ δ"

T
nl

σ0 d⌦ dl = δLext −
R
l

R
⌦ ⇢δu

T ü d⌦ dl+

−
R
l

R
⌦ ⇢δu

T ⌦̃T u̇ d⌦ dl +
R
l

R
⌦

1
2⇢δu

T ⌦̃T ⌦̃u d⌦ dl +
R
l

R
⌦ ⇢δu

T ⌦̃T ⌦̃r d⌦ dl
(3.11)

According to the Hooke’s law σ = C", thus:

R
l

R
⌦ δ"

TC" d⌦ dl +
R
l

R
⌦ δ"

T
nl

σ0 d⌦ dl = δLext −
R
l

R
⌦ ⇢δu

T ü d⌦ dl+

−
R
l

R
⌦ ⇢δu

T ⌦̃T u̇ d⌦ dl +
R
l

R
⌦

1
2⇢δu

T ⌦̃T ⌦̃u d⌦ dl +
R
l

R
⌦ ⇢δu

T ⌦̃T ⌦̃r d⌦ dl
(3.12)

In the Ritz method the displacement amplitude vector components ux⌧
u

x

, uy⌧
u

y

and uz⌧
u

z

, are expressed in series expansion, assuming N as as the order of expansion
in the approximation:
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3 – Governing Equations-weak form, Ritz Method and admissible functions

ux⌧
u

x

(z, t) =
NP
i

Ux⌧
u

x

i

 x
i

(z)ei!ij

t

uy⌧
u

y

(z, t) =
NP
i

Uy⌧
u

y

i

 y
i

(z)ei!ij

t

uz⌧
u

z

(z, t) =
NP
i

Uz⌧
u

z

i

 z
i

(z)ei!ij

t

(3.13)

where i =
p
−1, t is the time and !ij the circular frequency; Ux⌧

u

x

i

, Uy⌧
u

y

i

Uz⌧
u

z

i

are the unknown coefficients and  x
i

, y
i

, z
i

are the Ritz functions selected with
respect to the features of the problem under investigation.

The convergence to the exact solution is guaranteed if the Ritz functions are
admissible functions in the used variational principle [34, 76, 74, 35].

The Ritz functions used are a set of algebraic functions which satisfy the ge-
ometric boundary conditions. In particular, setting N as the order in the Ritz
approximation, they assume the following form:

 x
i

(z) = zpx(l − z)qxzi − 1 i = 1,2,3, ..., N

 y
i

(z) = zpy(l − z)qyzi − 1 i = 1,2,3, ..., N

 z
i

(z) = zpx(l − z)qzzi − 1 i = 1,2,3, ..., N

(3.14)

where l is the length of the beam, pk and qk, with k = x, y, z, assume the values
0,1,2 for free (F), simply supported (SS) and clamped (C) boundary conditions,
respectively.

In order to enhance the computational stability, the Ritz functions have been
orthogonalized in the domain [0, l] via the Gram-Smith process [44]. The first mem-
ber of the orthogonal polynomial set  k1(z) is chosen as the simplest polynomial
of the last order that satisfies the natural boundary conditions of the beam. The
other members of the orthogonal set in the interval [0, l] are generated by using the
following recursive procedure:
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3 – Governing Equations-weak form, Ritz Method and admissible functions

 k2(z) = (z − B2) k1(z)

 k3(z) = (z − B3) k2(z)− C3 k1(z)

...

 k
i

(z) = (z − Bi) k
i−1(z)− C3 k

i−2(z)

...

 k
N

(z) = (z − BN−1) k
N−1(z)− CN k

N−2(z)

(3.15)

where

Bi =

R l

0 w(z)zφ
2
k
i−1

(z) dz
R l

0 w(z)φ
2
k
i−1

(z) dz

Ci =

R l

0 w(z)zφk
i−1(z)φk

i−2(z) dzR l

0 w(z)φ
2
k
i−2

(z) dz

(3.16)

with k = x, y, z.
The polynomials φk

i

satisfy the orthogonality condition:

R l

0 w(z)φk
i

(z)φk
j

(z)dz = ⇤ij

(
= 0 for i /= j

/= 0 for i = j
(3.17)

with i, j = 1, ..., N , w(z) is the weight function. In the particular case of uniform
beams w(z) = 1. In the case of study, w(z), is a specific function of z.

The displacement field is then given, substituting the Eq.3.13 in the Eq.2.11:
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3 – Governing Equations-weak form, Ritz Method and admissible functions

8
>>>>>>>>>>><

>>>>>>>>>>>:

ux(x, y, z, t) =
NP
i

Ux⌧
u

x

i

F⌧
u

x

 x
i

(z)ei!ij

t

uy(x, y, z, t) =
NP
i

Uy⌧
u

y

i

F⌧
u

y

 y
i

(z)ei!ij

t

uz(x, y, z, t) =
NP
i

Uz⌧
u

z

i

F⌧
u

z

 z
i

(z)ei!ij

t

(3.18)

In a compact form:

u = F⌧U⌧ i i (3.19)

where:

U⌧ i(t) = ei!ij

t

8
<

:

Ux⌧
u

x

i

Uy⌧
u

y

i

Uz⌧
u

z

i

9
=

; ,  i(z) =

2

4
 x

i

(z) 0 0
0  y

i

(z) 0
0 0  z

i

(z)

3

5 (3.20)

The stresses, σ, and strains, ", are grouped as follows:

σpH =

8
>>>><

>>>>:

σxx

σyy

⌧xy

9
>>>>=

>>>>;

"pG =

8
>>>><

>>>>:

"xx

"yy

γxy

9
>>>>=

>>>>;

σnG =

8
>>>><

>>>>:

⌧xz

⌧yz

γzz

9
>>>>=

>>>>;

"nG =

8
>>>><

>>>>:

γxz

γyz

"zz

9
>>>>=

>>>>;

(3.21)

The subscripts n and p denote out-of-plane and in-plane components, respec-
tively, whilst the subscripts H and G state the Hooke’s law and Geometric relations
are used. The strain-displacement relations are:

"pG = Dpu

"nG = Dnu = (Dnp +Dnz)u
(3.22)
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where Dp,Dn,Dnp,Dnz are differential matrix operators defined as follows:

Dp =

2

66664

@
@x

0 0

0 @
@y

0

@
@y

@
@x

0

3

77775
Dn =

2

66664

@
@z

0 @
@x

0 @
@z

@
@y

0 0 @
@z

3

77775

Dnp =

2

66664

0 0 @
@x

0 0 @
@y

0 0 0

3

77775
Dnz =

2

66664

@
@z

0 0

0 @
@z

0

0 0 @
@z

3

77775

(3.23)

According to Hooke’s law, the 3D constitutive equations are given as:

σ = C(x) " (3.24)

By using Eq.3.21, the Above equation becames:

σpH = Cpp(x)"pG +Cpn(x)"nG

σnH = Cnp(x)"pG +Cnn(x)"nG
(3.25)

where matrices Cpp(x),Cpn(x),Cpn(x),Cnp(x),Cnn(x) are:
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Cpp(x) =

2

66664

C11(x) C12(x) 0

C12(x) C22(x) 0

0 0 C66(x)

3

77775
Cpn(x) =

2

66664

0 0 C13(x)

0 0 C23(x)

0 0 0

3

77775

Cnp(x) =

2

66664

0 0 0

0 0 0

C13(x) C23(x) 0

3

77775
Cnn(x) =

2

66664

C55(x) 0 0

0 C44(x) 0

0 0 C33(x)

3

77775

(3.26)

Figure 3.4. FG beam structure.

Referring to Fig.3.4, the volume fraction of the ceramic phase is defined according
to the following power-low:

Vc(x) =

✓
1

2
+

x

h

◆p

x 2

−h

2
,
h

2

;
(3.27)

where h is the thickness of the beam and the exponent p is the volume fraction
index indicating the material variation through the thickness direction.

