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Abstract

One of the most important goals for which the scientific community efforts are focused on is the
study of the planets of the Solar System. This is performed in order to evaluate how they formed
and evolved during the years. Frommid-1960, years of the first mission towardMars, to nowadays
the Red Planet has been a central element for the scientific research. In fact, after the Earth, Mars
is the most habitable planet in the Solar System. This can be deducted from several observations
concerning the presence of water, the day/night rhythm similar to the Earth one and the presence
of an atmosphere that offers protection from cosmic and Sun’s radiation. Today, scientists and
engineers from all over the world are thinking about a potential future outpost on the Mars sur-
face but particular attention shall be paid on another type of mission. This one, defined as Mars
Sample Return, is the highest priority science mission for the next decade as recommended by
the 2011 Decadal Survey of Planetary Science [1]. The architecture of this mission is studied in
relation to its first goal: take a sample from Martian surface and return to Earth in order to per-
form detailed studies in well equipped Earth’s laboratories. This can permit to answer questions
concerning possible human risks and issues related to the Martian environment. The mission
technology level and at the same time the total cost is really high involving a complex design for
each mission phase. The mission cost is affected by different factors including the trajectory de-
sign where this parameter is represented by the propellant consumption. This Master Thesis aims
to analyze one of the Mars Sample Return phases, the parking orbit selection within the Martian
sphere of influence. The computational capacity of genetic algorithms will be exploited because
they can solve optimization problems like the one here presented. The genetic algorithm theory
will be introduced after the definition of the Mars Sample Return mission and then, the physical
models, exploited for the calculation process, will be described. In the next chapters, the algo-
rithm implemented byMATLAB for the purpose of defining the best parking orbit orientation and
the capture/escape injection positions minimizing the propellant consumption will be explained.
Subsequently, in order to test and validate the optimization algorithm different study cases will
be treated and then the problem relative to the variation of the geometry of the parking orbit will
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be discussed. Here, two cases will be treated. The first one will be relative to the periapsis dis-
tance variation for a fixed semimajor axis while the second one is referred to the variation of the
semimajor axis for a fixed periapsis distance. These two study cases will be then analyzed with
the introduction of the descent and ascent phases from the martian surface. Lastly, in order to
evaluate the work done and the algorithm accuracy conclusions will be given and future trends
will be described.
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Introduzione

Uno dei più importanti obiettivi su cui gli sforzi della comunità scientifica sono concentrati è lo
studio dei pianeti del sistema solare, al fine di valutare come essi si siano formati e come si siano
evoluti durante gli anni. Dalla prima metà degli anni ’60, anni delle prime missioni verso Marte,
fino ai giorni d’oggi, il pianeta rosso è stato un elemento centrale per la ricerca scientifica. Infatti,
dopo la Terra, Marte è definito come il pianeta più abitabile del nostro sistema solare. Questo è
confermato da diversi studi riguardanti la presenza di acqua, il ciclo giorno/notte simile a quello
della terra e dalla presenza di atmosfera in grado di fornire protezione dai raggi solari e cosmici.
Al giorno d’oggi, gli scienziati e gli ingegneri di tutto il mondo hanno l’idea di progettare un fu-
turo outpost sulla superficie marziana ma l’attenzione è principalmente focalizzata verso un altro
tipo di missione. Questa, definita come Mars Sample Return, è stata definita dal 2011 Decadal
Survey of Planetary Science come la missione con la più elevata priorità scientifica che punta al
raccoglimento di un campione di superficie marziana ed al suo successivo ritorno sulla Terra [1].
Qua, il campione verrà studiato in modo dettagliato all’interno di particolari laboratori andando
quindi a cercare di dare una risposta alle domande relative a possibili rischi e criticità di una mis-
sione umana su Marte e a quelle a cui la comunità scientifica non è ancora riuscita a dare una
risposta. Il livello tecnologico della missione, e allo stesso tempo la complessità della stessa, è
molto elevato, con un conseguente incremento del costo totale. Questo parametro, uno dei più
importanti per la fase di design, è influenzato da diversi fattori tra cui quello preso in riferimento
in questa Tesi, ovvero il consumo di propellente definito dalle manovre orbitali che lo spacecraft
deve eseguire al fine di raggiungere l’obiettivo di missione.
Lo scopo principale di questo elaborato di Tesi è quello di andare ad analizzare una delle fasi
relative ad una missione di Sample Return su Marte, ovvero la fase di selezione dell’orbita di
parcheggio all’interno della sfera di influenzamarziana. Il primo capitolo di questa tesi sarà dedito
alla definizione della Mars Sample Return Mission andando quindi a contestualizzare il problema
di ottimizzazione dell’orbita di parcheggio che verrà poi successivamente trattato. Nel secondo
capitolo la teoria degli algoritmi genetici verrà introdotta poichè alla base del metodo di soluzione
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del problema sopra citato. Esso infatti ha le giuste caratteristiche per essere risolto da un algo-
ritmo genetico poichè è caratterizzato da un numero elevato di variabili e da uno spazio di ricerca
della soluzione molto ampio. Nel terzo i modelli fisici utilizzati durante il processo di calcolo ver-
ranno introdotti e successivamente, nel quarto capitolo, sarà definito l’algoritmo di ottimizzazione
dell’orbita di parcheggio. Esso, implementato in MATLAB, avrà l’obiettivo, fissate determinate
condizioni di cattura e fuga dalla sfera di influenza marziana, di definire l’orientamento dell’orbita
di parcheggio e le posizioni delle manovre di cattura e fuga che minimizzano il costo totale di pro-
pellente. Il quinto capitolo sarà dedito all’analisi dei risultati ottenuti. Verranno analizzati diversi
casi test per la validazione dell’algoritmo e successivamente, la trattazione relativa alla variazione
delle caratteristiche geometriche dell’orbita di parcheggio sarà analizzata. Qui, saranno presi in
considerazione due casi, il primo sarà quello relativo alla variazione della distanza del periastro
dell’orbita fissato il semiasse maggiore della stessa mente nel secondo, si analizzerà la variazione
del semiasse maggiore dell’orbita a fissata distanza del periastro. Successivamente la stessa trat-
tazione verrà analizzata andando a considerare anche le fasi di discesa e ascesa dalla superficie
marziana. Infine, nell’ultimo capitolo le conclusioni e gli sviluppi futuri verranno esposti.
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Chapter 1

Mars Sample Return Mission

1.1 Introduction

Mars has been one of the most fascinating planets for humanity since the time of the ancients.
From 1964, when the Mariner 4 fly-by returned 21 images of the red planet, to nowadays, there
have been several dozen spacecraft sent to Mars, of which 15 have been successful. Each mission
performed has enabled improvements concerning the scientific and technical knowledge about
the Red Planet. Many studies were performed but, as is typical of the progress of science, these
investigations have raised more questions than they have answered. Thus, Mars remains a high-
priority target for ongoing exploration. Many people are wondering why Mars is at the center
of the study of the scientific community. The answer can be explained through these primary
reasons:

• Mars is the most Earth-like planet in the Solar System

• Mars is the most accessible planet in the Solar system

• Mars is a potential target for an eventual and future human exploration

The last reason is referred to the possible next step for humanity, but before, scientists and engi-
neers must improve their knowledge about the Martian environment defining all the possible risks
and issues for human health. Past missions, like Mars Exploration Rover, have made exceptional
discovers about the presence of water, Carbon composites trace into Mars rocks and the mea-
sure of fluctuations of methane level into Mars atmosphere during the seasons. These discoveries
have made by means of different types of mission characterized by four systems: fly-by probes,
orbiters, lander and rover [5]. Fly-bys were the very first missions. Their goal was to simply
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flew by Mars and taking as many pictures as possible on their way past. Orbiters have allowed
to analyzed Mars atmosphere at different heights while landers and rovers have studied the Mars
atmosphere on a different perspective. They have studied not only the lower atmosphere layers
but also the Mars soil. Nowadays, scientific progress has led to the formulation of new mission
concepts where airplanes, balloons, surface explorers and sample return vehicles can be used. In
this section, the attention is focused on the last concept, where the first aim is to return samples
from Mars to Earth. This mission, called Mars Sample Return, can generally be designed in three
different architectures based on the type of Mars sample that must be collected. These are:

• Fly-by
• Touch-and-go
• Surface collection

In Fly-by missions, planet samples are collected without touching its surface thus, the primary
goal is to collect dust from planet atmosphere. The spacecraft flies on a low orbit a single or more
times where the samples are collected and then return to Earth. The technology level needed for
this mission is lower because the spacecraft does not touch the planet surface and then no landing
technologies are required. In a touch-and-go mission, the spacecraft briefly lands on the planet
surface, collects the sample and moves into another collection site or return to the Earth. The
cost of this mission is higher than flyby one because landing technologies are required. Lastly,
surface collection mission is the most complex. It is composed of different phases performed by
different systems. The systems involved are a rover, that collects the sample, and a lander. This last
system contains an ascent vehicle that permits to send the sample into the Mars orbit and then,
after a rendezvous manoeuvre with an orbiter, the samples will return to Earth. Sample return
vehicles are heavier respect the ones in flyby and touch-and-go missions. Moreover, they can be
designed in different ways depending on science goals, budget, desired complexity, reliability and
other parameters. This chapter is focused on this concept in reference to the Mars Sample Return
mission that NASA and ESA are designing.

1.2 Scientific Objectives

As written before, the idea of the Mars Sample Return Mission was proposed in order to search
answers relative to the questions raised from past missions investigations. Thus, this mission
must be designed in order to achieve different scientific goals related to questions that keep the
focus on the Red Planet. The selection process for the MSR primary goals choice has lasted

6



1 – Mars Sample Return Mission

for two decades in which many previously international priorities have been defined. Nowadays,
the attention is focused on seven objectives defined by the International MSR Objectives and
Samples Team (iMOST) [2]. This team must evaluate and update the sample-related science and
engineering objectives of the Mars Sample Return campaign. Moreover, The iMOST team must
define the types of measurements and the types of samples that can best address the objectives.
The seven objectives, cited before, are:

1. Interpret the primary geologic processes and history that formed themartian geologic record,
with an emphasis on the role of water

2. Assess and interpret the potential biological history of Mars, including assaying returned
samples for the evidence of life.

3. Quantitatively determine the evolutionary timeline of Mars.
4. Constrain the inventory of martian volatiles as a function of geologic time and determine

the ways in which these volatiles have interacted with Mars as a geologic system
5. Reconstruct the processes that have affected the origin and modification of the interior,

including the crust, mantle, core and the evolution of the martian dynamo
6. Understand and quantify the potential martian environmental hazards to future human ex-

ploration and the terrestrial biosphere.
7. Evaluate the type and distribution of in-situ resources to support potential future Mars ex-

ploration
These seven objectives provide a framework for demonstrating how the first set of returned mar-
tian samples would impact future martian science and exploration. They also have implications
for how analogous investigations might be conducted for samples returned by future missions
from other solar system bodies, especially those that may harbor biologically relevant or sensitive
material. The list above is constantly updating due to the scientific community priorities. More-
over, Mars environment varies on the basis of the location taken into account so the landing site
selection has a key role. The landing site selection for NASA-ESA Mars Sample Return Mission
will be described in the next sections.

1.3 Mars Sample Return Mission Architecture

As described before there are three different ways to perform a Mars Sample Return mission but,
for the scientific objectives listed in the above section, only the third one can be considered. In
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the past, many studies have been done and different architecture and concept have been designed
[8][9][14]. During the years, the idea of a Mars Sample Return has been taking shape and on
April 26 2018, NASA and ESA signed a Statement of Intent to work together to formulate, by
the end of 2019, a joint plan for the retrieval mission. Thus, nowadays, the Mars Sample Return
is a joint collaborative project between two of the most important space agencies from all over
the world. This decision is linked to the scientific goals and the idea of a future human outpost
on the Red Planet which remains the primary goal for the next future. The proposed mission
architecture [4] can be defined as a campaign where a sequence of specific missions will permit
to take the martian Sample and then return to Earth. Thus, the entire mission can be divided into
three different submissions. These are:

• Mars 2020 Rover Mission

• Sample Retrieval Lander

• Earth Return Orbiter

TheMars 2020 Rover mission, led by NASA, is the first element ofMars Sample Return campaign
which is planned for July 2020 and it aims to catch samples of Martian rocks during its nominal
1.25 Mars-year mission. After the sample collection phase, it will cache them in a defined depot.
The second mission is characterized by the Sample Retrieval Lander system that will contain the
Mars Ascent Vehicle (MAV) and the Sample Fetch Rover (SFR). The second element will collect
the sample from its depot and then it will return them to MAV where they will be stored in the
Orbital Sample (OS) element. This one will be the MAV payload launched by this ascent vehicle
into a nominally circular orbit. At this point, the third missions will start. It will composed by the
ERO element that will be able to rendezvous with the Mars Ascent Vehicle, collect the Orbiting
Sample and come back to Earth where the OS will be studied in a well-equipped laboratory. This
facility is called Mars Returned Sample Handling (MRSH) and it is composed of all post-landing
handling, the sample receiving and curation activities. Here, scientists will analyze the Mars
sample and will try to expand the knowledge about the Red Planet answering questions that have
no answer. The sequence of the different mission phases can be observed in Fig.1.1.

1.3.1 Mars 2020 rover Mission

The Mars 2020 rover mission is led by NASA inside the Mars Exploration Program (MEP). It
aims to a long-term effort of robotic exploration of the Red Planet [32]. This mission is timed for
its first launch opportunity in July/August 2020. In these months Earth and Mars will be in a good
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Figure 1.1: Mars Sample Return Mission phases

position relative to each other for landing on Mars. This mission is designed in order to achieve
four scientific goals:

• Determine whether life ever arose on Mars
• Characterize the climate of Mars
• Characterize the geology of Mars
• Prepare of human exploration

Moreover, through a new type of systems as the drill, Mars 2020 Rover will be able to collect
samples of the most promising rocks on the Mars surface that with the support of other future
missions will permit to bring them to Earth. This mission will also provide the opportunity to
gather knowledge and demonstrate new technologies that address the challenges of future expe-
ditions to Mars. For example, an oxygen production system from the Martian atmosphere will be
tested. The atmosphere on Mars is composed of 96 per cent carbon dioxide so this technology
demonstration will help mission planners to test ways of using Mars’ natural resources to support
human explorers and improve designs for life support, transportation, and other important systems
for living and working on Mars. At the same time, in order to keep mission costs and risks as low
as possible EDL and surface operations technology exploited for Curiosity Rover will be reused.
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1.3.2 Sample Retrevial Lander

The Sample Retrieval Lander or Sample Return Lander is the second mission that will be launch
to accomplish the goals of the Mars Sample ReturnMission. It is under design by ESA and NASA
(In Fig.1.2 is represented a possible design) and it is principally composed by:

• Sample Fetch Rover
• Mars Ascent Vehicle

These elements have a key role inside the entire Sample Return Mission because the first one must
catch the sample left behind byMars 2020 rover while the second one permits to bring the samples
into a specific orbit around Mars.

Figure 1.2: Sample Retrieval Lander Design

Sample Fetch Rover

The Sample Fetch Rover is one of the key elements of the Mars Sample Return campaign [10].
When the Sample Retrieval Lander will land on Mars surface, the Sample Fetch Rover will go
down from the platform in order to perform two activities:

• To collect the sample tubes left by NASA’s Mars 2020 Rover
• To bring the sample tubes to the Sample Retrieval Lander where a dedicated robotic arm

will move them to the Mars Ascent Vehicle.
Moreover the Sample Fetch Rover must be characterized by the following properties:

• Lightweight
• high mobility capabilities
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• high reliability

The first property is important in order to not exceed the mass limitations of entry descending
and landing system. Thus, its maximum mass is fixed and is equal to 120kg. At the same time,
the Rover must not have a big volume because it must be stowed inside the SRL that for this
system have a maximum volume of 1m3. The high mobility capabilities are important during
the navigation phases, where the Sample Fetch Rover will transverse from its landing site to the
location of a sample cache left behind by the previous rover mission. This rover will be designed
for an average traverse distance of 150 − 250m∕sol for a maximum mission duration of 210sol.
Moreover, SFR will be autonomous during the navigation phases where the process of image
processing will support the autonomous driving. Lastly, the high reliability will allow to SFR to
survive into the Martian environment whose is characterized by vary criticalities as dust storms.
A possible design of the Sample Fetch Rover is shown in Fig1.3.

Figure 1.3: Sample Fetch Rover Design

Mars Ascent Vehicle

The Mars Ascent Vehicle or MAV is one of the largest technology development risks for the Mars
Sample Return mission. It must be developed in order to survive a variety of conditions including
the interplanetary flight, entry descending and landing phases. Moreover, it must survive in the
Mars surface environment while maintaining the ability to deliver its payload, the Mars sample,
into a low Mars orbit. At the same time, as written before relative to the Sample Fetch Rover, it
must be light. This permits to not exceed the mass limitations of entry descending and landing
system. Many studies about Mars Ascent Vehicle design were executed during the years [9][14].
Now, NASA and ESA engineers are studying a MAV design characterized by a single-stage with
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hybrid propulsion. This type of design should allow the design of a Mars Ascent vehicle charac-
terized by a gross liftoff mass of 300 − 400kg.

Figure 1.4: Mars Ascent Vehicle Design

Another important element of the Sample Retrieval mission is the Orbiting Sample (OS) con-
tainer. It will be contained inside the MAV and it can be defined as the element in which The
Sample Fetch Rover will move the Mars tubes containing the Mars samples. Thus, during the
rendezvous manoeuvre the OS will move from the MAV to the Earth Return Orbiter and then it
will return to Earth. In each phase, the OS must be able to maintain samples within environmental
constraints.

1.3.3 Earth Return Orbiter Mission

The Earth Return Orbiter or ERO is the key element of the third phase of the mission [12][13].This
mission will set three new records:

• First return from another planet

• First rendezvous around Mars

• First bio-contained sample return

The spacecraft, entering inside the Mars sphere of influence, will move from its hyperbolic tra-
jectory to a specific circular or elliptical parking orbit. At this point, it will rendezvous with the
Mars Ascent Vehicle in order to move the Orbiting Sample from the MAV to the ERO and then it

12



1 – Mars Sample Return Mission

will return to Earth. The transfer of the Orbiting sample is one of the most complex phases of the
entire mission. Here, the samples will be sealed into a bio-container which permits their insula-
tion and thus, their properties will be maintained to their original conditions. Once the spacecraft
will reach the Earth, the Entry Vehicle (EEV) will be released on an Earth-impacting trajectory
in order to land at a designated site where the sample will be taken and transferred to a Sample
Receiving Facility for storage, opening and evaluation. At the same time, the rest of the spacecraft
will perform an Earth avoidance manoeuvre in order to not impact on the Earth surface. Further-
more, Earth Return Orbiter must be designed in order to be able to perform telecommunications
operations between systems on Mars surface and ground stations on Earth. Telecommunication
operations must be performed during each mission phase so the parking orbit selection must taken
into account these operations. Studies have shown that in order to support telecommunications
relay and rendezvous operations the orbiter would be inserted into a highly elliptical orbit and
then aerobrake down to potentially a 500 km circular orbit. The phases of the ERO mission are
shown in Fig.1.5.

Figure 1.5: Earth Return Orbiter mission phases

The concept of this orbiter is under study by ESA engineers. Many designs have been studied with
chemical, hybrid and electric propulsion systems with particular attention to the system mass. In
fact, as written before for the MAV and for the SFR, the system mass is a critical driver for the
feasibility of Mars return. Lastly, the Earth Entry Vehicle is another important element of the
Mars Sample Return mission. This system will permit the return to Earth of the sample tubes and
so it must survive during the entry, descending and landing phases on Earth atmosphere. Many
studies are performing about the EEV where, the first goal is to design a system able to land on
the Earth surface without compromising the samples properties.
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1.4 Landing Site Selection process

The Landing site selection process is one of the most important phases of the mission design. This
choice must be analyzed through a trade-off study where risks, costs and scientific objectives must
be considered. The landing site selection process for the Mars Sample Return Mission, defined by
ESA and NASA, is referred to the Mars 2020 Rover mission which is the first one to be performed
[3]. The choice of the best landing site is principally affected by two types of constraints:

• Engineering constraints

• Scientific constraints

The first ones limited the location on Mars where the rover can be delivered in terms of latitude,
longitude, elevation, radar reflectivity, thermal inertias and albedo while the second ones are re-
ferred to the scientific objectives and their priorities. The selection process started from about
30 candidates and after a series of three workshops, where the entire scientific community was
involved, the number of suitable landing sites has now narrowed to three. These are:

• Jezero Crater

• Columbia Hills

• NE Syrtis

The three remaining landing site candidates for the Mars 2020 rover mission represent diverse
geological settings that all offer the potential for preservation of biosignatures that can confirm
the presence of life on Mars in its history. Thus, the Martian samples that would be returned
from any of the final landing site candidates would represent an abundance of opportunities for
scientists for decades.

Jezero Crater

Jezero Crater is interpreted to represent a delta formed in a crater lake. It is situated 18.4386°N
and 77.5031°E at an elevation of −2.64km. This landing site could be chosen for its probability
to find traces of organic material which would be valuable in the search of ancient biosignatures.
This high probability is given by the delta that could contain materials from a diverse set of envi-
ronments.
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Columbia Hills

The Columbia Hills is the only landing site previous visited by a past mission, in fact, it was the
Spirit rover landing site in 2004. The landing location is centred at 14.5478°N , 175.6255° at an
elevation of−1.93km. Past studies performed by Spirit Rover showed that this site is characterized
by the presence of silica deposits that could contain evidence of microfossils and/or microbially
produced by organic matter.

NE Syrtis

The NE Syrtis site is situated at 17.8899°N latitude and 77.1599°E longitude at −2.04km el-
evation. This landing site represents a deep crustal setting in which water reacted with rocks,
possibly providing a hydrothermal setting analogous to inhabited environments on Earth. This
type of terrain could contain evidence for igneous, hydrothermal and sedimentary environments.
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Chapter 2

Genetic Algorithms

2.1 Introduction to Genetic Algorithm

Many common applications of predictive analytics, from customer segmentation to space mission
design, arise from complex relationships between features. The selection of this features, also
called variables, is the process of finding the most relevant one for a predictive model. Genetic al-
gorithms are heuristic search methods inspired by Darwin’s Evolution Theory that through the use
of natural selection, adaptation and survival laws find the best solution to optimization problems.
Since the mid-1990s scientists and researchers have studied artificial intelligence and evolutionary
computation, trying to implement computer programs that could simulate natural world processes.
The first genetic algorithm software was created by Nils Barricelli in 1954 with the goal to create
and develop artificial life and not to solve optimization problems or simulate biological evolu-
tion. Barricelli’s work was followed by other scientists as Alexander Fraser who, in 1957, the
first to have the idea of creating a computer model of evolution. The genetic algorithm version
that is known today was for the first time written in the 1960s by John Holland, a professor at the
University of Michigan. Holland’s version, described in his famous book Adaptation in natural
and Artificial System, involved a simulation of Darwin’s principle relative to the survival of the
fittest, as well as processes of crossover, recombination, mutation and inversion that are the ba-
sis of genetics. Research on genetic algorithms rapidly increased in the 1970s and 1980s due to
advances in technology. Scientists involved in these type of study began to realize the limitations
of conventional programming and optimization methods for solving complex problems and thus
they found that genetic algorithms were a way to find solutions to these problems. Conventional
optimization methods cited before are three:

• Calculus-based
17
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• Exhaustive search
• Random search

Calculus-based methods can be divided into two categories: direct and indirect. The first one
follows the direction of the gradient towards a local maximum or minimum value while the sec-
ond one takes the gradient of the objective function, sets it equal to zero, then solves the set of
equations that result. These methods are good for local optimal search and can be useful when
derivatives of the objective functions existed. Exhaustive search methods test every single value
belonging to a defined finite search space in order to find the maximum or minimum value of the
objective function. It is the least efficient of all optimization algorithms due to the high calcu-
lation time when a complex problem is considered. Lastly, random search algorithms are based
on the random choice of some representative samplings from the search space. These samplings
are then analyzed and the optimal value is chosen. Using this type of algorithms the solution
cannot be the be the optimal one of the entire search space. As written before, natural evolution
mechanisms can be used to solve some of the most difficult computational problems that concern
solution definition within a huge number of possible alternatives. Indeed, biological evolution
process can be treated as a research method where the desired solutions are adapted organisms
with strong survival and reproduction capabilities in changing environments that pass to next gen-
erations their genetic properties. In this contest, each organism can be considered as a solution
because it survives in its environment through the development of behaviours and skills that are
even the evolution result. Genetic algorithms are based on Darwin’s studies described in his book
On the origin of species by means of natural selectionwrote in 1859. Thus, this type of algorithms
is based on Darwin’s Theory of evolution, where elements with strong adaptive skills have much
chances to survive in a changing environment and have many probabilities to transmit their prop-
erties to their future generations. Through this principles, genetic algorithms are able to perform
a heuristic solution research into zones where there are more probabilities to find better solutions
but at the same time don’t neglect worst ones where a small number of resources are used. Nowa-
days, genetic algorithms are used in different research fields where optimization problems must
be resolved.

2.2 Genetic Algorithm Terminology

Since genetic algorithms are designed to simulate a biological process, much of the relevant ter-
minology is borrowed from biology and genetics. Basic terminology is composed of:

• Population: it is a subset of all the possible solutions to the given problem.
18
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• Individual or chromosome: it refers to a numerical value or values that represent a candidate
solution of the optimization problem. to the problem that the genetic algorithm is trying to
solve

• Gene: it is one of the elements of an individual.
• Feature or allele : it is the value a gene takes for a particular chromosome
• Genetic operator: it is a process aims to modify the genetic composition of the offspring.
• Fitness function:it is defined as a function which takes the solution as input and produces

the suitability of the solution as output.
• Son: it is the results of the reproduction process that belongs to the next population as a

member.
• Genotype: it is the population in the computation space.
• Phenotype: it is the population in the actual real world solution space. For simple problems

Phenotype coincides to Genotype.
• Decoding - Encoding: Decoding is a process of transforming a solution from the genotype

to the phenotype space, while encoding is a process of transforming from the phenotype to
genotype space.

Many terms of the list above will be used in the next sections in order to properly describe every
single process of a genetic algorithm. A schematic overview of this terminology is shown in Fig.
2.1 where the difference between some terms can be easily noted.
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Figure 2.1: Genetic algorithm terminology scheme.

2.3 Genetic Algorithm Operating Method

As written before genetic algorithms are based on natural selection laws, where individuals repro-
duction mixes their genetic heritages in order to generate new individuals that have got genetic
properties derivated by parents ones. The natural selection process permits to survive only to
stronger and more adaptive fellows so that the species evolves over time, generation after genera-
tion. Genetic algorithm operating principle, as represented in Figure 2.2, can be described by the
sequence of different phases. The most important are :

1. Creation of the initial population. This first phase is the generation of first individuals
where this process can be random or defined by the user with different options.

2. Fitness Value definition. In this phase, a score, called raw fitness score, is assigned to each
individual on the basis of its properties.

3. Raw fitness score scaling. This phase permits to convert them into a more usable range of
values. These scaled values are called expectation values.

4. Parents selection. Best members, called parents, are chosen on the basis of their expecta-
tions.

5. Elite members selection. They have lower fitness value and thus they are directly passed
to the next generation.
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6. New generations creation. These are composed of children where every child is produced
either by making mutation (random changes to a single parent) or crossover (combining
pairs of parents).

7. New population generation.

The iter above described is multistep, thus it stopped when a stopping criterion is met. Each phase
has a key role inside the determination of the optimal solution process. In order to find the best
solution in the most efficient way , the user can be customized options and parameters that affect
the choice of parents and the creation of new generations.

Figure 2.2: Genetic Algorithm operating method.
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2.4 Initial Population

The first step in the functioning of a genetic algorithm is the generation of the initial population.
It is composed by an initial set of individuals that can be randomly defined or properly set within
a specific range by the user. This first phase has a key role inside the algorithm because it affects
the efficiency of the optimal solution definition process. Each member of this population encodes
a possible optimal solution and then, it is important to consider two key parameters:

• population size
• members type

These ones are related and are two of the most important topics to consider when an evolutionary
or a genetic algorithm is used. Researchers usually argue that a small population size could guide
the algorithm to poor solutions and that a large population size could make the algorithm expend
more computation time in finding a solution. This is not always true because the initial population
is not only factor that influences the algorithm performance. In fact, there are other parameters
that can affect the efficiency of genetic algorithms [17]. These are:

• Search space
• Fitness function
• Diversity
• Problem difficulty
• Selection pressure
• Number of individuals

Past studies have demonstrated that the right number of individuals may increase the probabilities
to find a "good" solution. In the opposite case, the convergence of the algorithm is not assured
and then the solution cannot be the optimal one. Moreover, when some information concerning
a possible solution is known, it can be a good method to insert them into the initial population
and thus narrow the search space. Members diversity is another important parameter to consider
when a genetic algorithm is used and it can be referred to the average distance between individuals
in a population. It must be taken into account when no information about the possible optimal
solution is known. In this case, it has an important role because a greater diversity may lead to
greater possibilities to find solutions. Selection pressure is related to members diversity and it can
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cause a premature convergence. This occurs when selection pressure is characterized by a high
value. Lastly, it can be demonstrated that problem difficulty can affect the algorithm efficiency. If
the problem is complex then may be necessary to have a bigger initial population. In the opposite
case, a smaller number of initial individuals may be sufficient to find the optimal solution.

Figure 2.3: Genetic Algorithm influence factors

2.5 Fitness Function

As written before, the fitness function is one of the factors that influence the initial population
properties and then it may affect the algorithm converge or divergence. It is defined as a function
which takes a problem candidate solution as input and generates as output a value representing
how good is the input solution respect to the problem. The fitness function must be properly
defined because it is the function that is evaluated at each step for every population member. In
fact, a "good" fitness function can have a positive effect on the algorithm computational speed.
On the basis of the problem complexity, it can be possible to choose a fitness function equal to the
objective one where the last one is the one that must be minimized from the genetic algorithm.
This can be done when the following conditions are verified:

• Small number of variables
• Small number of constraints
• Low complexity

Lastly, it is important to define how to properly write the fitness function. Surely, it must have the
following characteristics:
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• It should be clearly defined and efficiently implemented

• It should be sufficiently fast to compute.

• It must measure how fit and how good is a given solution. At the same time, it must measure
how fit individuals can be produced from this given solution.