The volume fraction of the metal phase is given as Vm(x) = 1− Vc(x). Young’s
modulus E, Poisson’s coefficient ⌫, and density ⇢ are computed by means of the
following Rule-Of-Mixture (ROM):
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8
>>>>>><

>>>>>>:

E(x) = (Ec − Em)Vc(x) + Em

⌫(x) = (⌫c − ⌫m)Vc(x) + ⌫m

⇢(x) = (⇢c − ⇢m)Vc(x) + ⇢m

(3.28)

Finally the effective FG material coefficients Cij(x), derived after careful con-
siderations based on micro-mechanical approaches [37], are given as follows:

8
>>>>>><

>>>>>>:

C11 = C22 = C33 = λ(x) + 2G(x)

C12 = C13 = C23 = λ(x)

C44 = C55 = C66 = G(x)

(3.29)

where λ is the Lamé coefficients, and G is the shear modulus. For the sake of
completeness their explicit expressions are given below:

λ(x) =
⌫(x)E(x)

(1 + ⌫)(1− 2⌫)

G(x) =
E(x)

2(1 + ⌫)

(3.30)

Combining the strain-displacement relation Eq.3.22 and Eq.3.19, the geometric
relations can be written in terms of Ritz functions:

"pG = Dp(F⌧ i)U⌧ i

"nG = Dnp(F⌧ i)U⌧ i + Dnz(F⌧ i)U⌧ i
(3.31)

By substituting the previous expression in Eq.3.12 the explicit expressions of the
internal work, split in its four contributions, can be obtained as:
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δ(Lint)pp =
R
l

R
⌦ δ"

T
pGCpp"pG d⌦ dl =

= δUT
⌧ i

3R
l

R
⌦([Dp(F⌧ i)]T Cpp Dp(Fs j)) d⌦ dl

4
Usj

δ(Lint)pn =
R
l

R
⌦ δ"

T
pGCpn"nG d⌦ dl =

= δUT
⌧ i(

R
l

R
⌦([Dp(F⌧ i)]T Cpn Dnp(Fs j)+

+[Dp(F⌧ i)]T Cpn Dnz(Fs j)) d⌦ dl)Usj

δ(Lint)np =
R
l

R
⌦ δ"

T
nGCpn"pG d⌦ dl =

= δUT
⌧ i(

R
l

R
⌦([Dnp(F⌧ i)]T Cnp Dp(Fs j)+

+[Dnz(F⌧ i)]T Cnp Dp(Fs j)) d⌦ dl)Usj

δ(Lint)nn =
R
l

R
⌦ δ"

T
nGCnn"nG d⌦ dl =

= δUT
⌧ i(

R
l

R
⌦([Dnp(F⌧ i)]T Cnn Dnz(Fs j)+

+[Dnz(F⌧ i)]T Cnn Dnp(Fs j)+

+[Dnz(F⌧ i)]T Cnn Dnz(Fs j)) d⌦ dl)Usj

(3.32)

In addition, the explicit expressions of the internal work due to the centrifugal
stress can be obtained as:

δ(Lint)σ0 =
R
l

R
⌦ δ"

T
nlσ0 d⌦ dl =

= δUT
⌧ i

R
l

R
⌦ σ̃0([Dnl(F⌧ i)]T ⌦̃T ⌦̃ Dnl(Fs j)d⌦ dl)Usj

(3.33)

Where the differential matrix operator Dnl is given as:
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Dnl =

2

66664

@
@x

0 0

0 @
@y

0

0 0 @
@z

3

77775
(3.34)

Moreover with the same process the expression of the inertial work became:

δLine = δUT
⌧ i

⇥R
l

R
⌦ ⇢(F⌧ i)T (Fs j) d⌦ dl

⇤
Üsj+

−δUT
⌧ i

hR
l

R
⌦ ⇢(F⌧ i)T ⌦̃T (Fs j) d⌦ dl

i
U̇sj+

−δUT
⌧ i

hR
l

R
⌦ ⇢(F⌧ i)T ⌦̃T ⌦̃(Fs j) d⌦ dl

i
Usj+

−δUT
⌧ i

hR
l

R
⌦ ⇢(F⌧ i)T ⌦̃T ⌦̃ r d⌦ dl

i

(3.35)

The internal and inertial virtual works can also be be written in a more compact
form such as the following one:

δLint = δ(Lint)pp + δ(Lint)pn + δ(Lint)np + δ(Lint)nn =

= δUT
⌧ i(K

⌧sij
pp +K⌧sij

pn +K⌧sij
np +K⌧sij

nn )Usj =

= δUT
⌧ i K

⌧sij
Usj

(3.36)

δLine = δUT
⌧ i M

⌧sij
Usj + δUT

⌧ i D
⌧sij
⌦ Usj + δUT

⌧ i K
⌧sij
⌦ Usj (3.37)

Furthermore comparing Eqs.3.32 and 3.36 the Ritz fundamental primary stiffness
nucleus can be derived:
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K⌧sij
pp =

R
l

R
⌦([Dp(F⌧ i)]T Cpp Dp(Fs j)) d⌦ dl

K⌧sij
pn =

R
l

R
⌦([Dp(F⌧ i)]T Cpn Dnp(Fs j) + [Dp(F⌧ i)]T Cpn Dnz(Fs j)) d⌦ dl

K⌧sij
np =

R
l

R
⌦([Dnp(F⌧ i)]T Cnp Dp(Fs j) + [Dnz(F⌧ i)]T Cnp Dp(Fs j)) d⌦ dl

K⌧sij
nn =

R
l

R
⌦([Dnp(F⌧ i)]T Cnn Dnz(Fs j) + [Dnz(F⌧ i)]T Cnn Dnp(Fs j)+

+[Dnz(F⌧ i)]T Cnn Dnz(Fs j)) d⌦ dl

(3.38)
Thus:

K⌧sij = K⌧sij
pp +K⌧sij

pn +K⌧sij
np +K⌧sij

nn =

=
R
l

R
⌦([Dp(F⌧ i)]T [Cpp Dp(Fs j) +Cpn Dnp(Fs j) +Cpn Dnz(Fs j)]+

+[Dnp(F⌧ i)]T [Cnp Dp(Fs j) +Cnn Dnp(Fs j) +Cnn Dnz(Fs j)]+

+[Dnz(F⌧ i)]T [Cnp Dp(Fs j) +Cnn Dnp(Fs j) +Cnn Dnz(Fs j)]) d⌦ dl

(3.39)
The Ritz fundamental primary stiffening nucleus, following the same procedure:

K⌧sij
σ0

=
R
⌦ σ̃0 [Dnl(F⌧ i)]T ⌦̃T ⌦̃ Dnl(Fs j)d⌦ dl

(3.40)

Comparing Eqs. 3.35 and 3.37 it is possible to obtain the fundamental primary
mass nucleus, the damping and stiffness nucleus and the vector of body forces
associated to the inertial work, rispectively:

M ⌧sij =
R
l

R
⌦(⇢(F⌧ i)T (Fs j)) d⌦ dl

(3.41)
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D⌧sij
⌦ = −

R
l

R
⌦(⇢(F⌧ i)T ⌦̃T (Fs j)) d⌦ dl

(3.42)

K⌧sij
⌦ = −

R
l

R
⌦(⇢(F⌧ i)T ⌦̃T ⌦̃(Fs j)) d⌦ dl

(3.43)

F ⌧ i
⌦ = −

R
l

R
⌦(⇢(F⌧ i)T ⌦̃T ⌦̃ r) d⌦ dl

(3.44)

After performing the matrix calculus in Eq.3.40 the nine secondary stiffness
nuclei are obtained:

K⌧
u

x

s
u

x

u
x

u
x

=
R
l
 x

i

 x
j

[
R
⌦ C11 F⌧

u

x,x

Fs
u

x,x

d⌦]dz+

+
R
l
 x

i

 x
j

[
R
⌦ C16 F⌧

u

x,y

Fs
u

x,x

d⌦]dz+

+
R
l
 x

i

 x
j

[
R
⌦ C16 F⌧

u

x,x

Fs
u

x,y

d⌦]dz+

+
R
l
 x

i

 x
j

[
R
⌦ C66 F⌧

u

x,y

Fs
u

x,y

d⌦]dz+

+
R
l
 x

i,z

 x
j,z

[
R
⌦ C55 F⌧

u

x

Fs
u

x

d⌦]dz

(3.45)
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In case of isotropic beam the elastic coefficients are constant, thus they do not
need to be integrated along with the cross-section functions. Furthermore in case
of beam with constant cross-section the integral on the cross-section, ⌦, does not
depend on the coordinate z.