• It should generate intuitive results

2.6 Selection Process

When fitness assignment process is performed every individual is evaluated bymeans of the fitness
function. After that, another key process must be executed. This one, called Selection process,
aims to choose, through a specific selection operator, the best individuals. This is the first step
of the new population generation based on the reproduction process. The individuals choice is
based on their fitness score, where it represents the individual capacity to survive into the problem
environment. Thus, in accord with natural laws, they can be defined as stronger individuals. A
key element inside the selection process is the selection function. It must be defined on the basis
of the given problem and its choice can be executed between the following functions:

• Stochastic Uniform

• Uniform

• Roulette

• Tournament

• Reminder

The stochastic Uniform selection method is the default one and it lays out a line in which each
parent corresponds to a section of the line of length proportional to its scaled score. When this
method is used the algorithm moves along this line in steps of equal size and during each step
a parent from the section is allocated. The Roulette selection function is based on the roulette
wheel game. The whole wheel is divided into different sections in which each one corresponds to
an individual and the size of the section is proportional to its expectation. This method is shown
in Fig.2.4. The tournament selection method generates parents through a process where a group
of two or more individuals are confronted and the best one becomes a parent. In this case, it is
possible to decide tournament size and so how many individuals are confronted at the same time.
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This process is the one used in this Master thesis and it is represented in Fig. 2.5. The reminder
selection method is another deterministic option. It performs two-step, the first one is the selection
of the parents by means of the integer part of the scaled value while the second one is the selection
of additional parents using the fractional parts of the scaled score. This process is the same that is
executed in the stochastic uniform selection. Lastly, the uniform selection process is the one used
for debugging and problem testing. It is based on expectations and the number of parents that
must be reached. After this process, other individuals are chosen as Elite ones through an elitism
selection. These individuals are directly passed into the next generation as parents. The number
of Elite individuals can be chosen from the user and it affects the algorithm behaviour.

Figure 2.4: Roulette selection process Figure 2.5: Tournament selection process

2.7 Reproduction process

The reproduction process can be defined as the set of operations which permit to generate a new
population from a previous one. After the selection process, by means of parents are chosen,
individual’s properties are recombined in order to create sons which have better genes compared to
their parents. From this new generation, a second new generation is produced by the same process
and so on. Thus, this process permits to generate better individuals and so better solutions. This
process of recombination exploits two types of reproduction techniques that will be treated in the
next two sections:

• Crossover

• Mutation
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2.7.1 Crossover

Crossover is a reproduction technique where once two individuals are randomly selected, their
properties are recombined to get new individuals belonging to the new generation. The number
of sons generated from this process can be chosen by the user and the default value is 4. Moreover,
the percentage of the entire population that is made up of crossover children can be chosen too.
This option is called crossover fraction and it is represented by a number between 0 and 1. A
value of 1 means that all children are crossover ones, while a crossover fraction of 0 means that
all children are mutation ones. Since the number of individuals of the next generation cannot
exceed the number of individuals in the previous one when the size of the current population is
the same as the old one the process is stopped. There are different crossover operators, the most
important are:

• One-point Crossover
• Multi-point Crossover
• Uniform Crossover

One-point crossover, represented in Figure 2.6, is the operator where a random crossover point is
selected and the tails of its two parents are swapped to get new off-springs. This crossover point is
the same for both parents. The second technique, the multipoint crossover, represented in Figure
2.7, is a generalization of the one-point crossover wherein alternating segments are swapped to
get new off-springs. This can be thought of as the evolution of the technique explained above.
Lastly, in a uniform crossover, represented in Figure 2.8, the chromosomes are not divided into
segments but essentially a coin is flipped for each chromosome in order to decide whether or not it
will be included in the offspring. Traditionally, genetic algorithms have relied upon 1 and 2-point
crossover operators. Moreover, it can be demonstrated that a large number of crossover point
can improve the efficiency of the algorithm. Nowadays, new studies are introducing new types
of genetic algorithms, called adaptive ones, where they decide which is the optimal crossover
technique to use.
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Figure 2.6: One-point crossover operator Figure 2.7: Multi-point crossover operator

Figure 2.8: Uniform crossover operator

2.7.2 Mutation

Mutation is a genetic operator analogous to a biological one that has the characteristic to maintain
genetic diversity generation after generation. During this process, each parent is randomly altered
from its initial state in order to generate new offsprings. In this way, low diversity is avoided and
then the search space is wide. In general, mutation process can be thought as a process where
in order to decide if a feature will be mutated, a random number with a value between 0 and 1
is generated. If this one is lower than a value called mutation rate the variable is flipped. The
mutation rate by default is defined as the inverse number of individual’s features but this value
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can be set by the user too. Using default value statistically at least one feature of each individual
is changed. There are different mutation operators, the most important ones are:

• Bit flip mutation

• Swap mutation

• Scramble mutation

• Inversion mutation

Bitflip mutation, represented in Figure 2.9, exploits the operating method written above where a
feature is mutated if its value is lower than the mutation rate. This operator is often used when
a binary encoded genetic algorithm is implemented. The second mutation operator, the Swap
mutation, is based on the interchange of the value of two different features. This operating process
is shown in Figure 2.10. Scramble mutation operator, represented in Figure 2.11, is based on the
following operating method: from an entire chromosome, a subset of genes is chosen and their
values are scrambled or randomly shuffled. Lastly, in Inversion mutation, as shown in Figure
2.12, a subset of genes is selected like in scramble mutation, but instead of shuffling the subset,
the entire string in the subset is inverted.

Figure 2.9: Bit-flip mutation operator Figure 2.10: Swap mutation operator

2.8 Stopping Criteria

Unlike derivative search methods that terminate when a local optimum is reached, Genetic algo-
rithms are stochastic search methods that could in principle run for ever. In practice, a termina-
tion criterion is needed. Stopping criteria determine what causes the algorithm to terminate and
so which are the conditions that stopped the algorithm. Many types of stopping criteria may be
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Figure 2.11: Scramble mutation operator Figure 2.12: Inverse mutation operator

selected and their selection varies on the basis of the given optimization problem. Some of the
most used stopping criteria are:

• Generations number

• Time limit

• Fitness limit

• Function tolerance

• Stall generations

• Stall time limit

Generations number criterium defines the maximum number of generations which can be gener-
ated. If this criterium is selected then the genetic algorithm stops when the number of generations
reaches the maximum value. Fitness Limit criterium is the one which causes genetic algorithm
stops when the value of the fitness function for the best point in the current population is less or
equal to fitness limit. If function tolerance criterium is selected, the algorithm runs until the aver-
age relative change in the fitness function value is less than the tolerance. Stall generation is the
critera which if selected causes the algorithm stop when the average relative change in the fitness
function value over Stall generations is less than Function tolerance. Lastly, Stall time limit and
Time limit specify the time after that the algorithm is stopped and so prevent the algorithm from
running too long. The algorithm stops as soon as one of these conditions is met. It is possible to
specify the value of these criteria or use default ones.
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2.9 Genetic Algorithm in MATLAB

MATLAB MATrixLABoratory is a high-performance language for technical computing that
integrates different environments like computation, visualizations and programming [16]. It has
many powerful built-in routines and other specific applications are collected in packages referred
to a toolbox. There are toolboxes that have applications in many fields like:

• Signal processing
• Control theory
• Simulation
• Optimization and other fields of applied science and engineering.

In the case of this Master Thesis, the interesting is focused on the optimization toolbox. Global
Optimization Toolbox provides functions in order to search global solutions to problems that can
contain multiple maxima or minima. It includes various solvers as pattern search, genetic algo-
rithm, multistate and global search in order to find the best solution for optimization problem
where the objective or constraint function can be a generic one with different properties. Genetic
algorithm toolbox, here considerated, uses MATLAB matrix functions to build a set of versa-
tile tools for implementing a wide range of genetic algorithm methods. The Genetic Algorithm
Toolbox is a collection of routines, written mostly in m-file, which implement the most important
functions in genetic algorithms. This type of algorithm can be exploited using the ga function
which aims to find a local unconstrained minimum to the objective function. This function, in
MATLAB environment, can be called using following syntax:

[x,fval,exitflag]=ga(fun, nvars A,b,Aeq,beq,lb,ub,nonlcon,options)

Parameters defined above have the following meaning:
• x: local unconstrained minimum. Best point that ga located during its iteration.
• fval: value of the objective function at x
• fun: objective function that describes the problem
• exitf lag: reason that ga stopped, return as an integer value.
• nvars: number of design variables
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• A, b:linear inequalities constraints (Ax ≤ b) that describe the problem
• Aeq, beq:linear equalities constraints (Aeqx ≤ beq)

• lb: lower bounds of the design variables
• ub: upper bounds of the design variables
• nonlcon: this function accepts x and return vectors C and Ceq, representing the non linear

inequalities and equalities respectively.The function ga minimize fun such that C (x) ≤ 0
and Ceq (x) = 0

• options: describes which optimization parameters are using to minimize the function. If
options is not specified default parametrs are used.

In next chapters this routine will be explain and it will be applied to solve an optimization problem
relative to the determination of the best parking orbit during a Mars sample return mission.

2.10 Observation about Genetic Algorithm

Genetic algorithms accommodate all of the facets of soft computing, namely, robustness, non-
linearity, and uncertainty. These characteristics permit this type of algorithm to have application
in a lot of fields of study as optimization, parallelization, economics, neural network, robot tra-
jectory optimization, machine learning and image processing. As computers continue to deliver
accelerated performance, these applications will only become more routine. The flexibility of
genetic algorithms to address general optimization problems using virtually any reasonable repre-
sentation and performance index gives these techniques an advantage over classic numerical op-
timization procedures. Moreover, these algorithms offer a set of procedures that may be usefully
applied to problems that have resisted solution by common techniques and can be hybridized with
such techniques when such combinations appear beneficial In order to give a complete overview
of these algorithms, advantages and disadvantages are here reported. The advantages of a genetic
algorithm are:

• It is faster as compared to traditional method.
• It is more efficient as compared to traditional method.
• The search space is very large due to population diversity.
• It does not require any derivative informations.
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• It provides not a single solution but a list of possible solutions.
• It can be used in order to solve multi-objective problems.

The disadvantages are:
• It is not suitable for all problems.
• Determination of fitness function is repeatedly performed which might be computationally

expensive in some cases.
• Being stochastic, there are no guarantees on the optimality or the quality of the solution.
• It may not converge at the optimal solutions if they are not properly implemented.
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Chapter 3

Physical Model

3.1 Two-Body Motion

The two-body motion is the first model that must be introduced. This model represents accurately
the motion of artificial satellites, ballistic missiles or space probes orbiting around planets or the
Sun can be studied and described. This method is based on the following three assumptions:

• The bodies are spherically symmetric. Thus, they are treated as point masses.

• The gravitational force is the only force acting on the system.

• The mass of the attracting mass must be much greater than orbiting body mass.

Let to consider the system of two bodies, m and M , illustrated in Fig 3.1. The motion of this
system is governed by the following equation:

̈⃗r = −
�
r3
r⃗ (3.1)

where:

• r⃗ is the vector fromM to m

• � is the gravitational parameter ofM

Equation (3.1), derived from Newton’s Law of Universal Gravitation, can be used to introduce the
concept of conservation of energy and conservation of angular momentum. These two parameters,
defined as motion constants, make it possible to calculate the position and the velocity of the
secondary body at any point in its orbit.
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Figure 3.1: Relative motion of two bodies

3.1.1 Conservation of Mechanical Energy

The gravitational field in which the spacecraft goes is assumed to be conservative. Thus, from
physics laws, is known that an object moving under the influence of gravity does not vary its
mechanical energy but only exchange the kinetic and the potential energy. In orbit mechanics,
the specific energy � of a spacecraft is the quantity that remains constant along its orbit. This
parameter is described by (3.2) where the first term represents the kinetic energy per unit mass
while the second one the potential energy.

� = V 2

2
−
�
r

(3.2)

3.1.2 Conservation of Angular Momentum

The physics laws describe the gravitational force as a force directed radially toward the centre
of the primary body so, the angular momentum of the spacecraft about the centre of the primary
body reference frame does not change. In orbit mechanics, this constant of the motion is described
by (3.3) and is called specific angular momentum.

ℎ⃗ = r⃗ × V⃗ (3.3)

From (3.3) must be observed that ℎ⃗ is the cross product of the spacecraft position vector and the
velocity one so, it is always defined as perpendicular to the plane that contains these vectors. This
plane, fixed in space, is called orbital plane. Now, introducing the flight path angle � defined as
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the angle between the velocity vector and the local horizontal plane, the scalar equation of the
angular momentum can be described by (3.4).

ℎ = rV cos� (3.4)

At the same time, if the complementary angle of � is considered then the (3.4) can be rewritten
by (3.5) where  is defined as the zenith angle.

ℎ = rV sin  (3.5)

Zenith and flight path angle are shown in Fig.3.2

Figure 3.2: Flight Path Angle and Zenith Angle

3.2 Trajectory Equation and Conic Sections

3.2.1 Trajectory equations

As written before, the motion equation of a system composed of two bodies, where the attracting
mass is much greater than orbiting body one, can be described by a differential equation expressed
by (3.1). This one can be useful to obtain the trajectory equation that describes the orbit shape
and its dimensions. Integrating (3.1), the polar equation of a generic conic section can be derived.
It is expressed by:

r =
ℎ2∕�

1 + e cos �
(3.6)

where:
• ℎ is the magnitude of the angular momentum
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• � is the gravitational parameter of the principal body
• e is the orbit eccentricity
• � is the angle between the constant vector ê, directed from the central body to the periapsis,

and the radius vector r⃗. It is called true anomaly and it is measured in the direction of the
spacecraft motion.

Moreover, the equation of a conic section, written in polar coordinates with the origin located at
a focus, can be introduced. It is expressed by (3.7) and permits to the (3.6).

r =
p

1 + e cos �
(3.7)

Thus, the following observations can be done:
• In the two-body problem the spacecraft moves along a conic section that has the primary

body in its focus.
• The semi-latus rectum p of the trajectory is related to the angular momentum of the space-

craft
• The eccentricity of the conic section is the magnitude of the eccentricity vector ê

Figure 3.3: Generic conic section geometry

3.2.2 Conic Section

As written before, the family of curves called conic sections represents the only possible paths
for an orbiting object in the two-body problem. When a spacecraft is under the influence of the
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gravitational force of a primary body, it can travel along different types of orbits. These orbits,
defined as Keplerian ones and represented in Fig 3.4, vary on the basis of their eccentricity value
and can be summarized by the following list:

• Circular orbit: e = 0

• Elliptical orbit 0 < e < 1

• Parabolic orbit e = 1

• hyperbolic orbit e > 1

Figure 3.4: Types of keplerian orbits

Each conic section has two foci (F and F ′) due to its symmetrical conditions but, in orbital me-
chanics, only the first one has a great significance. It is the location of the primary body that
permits to define some parameters. The first one is the latus rectum, indicated by 2p and defined
as the width of each curve at the primary focus. The second one is the major axis described as
the length of the chord passing through the foci. It is labelled 2a and it can be characterized by
a positive, negative or infinity value. A positive major axis is obtained for circular and elliptical
orbits while a negative value is defined for hyperbolic ones. Lastly, in the case of parabolic orbits,
the semi-major axis has an infinite value. The third parameter that must be defined is the distance
between the foci, indicated by 2c. For circular orbits, foci are considered coincident and 2c is
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zero, for the parabola 2c is infinite and for the hyperbola 2c is taken as negative. These three
parameters just defined can be related through the following expressions:

e = c
a

(3.8)
p = a

(

1 − e2
) (3.9)

The two extreme end-points of the major axis a are labelled as apses where the point farthest is
defined apoapsis while the nearest one is called periapsis. The equation of these points can be
easily derived from (3.7) inserting for the periapsis � = 0° and for the apoapsis � = 180°. These
equations are expressed by (3.10) and (3.11) respectively.

rp = a (1 − e) (3.10)
ra = a (1 + e) (3.11)

As written before the true anomaly is defined as the angle between the eccentricity vector that is
direct toward the periapsis and the radius vector. The eccentricity vector expression is the (3.12)
derived by the integration of the two-body equations.

ê = v⃗ × ℎ⃗
�

− r⃗
r

(3.12)
Lastly, an additional consideration about the specific orbital energy can be done. This constant
of motion can be expressed as a function of the specific angular momentum in order to derive a
new energy equation. This one is described by (3.13). It is valid for all conic orbits and tells that
semi-major axis of an orbit depends only on the specifical mechanical energy �. Thus, depending
on the semi-major axis value and then on the orbit types, the specific mechanical energy vary its
sign.

� = −
�
2a

(3.13)
The conic section properties are shown in Table 3.1.

Orbit shape a � e
Circular > 0 < 0 0
Elliptical > 0 < 0 < 1
Parabolic ∞ = 0 1
Hyperbolic < 0 > 0 > 1

Table 3.1: Conic section properties

Equations above explained and described are referred to all types of conic sections. The attention
will be now focused on the elliptical orbit and the hyperbolic one.
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Elliptical Orbit

Elliptical orbits are the common ones. Planets orbits in the Solar System, as well as the Earth
satellites, are ellipses. This conic section is represented in Figure 3.5 where are described its
geometrical parameters. The first observation relative to this conic section is that the major axis is

Figure 3.5: Elliptical orbit

the sum of the apoapsis and periapsis radius. This expression is described by (3.14). At the same
time, the distance between foci can be defined by (3.15), as the difference between ra and rp.

rp + ra = 2a (3.14)

ra − rp = 2c (3.15)
Thus, the eccentricity can be expressed by:

e =
ra − rp
ra + rp

(3.16)

Another important parameter that must be defined is the orbit period. This quantity depends only
on the size of the orbit defined by the semi-major axis. This expression is described by (3.17).

� = 2�

√

a3

�
(3.17)
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Hyperbolic Orbit

Hyperbolic orbits are important if interplanetary missions are treated. During the capture, escape
and fly-by phases within the planet sphere of influence, the spacecraft travels along this type of
orbit. Moreover, a hyperbolic orbit is necessary if a probe must have some speed left over after
it escapes from the planet’s gravitational field. The geometry of this type of conic section is
illustrated in Fig.3.6 where only the branch in which the motion is possible is represented.

Figure 3.6: Hyperbolic orbit

The eccentricity is the first parameter that can be defined. This parameter is expressed by (3.18),
where �∞, i.e. the complementary angle of the true anomaly of the hyperbolic asymptotes �, is
taking into account.

e = − 1
cos (180° − �) = −

1
cos

(

�∞
) (3.18)

Moreover, another expression for the eccentricity e can be defined. This expression is described
by (3.20) and considers the angle between the asymptotes � obtained by (3.19).

� = 180° − 2� (3.19)
e = 1

sin (�∕2)
(3.20)

The second parameter to define is the hyperbolic excess speed that represents the velocity the
body attains at as the distance tends to infinity. This parameter is important during the capture,
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escape and fly-by phases. It can be derived from the energy equation written for two points on
the hyperbolic escape trajectory. The first point is situated near the planet while the second one
is located to an infinite distance. Thus, the expression of the hyperbolic excess speed is given
by (3.21). Moreover, if the geometry of the hyperbola is known then another formulation can be
exploited. This one is described by (3.22).

V∞ =

√

2
(

V 2

2
−
�
r

)

(3.21)

V∞ =
√

−
�
a

(3.22)

3.3 Patched-Conic Approximation

The patched-conic approximation method allows for the two body-model of motion by patching
together different conic sections. It assumes that at any instance in time, the spacecraft motion
is solely influenced by the gravity of a single dominant body that defines the dominant region in
which this force is applied. This region, defined as Sphere Of Influence (SOI) varies from planet
to planet and depends on the mass ratio between the considered body and the Sun. The equation
that describes the SOI radius is the (3.23) while SOI data for planets of the Solar System are shown
in Table3.2.

rSOI = R
(mplanet
Msun

)2∕5

(3.23)
Thus, trajectories within the planet’s sphere of influence are two body problems with the planet

Planet Mass ratio (sun-planet) rSOI
Mercury 6.0236 ⋅ 106 1.12 ⋅ 105
Venus 4.0852 ⋅ 105 6.16 ⋅ 105
Earth 3.3295 ⋅ 105 9.25 ⋅ 105
Mars 3.0987 ⋅ 106 5.77 ⋅ 105
Jupiter 1.0474 ⋅ 103 5.46 ⋅ 107
Saturn 3.4985 ⋅ 103 5.18 ⋅ 107
Uranus 2.2869 ⋅ 104 8.68 ⋅ 107
Neptune 1.9314 ⋅ 104 1.51 ⋅ 107

Table 3.2: Planet’s SOI with respect to the Sun

as the primary attracting body, and trajectories outside can be treated as two body problems with
41



3 – Physical Model

the Sun as the primary attracting body. The entire Sample Return Mission, in according with the
patched-conic approximation, can be divided into different phases:

• Earth planetocentric phase
• Heliocentric phase
• Mars planetocentric phase

The list above takes into account only the first leg of the mission. The return leg is the same as
the first one but with reversed phases. In the Earth planetocentric phase, the launch is the most
important operation. Its goal is to escape from Earth gravitational force in order to perform an
interplanetary flight toward Mars. In the second phase, the spacecraft is under the Sun’s gravi-
tational force while in the third one the spacecraft entries inside the Mars Sphere Of Influence.
Here, capture and escape manoeuvres are performed under the Mars’s gravitational force. In this
chapter, the attention is focused on the Mars planetocentric phase where the spacecraft performs
the capture and the escape manoeuvres.

3.3.1 Planetocentric Phase

In according to the Mars Sample Return Mission, inside the Mars sphere of influence, the space-
craft will perform two types of manoeuvres:

• Parking orbit capture
• Parking orbit departure

During the first one, the spacecraft will leave the hyperbolic trajectory in order to insert itself into
an elliptical/circular orbit while during the second one, the spacecraft will move from this orbit
to a hyperbolic one. This phases are shown in Fig.3.7 and Fig.3.8.

3.3.2 Parking Orbit Capture

The first manoeuvre that the spacecraft must accomplish inside the Mars sphere of influence is
the capture one (Fig.3.7). Thus, from its hyperbolic entry trajectory, it must move on a specific
parking orbit. In order to perform this, a breakingmanoeuvremust be executed and then, a velocity
variation must be defined. The ΔV value can be calculated once the following data are known:

• Hyperbolic excess velocity or the energy level C3 for the capture conditions
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Figure 3.7: Capture manoeuvre - Mars SOI

Figure 3.8: Escape manoeuvre - Mars SOI

• Capture Parking orbit velocity
The first parameter, described by V∞, is the velocity calculated by the patched-conic approxima-
tion method that links the heliocentric and planetocentric phases. Its value is assumed known
thus, the energy of the hyperbola can be derived. This expression is described by (3.24).

�∞ =
V 2
∞
2
=
C3
2

(3.24)
Then, from the hyperbolic energy equation the expression of the hyperbolic velocity at a given
radius can be derived. It is given by (3.25).

Vℎyperbola =
√

C3 +
2�
r

(3.25)
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The second parameter that must be evaluated is the parking orbit velocity. From the energy equa-
tion, knowing its geometry parameters, this expression can be derived. Parking orbit velocity for
a given radius r is expressed by (3.26).

Vorbit =
√

2�
r
−
�
a

(3.26)

Thus, the velocity increment needed for the capture manoeuvre is given by (3.27) where Vorbit and
Vℎyperbola are vector.

ΔVcapture = Vorbit − Vℎyperbola (3.27)

3.3.3 Parking Orbit Departure

This subsection treats the escape manoeuvre (Fig.3.8) that will permit the spacecraft to transfer
itself from the parking orbit to a hyperbolic one and then to escape from planet’s sphere of influ-
ence. The first goal of this section is to relate the parking orbit conditions to the escape ones and
then to determinate the velocity increment needed to perform the manoeuvre. The ΔV value can
be calculated once the following data are known:

• Hyperbolic excess velocity or the energy level C3 for the escape conditions
• Escape Parking orbit velocity

The calculation process is the same as the previous one related to the capture manoeuvre but
the radius vector now considered is the escape one. Thus, equations described in the previous
sections can be used. The velocity increment is described by (3.28) as the difference between the
hyperbolic velocity and the parking orbit one.

ΔVescape = Vℎyperbola − Vorbit (3.28)

3.4 Hohmann Transfer

The Hohmann transfer is the most energy efficient two-impulse manoeuvre for transferring be-
tween two coplanar circular orbits sharing a common focus. The transfer orbit is an elliptical one,
tangent to both circles at its apse line where the periapsis and apoapsis are the radii of the inner
and outer circles. From Fig.3.9, representing the problem geometry can be quickly observed that
the semimajor axis of the transfer orbit is given by the following equation:

a =
r1 + r2
2

(3.29)
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Figure 3.9: Hohmann Transfer

Hence, the energy of the transfer orbit is greater than the energy of the inner orbit (a = r1), and
smaller than the energy of the outer orbit (a = r2). The velocities of the transfer orbit at periapsis
and apoapsis are given, from the conservation of energy equation, as:

Vp−to =

√

2
(

�
r1
−

�
r1 + r2

)

(3.30)

Va−to =

√

2
(

�
r2
−

�
r1 + r2

)

(3.31)

The velocities of the inner and outer orbits are:

Vinner =
√

�
r1

(3.32)

Vouter =
√

�
r2

(3.33)
hence, the required impulses at perigee and apogee are:

ΔV1 = Vp−to − Vinner =
√

�
r1

⎛

⎜

⎜

⎝

√

2r2
r1 + r2

− 1
⎞

⎟

⎟

⎠

(3.34)
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ΔV1 = Vouter − Va−to =
√

�
r2

⎛

⎜

⎜

⎝

1 −

√

2r1
r1 + r2

⎞

⎟

⎟

⎠

(3.35)

If the initial orbit has a radius larger than the final orbit, the same strategy can be followed but in
this case, negative impulses will be required, first at apoapsis and then at periapsis, to decelerate
the satellite. This manoeuvre can be performed from an elliptical orbit to another one, but in
this case, the velocity for the circular orbits must be replaced with the elliptical one. Ascent and
descent phases from and to the Mars surface can be modelized by this type of manoeuvre.

Descent Manoeuvre

A one-impulsive model is exploited for the descent phase, where the spacecraft travels from the
parking orbit to the Mars Surface. Thus, the velocity increment to perform the descent manoeuvre
is given by the following equation:

ΔVdescent = Vpo − Vto (3.36)

where Vpo is the velocity at the periapsis point of the stopover orbit while Vto is the velocity
of the Hohmann transfer orbit at its apoapsis point. In this case, the Hohmann transfer orbit is
characterized by a semimajor axis given by:

a =
rp−po + rMars

2
(3.37)

Ascent Manoeuvre

The ascent phase is treated as a sequence of three different manoeuvres. The Mars Ascent Vehicle
starts the ascent phase moving on a transfer orbit in order to reach a desired apex ℎ from the Mars
surface. Knowing the angle between these two positions (described by vectors), transfer orbit
parameters can be defined and then, the orbit energy and the velocities along this orbit may be
evaluated. In particular, the velocities at rMars and r1 = rMars + ℎ are given by:

V1 =
√

2� + 2
�

rMars
(3.38)

V2 =
√

2� + 2
�

rMars + ℎ
(3.39)

where the first velocity is also the first velocity increment that must be performedΔV1 = V1. From
the desired apex ℎ, the Mars Ascent vehicle will move on a Hohmann transfer orbit characterized
by a major axis equal to r1 + rp−po in order to reach the periapsis of the parking orbit. Knowing
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this parameter, the energy of the Hohmann transfer orbit and then, the two velocities needed for
the determination of the velocity increments can be defined. Then, the velocity increments for
these two manoeuvres are defined by:

|ΔV2| = |VH−ℎ| − |V2| (3.40)

|ΔV3| = |VH−p−po| − |Vp−po| (3.41)
where:

• VH−ℎ is the Hohmann transfer orbit velocity at the apex ℎ
• VH−p−po is the Hohmann transfer orbit velocity at the periapsis of the stopover orbit
• Vp−po is the parking orbit velocity at its periapsis point

Lastly, the total velocity increment for the entire ascent phase can be defined. This parameter is
given by:

|ΔVascent| = 1.1|ΔV1| + |ΔV2| + |ΔV3| (3.42)
where losses are taken into account on the first manoeuvre.
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Chapter 4

Parking Orbit Optimization Problem

4.1 Problem Definition

During the design process of a Mars Sample Return mission or a future manned one, the parking
orbit selection is one of the most crucial phases. The definition of this orbit involves a detailed
study of different factors that can directly influence the complexity, the total cost and the scientific
goals that must be achieved. The parking orbit selection can be defined as an optimization process,
where each phase must be taken into account for the global mission success and the minimization
of its cost. If this one is not properly performed, other mission phases can be affected by the wrong
stopover orbit choice and then, the total cost can increase. Moreover, the stopover orbit selection
must include a detailed trade-off study where different factors should be considered [19]. The
most important ones are:

• Science Mission constraints
• Landing site accessibility requirements
• Mission performance
• Perturbations

Each factor listed above have a significant function inside the mission design, but in this section,
the focus is on the mission performance. This parameter can be described by the ΔV budget that
represents the sum of all the velocity increment performed in a mission. This factor immediately
affects the total mission cost, because, a velocity variation implies a propellant consumption.
Moreover, the cost of a single manoeuvre can be expressed as a function of the burn position that
determines misalignment losses. In fact, from spaceflight mechanical laws can be derived that
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an injection manoeuvre in a wrong position causes a ΔV penalty with subsequent increase of the
propellant consumption. The task of this chapter is to describe an optimization algorithm that
aims to minimize the total velocity increments defining the best parking orbit orientation given
data for capture and escape phases. The baseline paper is "Optimum Parkin Orbit Orientation
for a Three-Dimensional Capture-Escape Mission" [20] that describes the problem through the
following statement: "To determine the orientation of the stopover orbit and the capture and
escape injections positions that will minimize the velocity increments".

4.2 Assumptions

In general, the entire problem may take place in the three-dimensional space where no-coplanar
conditions are defined. These conditions are the real one and, in this case, the entire problem is a
function of time. Thus, the orientation of the hyperbolas for capture and escape manoeuvres and
the parking orbit can change due to the perturbations resulting from the planet’s oblateness.

• Two-body mechanics is used for capture, stopover orbit and escape conditions. Thus, the
spacecraft is treated as a point mass.

• The orientation of approach/escape hyperbola and its energy level are defined by the arrival,
stay and departure time.

• The stopover orbit can be circular or elliptical and may have any orientation.

• Each manoeuvre is characterized by a single-impulsive burn. Thus the entire problem can
be studied as two-impulsive burn problem.

• Stay time in stopover orbit aroundMars is limited to a fraction of the planet’s orbital period.

4.3 Input & Output Definition

The optimization algorithm here treated is referred to three different Mars Sample return phases.
These are:

• Capture

• Stopover orbit selection

• Escape
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Each one occurs within the Mars sphere of influence then only the gravitational force of the Red
Planet is considered. Arrival and departure conditions are defined by the energy level C3 and the
direction of the hyperbolic excess speed. This last parameter is described by Right Ascension and
Declination angles. On the other hand, the stopover orbit is defined by its geometrical parameters,
i.e. eccentricity, semi-major axis and inclination. These parameters are summarized in Table 4.1.