Following a similar approach, the nine components of the primary stiffening
nucleus:

K
⌧
u

y

s
u

y

σ0uy

u
y

= ⇢ ⌦̃2
R
l
 y

i

,z  y
j

,z

h
l2

2 − z2

2 + rhub(l − z)
i ⇥R

⌦ F⌧
u

y

Fs
u

y

d⌦
⇤
dz,

K⌧
u

z

s
u

z

σ0uz

u
z

= ⇢ ⌦̃2
R
l
 z

i

,z  z
j

,z

h
l2

2 − z2

2 + rhub(l − z)
i ⇥R

⌦ F⌧
u

z

Fs
u

z

d⌦
⇤
dz,

K
⌧
u

y

s
u

y

σ0ux

u
x

= 0, K
⌧
u

x

s
u

y

σ0ux

u
y

= 0,

K⌧
u

x

s
u

z

σ0ux

u
z

= 0, K
⌧
u

y

s
u

x

σ0uy

u
x

= 0,

K
⌧
u

y

s
u

z

σ0uy

u
z

= 0, K⌧
u

z

s
u

x

σ0uz

u
x

= 0,

K
⌧
u

z

s
u

y

σ0uz

u
y

= 0,

(3.54)

the nine components of the primary mass nucleus:
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the nine components of the primary damping nucleus:
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the nine components of the primary softening nucleus:
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and the three components of the vector of the body forces:
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Hence the Ritz fundamental primary mass, damping, stiffness, stiffening, soft-
ening nucleus and the vector of the body forces, respectively:
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Using the above matrices, the problem can be written as:

[M ]{Ü}+ [D⌦]{U̇}+ ([K] + [K
σ0 ]− [K⌦]) {U}+ {F⌦} = 0

(3.65)

Grouping the stiffness terms:

[M ]{Ü}+ [D⌦]{U̇}+ [K
tot

]{U}+ {F⌦} = 0
(3.66)

where [U ] is the vector of the nodal unknowns.
In order to analyze the free vibration behavior of the beam the vector {F⌦} has

to be neglected. The structure of the problem vary considering different effects due
to the rotation.
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In absence of rotation the equation leads to the classic free vibration problem:

[M ]{Ü}+ [K]{U} = 0
(3.67)

Assuming a periodic solution U = Ũei!t the frequencies can be obtained by
solving the eigenvalues problem:

Ũei!t {−!2[M ] + [K]} = 0
(3.68)

In order to consider the effect of the centrifugal force, the stiffening matrix, must
be added. Each of the three problems in which the Coriolis effect is disregarded can
be solved as the previous by substituting to the matrix K the sum of the stiffness
matrix with one or either the contributes of stiffening and softening. Therefore
including only K

σ0 and both K
σ0 , K⌦, the classic eigenvalues problem became,

respectively:

Ũei!t {−!2[M ] + [K] + [K
σ0 ]} = 0

(3.69)

and

Ũei!t {−!2[M ] + [K
tot

]} = 0 (3.70)

Accounting for the Coriolis effect, assuming a periodic solution U = Ũei!t

and substituting in Eq.3.65, the problem became a quadratic eigenvalues problem
(QEP):

Ũei!t {−!2[M ] + i![D⌦] + [K] + [K
σ0 ]− [K⌦]} = 0

(3.71)

The Eq.3.71 can be transformed in a classical linear system:
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(3.72)

Therefore, by introducing:
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(3.73)

The equation of motion assume the following form:

Q−1S − 1

i!
I = 0

(3.74)

where

Q−1S =

2

4
([K] + [K

σ0 ]− [K⌦])−1[D⌦] ([K] + [K
σ0 ]− [K⌦])−1[M ]

−I 0

3

5

(3.75)
The problem of Eq.3.74 is in the classical form and can be solved by using

standard eigen-solvers.
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Chapter 4

Results for Pre-twisted,

Tapered Metallic and FG

Beams

In the present section the results obtained by using the refined and advanced quasi-
3D beam models are validated and assessed by comparing those with the results
available in literature.

The results are given using the acronym TEN
u

x

,N
u

y

,N
u

z

, where TE states that
Taylor’s series expansion is used to describe the displacement field over the beam
cross-section and Nu

x

, Nu
y

, and Nu
z

are the independent expansion orders used in
the beam model.

In the proposed analysis, the difference between the results obtained by using
the developed beam models (fp) and those selected from the literature (f0), Relative
Difference, ", is evaluated as follows:

" =
||!p − !0||

!0 (4.1)

Validation of the results for Tapered Beams

In order to validate the proposed method, the first case of study is focused on the
computation of eigenfrequencies of a metallic clamped-clamped beam. The material
properties considered are: Elastic Modulus, E = 71.7 GPa, Poisson ratio, ⌫ = 0.3
and density ⇢ = 2700kg/m3. The geometrical characteristics of the beam are: root
transverse dimension h = 1 m, root longitudinal dimension b = 1 m and length
L = 10 m.

The first ten free vibration frequencies of the square cross-section beam are
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evaluated considering two different values of the TaperRatio, TR = ct/cr 0.50 and
0.25 (where cr = h(0) is the transverse dimension of the beam at the root and
ct = h(L) is the transverse dimension of the beam at z = L).

The results obtained are listed and compared with the ones taken from the lit-
erature [85] in the Table 4.1. From the left the results obtained using the Eulero
Bernoulli Beam Theory, EBBT, and the Timoshenko Beam Theory, TBT. The
results obtained by the refined theory follows the previous two. The last two col-
umn of the Table shows the results obtained by using a FEM[85] analysis with
elements characterized by a displacement field developed by using Maclaurin poly-
nomial function (considering expansion N = 3), and results obtained by using
ANSYS[85]. ANSYS results are obtained representing the cross-section of beams
by 44 SOLID45 elements whereas 40 SOLID45 elements are used in the longitu-
dinal direction − thus making a total of 640 elements.

Table 4.1. Comparison of the first ten natural frequencies (Hz) of a CC square
metallic beam with h = 0.1 m, b = 1 m and l = 10 m. *results from [85]

ct/cr Mode Theory
EBBT TBT TE222 TE333 TE444 FEM

⇤
ANSY S

⇤

0.50 1 38.66 37.60 37.76 37.60 37.56 37.86 37.71
2 52.28 49.72 49.96 49.56 49.52 49.79 49.96
3 105.64 99.67 99.99 99.13 99.03 99.84 100.42
4 142.78 129.04 129.35 127.57 127.47 128.23 129.27
5 204.60 186.49 151.04t 150.87t 139.58t 152.21t 144.25t

6 256.19a 235.55 186.92 184.48 184.29 185.82 187.93
7 274.84 256.19a 236.11 231.33 231.11 232.47 235.50
8 332.93 292.54 256.58a 256.55a 256.45a 257.54a 257.79a

9 443.16 360.53 292.93t 287.88t 277.83t 290.05t 287.35t

10 514.63 413.42 300.50 300.16 287.55 302.88 295.15
"Av [%] - - 1.04 1.43 1.75 1.37 -
"Max [%] - - 4.71 4.59 3.31 5.52 -
0.25 1 30.32 29.79 29.70 29.63 29.60 30.06 29.87

2 51.21 48.66 48.76 48.35 48.32 48.66 48.77
3 82.77 79.72 79.51 79.08 79.00 80.14 80.10
4 141.33 127.58 127.57 125.79 125.70 126.61 127.50
5 160.59 151.03 138.69t 138.32t 128.60t 139.73t 132.87t

6 252.32a 234.02 150.81 149.48 149.30 151.27 152.29
7 262.20 240.18 234.04 229.30 229.09 230.66 233.48
8 273.38 252.31a 240.13 237.21 236.93 239.63 243.36
9 385.82 343.96 252.35a 252.34a 249.66a 253.34a 253.62a

10 441.83 359.06 268.79t 267.85t 252.25t 270.57t 258.07t

"Av [%] - - 1.30 1.88 1.81 1.51 -
"Max [%] - - 4.38 4.10 3.21 5.16 -
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The first ten natural frequencies represent free vibration bending, torsional as
well as axial modes which are marked in Table 4.1 (a − axial mode; t − torsional
mode). EBBT overestimate the bending vibration frequencies. Torsional modes
are completely missed by the classical theories whereas these are predicted using
refined theory with expansion order as low as N = 1 albeit with slightly erroneous
mode shapes.

Further refined theory enables to predict torsional as well as bending and axial
modes adequately which are in good agreement with ANSYS 3D results.

Figure 4.1. Schematic representation of a rectangular section tapered beam with
taper ratio cb = 0.5 along the width.

The less refined model involved in the present analysis is the TE222 and associ-
ated with i = j = 18 in the Ritz expansion, involves a total of 324 DOFs, a tenth of
the DOFs involved using ANSYS (1025 nodes with 3 DOFs each one − 3075 DOFs).
In addition this model produce better results if compared with the ones evaluated
by the FEM analysis associated with the use of elements with the displacement
field built on a Maclaurin expansion of order N = 3. The averaged as well as the
maximum relative difference is lower in both cases, ct/cr = 0.50 and ct/cr = 0.25.

In fact, comparing the Averaged Relative Difference for ct/cr = 0.50 considering
the FEM analysis and the refined model TE222, it decrease of 24.0 % changing from
1.37 % to 1.04 %. Additionally comparing the Maximum Relative Difference for
ct/cr = 0.50 considering the FEM analysis and the refined model TE222, it decrease
of 14.7 % changing from 5.52 % to 4.71 %. As well considering ct/cr = 0.25 the
Averaged Relative Difference and the Maximum Relative difference decreases of
13.9 % and 15.1 %, respectively.
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Furthermore the Maximum Relative Difference decrease by using higher order
beam theories. In particular comparing the Maximum Relative Difference obtained
by using a TE222 beam model with the one obtained by using a TE444 beam model,
it decrease of 29.7 % changing from 4.71 % to 3.31 % and of 26.7 % changing from
4.38 % to 3.21 % for ct/cr = 0.50 and ct/cr = 0.25 respectively.