Input Data Description UM
a Parking orbit semi-major axis km
e parking orbit eccentricity ∕
i Parking orbit inclination °
�c Right Ascension - Capture conditions °
�c Declination - Capture conditions °
C3c Energy level - Capture conditions km2∕s2
�e Right Ascension - Escape conditions °
�e Declination - Escape conditions °
C3e Energy level - Escape conditions km2∕s2

Table 4.1: Optimization problem input parameters

Thanks to input data, the optimization algorithm can generate results. These ones are related to
the minimization of the total velocity increment then they are referred to:

• manoeuvres ΔV

• manoeuvres positions

• Stopover orbit orientation

The first two terms are referred to capture and escape impulsive-burn and are defined by the an-
gular position respect to the ascending node and by the velocity increment (or decrement) that
permits to execute these manoeuvres. Moreover, the total ΔV is calculated by the sum of the
capture and escape contributions. Lastly, the stopover orbit orientation is defined by two orbital
parameters that are the Argument of Periapsis and the Right Ascension of the Ascending Node.
These two parameters and the twomanoeuvres positions are not properly defined as output because
the genetic algorithm takes these one as input data and during the calculation process provides
their optimization. The output and the optimized variables are summarized in Table 4.2.
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Optimized Variables Description UM
�c Injection position vector - Capture conditions °
�e Injection position vector - Escape conditions °
Ωc Right Ascension of the Ascending Node - Capture conditions °
!c Argument of Periapsis - Capture conditions °
Ωe Right Ascension of the Ascending Node - Escape conditions °
!e Argument of Periapsis - Escape conditions °

Output Data Description UM
ΔVc Total Velocity increment - Capture conditions km∕s
ΔVe Total Velocity increment - Escape conditions km∕s
ΔV Total Velocity increment km∕s

Table 4.2: Optimization problem output parameters and optimized variables

The assumptions before listed describe the problem as a function of time then, output data
can vary from capture to escape conditions. This happens in the case where perturbations due
to planet’s oblateness are not neglected. In the opposite case, the orientation of the stopover orbit
does not vary with time then the Right Ascension of the Ascending Node and the Argument of
Periapsis for capture and escape conditions coincide.

4.4 Reference Systems

The entire problem evolves into the Mars sphere of influence where two inertial reference systems
can be defined. These are:

• Mars equatorial reference frame

• Orbital reference frame

The Mars equatorial reference frame is defined by Î Ĵ K̂ axes. It is oriented such that Î axis points
towards the vernal equinox and the K̂ axis is normal to the equatorial plane Thus, Ĵ can be defined
as the axis which completes the counterclockwise system. The second one is referred to the orbital
plane where the spacecraft lies in the time between the manoeuvres and is defined by �̂�̂�̂ axes. It
has the �̂ axis in the stopover orbit plane along the line of ascending node, the �̂ axis along the an-
gular momentum vector of the orbit and then the �̂ axis completes the counterclockwise reference
system. These reference systems are shown in Fig.4.1 and Fig.4.2. In the last one the problem
geometry is also described and angles described in Table 4.1 and 4.2 are illustrated. Moreover,
from Fig.4.2 vector relations between inertial reference systems and other vector quantities may
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be observed. These relations are governed by the product of different rotations about the axes
of an inertial reference system. These rotations are defined by three different matrices where the
rotation angle is positive if the rotation is in the counter-clockwise direction when viewed by an
observer looking along the axis towards the origin. These matrices are described by the following
equations where a generic reference system characterized by 1,2,3 axes is considered:

R1 (�) =

⎡

⎢

⎢

⎢

⎣

1 0 0
0 cos � − sin �
0 sin � cos �

⎤

⎥

⎥

⎥

⎦

(4.1)

R2 (�) =

⎡

⎢

⎢

⎢

⎣

cos � 0 sin �
0 1 0

− sin � 0 cos �

⎤

⎥

⎥

⎥

⎦

(4.2)

R3 () =

⎡

⎢

⎢

⎢

⎣

cos  − sin  0
sin  cos 0
0 0 1

⎤

⎥

⎥

⎥

⎦

(4.3)

In next sections the following writing convention is adopted:
• [�]i indicates a positive rotation of � angle about the i axis.
• [−�]1 indicates the inverse of the rotation matrix [�]i about the i axis.

Figure 4.1: Inertial reference systems - Optimization problem
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Figure 4.2: Noncoplanar stopover orbit launch window geometry

4.5 Calculation Process

This calculation process treats the problem with the assumption that perturbations due to planet’s
oblateness are neglected. Thus, the orientation of the stopover orbit is assumed constant then it
does not vary with time. At the end of the algorithm discussion, a paragraph will be dedicated to
the perturbative problem where perturbations equations will be described. The attention is now
focused on the non-perturbative problem which can be divided into three different phases:

• Stopover orbit definition
• Capture and escape conditions determination
• Total velocity increment determination

4.5.1 Stopover Orbit Definition

This subsection concerns the determination of the following stopover orbit parameters for both
capture and escape conditions:

• Spacecraft injection position vector
• Spacecraft injection velocity vector

In this discussion, these vector quantities will be defined in reference to Î Ĵ K̂ system then rotation
matrix described by (4.1)-(4.3) will be used.
The first parameter to obtain is the vector along the line of the ascending node, defined by (4.4).
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It can be solely defined only when the orbit plane inclination is not zero, otherwise the orbit plane
and the equatorial one coincide and then this vector is not univocally defined. Moreover, in this
case, Ω and ! lie in the same plane.

Â = [Ωc]K [i]I

⎡

⎢

⎢

⎢

⎣

1
0
0

⎤

⎥

⎥

⎥

⎦

(4.4)

The position of the spacecraft along the parking orbit is defined by the True Anomaly, labelled by
�. This parameter, expressed by (4.5), is the angle measured in the motion direction between the
periapsis of the stopover orbit and the position vector. Thus, knowing this parameter and using
the polar equation of the elliptic orbit, the magnitude of the position vector can be defined. This
expression is given by (4.6).

� = 2� + �c − !c (4.5)

r =
a
(

1 − e2
)

1 + e cos �
(4.6)

The position vector can be defined only after the definition of its direction. Thus, its unit vector
must be established. This one is described by (4.7) as the result of a sequence of three different
rotations about K̂-Î-K̂ axes.

r̂ = [Ωc]K [i]I [�c]K

⎡

⎢

⎢

⎢

⎣

1
0
0

⎤

⎥

⎥

⎥

⎦

(4.7)

Then the position vector is univocally defined by the following equation:
r⃗ = rr̂ (4.8)

Spaceflight mechanics laws determine that the spacecraft velocity depends on its position so, it is
characterized by a different velocity value in each point of the orbit. Thus, knowing the position
vector, the velocity one can be derived. Its magnitude, given by (4.9), is obtained from the specif-
ical mechanical energy of the stopover orbit calculated through the knowledge of its geometrical
data. Instead, the velocity unit vector can be established only after the introduction of the flight
path angle. In this case, this parameter is defined as the angle between the spacecraft radial di-
rection and the velocity one. The angle  is represented in Fig.4.3 and it can be derived from the
specific angular momentum. This last parameter is described by (4.10) while the flight path angle
is given by (4.11).

V =
√

�
(2
r
− 1
a

)

(4.9)
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⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℎ⃗ = r⃗ × V⃗ ⇐⇒ ℎ = rV sin 

ℎ =
√

�a
(

1 − e2
)

(4.10)

 = sin−1
( ℎ
rV

)

(4.11)

Figure 4.3: Stopover orbit geometry and flight path angle definition

Lastly, before to start the velocity vector calculation, some logic considerations about the flight
path angle have to be done. This angle is derived from the inverse sine function, that is defined
within the range of [−�∕2, �∕2], and also is related to the true anomaly. Thus, in order to properly
execute the calculation process, the following logic considerations have to be inserted inside the
algorithm:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 ≤  ≤ �∕2 for 0 ≤
(

�c − !
)

≤ �

�∕2 <  < pi for � <
(

�c − !
)

< 2�

(4.12)
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All the parameters needed for the unit vector calculation are now defined so this parameter can be
determined. This expression is given by (4.13).

V̂ = [Ωc]K [i]I [�c]K []K

⎡

⎢

⎢

⎢

⎣

1
0
0

⎤

⎥

⎥

⎥

⎦

(4.13)

Moreover, the velocity vector is defined by the following equation:

V⃗ = V V̂ (4.14)

At this point, all the parameters for the stopover orbit are defined. Thus, the next step is to deter-
mine the capture and escape conditions along the hyperbolic trajectories.

4.5.2 Capture And Escape Conditions Determination

This section describes which is the process that must be followed in order to obtain the optimal
conditions for capture and escape manoeuvres in terms of hyperbolic parameters. Thus, given
capture and escape conditions, this section analyzes which are the possible hyperbolic trajectories
and which are the best points of these hyperbolas to perform capture and escape manoeuvres. This
points will be evaluated in terms of velocity then two parameters will be defined:

• Hyperbolic velocity for the capture manoeuvre

• Hyperbolic velocity for the escape manoeuvre

As written before, capture and escape conditions are assigned. They are defined by three param-
eters that permit to establish the hyperbolic excess velocity vector, labelled by V⃗∞. These are:

• Energy level C3
• Right ascension of hyperbolic asymptote �

• Declination of hyperbolic asymptote �

The first parameter is related to the V∞ magnitude while the second one and the third one permit to
define the V∞ unit vector. This unit vector for both manoeuvres, also representing the direction of
the hyperbolic asymptote, is the first parameter to define. It is characterized by three components
along the axes of the equatorial reference system and is obtained by a sequence of two rotations
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around Î and Ĵ axes. This expression is given by (4.15) while the three components of the unit
vector are described by (4.16).

Ŝ = [�]I [−�]J

⎡

⎢

⎢

⎢

⎣

1
0
0

⎤

⎥

⎥

⎥

⎦

(4.15)

Ŝ =

⎡

⎢

⎢

⎢

⎣

cos � cos �
sin � cos �
sin �

⎤

⎥

⎥

⎥

⎦

(4.16)

In order to give a clear problem explanation, capture and escape manoeuvres are now treated
separately.

Capture conditions

As written before when the spacecraft goes inside the Mars sphere of influence its trajectory is
a hyperbola that is characterized by a hyperbolic asymptote defined by (4.16). When the space-
craft performs the capture burn, its trajectory changes and it moves into an elliptical or circular
orbit. In this situation, the position vector is fixed and then two angles, between this vector and
the hyperbolic asymptote, are determined. These ones, labelled by �1 and �2 are defined by the
following equations:

�1 = cos−1
(

Ŝ ⋅ r̂
|Ŝ||r̂|

)

(4.17)

�2 = 2� − cos−1
(

Ŝ ⋅ r̂
|Ŝ||r̂|

)

(4.18)

These angles are calculated using the convention that � is positive when it is measured in the
direction of motion along the hyperbola from Ŝ to r̂. Moreover, these two solutions involve that
for each outgoing or incoming asymptote and a fixed position vector, two hyperbolas with different
eccentricity, which satisfy the asymptote direction and the energy level, can be constructed. These
ones, using the convention above explained, are characterized by two types of motion defined on
the basis of the direction of the hyperbolic angular momentum Ŵℎ. In particular:

• Motion is called direct when Ŵℎ ⋅ K̂ > 0

• Motion is called retrograde when Ŵℎ ⋅ K̂ < 0
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The hyperbolic angular momentum direction can be evaluated defining its unit vector that also
establishes the orientation of the plane of the hyperbola. In this case, using the convention that
a positive angle is measured in the counterclockwise direction, this parameter can be derived by
(4.19). The direction of the angular momentum is then function of � angle that defines, on the
basis of its value, the sign of the components of Ŵℎ.

Ŵℎ =

(

Ŝ × r̂
)

sin �
(4.19)

The two hyperbolas, derived by the definition of two � angles, can be characterized by any orien-
tations in the three-dimensional space. Thus, in order to define this orientation, the true anomaly
of the hyperbolic asymptote and then the hyperbolic periapsis vector, for both hyperbolas, must
be defined. The �A calculation process is based on the following step:

• Determination of the �A tangent

• Calculation of the hyperbola eccentricity

• determination True anomaly of the hyperbolic asymptote

The first one is given by (4.21) where � is established by the following equation as a function of
the position of the spacecraft and the energy level of the hyperbola:

� =
C3r
2�

(4.20)

tan�A = � sin � +
√

(1 + �)2 − (1 + � cos �)2 (4.21)

The second step permits to define the eccentricity of the hyperbola given by the � value. This
expression is a function of the true anomaly of the hyperbolic asymptote above defined, and it can
be defined by (4.22).

eℎ =
√

tan2 �A + 1 (4.22)

Lastly, the third step permits to define the �A angle. The equation here used is derived from the
hyperbola geometry and is a function of its eccentricity. This expression is the following one:

�A = cos−1
(

− 1
eℎ

)

(4.23)
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A further verification of the value obtained from (4.23) can be then easily executed reversing the
equation (4.21). In this case, some logic considerations must be taken into account because the
inverse tangent function is defined between−�∕2 and pi∕2 but � values must be included between
0 and 2�.
Knowing the position of the periapsis of the hyperbola (determined by �A) and the angle between
the asymptote and the injection position vector, the true anomaly of the spacecraft on the hyperbola
is univocally defined. This angle, labelled by �ℎyp, is the equivalent of the true anomaly of the
stopover orbit and then is defined as the angle between the periapsis and the injection position
vector. The relation of this angle with �A and � is the following one:

�ℎyp = �A − � (4.24)

The problem geometry, in reference to the angles above defined, is illustrated in Figure 4.4 where
for a better view a coplanar problem is considered.

Figure 4.4: Geometry for two possible solutions for the capture manoeuvre

Once the position of the spacecraft on the hyperbola is determined, its velocity vector can be
defined. This expression is given by the following equation:

V⃗ℎ = VℎV̂ℎ (4.25)
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The velocity magnitude is defined as in the previous case where the specific energy equation was
taken into account. This equation is given by (4.26) as a function of two different points on the
hyperbola. The first one is the manoeuvre point while the second one is an infinite one.

Vℎ =
√

2�
r
+ C3 (4.26)

The velocity unit vector is defined by (4.27) where it can be noted the introduction of the flight
path angle.

V̂ℎ = r̂ cos ℎ +
(

Ŵℎ × r̂
)

sin ℎ (4.27)
As for the section above, but in this case for the hyperbolic trajectory, this angle can be evaluated
through the definition of the angular momentum. The determination process the flight path angle
is the following one:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ℎ⃗ℎ = r⃗ × V⃗ℎ = rVℎ sin ℎŴℎ

ℎℎ = �

√

e2ℎ − 1
C3

(4.28)

ℎ = sin
−1

(

ℎℎ
rVℎ

)

(4.29)
The introduction of the flight path angle permits to add an additional logic consideration. In
fact, observing equation (4.24), it can be easily observed that the injection manoeuvre can be
accomplished on either the incoming or the outcoming leg of the hyperbola. Therefore, the flight
path angle ℎ is dependent upon the angle � and this relation can be traduced by means of the
following logic consideration:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 ≤ ℎ ≤ �∕2 for 0 ≤ � ≤ �

�∕2 < ℎ < � for � < � < 2�

(4.30)

Lastly, an additional verification concerning the position vector can be done. The entire calcu-
lation process is correct only if the hyperbola position vector coincides to the stopover orbit one
when the capture manoeuvre is performed. Thus, the result of the equation (4.6) must coincide
with the result of the following equation:

rℎ =
aℎ

(

e2ℎ − 1
)

1 + eℎ cos �ℎyp
(4.31)
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where aℎ is the semi-major axis of the hyperbola that can be defined by (4.32).

aℎ =
�
C3

(4.32)

Escape conditions

The escape manoeuvre consists of an impulsive burn that permits the spacecraft to leave the park-
ing orbit and then to move on a hyperbolic trajectory leaving the Mars sphere of influence. Escape
conditions are assigned, so the calculation process must define which is the best point of the orbit
to execute the impulsive-burn in terms of position and velocity. In this case, some conventions
change with respect to the previous one. As before, when the position vector is fixed � angles can
be determinate. They are expressed by the following equations, with the assumption that they are
positive when measured in the direction of motion along the escape hyperbola from r̂ to Ŝ:

�1 = cos−1
(

r̂ ⋅ ŝ
|r̂||Ŝ|

)

(4.33)

�2 = 2� − cos−1
(

r̂ ⋅ Ŝ
|r̂||Ŝ|

)

(4.34)
These two solutions involve the presence of two hyperbolas characterized by different eccentricity
values. Moreover, from the convention above defined, can be deducted that the motion of these
two hyperbolas is different and then, if the first one is direct, the second one is retrograde. Thus,
also the angular momentum change. This constant of motion, for escape manoeuvre, is defined
by (4.34).

Ŵℎ =

(

r̂ × Ŝ
)

sin �
(4.35)

The determination of the true anomaly of the injection position vector �ℎyp and the orientation
angle of the asymptote �A are all related and depend upon the orientation of the plane of the
hyperbola. Thus, knowing the unit vector of the angular momentum, these two angles can be
determined. The process is the same as the one described in the above section, but the equation
that permits to calculate tan�A is different. This process is described by (4.36)-(4.40) while the
relationships between angles are represented in Fig.4.5.

� =
C3r
2�

(4.36)

tan�A = −� sin � −
√

(1 + �)2 − (1 + � cos �)2 (4.37)
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eℎ =
√

tan2 �A + 1 (4.38)

�A = cos−1
(

− 1
eℎ

)

(4.39)

�ℎyp = �A − � (4.40)
At this point, in order to properly define the hyperbolic velocity vector for the escape manoeuvre,
the flight path angle ℎmust be defined. This parameter can be evaluated using equations described
in the section above. These equations, defined by (4.28)-(4.29) must be associated to the same
logic considerations about and ℎ. Moreover, the hyperbolic velocity magnitude can be defined by
(4.26), through the same considerations about the specific orbital energy of the capture hyperbola.
Lastly, the unit vector of the hyperbolic velocity vector can be determined by (4.27) and then the
hyperbolic escape velocity can be evaluated by the product of its magnitude and its unit vector.

Figure 4.5: Geometry for two possible solutions for the escape manoeuvre
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4.5.3 Total Velocity Increments Determination

This section concerning the total velocity increment determination defined, from the algorithm
statement, as the parameter to minimize. The goal of this section is to define the relationships that
permit to derive the total cost of the manoeuvres given:

• Stopover orbit velocity at capture position
• Hyperbolic velocity at capture position
• Stopover orbit velocity at escape position
• Hyperbolic velocity at escape position

Remembering that the entire problem is treated as composed of two impulsive-burn then the total
cost can be defined by the sum of two contributions where the first one is relative to the capture
manoeuvre while the second one is relative to the escape one. Thus, this parameters can be defined
by the following equation:

ΔVtot = ΔVc + ΔVe (4.41)
The next paragraphs will treat the determination of the cost for the capture and escapemanoeuvres.

Capture ΔV Determination

The capture manoeuvre is defined as a breaking one, where the spacecraft decreases its velocity
in order to move on the stopover orbit. The velocity variation can be defined by the following
equation:

ΔVc =
√

V 2
ℎc + V

2
c − 2VcVℎc

(

V̂c ⋅ ̂Vℎc
) (4.42)

Escape ΔV Determination

The second manoeuvre executed by the spacecraft is the escape one that permits to move from the
stopover orbit to a hyperbolic trajectory and then to leave the Mars Sphere of Influence. In this
case, a positive velocity variation is performed so this manoeuvre is defined as an accelerating
one. The velocity increment is then defined by the following equation:

ΔVe =
√

V 2
ℎe + V

2
e − 2VeVℎe

(

V̂e ⋅ ̂Vℎe
) (4.43)
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4.6 Perturbations Determination

This section treats the optimization problem in the case which perturbations due to the planet’s
oblateness are not neglected, then the orientation of the stopover orbit changes in the time between
the capture and the escape manoeuvres. Thus, this variation is a function of the stopover orbit time
that causes the variation of the following orbital parameters:

• Argument of Periapsis !
• Right ascension of the ascending node Ω

The laws governing the variation of these two parameters are the following ones:

Ωe = Ωc + Ω̇
(

JDe − JDc
) (4.44)

!e = !c + !̇
(

JDe − JDc
) (4.45)

where the time is defined by the Julian calendar while the subscripts c and e are referred to capture
and escape condition respectively. Moreover, derivatives on time of the Right Ascension of the
Ascending node and the Argument of Periapsis can be determined by the following equations:

Ω̇ = −� cos i

[

3
(

K2
p2

)

+ 10
(

K2
p4

)

(

1 + 1.5e2
) (

1 − 1.75 sin2 i
)

]

(4.46)

!̇ =�

[

3
(

K2
p2

)

(

1 − 1.5 sin2 i
)

+ 10
(

K4
p4

)

(

1 + 0.75e2
)

(

1 − 5 sin2 i + 4.375 sin4 i
)

]

− Ω̇ cos i

(4.47)

where:
p = a

(

1 − e2
) (4.48)

� =
√

�
a3

(4.49)

K2 =
703656
�2

(4.50)

K4 =
225170
�2

(4.51)
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From the equations above reported some considerations can be done:
• For short stay times Ω̇Δt ≃ 0 and !̇Δt ≃ 0. Thus, RAAN and LAAN do not vary with

time. In this case, perturbations caused by planet’s oblateness can be neglected.
• The Argument of periapsis derivative over time is a function of Ω̇. Thus, a Ω variation

involves a ! variation if the inclination of stopover orbit is not �∕2 or �∕2 + k�.
• Perturbations are not always the cause for a ΔV increment. In certain conditions, they can

permit to decrease the total velocity increment and the to save propellant. These conditions
are not here treated but they can be a future case of study.

4.7 Algorithm Implementation

The optimization problem above defined and explained can be solved by using the optimization
toolbox of the MATLAB environment. This toolbox provides different solver to optimize the
variables of a certain objective function and then to minimize the same one. In this case, genetic
algorithm solver is used to optimize the total velocity increment optimizing the following four
variables:

• Argument of Periapsis of the stopover orbit !
• Right Ascension of the Ascending Node of the stopover orbit Ω
• Capture injection �c
• Escape injection position �e

These one are the input variables of the genetic algorithm while the objective function is defined
by a MATLAB function containing the code of the algorithm above explained. This one has the
following syntax:

function [DeltaV]=ParkingOrbit(x)

where:
• DeltaV is the parameter to optimize
• ParkingOrbit is the name of the objective function
• x is the vector which contains the problem variables
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Lastly, the solver ga can be invoked in MATLAB environment using the following syntax:
[OptPar,DeltaV]=ga(@ParkingOrbit,4,[],[],[],[],LB,UB,[],options)

where:
• optPar is the solution vector which contains the best values that ga locates during its iter-

ations
• DeltaV is the objective function value at the solution optPar
• 4 is the variables number
• LB is the lower bound of the variables. In this case, it is equal to [0 0 0 0]
• UB is the upper bound of the variables. In this case, it is equal to [2� 2� 2� 2� ]
• options contains the optimization parameters different from default ones.

In order to give a clear overview of the genetic algorithm implemented via MATLAB the Fig.4.6
is here reported.

Figure 4.6: Description of the algorithm implemented via MATLAB
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Chapter 5

Results

This chapter aims to study and observe the results obtained by the optimization algorithm con-
sidering different study cases. The first one will be relative to a coplanar problem, where the
solution is well known. Here, in order to test the efficiency of the algorithm, the computational
solution will be compared to the analytical one. Subsequently, other cases characterized by dif-
ferent starting conditions will be treated. Non-coplanar manoeuvres will be considered and then,
an application for a future Mars Return Mission will be studied. Lastly, the study of the parking
orbit geometry variation will be treated and two different cases will be considered. The first one
will consider only the capture and escape manoeuvres while the second one will treat even the
descent and ascent phases.

5.1 Direct Coplanar problem

The optimization algorithm, treated in the previous chapter, is here used to solve a test problem
where the solution is well-known. Considering a coplanar and symmetrical problem, the algo-
rithm accuracy and efficiency will be evaluated in comparison with the analytical solution.

5.1.1 Test problem definition

The problem here described aims to minimize the total velocity increment considering the follow-
ing assumptions:

• Coplanar conditions for both capture and escape manoeuvres
• Elliptical stopover orbit
• Same energy level for capture and escape conditions
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• Symmetrical Right Ascension values for capture and escape conditions
• Zero declination values for capture and escape conditions
• Non-perturbative problem
• Periapsis of the elliptic orbit selected to allow for a solution where it is coincident with the

hyperbola periapses
The assumptions listed above make it possible to treat the problem as a bi-dimensional one evolv-
ing on the Î Ĵ plane (Fig.5.1). In according to spaceflight mechanics laws, with these conditions,
both manoeuvres are executed at the periapsis of the hyperbolas that coincide to the stopover orbit
one. These conditions are desirable but, in general, these coplanar relationships are not always
satisfied due to the dynamic nature of the relative geometry of the hyperbolic asymptotes and the
parking orbit. In fact, if perturbations due to planet’s oblateness are not neglected, this relative
geometry changes and thus, the coplanar problem cannot be considered. The assumptions listed
above permit to define the input data for the problem. They are shown in Table 5.1 and are referred
to the case where the true anomaly of the hyperbolic asymptote (�∞), for both capture and escape
manoeuvres, is assumed to be equal to 45°.

Input Data Description value UM
a Parking orbit semi-major axis 20000 km
e Parking orbit eccentricity 0.8 ∕
i Parking orbit inclination 0 °
�c Right Ascension - Capture conditions 45 °
�c Declination - Capture conditions 0 °
C3c Energy level - Capture conditions 4.435 km2∕s2
�e Right Ascension - Escape conditions −45 °
�e Declination - Escape conditions 0 °
C3e Energy level - Escape conditions 4.435 km2∕s2

Table 5.1: Input data - Direct Coplanar problem
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Figure 5.1: Coplanar problem geometry

5.1.2 Analytical solution

As written before, the problem defined above is characterized by a well-known solution where
both capture and escape burns are performed at the hyperbolas periapsis that coincides to the
stopover orbit one. In this case, the stopover orbit orientation is fixed by the following equation:

! + Ω = 180° (5.1)
This solution, in terms of total velocity increment, may also be simply evaluated analytically by
the following calculation process:

1. Determination of the stopover periapsis speed
Knowing the geometry data of the stopover orbit and then the periapsis distance, the peri-
apsis speed can be easily calculated by the energy equation. This velocity is given by the
following equation:

Vorbit =

√

2�
rp
−
�
a

(5.2)

2. Determination of the speed of the hyperbola
The manoeuvres are performed to the periapsis of the hyperbolas then the spacecraft speed
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before the capture/escape burn can be evaluated matching the energy equation considering
the periapsis point and an infinite distance one (where the speed is known from C3). The
desired velocity equation, relative to the periapsis point of the hyperbola, is the following
one:

Vℎyp =

√

2�
rp
+ V 2

∞ (5.3)

3. Determination of the manoeuvre velocity increment
The velocity increment can be evaluated as the difference between the hyperbolic velocity
and the stopover orbit velocity where both are evaluated at the periapsis of the respective
orbits. This equation for capture and escape maneuvers is given by:

ΔVcapt = Vorbit − Vℎyp−capt (5.4)

ΔVesc = Vℎyp−esc − Vorbit (5.5)

4. Determination of the total velocity increment
The total velocity increment can be calculated by the sum of the capture and escape con-
tributions. Thus, the calculation process described above have to be followed for both ma-
noeuvres. The equation of the total velocity increments is given by:

ΔVtot = |ΔVcapt| − |ΔVesc| (5.6)

The calculation process here explained was used in order to determinate the total velocity incre-
ment considering the input data reported in Table 5.1. The results obtained are shown in Table
5.2, where, through its observation, some considerations can be done. These are:

• The capture and the escape velocity increments are the same due to the symmetrical condi-
tions of the problem.

• The velocity increment for the capture manoeuvre is negative. Thus, this manoeuvre is de-
fined as a breaking one where the spacecraft decreases its velocity to move into the parking
orbit.

• The velocity increment for the escape manoeuvre is positive then, the spacecraft performs
an accelerating manoeuvre to move into the escape hyperbola.
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Results Value UM
rp 4000 km
Vorbit 4.3901 km∕s
Vℎypcapt 5.0842 km∕s
ΔVcapt −0.6941 km∕s
Vℎypesc 5.0842 km∕s
ΔVesc 0.6941 km∕s
ΔVtot 1.3882 km∕s

Table 5.2: Results of the analytical study.

5.1.3 Computational solution

This subsection concerns the study of the coplanar and symmetrical problem by means of the
optimization algorithm implemented in MATLAB. This algorithm exploits the ga solver of the
MATLAB optimization toolbox to determinate the best orientation of the parking orbit and the
position of the capture and escape manoeuvres minimizing the total velocity increment. Thus, the
optimization process concerns four variables:

• Right Ascension of the Ascending Node (Ω)
• Argument of Periapsis (!)
• Angle between the ascending node and the capture injection point in stopover orbit (�c)
• Angle between the ascending node and the escape injection point in stopover orbit (�c)

Moreover, in order to improve the efficiency and the accuracy of the calculation process the folling
optimization options were set:

• Selection process: Tournament
• Number of Elite individuals: 4
• Crossover fraction: 0.3
• Initial population range: [0,2�]
• Search space: [0,2�] for each variable

Thanks to these options and input data (Table 5.1), the algorithm has been generated the results re-
ported in Table 5.3. These results are referred to the two possible solutions in terms of hyperbolic
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trajectories calculated from the hypotesis that, for a fixed position vector and for a specific hyper-
bolic asymptote, two hyperbolas, characterized by different types of motion, can be constructed.
The first solution, which is also the minimum one, is characterized by a direct motion that is the
same of the stopover orbit one (Fig.5.3 and Fig.5.4), while the second one (Fig.5.5 and Fig.5.6)
evolves in a retrograde motion and then, is more expensive in terms of propellant consumption.
This confirms that the optimum injection manoeuvre occurs when the direction of motion on the
hyperbola is the same of the stopover orbit one. In the first solution the velocity increment corre-
sponds to the analytical one and the stopover orbit orientation coincide with the one assumed for
the same case (the sum of the Right Ascension of the Ascending Node and Argument of Periapsis
is a multiple of 180°). Moreover, the injection position vectors for capture and escape manoeuvres
coincide to the periapsis vector. Thus, the calculation process can be considered correct and then
the algorithm too. Lastly, an observation relative to the calculation speed and then the efficiency
of the algorithm can be done. The algorithm speed can be evaluated observing the Fig.5.2 where
the fitness function is plotted respect to the generations number. The calculation process quickly
converged in about 70 generations when the best solution was founded and then, the mean fitness
value and the best one coincided. This number is lower than the maximum one, i.e. 400, then the
convergence of the algorithm was really fast.

Results Solution 1 Solution 2 UM
ΔVcapt 0.6941 8.7571 km∕s
ΔVesc 0.6941 8.7571 km∕s
ΔVtot 1.3882 17.5142 km∕s
! 332.17 332.17 °
Ω 207.83 207.83 °
�c 332.12 332.12 °
�e 332.14 332.14 °
ec 1.4142 1.2247 /
ee 1.4142 1.2247 /
⃗Vorbit−c [0 , −4.3901 , 0] [0 , −4.3901 , 0] km∕s
⃗Vorbit−e [0 , −4.3901 , 0] [0 , −4.3901 , 0] km∕s
⃗Vℎyp−c [0 , −5.0842 , 0] [−3.5951 , 3.5951, 0] km∕s
⃗Vℎyp−e [0 , −5.0842 , 0] [3.5951 , 3.5951 , 0] km∕s
̂Wℎ−c [0 , 0 , 1] [0 , 0 , −1] /
̂Wℎ−e [0 , 0 , 1] [0 , 0 , −1] /

Table 5.3: Results for the direct coplanar problem

74



5 – Results

Figure 5.2: Fitness value-Generation plot for the coplanar and symmetrical problem

Figure 5.3: Direct and coplanar problem: First Solution
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Figure 5.4: Direct and coplanar problem: First Solution - Zoom

Figure 5.5: Direct and coplanar problem: Second Solution
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Figure 5.6: Direct and coplanar problem: Second Solution - Zoom

5.2 Retrograde Coplanar problem

This section aims to verify the algorithm accuracy when retrograde conditions are assigned. The
problem is always considered as coplanar so, the parking orbit inclination is supposed to be equal
to 180°. Moreover, in order to make a comparison to the direct one, starting conditions for capture
and escape hyperbolas are exchanged. Input data for this problem are summarized in Table 5.4.