Convergence Analysis for Tapered Beams

A comprensive analysis of the algebraic Ritz functions used in the analysis has been
carried out for a cantilever rectangular beam (CF). The beam is metallic, made up
of an aluminium alloy, with Young’s Modulus E = 69 GPa, Poisson’s ratio ⌫ = 0.33
and density ⇢ = 2700 kg/m3. The geometric characteristics are h = 0.1 m, b = 1 m
and L = 10 m.

The expansion indexes i and j in the Ritz functions are progressively increased
from 4 to 18, namely till convergence is reached, and the results of the analysis have
been proposed in Tables 4.2 and 4.3. Three different beam theories accounting for
distinct expansion orders have been tested for both lower (!1) and higher (!7)
modes for three different values of Taper Rateo, 1.00, 0.50 and 0.25.

The rate of convergence is higher for higher modes and is also sightly affected by
the selected beam theory. Higher-order beam models are mandatory to accurately
describe mode shapes which involves torsion, distortion and warping of the beam
cross-section.

An example is the torsional mode !7, indeed, in this case the addition of degrees
of freedom (DOFs) over the beam cross-section leads to a remarkable enhancement
in the results accuracy while any refinement in the Ritz approximation does not
affect significantly the result accuracy.

In sharp contrast, bending modes are instead accurately described by lower-
order beam models and further significant improvements can only be achieved by
increasing the number of DOFs in the Ritz expansion.

These conclusions can be drawn by comparing the convergence ratio in the tables
4.2 and 4.3 that show the results in terms of first natural frequency !1 and seventh
natural frequency !7 (torsional mode), respectively.

More specifically, in the computation of the fundamental frequency, related to a
bending mode in the xz − plane, the convergence ratio is of an higher order than
the one observed in the table 4.3.

Effect of the taper ratio on beam’s natural frequencies

The beam under investigation has the same geometrical characteristics and is made
up of the same material of that studied in the convergence analysis. In this case
the first ten natural frequencies have been computed using different beam models
for various boundary conditions for two different values of the taper rateo, 1.00 and
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Table 4.2. Convergence of the first natural frequency (Hz) of a cantilever (CF)
rectangular metallic beam with h = 0.1 m, b = 1 m and l = 10 m.

ct/cr Theory (i, j)
4 6 8 10 12 14 16 18

1.0
TE222 0.8840 0.8579 0.8468 0.8412 0.8379 0.8358 0.8344 0.8334
TE333 0.8815 0.8539 0.8415 0.8352 0.8317 0.8297 0.8284 0.8275
TE444 0.8792 0.8526 0.8407 0.8345 0.8311 0.8290 0.8277 0.8267

0.5
TE222 1.0740 1.0465 1.0349 1.0289 1.0254 1.0231 1.0216 1.0205
TE333 1.0723 1.0425 1.0291 1.0223 1.0186 1.0164 1.0150 1.0140
TE444 1.0637 1.0400 1.0276 1.0213 1.0177 1.0155 1.0141 1.0131

0.25
TE222 1.2753 1.2452 1.2323 1.2256 1.2217 1.2191 1.2174 1.2161
TE333 1.2737 1.2405 1.2255 1.2179 1.2137 1.2112 1.2096 1.2084
TE444 1.2636 1.2357 1.2228 1.2161 1.2123 1.2100 1.2084 1.2073

Table 4.3. Convergence of the seventh natural frequency (Hz) of a cantilever (CF)
rectangular metallic beam with h = 0.1 m, b = 1 m and l = 10 m.

TR Theory (i, j)
4 6 8 10 12 14 16 18

1.0
TE222 51.352 48.171 47.883 47.750 47.733 47.729 47.726 47.725
TE333 51.061 48.030 47.698 47.403 47.287 47.196 47.133 47.087
TE444 51.060 47.515 47.186 47.097 47.067 47.045 47.026 47.010

0.5
TE222 60.909 42.069 41.820 41.698 41.628 41.585 41.558 41.538
TE333 60.762 41.953 41.703 41.581 41.512 41.470 41.442 41.423
TE444 60.750 41.902 41.674 41.562 41.498 41.458 41.431 41.411

0.25
TE222 56.286 37.385 37.200 37.112 37.063 37.032 37.013 36.999
TE333 56.217 37.320 37.136 37.047 36.997 36.967 36.947 36.933
TE444 56.186 37.246 37.096 37.023 36.981 36.954 36.936 36.922

0.50. In tables 4.4 − 4.9 the beam is supposed to be under CC, CS, SS, SF, and
FF boundary conditions, respectively. Besides the results obtained by the refined
theories, for ct/cr = 1.00, results evaluated by using ABAQUS are included in the
tables in order to enhance the confidence on the results obtained. More specifically,
the brick element C3DR20 with 20 nodes has been used and a mesh of 5 x 5 x
50 has been applied, with a total number of 37593 DOFs. The most refined beam
model involved in the present analysis is the TE444 and associated with i = j = 18
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in the Ritz expansion, involves a total of 810 DOFs.

Table 4.4. Comparison of the first ten natural frequencies (Hz) of a square
metallic beam with h = 0.1 m, b = 1 m , l = 10 m for Clamped − Clamped

Boundary Conditions.

c

t

/c

r

Theory Mode

1 2 3 4 5 6 7 8 9 10
1.0

ABAQUS 5.267 14.50 28.42 31.47 46.97 48.91 63.48 70.16 96.55 97.97
TE222 5.351 14.64 28.73 32.76 47.54 49.87 66.26 71.51 99.51 101.3
TE333 5.319 14.64 28.70 32.42 47.42 49.16 65.37 70.91 99.00 99.40
TE444 5.309 14.61 28.65 32.08 47.32 49.14 64.69 70.73 98.42 98.70

0.5
TE222 5.276 14.49 28.69 37.06 41.74 47.52 71.12 85.30 98.14 99.44
TE333 5.250 14.51 28.49 36.92 41.56 47.09 70.39 84.76 97.32 98.23
TE444 5.242 14.49 28.45 36.90 40.82 47.03 70.27 83.26 97.29 98.06

Table 4.5. Comparison of the first ten natural frequencies (Hz) of a square metallic beam
with h = 0.1 m, b = 1 m , l = 10 m for Clamped− Supported Boundary Conditions.

c

t

/c

r

Theory Mode

1 2 3 4 5 6 7 8 9 10
1.0

ABAQUS 3.607 8.118 11.69 24.40 30.58 41.75 48.66 61.69 63.76 90.40
TE222 3.647 8.149 11.76 24.79 31.57 42.62 49.46 64.03 64.51 92.83
TE333 3.625 8.141 11.75 24.54 31.49 42.01 48.80 63.50 64.18 91.06
TE444 3.622 8.139 11.74 24.51 41.15 41.95 48.79 62.83 64.07 90.84

0.5
TE222 3.787 11.93 24.77 28.10 41.34 42.34 64.66 83.01 84.53 91.71
TE333 3.769 11.87 24.61 28.05 41.18 41.98 63.98 82.55 84.04 90.62
TE444 3.765 11.86 24.59 28.04 40.44 41.94 63.91 82.52 82.53 90.50

The aim of this section is to analyze the effect of the taper ratio on the nat-
ural frequencies of the beam. The Relative Averaged and Maximum Difference is
evaluated as follows:

" =
||!0.50 − !1.00||

!1.00
(4.2)

The value of the Relative Averaged Difference and the Relative Maximum Dif-
ference vary depending of the different boundary conditions. This two differences
are listed for each one of the three theory and for all different boundary condition
considered, in Table 4.10. The data submitted in the Tables are analyzed below.
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Table 4.6. Comparison of the first ten natural frequencies (Hz) of a square metallic
beam with h = 0.1 m, b = 1 m , l = 10 m for Clamped− Free Boundary Conditions.

c

t

/c

r

Theory Mode

1 2 3 4 5 6 7 8 9 10
1.0

ABAQUS 0.823 5.153 8.118 14.43 15.31 28.29 46.18 46.79 48.67 69.93
TE222 0.833 5.182 8.151 14.66 15.80 28.87 47.73 47.92 49.06 71.79
TE333 0.828 5.182 8.143 14.51 15.76 28.46 47.09 47.52 48.81 70.42
TE444 0.827 5.177 8.141 14.50 15.59 28.42 47.01 47.02 48.79 70.29

0.5
TE222 1.020 5.555 8.865 14.93 26.75 28.96 41.54 47.73 66.41 71.24
TE333 1.014 5.524 8.863 14.84 26.67 28.74 41.42 47.27 66.12 70.44
TE444 1.013 5.520 8.862 14.83 26.28 28.71 41.41 47.23 64.97 70.35

Table 4.7. Comparison of the first ten natural frequencies (Hz) of a square metallic
beam with h = 0.1 m, b = 1 m , l = 10 m for Simply Supported Boundary Conditions.

c

t

/c

r

Theory Mode

1 2 3 4 5 6 7 8 9 10
1.0

ABAQUS

2.293 9.182 20.69 29.74 36.84 50.20 57.66 59.99 83.13 91.27
TE222 2.307 9.240 20.73 30.93 36.99 50.92 58.57 62.24 83.81 95.68
TE333 2.293 9.185 20.71 30.61 36.90 50.20 57.78 61.72 83.38 93.85
TE444 2.293 9.185 20.70 30.27 36.88 50.20 57.72 61.06 83.24 92.91

0.5
TE222 2.285 9.218 16.40 20.82 37.14 39.81 58.22 65.19 81.52 84.04
TE333 2.282 9.184 16.39 20.67 36.78 39.78 57.52 64.97 81.27 82.88
TE444 2.282 9.184 16.39 20.67 36.77 39.06 57.49 64.97 79.81 82.82

Table 4.8. Comparison of the first ten natural frequencies (Hz) of a square metallic
beam with h = 0.1 m, b = 1 m , l = 10 m for Supported− Free Boundary Conditions.

c

t

/c

r

Theory Mode

1 2 3 4 5 6 7 8 9 10
1.0

ABAQUS

3.582 11.62 14.89 24.28 41.58 44.90 50.20 63.54 75.64 90.14
TE222 3.605 11.75 15.33 24.55 41.75 46.85 50.88 64.22 78.16 92.17
TE333 3.583 11.63 15.31 24.30 41.64 46.18 50.20 63.68 77.76 90.41
TE444 3.583 11.62 15.14 24.29 41.62 45.68 50.20 63.61 76.94 90.25

0.5
TE222 3.788 11.88 24.66 25.87 28.65 42.17 64.12 64.42 84.42 91.41
TE333 3.782 11.83 24.48 25.87 28.62 41.74 63.63 64.00 84.10 90.15
TE444 3.782 11.83 24.48 25.49 28.62 41.73 62.89 63.60 84.10 90.07
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Table 4.9. Comparison of the first ten natural frequencies (Hz) of a square metallic
beam with h = 0.1 m, b = 1 m , l = 10 m for Free− Free Boundary Conditions.

c

t

/c

r

Theory Mode

1 2 3 4 5 6 7 8 9 10
1.0

ABAQUS 5.198 14.34 28.15 29.93 46.60 50.20 60.31 69.70 91.57 97.42
TE222 5.230 14.36 28.21 31.08 46.79 50.92 62.82 70.44 94.56 99.62
TE333 5.199 14.35 28.18 30.76 46.67 50.20 61.98 69.85 94.08 97.72
TE444 5.198 14.35 28.17 30.42 46.64 50.20 61.31 69.77 93.09 97.54

0.5
TE222 5.279 14.48 28.40 38.13 43.18 47.03 70.41 83.47 98.51 100.6
TE333 5.272 14.43 28.23 38.08 43.15 46.63 69.64 83.25 97.28 100.3
TE444 5.272 14.43 28.22 38.08 42.41 46.61 69.61 81.76 97.19 100.2

Table 4.4 represent the variation of the first ten frequencies in case of Clamped
− Clamped boundary conditions. In this case, introducing a taper ratio lower than
1.00 causes a reduction of the bending frequencies along the axe on which there is
no tapering and a growth of the bending frequencies related to the other direction.
While the first torsional frequency, !5, decrease the second torsional frequency, !7

increase. Table 4.5 represent the variation of the first ten frequencies in case of
Clamped − Supported boundary conditions. In this case, introducing a taper ratio
lower than 1.00 causes a growth of all frequencies except the sixth and tenth, !6

and !10(bending frequencies). Data submitted in Table 4.6 represents the variation
of the first ten frequencies in case of Clamped − Free boundary conditions. In
this case, introducing a taper ratio lower than 1.00 causes a growth of the bending
frequencies and of the first torsional frequency. On the contrary the second torsional
frequency !7 decrease. Table 4.7 represent the variation of the first ten frequencies
in case of Simply Supported boundary conditions. In this case, introducing a taper
ratio lower than 1.00 causes a global reduction of all frequencies except the eighth,
!8, that increase.

Data submitted in Table 4.8 represents the variation of the first ten frequencies
in case of Supported − Free boundary conditions. In this case, introducing a taper
ratio lower than 1.00 causes a growth of the bending frequencies except the sixth,
!6. On the contrary both the first and second torsional frequencies, !5 and !7

decrease. In Table 4.9 data representative of Free−Free boundary conditions are
reported. In this case, the introduction of a taper ratio lower than 1.00 causes a
growth of all frequencies except the fifth and sixth, !5 and !6, torsional and bending
frequencies, respectively.

Finally in Table 4.10 are listed, for each theory, TE222, TE333 and TE444 and all
the boundary conditions, Clamped−Clamped, Clamped−Supported, Clamped−
Free, Supported − Supported, Supported − Free and Free − Free, the value of
the Relative Averaged Difference and the Relative Maximum Difference.
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Table 4.10. Comparison of the Averaged difference and the Maximum difference of
the first ten natural frequencies of a square metallic beam with taper rateo ct = 1.0
and ct = 0.5 for different Boundary Conditions.

Theory Boundary Conditions
CC CS CF SS SF FF

TE222
"Av. 6.25 29.84 15.94 9.72 14.90 7.62
"Max 19.29 110.6 69.30 32.68 60.91 22.69

TE333
"Av. 6.36 29.69 15.84 9.48 15.02 7.82
"Max 19.61 109.5 69.30 32.47 59.90 23.80

TE444
"Av. 6.40 26.68 15.54 9.73 14.87 8.14
"Max 17.82 109.5 68.57 31.71 61.69 25.18

Validation and analysis of the results for Pre-Twisted Beams

Firstly, in order to validate the proposed method for the vibrational analysis of
pre−twisted beams, various numerical results are obtained and compared with
available literature. The case of study concerne a cantilever pre−twisted beam.
The geometrical characteristics of the beam are: height, h = 0.17272 cm, depth
b = 2.54 cm, length l = 15.24 cm and a pre−twisting angle, ✓ = 45. The beam
is made up of a material with the following characteristics: Young’s Modulus,
h = 206.85 GPa, Shear Modulus, G = 82.74 GPa and density ⇢ = 7857.6 kg/m3.
The beam have been treated experimentally by Carngie Carnegie and by theoretical
means by Lin et al. [58], Subrahmanyam et al. Subrahmanyam and Yardimoglu et
al. [103]. The results obtained by the refined method are compared with the ones
taken from the literature in Table 4.11.

In theory, using the refined method with order N = 1, should provide more
accurate results. The displacement field obtained by using a theory model TE111

is analogue to the Timoshenko’s one. The difference between the results obtained
by the TE111 and the ones given by the literature is due to the so called Poisson
Locking. The costitutive equations used are 3D and not reduced. In order to avoid
this effect the reduced form of the costitutive equation should be used.

An alternative is the use of a higher order theory. By the use of a TE222 or
a TE333 it is possible to overcome the limit linked to the Poisson Locking and to
highlight the power of the 3D costitutive equations.

Although the higher order model used the results are not as good as the ones
proposed by the other authors, that is because those have been obtained by the use
of Timoshenko Beam Theory and ad−hoc shear coefficients.Therefore their solution
are strictly problem dependent. The shear coefficients depends on the geometry of
the cross section.

In Addition, in order to enhance the results obtained by the Refined Method,
for the same reason explained in the section of the Convergence Analysis the Ritz
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Figure 4.2. Schematic representation of a rectangular section pre-twisted beam.

Table 4.11. Comparison of the first four natural frequencies (Hz) of a can-
tilever (CF) rectangular metallic beam (E = 206.85 GPa, G = 82.74 GPa,

⇢ = 7857.6 kg/m

3) with h = 0.17272 cm, b = 2.54 cm and l = 15.24 cm and a
pre−twist angle ✓ = 45.

Theory Mode

1 "1 2 "2 3 "3 4 "4

TE111 68.1 15.4 364.8 34.7 1025.2 11.4 1190.2 7.23
TE222 63.7 7.97 390.6 25.8 944.0 2.61 1111.8 0.16
TE333 62.9 6.61 360.8 24.4 939.9 2.16 1110.4 0.04
Yardimoglu et al. [103] 61.8 4.75 304.8 5.10 944.5 2.66 1193.0 7.48
Lin et al. [58] 61.7 4.58 300.9 3.76 917.0 0.33 1175.1 5.86
Subrahmanyam et al. [88] 62.0 5.08 305.1 5.21 955.1 3.82 1214.7 9.43
Subrahmanyam et al. [88] 61.9 4.92 304.7 5.07 937.0 1.85 1205.1 8.57
Carneige [15] 59.0 - 290.0 - 920.0 - 1110.0 -

expansion order should be increased. This shrewdness should lead to enhance the
performance of the proposed method.