Input Data Value UM
a 20000 km
e 0.8 ∕
i 180 °
�c −45 °
�c 0 °
C3c 4.435 km2∕s2
�e 45 °
�e 0 °
C3e 4.435 km2∕s2

Table 5.4: Input data - Retrograde Coplanar problem
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The results, obtained exploiting the same optimization options of the previous problem, are shown
in Table 5.5. Moreover, the problem geometry plot, generated by MATLAB, is here reported.
Fig.5.7 and Fig.5.8 show the first solution while Fig.5.9 and Fig.5.10 the second one.
The total velocity increment is equal to the one referred to the direct problem but, in this case,
the entire motion is retrograde (Ŵℎz < 0). Thus, the difference is the type of motion and then
the general direction of th velocities. In fact, if Table 5.3 and Table 5.5 are compared, it can be
easily observed as the velocities relative to the stopover orbit and capture/escape hyperbolas are
characterized by opposite direction. Moreover, as in the direct problem, the optimum injection
manoeuvres occur when the direction of the motion in the hyperbola is in the same as the motion
in the stopover orbit. Lastly, it can be observed as the orientation of the stopover orbit coincides
with the direct case one, in fact, the sum of the Right Ascension of the Ascending node and the
Argument of Periapsis is a multiple of 180°. These results demonstrate as the algorithm can
considered correct even for retrograde conditions.

Results Solution 1 Solution 2 UM
ΔVcapt 0.6941 8.7571 km∕s
ΔVesc 0.6941 8.7571 km∕s
ΔVtot 1.3882 17.5142 km∕s
! 355.49 355.49 °
Ω 207.83 207.83 °
�c 355.5 355.5 °
�e 355.5 355.5 °
ec 1.4142 1.2247 /
ee 1.4142 1.2247 /
⃗Vorbit−c [0 , 4.3901 , 0] [0 , 4.3901 , 0] km∕s
⃗Vorbit−e [0 , 4.3901 , 0] [0 , 4.3901 , 0] km∕s
⃗Vℎyp−c [0 , 5.0842 , 0] [−3.5951 , −3.5951, 0] km∕s
⃗Vℎyp−e [0 , 5.0842 , 0] [3.5951 , −3.5951 , 0] km∕s
̂Wℎ−c [0 , 0 , −1] [0 , 0 , 1] /
̂Wℎ−e [0 , 0 , −1] [0 , 0 , 1] /

Table 5.5: Results for the retrograde coplanar problem
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Figure 5.7: Retrograde and coplanar problem: First Solution

Figure 5.8: Retrograde and coplanar problem: First Solution - Zoom
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Figure 5.9: Retrograde and coplanar problem: Second Solution

Figure 5.10: Retrograde and coplanar problem: Second Solution - Zoom
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5.3 Right Ascension Variation

This section treats the coplanar, symmetrical problemwhen the Right Ascension of the hyperbolic
asymptotes vary while the energy level is fixed. Thus, the optimization algorithm results will be
studied for the following conditions:

• Identical rotation for capture and escape hyperbolic asymptotes
• Not identical rotation for capture and escape hyperbolic asymptotes

5.3.1 Identical rotation for capture and escape hyperbolic asymptotes

This paragraph treats the coplanar and symmetrical problem when the Right Ascension of capture
and escape hyperbolic asymptotes varies of the same value. Thus, the angle among them is fixed.
Considering the input data shown in Table 5.6, two study cases characterized by different right
ascension values will be analyzed. These are:

1. �c = 90° - �e = 0°
2. �c = 270° - �e = 180°

Input Data value UM
a 20000 km
e 0.8 ∕
i 0 °
�c 0 °
C3c 4.435 km2∕s2
�e 0 °
C3e 4.435 km2∕s2

Table 5.6: Input data - Right Ascension variation
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1. �c = 90° - �e = 0°
This first study case aims to analyze the coplanar and symmetrical problem with a positive rota-
tion of 45°. The optimized variables and the output data, generated by the ga solver, are shown
in Table 5.7 while the problem geometry obtained by MATLAB is illustrated in Fig.5.11. From
Table 5.7, it can be observed that the total velocity increment is equal to the one referred to the
case where � = 45° and � = −45° because of the same starting conditions in terms of energy level
and the angle betwen the capture and escape asymptotes. This angle permits to generate hyper-
bolas that satisfy the energy level imposed as input datum where capture and escape manoeuvres
are performed to their periapsis. Moreover, it can be noted as the velocities of capture/escape
hyperbolas and stopover orbit are characterized by the same direction. This condition permits to
have the minimum velocity increment.

Results Value UM
ΔVcapt 0.6941 km∕s
ΔVesc 0.6941 km∕s
ΔVtot 1.3882 km∕s
! 317.27 °
Ω 87.73 °
�c 317.27 °
�e 317.27 °
ec 1.4142 /
ee 1.4142 /
⃗Vorbit−c [3.104 , −3.104 , 0] km∕s
⃗Vorbit−e [3.104 , −3.104 , 0] km∕s
⃗Vℎyp−c [3.595 , −3.595 , 0] km∕s
⃗Vℎyp−e [3.595 , −3.595 , 0] km∕s
̂Wℎ−c [0 , 0 , 1] /
̂Wℎ−e [0 , 0 , 1] /

Table 5.7: Results for �c = 90° - �e = 0°
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Figure 5.11: Problem geometry for �c = 90° - �e = 0°

2. �c = 270° - �e = 180°
This second case aims to study the behaviour of the genetic algorithm with a 315° rotation of the
coplanar and symmetrical problem analyzed above. Optimized variables and output data for this
study case are shown in Table 5.8 while the problem geometry is illustrated in Fig 5.12. The same
global considerations did before for the study case 1 can be done here, where the orientation of
the stopover orbit is symmetric to the bisector of the first and third quadrant.
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Results Value UM
ΔVcapt 0.6941 km∕s
ΔVesc 0.6941 km∕s
ΔVtot 1.3882 km∕s
! 185.61 °
Ω 39.39 °
�c 185.62 °
�e 185.62 °
ec 1.4142 /
ee 1.4142 /
⃗Vorbit−c [−3.104 , 3.104 , 0] km∕s
⃗Vorbit−e [−3.104 , 3.104 , 0] km∕s
⃗Vℎyp−c [−3.595 , 3.595 , 0] km∕s
⃗Vℎyp−e [−3.595 , 3.595 , 0] km∕s
̂Wℎ−c [0 , 0 , 1] /
̂Wℎ−e [0 , 0 , 1] /

Table 5.8: Results for �c = 270° - �e = 180°

Figure 5.12: Problem geometry for �c = 270° - �e = 180°
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5.3.2 Not identical rotation for capture and escape hyperbolic asymptotes

This section treats the coplanar problem from another point of view. The energy level is fixed, but
the Right Ascension value is chosen to do not permit to have the capture and escape burns to the
periapsis of the stopover orbit. Thus, the rotation for the capture and escape asymptotes is not the
same. The chosen values for the Right Ascension are the following ones:

• �c = 135°

• �e = −45°

In this case, the entire problem does not evolve as in the previous one, then, the solution is not
well-known. The genetic algorithm, taking as input data the ones shown in Table 5.9, permits to
generate results summarized in Table 5.10while the problem geometry is illustrated in Fig.5.13
and Fig.5.14.

Input Data value UM
a 20000 km
e 0.8 ∕
i 0 °
�c 135 °
�c 0 °
C3c 4.435 km2∕s2
�e −45 °
�e 0 °
C3e 4.435 km2∕s2

Table 5.9: Input data - �c = 135° - �e = −45°

From Table 5.10, it can be observed that, as written before, capture and escape manoeuvres are
not performed at the periapsis point obtaining a higher total velocity increment. Moreover, the
capture manoeuvre is performed at a stopover orbit point different from the one relative to the
escape manoeuvre. Thus, this permits to obtain different velocity increments relative to the sin-
gle manoeuvres. The angular momentum of the hyperbolas permits to define the type of motion
that, in this case, is a direct one and it the same as the stopover orbit. This fact confirms that the
optimum injection manoeuvre occurs when the direction of the motion in the hyperbola is in the
same as the motion in the stopover orbit.
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Results Value UM
ΔVcapt 0.8642 km∕s
ΔVesc 1.1553 km∕s
ΔVtot 2.0195 km∕s
! 164.02 °
Ω 77.07 °
�c 237.86 °
�e 52.41 °
ec 1.4901 /
ee 1.7224 /
⃗Vorbit−c [3.434 , 0.779 , 0] km∕s
⃗Vorbit−e [−0.174 , −2.494 , 0] km∕s
⃗Vℎyp−c [4.187 , 1.205 , 0] km∕s
⃗Vℎyp−e [−0.732 , −3.506 , 0] km∕s
̂Wℎ−c [0 , 0 , 1] /
̂Wℎ−e [0 , 0 , 1] /

Table 5.10: Results - �c = 135° - �e = −45°

Figure 5.13: Problem geometry for �c = 135° - �e = −45°
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Figure 5.14: Problem geometry for �c = 135° - �e = −45° - Zoom
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5.4 Non-coplanar problem

This section aims to analyze a three-dimensional problem where non-coplanar conditions are as-
signed. This type of problem is more realistic than the coplanar one where the entire motion lies
on the same plane. The optimum position for capture and escape manoeuvres not necessarily
occurs at the periapsis of the stopover orbit so a ΔV penalty results due to the path angle and
the plane change. The case here treated takes as input data those relative to a past Mars mission
designed to be performed in 1974. They are shown in Table 5.11, where the right ascension and
declination values are defined as the the direction of the hyperbolic excess velocity that coincides
with the direction of the hyperbolic asymptotes. The genetic algorithm, taking these input data,
has been generated the results reported in Table 5.12. Moreover, thanks to these, the problem
geometry was plotted and is here reported in Fig.5.15 and Fig.5.16.

Input Data value UM
a 20000 km
e 0.8   /
i 170 °
�c 138 °
�c 5.9 °
C3c 20.6 km2∕s2
�e 31.6 °
�e 8.9 °
C3e 57.6 km2∕s2

Table 5.11: Input data - Non-coplanar problem

Observing the results obtained from the optimization algorithm some considerations may be done.
The capture and escape manoeuvres are performed on hyperbolas characterized by an inclination
value similar to the stopover orbit one so, the entire motion is retrograde. In this case, both ma-
noeuvres are performedwhen the general direction of the stopover orbit is the same as the direction
of the hyperbolas minimizing the total velocity increment. Both maneuvres are performed not so
far from the periapsis point permitting to have a higher stopover orbit velocities reducing the total
manoeuvre cost. Lastly, it can be observed as the velocity increment of the capture manoeuvre is
less than the escape one due to the lower difference, in terms of magnitude and direction, from
the velocities before and after the burn.
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Results Value UM
ΔVcapt 2.785 km∕s
ΔVesc 4.768 km∕s
ΔVtot 7.553 km∕s
! 360 °
Ω 95.230 °
�c 96.834 °
�e 309.578 °
⃗Vorbit−c [1.868 , −2.288 , 0.291] km∕s
⃗Vorbit−e [3.303 , 2.211 , 0.616] km∕s
⃗Vℎyp−c [2.599 , −4.978 , 0.252] km∕s
⃗Vℎyp−e [6.433 , 5.756 , 1.209] km∕s
̂iℎ−c 169.73 °
̂iℎ−e 170.05 °

aℎ−c −2079 km
aℎ−e −743.541 km
ec 4.165 /
ee 7.050 /
!ℎ−c 68.679 °
!ℎ−e 325.446 °
Ωℎ−c 103.223 °
Ωℎ−e 94.8525 °
̂Wℎ−c [0.173 , 0.041 , −0.984] /
̂Wℎ−e [0.172 , 0.0146 , −0.985] /

Table 5.12: Results - Non-coplanar problem
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Figure 5.15: Non-coplanar problem geometry

Figure 5.16: Non-coplanar problem geometry - Zoom
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5.5 Variation of the periapsis distance

This section aims to study the total velocity increment varying the periapsis distance of the stopover
orbit within the range [50−1000]km (defined as the altitude from theMars surface). The periapsis
distance is a function of two parameters:

• Semimajor-axis a
• Eccentricity e

For the case here treated, the semimajor axis is assumed constant while the eccentricity varies
according to the following equation:

e = 1 −
rp
a

(5.7)
This study case is based on the input data reported in Table 5.13 and, by means of the optimiza-
tion algorithm, is characterized by the results shown in Table 5.14. Moreover, the trend of total
velocity increment respect to the periapsis distance is illustrated in Fig. 5.18.

Input Data value UM
a 19550 km
i 170 °
�c 138 °
�c 5.9 °
C3c 20.6 km2∕s2
�e 31.6 °
�e 8.9 °
C3e 57.6 km2∕s2

Table 5.13: Input data - Variation of the periapsis distance

Observing Table 5.14 and Fig. 5.18 it can be noted that a periapsis distance increase causes a total
velocity increment raise. It is increased by 5% within the chosen range. Analyzing the capture
and escape velocity increment, it can be observed as the capture ΔV is higher than the escape
one. Moreover,observing Fig.5.17 it can be noted that the capture velocity increment does not
vary with the periapsis distance and then remains constant while, the escape velocity increment
increases by 10%. At the same time, the orientation of the stopover orbit changes. The Right As-
cension of the Ascending Node remains almost constant while the Argument of periapsis moves,
increasing the distance from the Line of the Ascending Node. Due to the variation of the stopover
orbit orientation, the capture and escape manoeuvres are performed at different points. For the
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capture manoeuvres, it can be observed as it is performed at points getting closer to the periapsis
while for the escape burn, the behaviour is different. Here, the manoeuvre is accomplished at the
same point of the stopover orbit, characterized by the same true anomaly (� − !).