Secondly the variation of the natural frequencies of a beam parameterized with
respect to the angle of pre−twist have been analyzed. The beam under investigation
is metallic, made up of an aluminium alloy, with Young’s Modulus E = 69 GPa,
Poisson’s ratio ⌫ = 0.33 and density ⇢ = 2700 kg/m3.
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Figure 4.3. Variation of the first non-dimensional frequency of a cantilever, rectangular
section, metallic beam with respect to the pre-twist angle ✓ for different theories.

Figure 4.4. Variation of the second non-dimensional frequency of a cantilever, rectan-
gular section, metallic beam with respect to the pre-twist angle ✓ for different theories.
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Figure 4.5. Variation of the third non-dimensional frequency of a cantilever, rectangular
section, metallic beam with respect to the pre-twist angle ✓ for different theories.

Figure 4.6. Variation of the fourth non-dimensional frequency of a cantilever, rectangu-
lar section, metallic beam with respect to the pre-twist angle ✓ for different theories.
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The geometric characteristics are h = 0.1 m, b = 1 m and L = 10 m. The
three different curves represent three different beam models, characterized by an
expansion order 2, 3 and 4 despite the order of the polynomial expansion vary, i and
j − Ritz expansion indexes − are fixed, i = j = 18. Figure 4.1 − 4.4 represents
the variation of the first, the second, the third and the fourth non dimensional
natural frequency of the metallic pre−twisted cantilevered beam with respect to
the variation of the pre−twist angle.

It is clear the advantage obtained by the use of a refined beam model of higher
order. The improvement obtained using a higher order beam theory decrease with
the growth of the order of expansion of the displacement field, thereby the highest
order beam model used is TE444.

Figure 4.5 represents the variation of the first four natural frequencies adimen-
sionalized with their value without pre−twisting the beam as functions of the
pre−twist angle ✓. The trends of the four frequencies are due only to the vari-
ation of the momentum of inertia along the axes. The momentum of inertia varies
with the inverse of a trigonometric function of the rotation angle of the cross sec-
tion. In particular the growing trend of the first and third frequencies suggest that
those are the bending modes in the xz plane. On the other hand the declining trend
of the second and fourth frequencies suggest that those are the bending modes in
the yz plane.

Hollow tapered beams

This case study is relative to a hollow rectangular cantilever beam. The beam is
made up of an aluminium alloy characterized by a Young Modulus, E = 69 GPa,
Poisson’s ratio, ⌫ = 0.33 and density ⇢ = 2700 kg/m3. The geometric characteris-
tics of the cross section are h = 0.1 m, b = 1 m. The analysis have been carried
out using three different values of slenderness ratio λ = 10, λ = 25 and λ = 100.

Data submitted in Table 4.12 represents the first four natural frequencies of
the beam studied for the three different values of the slenderness ratio and for
three different beam refined models, TE222, TE333 and TE444. For high values
of slenderness ratio the difference between the three theories is not appreciable
because the case study falls within the hypothesis of EBBT. Discrepancies between
the results of different theories are appreciable for dumpy beams. In addition, for
hollow beams, higher order beam models allows to obtain better results for lower
values of taper ratio.

In contrast with the decrescent trend of the fourth frequency, the first three
frequencies increase with the reduction of the taper ratio. For the first three fre-
quencies the reduction of the inertia is predominant on the reduction of the rigidity
of the beam due to the variation of the momentum of inertia. On the contrary for
the forth frequency the reduction of the momentum of inertia is predominant.
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Figure 4.7. Variation of the first four natural frequencies of a cantilever, rectan-
gular section, metallic beam with respect to the pre-twist angle ✓.

Table 4.12. Comparison of the first four natural frequencies (Hz) of a cantilever,
squared cross section, metallic, hollow beam with h = 1 m, b = 0.1 m for different
values of aspect rateo: λ = 10, λ = 25, λ = 100.

Theory λ = 10 λ = 25 λ = 100
1 2 3 4 | 1 2 3 4 | 1 2 3 4

c

t

/c

r

1.0
TE222 5.70 9.92 35.0 58.6 0.912 1.60 5.69 9.91 0.057 0.100 0.357 0.626
TE333 5.67 9.88 34.0 57.5 0.911 1.60 5.66 9.88 0.057 0.100 0.357 0.626
TE444 5.66 9.88 34.0 57.5 0.910 1.60 5.66 9.88 0.057 0.100 0.357 0.626
c

t

/c

r

0.75
TE222 5.98 10.1 35.3 55.1 0.957 1.61 5.73 9.22 0.060 0.101 0.359 0.581
TE333 5.95 10.0 34.3 54.2 0.956 1.61 5.71 9.20 0.060 0.101 0.359 0.581
TE444 5.95 9.99 34.3 54.1 0.956 1.61 5.70 9.19 0.060 0.101 0.359 0.581
c

t

/c

r

0.50
TE222 6.34 10.2 35.5 50.9 1.01 1.63 5.78 8.45 0.063 0.102 0.362 0.531
TE333 6.31 10.1 34.7 50.2 1.01 1.63 5.75 8.42 0.063 0.102 0.362 0.531
TE444 6.30 10.1 34.6 50.2 1.01 1.63 5.75 8.42 0.063 0.102 0.362 0.531
c

t

/c

r

0.25
TE222 6.80 10.3 35.9 45.7 1.09 1.65 5.83 7.51 0.068 0.103 0.365 0.472
TE333 6.78 10.3 35.1 45.2 1.09 1.65 5.80 7.50 0.068 0.103 0.365 0.472
TE444 6.77 10.3 35.0 45.2 1.09 1.65 5.80 7.49 0.068 0.103 0.365 0.471
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Hollow FGM beams
In this section the advantages of the presented method are show by analyzing a hollow
functionally graded beam. The beam is characterized by a rectangular cross section, with
b = 1.0 m and h = 0.5 m. The length is l = 10 m and the thickness rateo is 0.1. The
material properties are Ec = 380 GPa, ⌫c = 0.3, ⇢c = 3690 kg/m

3 for the ceramic phase
and Em = 70 GPa, ⌫m = 0.3, ⇢m = 2702 kg/m

3 for the metal phase.
In Table 4.13 are listed the values of the fist six frequencies of the presented beam.

The results obtained with the method have been compared with others obtained by a
commercial solver, ABAQUS. Using a TE999 beam theory and an order of expansion of
the Ritz function 18, the amount of DOFs involved in the analysis, using the presented
method, is 2970. On the other side, for the FEA there have been used 73899 brick elements
C3DR20 with 20 nodes, that means 1477980 DOFs. The averaged and maximum relative
differences, "Av. and "Max., respectively, have been evaluated as in Eq. 4.1.

Figure 4.8. Representation of the first mode of the FGM beam.

In Figures 4.8 to 4.13 the first six modes reported in Table 4.13 have been represented.
The first four and the last one are bending frequencies, the fifth is a torsional frequency.
As it can be seen by the shape modes reported the the presented method allows to observe
and evaluate the distortion of the beam’s cross section.
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Table 4.13. Comparison of the first six natural frequencies (Hz) of a cantilever
square FGM hollow beam with h = 1 m, b = 0.5 m and length l = 10 m.

Theory Mode "

Av.

[%] "

Max.

[%]
1 2 3 4 5 6

ABAQUS 2.3435 4.0638 13.761 23.531 24.075 34.525 - -
TE999 2.3285 4.0334 13.761 23.386 24.610 35.331 1.09 2.33

Figure 4.9. Representation of the second mode of the FGM beam.
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Figure 4.10. Representation of the third mode of the FGM beam.

Figure 4.11. Representation of the fourth mode of the FGM beam.
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Figure 4.12. Representation of the fifth mode of the FGM beam.

Figure 4.13. Representation of the sixth mode of the FGM beam.
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Chapter 5

Results for Rotating Structures

Understand how the behavior of a structure, such as a rotor balde, changes spinning the
structure around a axe of rotation is important when analyzing systems of different type
(Compressors, turbines, rotors etc.). In this section are listed and discussed the results
obtained by analyzing rotating structures of different type. A first paragraph is dedicated
to the validation of the present theory. The aim of the second paragraph is the analysis
of the results obtained for a FGM rotating Beam.

Validation of the proposed method for a rotating structure
In order to validate the proposed method, several illustrative examples are presented
below. The Boundary conditions and the geometrical as well as the physical characteristic
of the beam are assumed to be problem parameters.

To enable a general application of results they are presented in non−dimensional form
adopting the following expressions:

!0 =

s
⇢Al

4

EJyy
, δr =

rhub

l

, ⌦⇤ = ⌦̃ !0, !

⇤ =
!

!0
, S =

s
Al

2

Jyy (5.1)

where Jyy is the moment of inertia about the y axe, E is the Young Modulus, ⇢ is the
density of the material, rhub represent the hub radius, l the length of the beam and A the
area of the cross−section.

First case is the analysis of a thin beam characterized by a slenderness ratio S = 1000
and a squared cross section. The results obtained for different values of the non−dimensional
speed parameter, the non−dimensional hub radius and different boundary conditions are
listed in Table 5.1 and compared with those presented in references [14, 17].

Datas reported from references have been obtained by using the Dynamic Stiffness
Method and the CUF, respectively considering reference [14] and [17]. In order to obtain
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values of frequencies that can be compared with those from literature, both Coriolis and
Softening effects are disregarded.

The results obtained by the Refined method are in strong agreement with the ref-
erences for all the different Boundary Conditions (B.C.) and different values of the two
non−dimensional parameters. The B.C. considered are Clamped − Free, Clamped −
Supported and Supported − Supported. In Figure 5 all the different B.C. are schemati-
cally represented.

Figure 5.1. Schematic representation of various Boundary Conditions.

82



5 – Results for Rotating Structures

Table 5.1. Dependency of the first three dimensionless natural frequencies on the
variations of the dimensionless angular speed and dimensionless hub dimension of
a Eulero−Bernoulli beam.

B.C. !⇤ Theory ⌦⇤ = 1 ⌦⇤ = 5
δr = 0 δr = 1 δr = 2 δr = 5

C − F 1 [14] 3.6816 3.8888 10.862 12.483
[17] 3.6816 3.8895 10.866 12.488

Present 3.6914 3.8980 10.872 12.494
2 [14] 22.181 22.375 32.764 35.827

[17] 22.178 22.375 32.773 35.840
Present 22.241 22.435 32.818 35.880

3 [14] 61.842 62.043 73.984 77.935
[17] 61.836 62.032 73.986 77.939

Present 62.003 62.204 74.135 78.083

C − S 1 [14] 15.513 15.650 22.663 24.729
[17] 15.512 15.649 22.670 24.738

Present 15.551 15.689 22.698 24.764
2 [14] 50.093 50.277 60.906 64.382

[17] 50.092 50.275 60.919 64.399
Present 50.213 50.396 61.018 64.492

3 [14] 104.39 104.59 116.99 121.30
[17] 104.42 104.62 117.04 121.36

Present 104.62 104.82 117.21 121.52

S − S 1 [14] 10.022 10.264 19.684 22.078
[17] 10.021 10.264 19.690 22.086

Present 10.022 10.264 19.684 22.078
2 [14] 39.642 39.889 53.132 57.235

[17] 39.638 39.886 53.141 57.248
Present 39.638 39.886 53.129 57.233

3 [14] 88.991 89.241 103.92 108.93
[17] 88.003 89.253 103.94 108.96

Present 88.976 89.225 103.91 108.92

The second case of analysis regards a beam that is not thin as the previous, in fact the
slenderness rateo is S = 30 and the cross−section is a square.

As a consequence, the Eulero−Bernoulli model is no longer valid and, for this reason
a FSDT (First Order Deformation Theory) is needed. The behavior of such beam, in
terms of first natural frequency is shown in Table 5.2. The difference between the present
method and reference [54] is calculated as:
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" =
||!⇤ − !

⇤
ref ||

!

⇤
ref

(5.2)

The first dimensionless natural frequency of this cantilever Timoshenko beam are listed
and compared with [17] and [54] in Table 5.2. As in the previous case the results are in
agreement with the references with a difference lower than the 1%. By using the refined
method no shear factor is used.

In the third case, a uniform and a tapered cantilever beams are considered. For those
the dimensionless hub parameter is settled as δr = 1.0 and δr = 0.0, respectively. The
variation of the chord is linear in the width for the tapered beam. The taper rateo is
assumed to be ct/cr = 0.5. In order to provide a comparison the results presented in [47]
have been reported. The results obtained by using the refined method are listed with
those of reference [47] in Table 5.3. As can be seen by a close look at this table, for all
the different values of the non−dimensional angular speed, the values of the first three
dimensionless frequencies are in strong agreement with those of the reference. For both,
uniform and tapered beams, the difference, evaluated by using Eq. 5.2, is lower than 1%.
In [47] the beam is approximated by adopting a variable−order Finite Element Method
conceived for tapered structures.

The refined method allows to observe the complete behavior of a body. In the follow-
ing example the chorwise motion is analyzed for a rotating uniform beam. The results
obtained are compared in Table 5.4 with those of references [17] and [27]. With respect to
[27], the difference on the fundamental chordwise frequency is evaluated by using the Eq.
5.2. Figure 5 shows the chordwise motion behavior, here the dimensionless frequencies
are reported as functions of the angular speed parameter. The frequency related to the
stretching mode (marked with the letter S in the graph) vary with the parameter ⇤, in
particular it increase with the angular velocity. This effect can not be appreciate in the
results presented in reference [27] because there the term uz,z of the displacement field is
neglected.

Table 5.2. First dimensionless natural frequency of a cantilever Timoshenko beam
as a function of the rotating speed.

⌦⇤ 0 1 2 3 5 7 9
[54] 3.4798 3.6452 4.0994 4.7558 6.3934 8.2184 10.109
[17] 3.4831 3.6494 4.1064 4.7567 6.4144 8.2538 10.164
Present 3.5036 3.6694 4.1250 4.7839 6.4295 8.2673 10.177
" (%) 0.68 0.66 0.62 0.59 0.56 0.59 0.67

Figure 5 represents the behavior of the dimensionless frequency parameter of a beam
characterized by a slenderness rateo S = 100 and a rectangular cross section with ⌧ =
h/b = 0.5, with the variation of the dimensionless angular speed parameter. Moreover the
beam is tapered and pre−twisted, the twist rateo is ✓̇ = 15.6 deg/m (the cross section at
the tip of the beam is twisted of 45 with respect to the root cross section), the taper rateo
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Figure 5.2. Variation of the non−dimensional chordwise natural frequencies for
the speed parameter whith δr = 0.1 and S = 70.

Figure 5.3. Frequencies envelope with the speed parameter.
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Figure 5.4. Effect of the pre−twist on the behavior of the third and fourth frequencies.

Figure 5.5. Effect of different parameters on the first frequency.
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Table 5.3. Dependency of the first three dimensionless natural frequencies on the
variations of the dimensionless angular speed for uniform (δr = 1) and tapered
(δr = 0, ct/cr = 0.5) beams.

⌦⇤ !⇤ Uniform Tapered
[47] Present " (%) [47] Present " (%)

0 1 3.5160 3.5277 0.33 3.8237 3.8028 0.55
2 22.034 22.106 0.32 18.317 18.255 0.34
3 61.697 61.888 0.31 47.264 47.043 0.47

1 1 3.8888 3.8791 0.25 3.9866 3.9605 0.66
2 22.375 22.328 0.21 18.474 18.437 0.20
3 62.043 61.907 0.22 47.417 47.351 0.14

5 1 8.9403 8.8843 0.63 6.7344 6.6960 0.57
2 29.352 29.290 0.21 21.905 21.866 0.18
3 69.760 69.524 0.34 50.933 50.765 0.33

10 1 16.606 16.495 0.67 11.501 11.493 0.27
2 44.368 44.231 0.31 30.182 30.098 0.28
3 89.156 88.978 0.20 60.564 60.485 0.13

Table 5.4. Dependency of the first three dimensionless natural frequencies on the
variations of the dimensionless angular speed and hub dimension.

δr ⌦⇤ [17] [27] Present " (%)
0 2 3.6196 3.6173 3.6282 0.30

10 4.9700 4.9619 4.9779 0.32
50 7.3337 7.4553 7.3260 1.73

1 2 4.3978 4.3960 4.4058 0.22
10 13.048 13.047 13.049 0.02
50 41.227 41.346 41.657 0.75

5 2 6.6430 6.6421 6.6499 0.12
10 27.266 27.276 27.270 0.02
50 74.003 74.178 74.685 0.68

(along the width) is ctip/croot = 0.5. By a closer look at the graph it is possible to see how
the interaction between the third and fourth frequencies gives birth to a veering. Without
the pre-twist angle, ✓, there is a crossing between those two frequencies. Comparing the
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behavior of this beam parameterized with the total pre−twist angle ✓, it is possible to
observe how, by pre−twisting the beam, the mixing of the frequencies (that are no longer
of pure bending or torsional motion) originates the veering (see Figure 5). By increasing
✓ the gap between the two curves increase.