ℎ[km] ΔV [km∕s] ΔVc[km∕s] ΔVe[km∕s] ![°] Ω[°] �c[°] �e[°]
50 7.441 2.805 4.636 70.948 167.951 174.178 18.729
100 7.457 2.802 4.655 70.911 167.698 173.464 18.708
150 7.474 2.801 4.673 70.500 167.069 172.468 18.327
200 7.488 2.800 4.688 71.681 167.688 172.835 19.167
250 7.504 2.799 4.705 71.905 167.910 172.353 19.569
300 7.520 2.798 4.722 70.668 166.490 170.685 18.487
350 7.535 2.784 4.751 72.333 167.730 171.414 19.772
400 7.550 2.791 4.759 72.196 167.667 171.014 20.240
450 7.565 2.796 4.769 73.463 168.481 171.460 21.032
500 7.580 2.795 4.785 73.365 167.919 170.662 20.692
550 7.595 2.794 4.801 73.059 167.601 169.920 20.643
600 7.610 2.784 4.826 73.596 167.852 169.774 21.015
650 7.625 2.786 4.839 71.894 166.131 167.597 19.551
700 7.638 2.795 4.843 74.834 168.683 169.969 22.174
750 7.653 2.794 4.859 75.175 168.987 169.702 22.832
800 7.667 2.797 4.870 74.947 168.531 168.868 22.465
850 7.681 2.792 4.889 75.189 168.624 168.495 22.698
900 7.696 2.795 4.901 76.288 169.151 168.888 23.523
950 7.710 2.793 4.917 76.193 168.899 168.411 23.428
1000 7.723 2.796 4.927 75.927 168.397 167.535 22.760

Table 5.14: Results - Variation of the periapsis distance
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Figure 5.17: ΔV for capture and escape manoeuvres - Periapsis Distance

Figure 5.18: ΔV - Periapsis Distance
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5.6 Variation of the semimajor axis

This section concerns the study of the total velocity increment when the semimajor axis of the
stopover orbit varies. As written before, there is a relationship between the semimajor axis, the
eccentricity and the periapsis distance of a certain orbit. This one is given by the following equa-
tion:

a =
rp
1 − e

(5.8)
Thus, there are two methods to obtain a semimajor axis variation:

• variation of the eccentricity fixing the periapsis distance
• variation of the periapsis distance fixing the eccentricity

In this case, the first method is used to permit to the semimajor axis to vary between 10000km and
30000km. Input data are shown in Table 5.15 while results are presented in Table 5.16. Moreover,
the variation of the total velocity increment respect to the semimajor axis value is illustrated in
Fig.5.20.

Input Data value UM
rp 500 km
i 170 °
�c 138 °
�c 5.9 °
C3c 20.6 km2∕s2
�e 31.6 °
�e 8.9 °
C3e 57.6 km2∕s2

Table 5.15: Input data - Variation of the semimajor axis of the stopover orbit

From Table 5.15 or from Fig.5.20 it can be observed as the total velocity increment decreases if
the semimajor axis of the stopover orbit raises. This variation, of about 5%, is due to the decre-
ment of the ΔV needed for the escape manoeuvre while the capture velocity increment remains
almost constant. This behaviour can be observed in Fig5.20, where the velocity increment for
both manoeuvres compared with the semimajor axis of the stopover orbit is plotted. Moreover,
it can be noted as the cost of the escape manoeuvre is higher than the capture one. Fixing the
starting conditions and varying the stopover orbit semimajor axis the orientation of this orbit does
not change much. The Line of the Ascending Node, which position is described by Ω, varies its
angular position of about 2° in the worst case while the Argument of Periapsis ! and then the
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periapsis position varies, in the worst case, of about 5° respect to the Line of the Ascending node.

a[km] ΔV [km∕s] ΔVc[km∕s] ΔVe[km∕s] ![°] Ω[°] �c[°] �e[°]
10000 7.840 2.855 4.985 74.212 166.500 162.274 22.480
11000 7.791 2.839 4.952 75.906 168.458 165.583 23.809
12000 7.750 2.822 4.928 75.834 168.943 167.006 23.748
13000 7.716 2.819 4.897 75.544 168.882 167.922 23.416
14000 7.687 2.816 4.871 73.608 167.325 167.017 21.416
15000 7.662 2.810 4.852 74.809 168.585 168.946 22.316
16000 7.640 2.807 4.833 74.609 168.791 169.893 22.273
17000 7.620 2.801 4.820 74.400 168.452 170.013 21.780
18000 7.603 2.783 4.821 71.998 166.587 168.588 19.662
19000 7.588 2.796 4.793 73.666 168.353 170.745 21.244
20000 7.574 2.780 4.795 74.432 169.291 172.245 21.928
21000 7.562 2.789 4.773 73.323 168.139 171.276 20.867
22000 7.550 2.788 4.762 73.750 168.853 172.201 21.182
23000 7.534 2.785 4.754 72.400 167.673 171.414 20.002
24000 7.530 2.783 4.747 70.708 166.165 170.066 18.418
25000 7.522 2.787 4.735 72.796 168.139 172.259 20.226
26000 7.513 2.790 4.724 72.322 167.930 172.340 20.031
27000 7.506 2.778 4.728 70.800 166.477 171.027 18.487
28000 7.499 2.780 4.719 72.142 167.965 172.741 19.860
29000 7.492 2.771 4.721 71.990 167.767 172.752 19.631
30000 7.487 2.780 4.707 72.900 168.857 173.964 20.737

Table 5.16: Results - Variation of the semimajor axis of the stopover orbit
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Figure 5.19: ΔV for capture and escape manoeuvres - Semimajor-axis

Figure 5.20: ΔV - Semimajor axis
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5.7 Complete problem: implementation of the Descent - Ascent Ma-
noeuvres

This section aims to study and define the best parking orbit geometry for a case in which capture,
escape, descent and ascent manoeuvres are taken into account. These four phases are the most
important ones performed within the Mars Sphere of Influence and affect the total propellant
consumption. The section is divided into two parts. The first one is relative to the problem where
the orbit geometry changes in terms of periapsis distance for a fixed semimajor axis while the
second one is referred to the opposite case. Thus, in the second study case, the total velocity
increment will be evaluated as a function of the variation of the semimajor axis for a fixed periapsis
distance.

5.7.1 Variation of the periapsis distance

This study case exploits the input data reported in Table 5.17. The descent and ascent manoeu-
vres are now taking into account, and their contributions to the total velocity increment are now
evaluated. The results obtained for a periapsis distance variation, within the range [50−1000km]
from the Mars surface, are reported in Table while Fig.5.21 and Fig.5.22 show, respectively, the
contributions of the descent and ascent manoeuvres and the total velocity increment. It can be
noted that the contribution of the descent manoeuvre is really small respect to the others and does
not change much within the periapsis range. On the opposite side, the ascent manoeuvre has a
great impact on the total propellant consumption. It decreases if the periapsis distance raises and
then, in terms of cost, it is cheaper to perform this manoeuvre at a higher distance from the Mars
surface. The decrease of the propellant consumption of the ascent manoeuvre is more rapid than
the increase of the ΔV to perform capture and escape phases, then, the total velocity increment
decrease. This trend can be observed in Fig.5.22, where the total ΔV is reported as a function of
the periapsis distance. Thus, the choice of the stopover for this study case is principally affected
by the ascent manoeuvre that defines the best stopover orbit like the one characterized by with the
higher periapsis distance.
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ℎ[km] ΔVorbit[km∕s] ΔVdescent[km∕s] ΔVascent[km∕s] ΔVTOT [km∕s]
50 7.441 1.250 5.048 13.739
100 7.457 1.250 5.010 13.718
150 7.474 1.251 4.974 13.697
200 7.488 1.251 4.938 13.677
250 7.504 1.251 4.902 13.657
300 7.520 1.251 4.868 13.638
350 7.535 1.251 4.834 13.620
400 7.550 1.251 4.800 13.601
450 7.565 1.251 4.768 13.584
500 7.580 1.251 4.736 13.566
550 7.595 1.251 4.704 13.550
600 7.610 1.250 4.673 13.533
650 7.625 1.250 4.643 13.517
700 7.638 1.250 4.613 13.501
750 7.653 1.249 4.584 13.486
800 7.667 1.249 4.555 13.471
850 7.681 1.248 4.527 13.456
900 7.696 1.247 4.499 13.442
950 7.710 1.247 4.471 13.428
1000 7.723 1.246 4.444 13.414

Table 5.17: Results - Variation of the periapsis distance of the stopover orbit for capture, escape,
descent and ascent manoeuvres
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Figure 5.21: ΔV - Periapsis Distance for capture, escape, descent and ascent manoeuvres

Figure 5.22: ΔVTOT - Periapsis Distance for capture, escape, descent and ascent manoeuvres
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5.7.2 Variation of the semimajor axis

This second study case concerns the study of the complete problem (capture, escape, ascent and
descent manoeuvres are considered) when the semimajor axis of the stopover orbit varies within
the range [10000 ∶ 30000]km with a fixed periapsis distance (500km) from the Mars surface.
The input data are relative to the previous case, where only capture and escape manoeuvres were
considered (Table 5.13), while results are summarised in Table 5.18. Results show that the trend of
the velocity increment for ascent and descent manoeuvres are different. The descent manoeuvre,
which permits to land on the Martian surface, varies with a positive trend of about 30% increasing
then the total cost. This increase is due to the higher periapsis velocity of the stopover orbit,
in fact, if the energy equation is taken into account, it can be noted that for a fixed periapsis
distance an increment of the semimajor axis causes a velocity increase at that point. Thus, for the
same transfer orbit, the breaking manoeuvre that permits to land on the Martian surface has to be
greater. The same consideration may be done for the ascent manoeuvre where the Mars Ascent
Vehicle will leave the Martian surface to reach the desired stopover orbit. The increase of the
semimajor axis of the parking orbit imposes a higher periapsis velocity so, for the same transfer
orbit and the same starting conditions the manoeuvre that it needs is characterized by a higher
ΔV . Lastly, from Fig.5.24 it can be observed as the increment of the ΔV for the descent and
ascent manoeuvres implies an increase of the total propellant consumption even if the velocity
increment for the capture/escape phases decreases. Thus, the desirable stopover orbit for the case
in which the periapsis distance is fixed has to be characterized by a small semimajor axis value.
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a[km] ΔVorbit[km∕s] ΔVdescent[km∕s] ΔVascent[km∕s] ΔVTOT [km∕s]
10000 7.840 1.009 4.494 13.343
11000 7.791 1.055 4.540 13.386
12000 7.750 1.093 4.578 13.421
13000 7.716 1.125 4.610 13.451
14000 7.687 1.152 4.637 13.476
15000 7.662 1.176 4.660 13.498
16000 7.640 1.196 4.681 13.517
17000 7.620 1.214 4.699 13.532
18000 7.603 1.230 4.714 13.547
19000 7.588 1.244 4.728 13.560
20000 7.574 1.256 4.741 13.571
21000 7.562 1.268 4.753 13.582
22000 7.550 1.278 4.763 13.591
23000 7.534 1.288 4.772 13.600
24000 7.530 1.296 4.781 13.607
25000 7.522 1.304 4.789 13.615
26000 7.513 1.311 4.796 13.621
27000 7.506 1.318 4.803 13.627
28000 7.499 1.324 4.809 13.633
29000 7.492 1.330 4.815 13.637
30000 7.487 1.336 4.820 13.643

Table 5.18: Output data - Variation of the semimajor axis of the stopover orbit for capture, escape,
descent and ascent manoeuvres
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Figure 5.23: ΔV - Semimajor axis for capture, escape, descent and ascent manoeuvres

Figure 5.24: ΔVTOT - Semimajor axis for capture, escape, descent and ascent manoeuvres
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Chapter 6

Conclusions & Future Works

The purpose of this Master Thesis was relating to the development, implementation, and succes-
sive exploitation of an algorithm able to evaluate the parking orbit orientation and the manoeuvres
positions for a capture and escape mission minimizing the total velocity increment.
This algorithmwas implemented on the idea to generate a support tool for the trajectory design rel-
ative to a future Mars Sample Return Mission that, is one of the primary goals for the next decade
into the field of space exploration. This tool may be useful to study and evaluate the different
mission phases relative to the parking orbit definition, such as the descent on the Mars surface
and the ascent to the stopover orbit, and also for understanding the behaviour of this orbit inside
the planet’s perturbations environment. Aiming to go into the details of the problem, the Mars
Sample Return mission led by ESA and NASA was, first of all, introduced so that they can under-
stand the different phases that will characterize the entire mission. After that, the focus was moved
on the type of algorithms exploited to solve the optimization problem and so, an introduction of
what they are and what they do the genetic algorithms has been done. These algorithms due to
their higher computational capacity are efficient solver method to study multi-variables problems
into a wide solution search space and then, they were chosen for the purpose to solve the parking
orbit definition problem. The optimization algorithm was introduced going to describe the physi-
cal methods exploited to simplify the problem and then, the calculation procedure was explained.
The algorithm presented was implemented by MATLAB and for the purpose to validate it, some
tests were executed. First of all, a coplanar and symmetrical problem evolving on the Mars equa-
torial plane(zero inclination and zero declination) was considered because the analytical solution
was well- known. The same problem was studied with reverse starting conditions to evaluate the
algorithm behaviour with retrograde conditions. In both cases, the computational results are the
same as the analytical ones and then, the algorithm was validated. Subsequently, the coplanar and
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symmetrical problem was tested varying the Right Ascension and the stopover orbit inclination
obtaining, as it was intended to be, the same results of the previous cases. The last validation test
was performed for a three-dimensional study case, where capture and escape manoeuvres were
not performed on the same plane, obtaining congruent results relative to the logic problem. In
fact, Table 5.12 and Fig.5.15 show that the optimum injection manoeuvres were performed in the
proximity of the stopover orbit periapsis on hyperbolic trajectories characterized by the inclination
value similar to the stopover orbit one. Moreover, this study case helped the analysis relative to
the orbit geometry variation where two different cases were considered. The first one was relative
to the periapsis distance variation for a fixed semimajor axis value while the second one was re-
ferred to a case in which the semimajor axis varied for a fixed periapsis distance. In the first case,
the increase of the periapsis distance causes an increment of the propellant consumption while in
the opposite case the total cost of the manoeuvres decreases. Thus, for a fixed semimajor axis the
best stopover orbit is the one with the periapsis closer to the Martian surface. In the second case,
where the periapsis distance was fixed to 500km from the Martian surface (possible parking orbit
for the Mars Sample Return mission), the results show that incrementing the semimajor axis of
the stopover orbit the total propellant consumption decreases. Thus, a stopover orbit with a high
semimajor axis is desirable. Lastly, the problem of the orbit geometry variation was associated
with the descent and ascent manoeuvres modelized by Hohmann transfer equations. Evaluating
the contributions for both manoeuvres to the total velocity increment, the first two study cases of
the orbit geometry variation was studied. In the first case, for a fixed semimajor axis, results show
that the higher contribution is given by the capture and escape manoeuvres but the decrement of
the ascent manoeuvres propellant consumption causes the decrease of the total velocity increment.
In the second case, for a fixed periapsis distance, the behaviour of the total velocity increment is
the opposite one. In fact, the propellant consumption relative to the ascent manoeuvre increases
more than the decrement of the parking orbit ΔV and then the total velocity increment increase.
In this case, when the semimajor axis value is equal to 10000km the minimum total velocity in-
crement is calculated. This value is equal to 13.343km∕s. Lastly, in both cases, the propellant
consumption relative to the descent manoeuvres, remaining almost constant, was the minimum
one.
Thanks to these final studies, where all maneuvres were taken into account, the results show the
importance of the ascent and descent manoeuvres that so, have to be considered for the parking
orbit definition. The work here discussed is based on the idea to provide support for the future
Mars Sample Return mission programmed to start in 2020. The optimization algorithm is able
to treat the perturbative problem where perturbations due to planet’s oblateness are not neglected
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but, due to lack of time, it has not been treated. In this case, the code has to be modified and equa-
tions relative to planet’s oblateness perturbations have to be inserted inside the code. This future
implementation will permit to analyze the three-dimensional problem not only as a function of
the stopover orbit geometry but also as a function of the stopover time that can affect in a posi-
tive or negative way the total propellant consumption. Moreover, other mission requirements and
constraints, such as communication ones, may be taken into account and then, the parking orbit
geometry may be change. In fact, to have a synchronous orbit and then, to optimize the communi-
cations operations between the orbiter and the systems on the Mars surface, a parking orbit with a
semimajor axis of about 20000km must be selected. Then, knowing the total velocity increment,
the masses calculation, relative to the different systems, can be executed and optimized for dif-
ferent propulsive architectures. The ascent phase may be implemented utilizing a more accurate
method where losses will be estimated in detail, and then, the staging process may be executed
to optimize the Mars Ascent Vehicle design. Lastly, the efficiency of the optimization algorithm
may be improved by compacting the code and by studying the best optimization options for the
genetic algorithm solver.
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