In Figure 5 it is possible to appreciate the variation of the first dimensionless frequency
of the beam with the introduction of different geometric parameters. The blue curve rep-
resent a uniform rotating beam with a rectangular cross section; the black curve represents
a beam with the same geometrical characteristics but hollow, the thickness rateo of this
thin walled structure is 0.1 ; with the red curve it has been identified the behavior of
the previous thin walled structure with a taper rateo TR = 1; at least, the green curve
represents the variation of the first natural frequency of the thin walled, tapered and
pre−twisted uniform beam (the geometrical characteristics are the same of the previous
cases, in adjunction the total pre−twisting angle is 45 degrees).

By looking at this graph it is possible to understand how the combination of all the
different parameters that have been considered modify the behavior of the structure. In
particular, the thin walled beam is less rigid than the full beam. Adding a taper rateo ,
TR < 1, the effect due to the Coriolis therm decrease, the trend of the frequency increase
till reaching a stationary grow rate. By introducing the pre−twist angle there are no
appreciable differences between the green and red curves for low non dimensional rotating
speed values. Increasing this parameter it is possible to observe how the gap between the
two curves start increasing. This effect is linked to the geometrical characteristics of the
beam, in particular to the fact that the first frequency is no longer of pure bending.

Functionally Graded Rotating Beam
In this last section the analysis is focused on a rotating FGM beam. The analyzed beam
(see Figure 5.6) is characterized by a slenderness rateo S = 20 and a rectangular cross
section with ⌧ = h/b = 0.5. Moreover the beam is tapered and pre−twisted, the twist
rateo is ✓̇ = 15.6 deg/m (the cross section at the tip of the beam is twisted of 45 with
respect to the root cross section), the taper rateo (along the width) is ctip/croot = 0.5.
The thickness rateo is t/b = 0.1. The beam is made of Functionally Graded Material,
with the ceramic phase characterized by Ec = 380 GPa , ⌫c = 0.30, ⇢c = 3960 kg/m

3

and a metal phase characterized by Em = 70 GPa , ⌫c = 0.30, ⇢c = 2702 kg/m

3.
The behavior of the presented beam as function of the non dimensional angular speed is

shown in Figure 5.7. It is interesting to note how the behavior of the first two frequencies
is affected by their interaction. The second frequency appear to decrease because of the
Coriolis Effect. In sharp contrast with this, the first frequency increase. The interaction
between this two modes leads to a drop of the growth rate of the first frequency and an
increment of the growth rate of the second frequency that starts growing. Increasing the
non dimensional angular speed, the second frequency appears at first to grow and than
becomes steady. Again the interaction between the first two modes provoke a drop of
the growth rate of the first frequency and an increment of the growth rate of the second
frequency.

In Table 5.5 are listed the first ten frequencies for the presented beam. The results
have been obtained by approximating with a different number of layers the FG beam.
Increasing first from 15 to 20 and then from 20 to 25 the number of layers in which the
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Figure 5.6. Schematic representation of the analyzed FG Beam.

Figure 5.7. Non Dimensional Frequencies of a FG, cantilever, tapered,
pre−twisted and rotating beam.
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thickness have been divided, it is possible to observe, raising fro 15 to 20, an averaged
growth of 1.17% for all ten frequencies, while the second boost leads to an averaged
increment of 1.94%.

Table 5.5. Variation of the first ten dimensionless natural frequencies with the dimen-
sionless angular speed and number of layers. *respect the case nl = 15.

Mode Angular speed parameter "

⇤
Av "

⇤
Max

0.0 0.1 0.3 1.0 1.5 2.4 3.0 [%] [%]
nl = 15
1 0.0259 0.0282 0.0298 0.0345 0.0393 0.0494 0.0568 - -
2 0.0431 0.0650 0.1308 0.1872 0.2241 0.2881 0.3177 - -
3 0.1465 0.1483 0.1541 0.2195 0.2467 0.3004 0.3534 - -
4 0.2222 0.3056 0.4093 0.4990 0.5961 0.7902 0.9233 - -
5 0.3984 0.4013 0.7216 1.993 2.777 3.940 4.633 - -
6 0.5827 0.6806 0.7840 0.8918 1.011 1.269 1.460 - -
7 0.7699 0.7763 1.309 2.257 2.648 3.364 3.806 - -
8 0.7809 0.7823 0.7952 0.9586 1.140 1.495 1.732 - -
9 1.102 1.197 1.352 2.407 3.364 5.137 6.347 - -
10 1.198 1.213 1.278 1.544 1.824 2.353 2.692 - -
nl = 20
1 0.0263 0.0286 0.0303 0.0349 0.0397 0.0498 0.0572 1.26 1.72
2 0.0439 0.0655 0.1318 0.1894 0.2262 0.2911 0.3206 1.08 1.78
3 0.1490 0.1508 0.1566 0.2224 0.2499 0.3024 0.3554 1.24 1.72
4 0.2262 0.3085 0.4160 0.5049 0.6017 0.7957 0.9291 1.12 1.77
5 0.4052 0.4081 0.7235 2.000 2.788 4.072 4.911 1.47 5.99
6 0.5930 0.6895 0.7967 0.9026 1.021 1.277 1.467 1.14 1.77
7 0.7831 0.7893 1.316 2.285 2.675 3.394 3.841 1.16 1.72
8 0.7932 0.7946 0.8074 0.9701 1.151 1.507 1.745 1.17 1.57
9 1.121 1.215 1.371 2.419 3.373 5.143 6.407 0.80 1.76
10 1.220 1.235 1.298 1.563 1.842 2.373 2.714 1.26 1.87

1.17 5.99
nl = 25
1 0.0266 0.0289 0.0307 0.0353 0.0400 0.0501 0.0575 2.15 2.94
2 0.0445 0.0659 0.1325 0.1910 0.2276 0.2932 0.3227 1.85 3.04
3 0.1508 0.1526 0.1583 0.2243 0.2521 0.3038 0.3568 2.12 2.94
4 0.2290 0.3106 0.4207 0.5092 0.6057 0.7996 0.9332 1.91 3.03
5 0.4101 0.4129 0.7248 2.005 2.795 4.081 4.920 1.90 6.18
6 0.6003 0.6959 0.8056 0.9102 1.028 1.283 1.472 1.94 3.02
7 0.7925 0.7985 1.320 2.305 2.695 3.416 3.865 1.98 2.94
8 0.8019 0.8033 0.8162 0.9783 1.159 1.514 1.753 2.00 2.69
9 1.135 1.228 1.385 2.427 3.379 5.147 6.449 1.36 3.02
10 1.236 1.251 1.313 1.577 1.855 2.387 2.730 2.16 3.20

1.94 6.18
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Chapter 6

Conclusions

The free vibration behavior of metallic and FG short and slender, tapered and pre−twisted,
rotating and non−rotating beams with arbitrary boundary conditions have been investi-
gated. The results have been obtained by using advanced and refined quasi−3D beam
models developed by using the method of power of series expansion of the displacement
field components. The governing equations have been derived in their weak form by the
Principle of the Virtual Displacement. The Coriolis effect have been taken into account.
The Ritz method has been used as solution technique. In the approximation the algebraic
Ritz functions, orthogonalized by using the Gram−Schmidt process, have been employed.
The effect of different parameters such as the length, taper ratio, pre−twisting angle,
length−to−thickness ratio, material and boundary conditions, have been evaluated and
commented.

The results show that the rate of convergence is higher for higher modes and that is
slightly affected by the theory adopted. Higher−order models are necessary in order to
describe accurately the mode shapes that involves torsion, distortion and warping of the
cross section. In addition, in the latter case refinement in the Ritz approximation does not
affect significantly the results accuracy while the addiction of DOFs leads to a remarkable
enhancement in the results accuracy. In contrast, further improvements in the description
of bending modes can only be achieved by increasing the order of the Ritz expansion.
When dealing with both three−dimensional FG and metallic beams, the proposed models
leads to the same level of accuracy of complex and computationally expansive 3D FEM
models. The proposed results show the behavior of different beams, the interaction of their
frequencies as a function of the non dimensional angular speed and of different parameters
such as the taper ratio, pre−twisting angle, and material. Depending on the cross section
shape of the beam, both bending and torsional frequencies increase or decrease. The effect
linked to the presence of a pre−twisting angle on the interaction and behavior of couples
of frequencies of rotating beams have been analyzed leading to the conclusion that the
presence of such a geometrical characteristics give birth to a divergence from the potential
cross point. Tacking into account both the Coriolis effect and an higher order of expansion
along the axe of the beam, it is possible to obtain accurate results in the analysis of the
behavior of a generic rotating beam also for high values of the rotational speed (in case
of high centrifugal load).
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